// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_X64 #include "src/base/adapters.h" #include "src/code-factory.h" #include "src/counters.h" #include "src/deoptimizer.h" #include "src/frame-constants.h" #include "src/frames.h" #include "src/objects-inl.h" #include "src/objects/debug-objects.h" #include "src/objects/js-generator.h" #include "src/wasm/wasm-linkage.h" #include "src/wasm/wasm-objects.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address, ExitFrameType exit_frame_type) { __ LoadAddress(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address)); if (exit_frame_type == BUILTIN_EXIT) { __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), RelocInfo::CODE_TARGET); } else { DCHECK(exit_frame_type == EXIT); __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame), RelocInfo::CODE_TARGET); } } static void GenerateTailCallToReturnedCode(MacroAssembler* masm, Runtime::FunctionId function_id) { // ----------- S t a t e ------------- // -- rax : argument count (preserved for callee) // -- rdx : new target (preserved for callee) // -- rdi : target function (preserved for callee) // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); // Push the number of arguments to the callee. __ SmiTag(rax, rax); __ Push(rax); // Push a copy of the target function and the new target. __ Push(rdi); __ Push(rdx); // Function is also the parameter to the runtime call. __ Push(rdi); __ CallRuntime(function_id, 1); __ movp(rcx, rax); // Restore target function and new target. __ Pop(rdx); __ Pop(rdi); __ Pop(rax); __ SmiUntag(rax, rax); } static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch"); __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize)); __ jmp(rcx); } namespace { void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax: number of arguments // -- rdi: constructor function // -- rdx: new target // -- rsi: context // ----------------------------------- // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ SmiTag(rcx, rax); __ Push(rsi); __ Push(rcx); // The receiver for the builtin/api call. __ PushRoot(Heap::kTheHoleValueRootIndex); // Set up pointer to last argument. __ leap(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ movp(rcx, rax); // ----------- S t a t e ------------- // -- rax: number of arguments (untagged) // -- rdi: constructor function // -- rdx: new target // -- rbx: pointer to last argument // -- rcx: counter // -- sp[0*kPointerSize]: the hole (receiver) // -- sp[1*kPointerSize]: number of arguments (tagged) // -- sp[2*kPointerSize]: context // ----------------------------------- __ jmp(&entry); __ bind(&loop); __ Push(Operand(rbx, rcx, times_pointer_size, 0)); __ bind(&entry); __ decp(rcx); __ j(greater_equal, &loop, Label::kNear); // Call the function. // rax: number of arguments (untagged) // rdi: constructor function // rdx: new target ParameterCount actual(rax); __ InvokeFunction(rdi, rdx, actual, CALL_FUNCTION); // Restore context from the frame. __ movp(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset)); // Restore smi-tagged arguments count from the frame. __ movp(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. __ PopReturnAddressTo(rcx); SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2); __ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize)); __ PushReturnAddressFrom(rcx); __ ret(0); } } // namespace // The construct stub for ES5 constructor functions and ES6 class constructors. void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax: number of arguments (untagged) // -- rdi: constructor function // -- rdx: new target // -- rsi: context // -- sp[...]: constructor arguments // ----------------------------------- // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); Label post_instantiation_deopt_entry, not_create_implicit_receiver; // Preserve the incoming parameters on the stack. __ SmiTag(rcx, rax); __ Push(rsi); __ Push(rcx); __ Push(rdi); __ PushRoot(Heap::kTheHoleValueRootIndex); __ Push(rdx); // ----------- S t a t e ------------- // -- sp[0*kPointerSize]: new target // -- sp[1*kPointerSize]: padding // -- rdi and sp[2*kPointerSize]: constructor function // -- sp[3*kPointerSize]: argument count // -- sp[4*kPointerSize]: context // ----------------------------------- __ movp(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ testl(FieldOperand(rbx, SharedFunctionInfo::kFlagsOffset), Immediate(SharedFunctionInfo::IsDerivedConstructorBit::kMask)); __ j(not_zero, ¬_create_implicit_receiver, Label::kNear); // If not derived class constructor: Allocate the new receiver object. __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1); __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET); __ jmp(&post_instantiation_deopt_entry, Label::kNear); // Else: use TheHoleValue as receiver for constructor call __ bind(¬_create_implicit_receiver); __ LoadRoot(rax, Heap::kTheHoleValueRootIndex); // ----------- S t a t e ------------- // -- rax implicit receiver // -- Slot 4 / sp[0*kPointerSize] new target // -- Slot 3 / sp[1*kPointerSize] padding // -- Slot 2 / sp[2*kPointerSize] constructor function // -- Slot 1 / sp[3*kPointerSize] number of arguments (tagged) // -- Slot 0 / sp[4*kPointerSize] context // ----------------------------------- // Deoptimizer enters here. masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( masm->pc_offset()); __ bind(&post_instantiation_deopt_entry); // Restore new target. __ Pop(rdx); // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ Push(rax); __ Push(rax); // ----------- S t a t e ------------- // -- sp[0*kPointerSize] implicit receiver // -- sp[1*kPointerSize] implicit receiver // -- sp[2*kPointerSize] padding // -- sp[3*kPointerSize] constructor function // -- sp[4*kPointerSize] number of arguments (tagged) // -- sp[5*kPointerSize] context // ----------------------------------- // Restore constructor function and argument count. __ movp(rdi, Operand(rbp, ConstructFrameConstants::kConstructorOffset)); __ SmiUntag(rax, Operand(rbp, ConstructFrameConstants::kLengthOffset)); // Set up pointer to last argument. __ leap(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ movp(rcx, rax); // ----------- S t a t e ------------- // -- rax: number of arguments (untagged) // -- rdx: new target // -- rbx: pointer to last argument // -- rcx: counter (tagged) // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: implicit receiver // -- sp[2*kPointerSize]: padding // -- rdi and sp[3*kPointerSize]: constructor function // -- sp[4*kPointerSize]: number of arguments (tagged) // -- sp[5*kPointerSize]: context // ----------------------------------- __ jmp(&entry, Label::kNear); __ bind(&loop); __ Push(Operand(rbx, rcx, times_pointer_size, 0)); __ bind(&entry); __ decp(rcx); __ j(greater_equal, &loop, Label::kNear); // Call the function. ParameterCount actual(rax); __ InvokeFunction(rdi, rdx, actual, CALL_FUNCTION); // ----------- S t a t e ------------- // -- rax constructor result // -- sp[0*kPointerSize] implicit receiver // -- sp[1*kPointerSize] padding // -- sp[2*kPointerSize] constructor function // -- sp[3*kPointerSize] number of arguments // -- sp[4*kPointerSize] context // ----------------------------------- // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( masm->pc_offset()); // Restore context from the frame. __ movp(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, do_throw, leave_frame; // If the result is undefined, we jump out to using the implicit receiver. __ JumpIfRoot(rax, Heap::kUndefinedValueRootIndex, &use_receiver, Label::kNear); // Otherwise we do a smi check and fall through to check if the return value // is a valid receiver. // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(rax, &use_receiver, Label::kNear); // If the type of the result (stored in its map) is less than // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx); __ j(above_equal, &leave_frame, Label::kNear); __ jmp(&use_receiver, Label::kNear); __ bind(&do_throw); __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ movp(rax, Operand(rsp, 0 * kPointerSize)); __ JumpIfRoot(rax, Heap::kTheHoleValueRootIndex, &do_throw, Label::kNear); __ bind(&leave_frame); // Restore the arguments count. __ movp(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. __ PopReturnAddressTo(rcx); SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2); __ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize)); __ PushReturnAddressFrom(rcx); __ ret(0); } void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { Generate_JSBuiltinsConstructStubHelper(masm); } void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rdi); __ CallRuntime(Runtime::kThrowConstructedNonConstructable); } static void Generate_StackOverflowCheck( MacroAssembler* masm, Register num_args, Register scratch, Label* stack_overflow, Label::Distance stack_overflow_distance = Label::kFar) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. __ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex); __ movp(scratch, rsp); // Make scratch the space we have left. The stack might already be overflowed // here which will cause scratch to become negative. __ subp(scratch, kScratchRegister); __ sarp(scratch, Immediate(kPointerSizeLog2)); // Check if the arguments will overflow the stack. __ cmpp(scratch, num_args); // Signed comparison. __ j(less_equal, stack_overflow, stack_overflow_distance); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { ProfileEntryHookStub::MaybeCallEntryHook(masm); // Expects five C++ function parameters. // - Object* new_target // - JSFunction* function // - Object* receiver // - int argc // - Object*** argv // (see Handle::Invoke in execution.cc). // Open a C++ scope for the FrameScope. { // Platform specific argument handling. After this, the stack contains // an internal frame and the pushed function and receiver, and // register rax and rbx holds the argument count and argument array, // while rdi holds the function pointer, rsi the context, and rdx the // new.target. #ifdef _WIN64 // MSVC parameters in: // rcx : new_target // rdx : function // r8 : receiver // r9 : argc // [rsp+0x20] : argv // Enter an internal frame. FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address = ExternalReference::Create( IsolateAddressId::kContextAddress, masm->isolate()); __ movp(rsi, masm->ExternalOperand(context_address)); // Push the function and the receiver onto the stack. __ Push(rdx); __ Push(r8); // Load the number of arguments and setup pointer to the arguments. __ movp(rax, r9); // Load the previous frame pointer to access C argument on stack __ movp(kScratchRegister, Operand(rbp, 0)); __ movp(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset)); // Load the function pointer into rdi. __ movp(rdi, rdx); // Load the new.target into rdx. __ movp(rdx, rcx); #else // _WIN64 // GCC parameters in: // rdi : new_target // rsi : function // rdx : receiver // rcx : argc // r8 : argv __ movp(r11, rdi); __ movp(rdi, rsi); // rdi : function // r11 : new_target // Clear the context before we push it when entering the internal frame. __ Set(rsi, 0); // Enter an internal frame. FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address = ExternalReference::Create( IsolateAddressId::kContextAddress, masm->isolate()); __ movp(rsi, masm->ExternalOperand(context_address)); // Push the function and receiver onto the stack. __ Push(rdi); __ Push(rdx); // Load the number of arguments and setup pointer to the arguments. __ movp(rax, rcx); __ movp(rbx, r8); // Load the new.target into rdx. __ movp(rdx, r11); #endif // _WIN64 // Current stack contents: // [rsp + 2 * kPointerSize ... ] : Internal frame // [rsp + kPointerSize] : function // [rsp] : receiver // Current register contents: // rax : argc // rbx : argv // rsi : context // rdi : function // rdx : new.target // Check if we have enough stack space to push all arguments. // Argument count in rax. Clobbers rcx. Label enough_stack_space, stack_overflow; Generate_StackOverflowCheck(masm, rax, rcx, &stack_overflow, Label::kNear); __ jmp(&enough_stack_space, Label::kNear); __ bind(&stack_overflow); __ CallRuntime(Runtime::kThrowStackOverflow); // This should be unreachable. __ int3(); __ bind(&enough_stack_space); // Copy arguments to the stack in a loop. // Register rbx points to array of pointers to handle locations. // Push the values of these handles. Label loop, entry; __ Set(rcx, 0); // Set loop variable to 0. __ jmp(&entry, Label::kNear); __ bind(&loop); __ movp(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0)); __ Push(Operand(kScratchRegister, 0)); // dereference handle __ addp(rcx, Immediate(1)); __ bind(&entry); __ cmpp(rcx, rax); __ j(not_equal, &loop, Label::kNear); // Invoke the builtin code. Handle builtin = is_construct ? BUILTIN_CODE(masm->isolate(), Construct) : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Exit the internal frame. Notice that this also removes the empty // context and the function left on the stack by the code // invocation. } __ ret(0); } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } static void GetSharedFunctionInfoBytecode(MacroAssembler* masm, Register sfi_data, Register scratch1) { Label done; __ CmpObjectType(sfi_data, INTERPRETER_DATA_TYPE, scratch1); __ j(not_equal, &done, Label::kNear); __ movp(sfi_data, FieldOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); __ bind(&done); } // static void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the value to pass to the generator // -- rdx : the JSGeneratorObject to resume // -- rsp[0] : return address // ----------------------------------- __ AssertGeneratorObject(rdx); // Store input value into generator object. __ movp(FieldOperand(rdx, JSGeneratorObject::kInputOrDebugPosOffset), rax); __ RecordWriteField(rdx, JSGeneratorObject::kInputOrDebugPosOffset, rax, rcx, kDontSaveFPRegs); // Load suspended function and context. __ movp(rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset)); __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // Flood function if we are stepping. Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; Label stepping_prepared; ExternalReference debug_hook = ExternalReference::debug_hook_on_function_call_address(masm->isolate()); Operand debug_hook_operand = masm->ExternalOperand(debug_hook); __ cmpb(debug_hook_operand, Immediate(0)); __ j(not_equal, &prepare_step_in_if_stepping); // Flood function if we need to continue stepping in the suspended generator. ExternalReference debug_suspended_generator = ExternalReference::debug_suspended_generator_address(masm->isolate()); Operand debug_suspended_generator_operand = masm->ExternalOperand(debug_suspended_generator); __ cmpp(rdx, debug_suspended_generator_operand); __ j(equal, &prepare_step_in_suspended_generator); __ bind(&stepping_prepared); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label stack_overflow; __ CompareRoot(rsp, Heap::kRealStackLimitRootIndex); __ j(below, &stack_overflow); // Pop return address. __ PopReturnAddressTo(rax); // Push receiver. __ Push(FieldOperand(rdx, JSGeneratorObject::kReceiverOffset)); // ----------- S t a t e ------------- // -- rax : return address // -- rdx : the JSGeneratorObject to resume // -- rdi : generator function // -- rsi : generator context // -- rsp[0] : generator receiver // ----------------------------------- // Copy the function arguments from the generator object's register file. __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movzxwq( rcx, FieldOperand(rcx, SharedFunctionInfo::kFormalParameterCountOffset)); __ movp(rbx, FieldOperand(rdx, JSGeneratorObject::kParametersAndRegistersOffset)); { Label done_loop, loop; __ Set(r9, 0); __ bind(&loop); __ cmpl(r9, rcx); __ j(greater_equal, &done_loop, Label::kNear); __ Push(FieldOperand(rbx, r9, times_pointer_size, FixedArray::kHeaderSize)); __ addl(r9, Immediate(1)); __ jmp(&loop); __ bind(&done_loop); } // Underlying function needs to have bytecode available. if (FLAG_debug_code) { __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoBytecode(masm, rcx, kScratchRegister); __ CmpObjectType(rcx, BYTECODE_ARRAY_TYPE, rcx); __ Assert(equal, AbortReason::kMissingBytecodeArray); } // Resume (Ignition/TurboFan) generator object. { __ PushReturnAddressFrom(rax); __ movp(rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movzxwq(rax, FieldOperand( rax, SharedFunctionInfo::kFormalParameterCountOffset)); // We abuse new.target both to indicate that this is a resume call and to // pass in the generator object. In ordinary calls, new.target is always // undefined because generator functions are non-constructable. static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch"); __ movp(rcx, FieldOperand(rdi, JSFunction::kCodeOffset)); __ addp(rcx, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(rcx); } __ bind(&prepare_step_in_if_stepping); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rdx); __ Push(rdi); // Push hole as receiver since we do not use it for stepping. __ PushRoot(Heap::kTheHoleValueRootIndex); __ CallRuntime(Runtime::kDebugOnFunctionCall); __ Pop(rdx); __ movp(rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset)); } __ jmp(&stepping_prepared); __ bind(&prepare_step_in_suspended_generator); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rdx); __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); __ Pop(rdx); __ movp(rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset)); } __ jmp(&stepping_prepared); __ bind(&stack_overflow); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ int3(); // This should be unreachable. } } // TODO(juliana): if we remove the code below then we don't need all // the parameters. static void ReplaceClosureCodeWithOptimizedCode( MacroAssembler* masm, Register optimized_code, Register closure, Register scratch1, Register scratch2, Register scratch3) { // Store the optimized code in the closure. __ movp(FieldOperand(closure, JSFunction::kCodeOffset), optimized_code); __ movp(scratch1, optimized_code); // Write barrier clobbers scratch1 below. __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1, Register scratch2) { Register args_count = scratch1; Register return_pc = scratch2; // Get the arguments + receiver count. __ movp(args_count, Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ movl(args_count, FieldOperand(args_count, BytecodeArray::kParameterSizeOffset)); // Leave the frame (also dropping the register file). __ leave(); // Drop receiver + arguments. __ PopReturnAddressTo(return_pc); __ addp(rsp, args_count); __ PushReturnAddressFrom(return_pc); } // Tail-call |function_id| if |smi_entry| == |marker| static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, Register smi_entry, OptimizationMarker marker, Runtime::FunctionId function_id) { Label no_match; __ SmiCompare(smi_entry, Smi::FromEnum(marker)); __ j(not_equal, &no_match); GenerateTailCallToReturnedCode(masm, function_id); __ bind(&no_match); } static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm, Register feedback_vector, Register scratch1, Register scratch2, Register scratch3) { // ----------- S t a t e ------------- // -- rax : argument count (preserved for callee if needed, and caller) // -- rdx : new target (preserved for callee if needed, and caller) // -- rdi : target function (preserved for callee if needed, and caller) // -- feedback vector (preserved for caller if needed) // ----------------------------------- DCHECK(!AreAliased(feedback_vector, rax, rdx, rdi, scratch1, scratch2, scratch3)); Label optimized_code_slot_is_weak_ref, fallthrough; Register closure = rdi; Register optimized_code_entry = scratch1; __ movp(optimized_code_entry, FieldOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset)); // Check if the code entry is a Smi. If yes, we interpret it as an // optimisation marker. Otherwise, interpret it as a weak reference to a code // object. __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref); { // Optimized code slot is a Smi optimization marker. // Fall through if no optimization trigger. __ SmiCompare(optimized_code_entry, Smi::FromEnum(OptimizationMarker::kNone)); __ j(equal, &fallthrough); TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, OptimizationMarker::kLogFirstExecution, Runtime::kFunctionFirstExecution); TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, OptimizationMarker::kCompileOptimized, Runtime::kCompileOptimized_NotConcurrent); TailCallRuntimeIfMarkerEquals( masm, optimized_code_entry, OptimizationMarker::kCompileOptimizedConcurrent, Runtime::kCompileOptimized_Concurrent); { // Otherwise, the marker is InOptimizationQueue, so fall through hoping // that an interrupt will eventually update the slot with optimized code. if (FLAG_debug_code) { __ SmiCompare(optimized_code_entry, Smi::FromEnum(OptimizationMarker::kInOptimizationQueue)); __ Assert(equal, AbortReason::kExpectedOptimizationSentinel); } __ jmp(&fallthrough); } } { // Optimized code slot is a weak reference. __ bind(&optimized_code_slot_is_weak_ref); __ LoadWeakValue(optimized_code_entry, &fallthrough); // Check if the optimized code is marked for deopt. If it is, call the // runtime to clear it. Label found_deoptimized_code; __ movp(scratch2, FieldOperand(optimized_code_entry, Code::kCodeDataContainerOffset)); __ testl( FieldOperand(scratch2, CodeDataContainer::kKindSpecificFlagsOffset), Immediate(1 << Code::kMarkedForDeoptimizationBit)); __ j(not_zero, &found_deoptimized_code); // Optimized code is good, get it into the closure and link the closure into // the optimized functions list, then tail call the optimized code. // The feedback vector is no longer used, so re-use it as a scratch // register. ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, scratch2, scratch3, feedback_vector); static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch"); __ Move(rcx, optimized_code_entry); __ addp(rcx, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(rcx); // Optimized code slot contains deoptimized code, evict it and re-enter the // closure's code. __ bind(&found_deoptimized_code); GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot); } // Fall-through if the optimized code cell is clear and there is no // optimization marker. __ bind(&fallthrough); } // Advance the current bytecode offset. This simulates what all bytecode // handlers do upon completion of the underlying operation. Will bail out to a // label if the bytecode (without prefix) is a return bytecode. static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, Register bytecode_array, Register bytecode_offset, Register bytecode, Register scratch1, Label* if_return) { Register bytecode_size_table = scratch1; DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, bytecode)); __ Move(bytecode_size_table, ExternalReference::bytecode_size_table_address()); // Check if the bytecode is a Wide or ExtraWide prefix bytecode. Label process_bytecode, extra_wide; STATIC_ASSERT(0 == static_cast(interpreter::Bytecode::kWide)); STATIC_ASSERT(1 == static_cast(interpreter::Bytecode::kExtraWide)); STATIC_ASSERT(2 == static_cast(interpreter::Bytecode::kDebugBreakWide)); STATIC_ASSERT(3 == static_cast(interpreter::Bytecode::kDebugBreakExtraWide)); __ cmpb(bytecode, Immediate(0x3)); __ j(above, &process_bytecode, Label::kNear); __ testb(bytecode, Immediate(0x1)); __ j(not_equal, &extra_wide, Label::kNear); // Load the next bytecode and update table to the wide scaled table. __ incl(bytecode_offset); __ movzxbp(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0)); __ addp(bytecode_size_table, Immediate(kIntSize * interpreter::Bytecodes::kBytecodeCount)); __ jmp(&process_bytecode, Label::kNear); __ bind(&extra_wide); // Load the next bytecode and update table to the extra wide scaled table. __ incl(bytecode_offset); __ movzxbp(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0)); __ addp(bytecode_size_table, Immediate(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); __ bind(&process_bytecode); // Bailout to the return label if this is a return bytecode. #define JUMP_IF_EQUAL(NAME) \ __ cmpb(bytecode, \ Immediate(static_cast(interpreter::Bytecode::k##NAME))); \ __ j(equal, if_return, Label::kFar); RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) #undef JUMP_IF_EQUAL // Otherwise, load the size of the current bytecode and advance the offset. __ addl(bytecode_offset, Operand(bytecode_size_table, bytecode, times_4, 0)); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. The actual argument count matches the formal parameter // count expected by the function. // // The live registers are: // o rdi: the JS function object being called // o rdx: the incoming new target or generator object // o rsi: our context // o rbp: the caller's frame pointer // o rsp: stack pointer (pointing to return address) // // The function builds an interpreter frame. See InterpreterFrameConstants in // frames.h for its layout. void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { ProfileEntryHookStub::MaybeCallEntryHook(masm); Register closure = rdi; Register feedback_vector = rbx; // Load the feedback vector from the closure. __ movp(feedback_vector, FieldOperand(closure, JSFunction::kFeedbackCellOffset)); __ movp(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset)); // Read off the optimized code slot in the feedback vector, and if there // is optimized code or an optimization marker, call that instead. MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, rcx, r14, r15); // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm, StackFrame::MANUAL); __ pushq(rbp); // Caller's frame pointer. __ movp(rbp, rsp); __ Push(rsi); // Callee's context. __ Push(rdi); // Callee's JS function. // Get the bytecode array from the function object and load it into // kInterpreterBytecodeArrayRegister. __ movp(rax, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset)); __ movp(kInterpreterBytecodeArrayRegister, FieldOperand(rax, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, kScratchRegister); // Increment invocation count for the function. __ incl( FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset)); // Check function data field is actually a BytecodeArray object. if (FLAG_debug_code) { __ AssertNotSmi(kInterpreterBytecodeArrayRegister); __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, rax); __ Assert( equal, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Reset code age. __ movb(FieldOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kBytecodeAgeOffset), Immediate(BytecodeArray::kNoAgeBytecodeAge)); // Load initial bytecode offset. __ movp(kInterpreterBytecodeOffsetRegister, Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag)); // Push bytecode array and Smi tagged bytecode offset. __ Push(kInterpreterBytecodeArrayRegister); __ SmiTag(rcx, kInterpreterBytecodeOffsetRegister); __ Push(rcx); // Allocate the local and temporary register file on the stack. { // Load frame size from the BytecodeArray object. __ movl(rcx, FieldOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. Label ok; __ movp(rax, rsp); __ subp(rax, rcx); __ CompareRoot(rax, Heap::kRealStackLimitRootIndex); __ j(above_equal, &ok, Label::kNear); __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&ok); // If ok, push undefined as the initial value for all register file entries. Label loop_header; Label loop_check; __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); __ j(always, &loop_check, Label::kNear); __ bind(&loop_header); // TODO(rmcilroy): Consider doing more than one push per loop iteration. __ Push(rax); // Continue loop if not done. __ bind(&loop_check); __ subp(rcx, Immediate(kPointerSize)); __ j(greater_equal, &loop_header, Label::kNear); } // If the bytecode array has a valid incoming new target or generator object // register, initialize it with incoming value which was passed in rdx. Label no_incoming_new_target_or_generator_register; __ movsxlq( rax, FieldOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); __ testl(rax, rax); __ j(zero, &no_incoming_new_target_or_generator_register, Label::kNear); __ movp(Operand(rbp, rax, times_pointer_size, 0), rdx); __ bind(&no_incoming_new_target_or_generator_register); // Load accumulator with undefined. __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); // Load the dispatch table into a register and dispatch to the bytecode // handler at the current bytecode offset. Label do_dispatch; __ bind(&do_dispatch); __ Move( kInterpreterDispatchTableRegister, ExternalReference::interpreter_dispatch_table_address(masm->isolate())); __ movzxbp(r11, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); __ movp( kJavaScriptCallCodeStartRegister, Operand(kInterpreterDispatchTableRegister, r11, times_pointer_size, 0)); __ call(kJavaScriptCallCodeStartRegister); masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); // Any returns to the entry trampoline are either due to the return bytecode // or the interpreter tail calling a builtin and then a dispatch. // Get bytecode array and bytecode offset from the stack frame. __ movp(kInterpreterBytecodeArrayRegister, Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ movp(kInterpreterBytecodeOffsetRegister, Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister, kInterpreterBytecodeOffsetRegister); // Either return, or advance to the next bytecode and dispatch. Label do_return; __ movzxbp(rbx, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, rbx, rcx, &do_return); __ jmp(&do_dispatch); __ bind(&do_return); // The return value is in rax. LeaveInterpreterFrame(masm, rbx, rcx); __ ret(0); } static void Generate_InterpreterPushArgs(MacroAssembler* masm, Register num_args, Register start_address, Register scratch) { // Find the address of the last argument. __ Move(scratch, num_args); __ shlp(scratch, Immediate(kPointerSizeLog2)); __ negp(scratch); __ addp(scratch, start_address); // Push the arguments. Label loop_header, loop_check; __ j(always, &loop_check, Label::kNear); __ bind(&loop_header); __ Push(Operand(start_address, 0)); __ subp(start_address, Immediate(kPointerSize)); __ bind(&loop_check); __ cmpp(start_address, scratch); __ j(greater, &loop_header, Label::kNear); } // static void Builtins::Generate_InterpreterPushArgsThenCallImpl( MacroAssembler* masm, ConvertReceiverMode receiver_mode, InterpreterPushArgsMode mode) { DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rbx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- rdi : the target to call (can be any Object). // ----------------------------------- Label stack_overflow; // Number of values to be pushed. __ leal(rcx, Operand(rax, 1)); // Add one for receiver. // Add a stack check before pushing arguments. Generate_StackOverflowCheck(masm, rcx, rdx, &stack_overflow); // Pop return address to allow tail-call after pushing arguments. __ PopReturnAddressTo(kScratchRegister); // Push "undefined" as the receiver arg if we need to. if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { __ PushRoot(Heap::kUndefinedValueRootIndex); __ decl(rcx); // Subtract one for receiver. } // rbx and rdx will be modified. Generate_InterpreterPushArgs(masm, rcx, rbx, rdx); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Pop(rbx); // Pass the spread in a register __ decl(rax); // Subtract one for spread } // Call the target. __ PushReturnAddressFrom(kScratchRegister); // Re-push return address. if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), RelocInfo::CODE_TARGET); } else { __ Jump(masm->isolate()->builtins()->Call(receiver_mode), RelocInfo::CODE_TARGET); } // Throw stack overflow exception. __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // This should be unreachable. __ int3(); } } // static void Builtins::Generate_InterpreterPushArgsThenConstructImpl( MacroAssembler* masm, InterpreterPushArgsMode mode) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // -- rdi : the constructor to call (can be any Object) // -- rbx : the allocation site feedback if available, undefined otherwise // -- rcx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // ----------------------------------- Label stack_overflow; // Add a stack check before pushing arguments. Generate_StackOverflowCheck(masm, rax, r8, &stack_overflow); // Pop return address to allow tail-call after pushing arguments. __ PopReturnAddressTo(kScratchRegister); // Push slot for the receiver to be constructed. __ Push(Immediate(0)); // rcx and r8 will be modified. Generate_InterpreterPushArgs(masm, rax, rcx, r8); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Pop(rbx); // Pass the spread in a register __ decl(rax); // Subtract one for spread // Push return address in preparation for the tail-call. __ PushReturnAddressFrom(kScratchRegister); } else { __ PushReturnAddressFrom(kScratchRegister); __ AssertUndefinedOrAllocationSite(rbx); } if (mode == InterpreterPushArgsMode::kArrayFunction) { // Tail call to the array construct stub (still in the caller // context at this point). __ AssertFunction(rdi); // Jump to the constructor function (rax, rbx, rdx passed on). Handle code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl); __ Jump(code, RelocInfo::CODE_TARGET); } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // Call the constructor (rax, rdx, rdi passed on). __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), RelocInfo::CODE_TARGET); } else { DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); // Call the constructor (rax, rdx, rdi passed on). __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } // Throw stack overflow exception. __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // This should be unreachable. __ int3(); } } static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { // Set the return address to the correct point in the interpreter entry // trampoline. Label builtin_trampoline, trampoline_loaded; Smi* interpreter_entry_return_pc_offset( masm->isolate()->heap()->interpreter_entry_return_pc_offset()); DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero); // If the SFI function_data is an InterpreterData, get the trampoline stored // in it, otherwise get the trampoline from the builtins list. __ movp(rbx, Operand(rbp, StandardFrameConstants::kFunctionOffset)); __ movp(rbx, FieldOperand(rbx, JSFunction::kSharedFunctionInfoOffset)); __ movp(rbx, FieldOperand(rbx, SharedFunctionInfo::kFunctionDataOffset)); __ CmpObjectType(rbx, INTERPRETER_DATA_TYPE, kScratchRegister); __ j(not_equal, &builtin_trampoline, Label::kNear); __ movp(rbx, FieldOperand(rbx, InterpreterData::kInterpreterTrampolineOffset)); __ jmp(&trampoline_loaded, Label::kNear); __ bind(&builtin_trampoline); __ Move(rbx, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline)); __ bind(&trampoline_loaded); __ addp(rbx, Immediate(interpreter_entry_return_pc_offset->value() + Code::kHeaderSize - kHeapObjectTag)); __ Push(rbx); // Initialize dispatch table register. __ Move( kInterpreterDispatchTableRegister, ExternalReference::interpreter_dispatch_table_address(masm->isolate())); // Get the bytecode array pointer from the frame. __ movp(kInterpreterBytecodeArrayRegister, Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ AssertNotSmi(kInterpreterBytecodeArrayRegister); __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, rbx); __ Assert( equal, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Get the target bytecode offset from the frame. __ movp(kInterpreterBytecodeOffsetRegister, Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister, kInterpreterBytecodeOffsetRegister); // Dispatch to the target bytecode. __ movzxbp(r11, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); __ movp( kJavaScriptCallCodeStartRegister, Operand(kInterpreterDispatchTableRegister, r11, times_pointer_size, 0)); __ jmp(kJavaScriptCallCodeStartRegister); } void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { // Get bytecode array and bytecode offset from the stack frame. __ movp(kInterpreterBytecodeArrayRegister, Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ movp(kInterpreterBytecodeOffsetRegister, Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister, kInterpreterBytecodeOffsetRegister); // Load the current bytecode. __ movzxbp(rbx, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); // Advance to the next bytecode. Label if_return; AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, rbx, rcx, &if_return); // Convert new bytecode offset to a Smi and save in the stackframe. __ SmiTag(rbx, kInterpreterBytecodeOffsetRegister); __ movp(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp), rbx); Generate_InterpreterEnterBytecode(masm); // We should never take the if_return path. __ bind(&if_return); __ Abort(AbortReason::kInvalidBytecodeAdvance); } void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { Generate_InterpreterEnterBytecode(masm); } void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argument count (preserved for callee) // -- rdx : new target (preserved for callee) // -- rdi : target function (preserved for callee) // ----------------------------------- Label failed; { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve argument count for later compare. __ movp(rcx, rax); // Push the number of arguments to the callee. __ SmiTag(rax, rax); __ Push(rax); // Push a copy of the target function and the new target. __ Push(rdi); __ Push(rdx); // The function. __ Push(rdi); // Copy arguments from caller (stdlib, foreign, heap). Label args_done; for (int j = 0; j < 4; ++j) { Label over; if (j < 3) { __ cmpp(rcx, Immediate(j)); __ j(not_equal, &over, Label::kNear); } for (int i = j - 1; i >= 0; --i) { __ Push(Operand( rbp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize)); } for (int i = 0; i < 3 - j; ++i) { __ PushRoot(Heap::kUndefinedValueRootIndex); } if (j < 3) { __ jmp(&args_done, Label::kNear); __ bind(&over); } } __ bind(&args_done); // Call runtime, on success unwind frame, and parent frame. __ CallRuntime(Runtime::kInstantiateAsmJs, 4); // A smi 0 is returned on failure, an object on success. __ JumpIfSmi(rax, &failed, Label::kNear); __ Drop(2); __ Pop(rcx); __ SmiUntag(rcx, rcx); scope.GenerateLeaveFrame(); __ PopReturnAddressTo(rbx); __ incp(rcx); __ leap(rsp, Operand(rsp, rcx, times_pointer_size, 0)); __ PushReturnAddressFrom(rbx); __ ret(0); __ bind(&failed); // Restore target function and new target. __ Pop(rdx); __ Pop(rdi); __ Pop(rax); __ SmiUntag(rax, rax); } // On failure, tail call back to regular js by re-calling the function // which has be reset to the compile lazy builtin. __ movp(rcx, FieldOperand(rdi, JSFunction::kCodeOffset)); __ addp(rcx, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(rcx); } namespace { void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, bool java_script_builtin, bool with_result) { const RegisterConfiguration* config(RegisterConfiguration::Default()); int allocatable_register_count = config->num_allocatable_general_registers(); if (with_result) { // Overwrite the hole inserted by the deoptimizer with the return value from // the LAZY deopt point. __ movq(Operand(rsp, config->num_allocatable_general_registers() * kPointerSize + BuiltinContinuationFrameConstants::kFixedFrameSize), rax); } for (int i = allocatable_register_count - 1; i >= 0; --i) { int code = config->GetAllocatableGeneralCode(i); __ popq(Register::from_code(code)); if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { __ SmiUntag(Register::from_code(code), Register::from_code(code)); } } __ movq( rbp, Operand(rsp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); const int offsetToPC = BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp - kPointerSize; __ popq(Operand(rsp, offsetToPC)); __ Drop(offsetToPC / kPointerSize); __ addq(Operand(rsp, 0), Immediate(Code::kHeaderSize - kHeapObjectTag)); __ Ret(); } } // namespace void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, false); } void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, true); } void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, false); } void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, true); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kNotifyDeoptimized); // Tear down internal frame. } DCHECK_EQ(kInterpreterAccumulatorRegister.code(), rax.code()); __ movp(rax, Operand(rsp, kPCOnStackSize)); __ ret(1 * kPointerSize); // Remove rax. } // static void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[8] : argArray // -- rsp[16] : thisArg // -- rsp[24] : receiver // ----------------------------------- // 1. Load receiver into rdi, argArray into rbx (if present), remove all // arguments from the stack (including the receiver), and push thisArg (if // present) instead. { Label no_arg_array, no_this_arg; StackArgumentsAccessor args(rsp, rax); __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); __ movp(rbx, rdx); __ movp(rdi, args.GetReceiverOperand()); __ testp(rax, rax); __ j(zero, &no_this_arg, Label::kNear); { __ movp(rdx, args.GetArgumentOperand(1)); __ cmpp(rax, Immediate(1)); __ j(equal, &no_arg_array, Label::kNear); __ movp(rbx, args.GetArgumentOperand(2)); __ bind(&no_arg_array); } __ bind(&no_this_arg); __ PopReturnAddressTo(rcx); __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); __ Push(rdx); __ PushReturnAddressFrom(rcx); } // ----------- S t a t e ------------- // -- rbx : argArray // -- rdi : receiver // -- rsp[0] : return address // -- rsp[8] : thisArg // ----------------------------------- // 2. We don't need to check explicitly for callable receiver here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Tail call with no arguments if argArray is null or undefined. Label no_arguments; __ JumpIfRoot(rbx, Heap::kNullValueRootIndex, &no_arguments, Label::kNear); __ JumpIfRoot(rbx, Heap::kUndefinedValueRootIndex, &no_arguments, Label::kNear); // 4a. Apply the receiver to the given argArray. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); // 4b. The argArray is either null or undefined, so we tail call without any // arguments to the receiver. Since we did not create a frame for // Function.prototype.apply() yet, we use a normal Call builtin here. __ bind(&no_arguments); { __ Set(rax, 0); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } } // static void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { // Stack Layout: // rsp[0] : Return address // rsp[8] : Argument n // rsp[16] : Argument n-1 // ... // rsp[8 * n] : Argument 1 // rsp[8 * (n + 1)] : Receiver (callable to call) // // rax contains the number of arguments, n, not counting the receiver. // // 1. Make sure we have at least one argument. { Label done; __ testp(rax, rax); __ j(not_zero, &done, Label::kNear); __ PopReturnAddressTo(rbx); __ PushRoot(Heap::kUndefinedValueRootIndex); __ PushReturnAddressFrom(rbx); __ incp(rax); __ bind(&done); } // 2. Get the callable to call (passed as receiver) from the stack. { StackArgumentsAccessor args(rsp, rax); __ movp(rdi, args.GetReceiverOperand()); } // 3. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. { Label loop; __ movp(rcx, rax); StackArgumentsAccessor args(rsp, rcx); __ bind(&loop); __ movp(rbx, args.GetArgumentOperand(1)); __ movp(args.GetArgumentOperand(0), rbx); __ decp(rcx); __ j(not_zero, &loop); // While non-zero. __ DropUnderReturnAddress(1, rbx); // Drop one slot under return address. __ decp(rax); // One fewer argument (first argument is new receiver). } // 4. Call the callable. // Since we did not create a frame for Function.prototype.call() yet, // we use a normal Call builtin here. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[8] : argumentsList // -- rsp[16] : thisArgument // -- rsp[24] : target // -- rsp[32] : receiver // ----------------------------------- // 1. Load target into rdi (if present), argumentsList into rbx (if present), // remove all arguments from the stack (including the receiver), and push // thisArgument (if present) instead. { Label done; StackArgumentsAccessor args(rsp, rax); __ LoadRoot(rdi, Heap::kUndefinedValueRootIndex); __ movp(rdx, rdi); __ movp(rbx, rdi); __ cmpp(rax, Immediate(1)); __ j(below, &done, Label::kNear); __ movp(rdi, args.GetArgumentOperand(1)); // target __ j(equal, &done, Label::kNear); __ movp(rdx, args.GetArgumentOperand(2)); // thisArgument __ cmpp(rax, Immediate(3)); __ j(below, &done, Label::kNear); __ movp(rbx, args.GetArgumentOperand(3)); // argumentsList __ bind(&done); __ PopReturnAddressTo(rcx); __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); __ Push(rdx); __ PushReturnAddressFrom(rcx); } // ----------- S t a t e ------------- // -- rbx : argumentsList // -- rdi : target // -- rsp[0] : return address // -- rsp[8] : thisArgument // ----------------------------------- // 2. We don't need to check explicitly for callable target here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Apply the target to the given argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[8] : new.target (optional) // -- rsp[16] : argumentsList // -- rsp[24] : target // -- rsp[32] : receiver // ----------------------------------- // 1. Load target into rdi (if present), argumentsList into rbx (if present), // new.target into rdx (if present, otherwise use target), remove all // arguments from the stack (including the receiver), and push thisArgument // (if present) instead. { Label done; StackArgumentsAccessor args(rsp, rax); __ LoadRoot(rdi, Heap::kUndefinedValueRootIndex); __ movp(rdx, rdi); __ movp(rbx, rdi); __ cmpp(rax, Immediate(1)); __ j(below, &done, Label::kNear); __ movp(rdi, args.GetArgumentOperand(1)); // target __ movp(rdx, rdi); // new.target defaults to target __ j(equal, &done, Label::kNear); __ movp(rbx, args.GetArgumentOperand(2)); // argumentsList __ cmpp(rax, Immediate(3)); __ j(below, &done, Label::kNear); __ movp(rdx, args.GetArgumentOperand(3)); // new.target __ bind(&done); __ PopReturnAddressTo(rcx); __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); __ PushRoot(Heap::kUndefinedValueRootIndex); __ PushReturnAddressFrom(rcx); } // ----------- S t a t e ------------- // -- rbx : argumentsList // -- rdx : new.target // -- rdi : target // -- rsp[0] : return address // -- rsp[8] : receiver (undefined) // ----------------------------------- // 2. We don't need to check explicitly for constructor target here, // since that's the first thing the Construct/ConstructWithArrayLike // builtins will do. // 3. We don't need to check explicitly for constructor new.target here, // since that's the second thing the Construct/ConstructWithArrayLike // builtins will do. // 4. Construct the target with the given new.target and argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), RelocInfo::CODE_TARGET); } void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[8] : last argument // ----------------------------------- Label generic_array_code; if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a nullptr and a Smi. STATIC_ASSERT(kSmiTag == 0); Condition not_smi = NegateCondition(masm->CheckSmi(rbx)); __ Check(not_smi, AbortReason::kUnexpectedInitialMapForInternalArrayFunction); __ CmpObjectType(rbx, MAP_TYPE, rcx); __ Check(equal, AbortReason::kUnexpectedInitialMapForInternalArrayFunction); } // Run the native code for the InternalArray function called as a normal // function. __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); __ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl), RelocInfo::CODE_TARGET); } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ pushq(rbp); __ movp(rbp, rsp); // Store the arguments adaptor context sentinel. __ Push(Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); // Push the function on the stack. __ Push(rdi); // Preserve the number of arguments on the stack. Must preserve rax, // rbx and rcx because these registers are used when copying the // arguments and the receiver. __ SmiTag(r8, rax); __ Push(r8); __ Push(Immediate(0)); // Padding. } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // Retrieve the number of arguments from the stack. Number is a Smi. __ movp(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset)); // Leave the frame. __ movp(rsp, rbp); __ popq(rbp); // Remove caller arguments from the stack. __ PopReturnAddressTo(rcx); SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2); __ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize)); __ PushReturnAddressFrom(rcx); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : actual number of arguments // -- rbx : expected number of arguments // -- rdx : new target (passed through to callee) // -- rdi : function (passed through to callee) // ----------------------------------- Label invoke, dont_adapt_arguments, stack_overflow; Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->arguments_adaptors(), 1); Label enough, too_few; __ cmpp(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); __ j(equal, &dont_adapt_arguments); __ cmpp(rax, rbx); __ j(less, &too_few); { // Enough parameters: Actual >= expected. __ bind(&enough); EnterArgumentsAdaptorFrame(masm); // The registers rcx and r8 will be modified. The register rbx is only read. Generate_StackOverflowCheck(masm, rbx, rcx, &stack_overflow); // Copy receiver and all expected arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ leap(rax, Operand(rbp, rax, times_pointer_size, offset)); __ Set(r8, -1); // account for receiver Label copy; __ bind(©); __ incp(r8); __ Push(Operand(rax, 0)); __ subp(rax, Immediate(kPointerSize)); __ cmpp(r8, rbx); __ j(less, ©); __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); // The registers rcx and r8 will be modified. The register rbx is only read. Generate_StackOverflowCheck(masm, rbx, rcx, &stack_overflow); // Copy receiver and all actual arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ leap(rdi, Operand(rbp, rax, times_pointer_size, offset)); __ Set(r8, -1); // account for receiver Label copy; __ bind(©); __ incp(r8); __ Push(Operand(rdi, 0)); __ subp(rdi, Immediate(kPointerSize)); __ cmpp(r8, rax); __ j(less, ©); // Fill remaining expected arguments with undefined values. Label fill; __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex); __ bind(&fill); __ incp(r8); __ Push(kScratchRegister); __ cmpp(r8, rbx); __ j(less, &fill); // Restore function pointer. __ movp(rdi, Operand(rbp, ArgumentsAdaptorFrameConstants::kFunctionOffset)); } // Call the entry point. __ bind(&invoke); __ movp(rax, rbx); // rax : expected number of arguments // rdx : new target (passed through to callee) // rdi : function (passed through to callee) static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch"); __ movp(rcx, FieldOperand(rdi, JSFunction::kCodeOffset)); __ addp(rcx, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ call(rcx); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Leave frame and return. LeaveArgumentsAdaptorFrame(masm); __ ret(0); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch"); __ movp(rcx, FieldOperand(rdi, JSFunction::kCodeOffset)); __ addp(rcx, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(rcx); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ int3(); } } // static void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, Handle code) { // ----------- S t a t e ------------- // -- rdi : target // -- rax : number of parameters on the stack (not including the receiver) // -- rbx : arguments list (a FixedArray) // -- rcx : len (number of elements to push from args) // -- rdx : new.target (for [[Construct]]) // -- rsp[0] : return address // ----------------------------------- if (masm->emit_debug_code()) { // Allow rbx to be a FixedArray, or a FixedDoubleArray if rcx == 0. Label ok, fail; __ AssertNotSmi(rbx); Register map = r9; __ movp(map, FieldOperand(rbx, HeapObject::kMapOffset)); __ CmpInstanceType(map, FIXED_ARRAY_TYPE); __ j(equal, &ok); __ CmpInstanceType(map, FIXED_DOUBLE_ARRAY_TYPE); __ j(not_equal, &fail); __ cmpl(rcx, Immediate(0)); __ j(equal, &ok); // Fall through. __ bind(&fail); __ Abort(AbortReason::kOperandIsNotAFixedArray); __ bind(&ok); } // Check for stack overflow. { // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label done; __ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex); __ movp(r8, rsp); // Make r8 the space we have left. The stack might already be overflowed // here which will cause r8 to become negative. __ subp(r8, kScratchRegister); __ sarp(r8, Immediate(kPointerSizeLog2)); // Check if the arguments will overflow the stack. __ cmpp(r8, rcx); __ j(greater, &done, Label::kNear); // Signed comparison. __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&done); } // Push additional arguments onto the stack. { __ PopReturnAddressTo(r8); __ Set(r9, 0); Label done, push, loop; __ bind(&loop); __ cmpl(r9, rcx); __ j(equal, &done, Label::kNear); // Turn the hole into undefined as we go. __ movp(r11, FieldOperand(rbx, r9, times_pointer_size, FixedArray::kHeaderSize)); __ CompareRoot(r11, Heap::kTheHoleValueRootIndex); __ j(not_equal, &push, Label::kNear); __ LoadRoot(r11, Heap::kUndefinedValueRootIndex); __ bind(&push); __ Push(r11); __ incl(r9); __ jmp(&loop); __ bind(&done); __ PushReturnAddressFrom(r8); __ addq(rax, r9); } // Tail-call to the actual Call or Construct builtin. __ Jump(code, RelocInfo::CODE_TARGET); } // static void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, CallOrConstructMode mode, Handle code) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the new target (for [[Construct]] calls) // -- rdi : the target to call (can be any Object) // -- rcx : start index (to support rest parameters) // ----------------------------------- // Check if new.target has a [[Construct]] internal method. if (mode == CallOrConstructMode::kConstruct) { Label new_target_constructor, new_target_not_constructor; __ JumpIfSmi(rdx, &new_target_not_constructor, Label::kNear); __ movp(rbx, FieldOperand(rdx, HeapObject::kMapOffset)); __ testb(FieldOperand(rbx, Map::kBitFieldOffset), Immediate(Map::IsConstructorBit::kMask)); __ j(not_zero, &new_target_constructor, Label::kNear); __ bind(&new_target_not_constructor); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ Push(rdx); __ CallRuntime(Runtime::kThrowNotConstructor); } __ bind(&new_target_constructor); } // Check if we have an arguments adaptor frame below the function frame. Label arguments_adaptor, arguments_done; __ movp(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ cmpp(Operand(rbx, CommonFrameConstants::kContextOrFrameTypeOffset), Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ j(equal, &arguments_adaptor, Label::kNear); { __ movp(r8, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ movp(r8, FieldOperand(r8, JSFunction::kSharedFunctionInfoOffset)); __ movzxwq( r8, FieldOperand(r8, SharedFunctionInfo::kFormalParameterCountOffset)); __ movp(rbx, rbp); } __ jmp(&arguments_done, Label::kNear); __ bind(&arguments_adaptor); { __ SmiUntag(r8, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); } __ bind(&arguments_done); Label stack_done, stack_overflow; __ subl(r8, rcx); __ j(less_equal, &stack_done); { // Check for stack overflow. Generate_StackOverflowCheck(masm, r8, rcx, &stack_overflow, Label::kNear); // Forward the arguments from the caller frame. { Label loop; __ addl(rax, r8); __ PopReturnAddressTo(rcx); __ bind(&loop); { StackArgumentsAccessor args(rbx, r8, ARGUMENTS_DONT_CONTAIN_RECEIVER); __ Push(args.GetArgumentOperand(0)); __ decl(r8); __ j(not_zero, &loop); } __ PushReturnAddressFrom(rcx); } } __ jmp(&stack_done, Label::kNear); __ bind(&stack_overflow); __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&stack_done); // Tail-call to the {code} handler. __ Jump(code, RelocInfo::CODE_TARGET); } // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdi : the function to call (checked to be a JSFunction) // ----------------------------------- StackArgumentsAccessor args(rsp, rax); __ AssertFunction(rdi); // ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that the function is not a "classConstructor". Label class_constructor; __ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ testl(FieldOperand(rdx, SharedFunctionInfo::kFlagsOffset), Immediate(SharedFunctionInfo::IsClassConstructorBit::kMask)); __ j(not_zero, &class_constructor); // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the shared function info. // -- rdi : the function to call (checked to be a JSFunction) // ----------------------------------- // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ testl(FieldOperand(rdx, SharedFunctionInfo::kFlagsOffset), Immediate(SharedFunctionInfo::IsNativeBit::kMask | SharedFunctionInfo::IsStrictBit::kMask)); __ j(not_zero, &done_convert); { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the shared function info. // -- rdi : the function to call (checked to be a JSFunction) // -- rsi : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(rcx); } else { Label convert_to_object, convert_receiver; __ movp(rcx, args.GetReceiverOperand()); __ JumpIfSmi(rcx, &convert_to_object, Label::kNear); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CmpObjectType(rcx, FIRST_JS_RECEIVER_TYPE, rbx); __ j(above_equal, &done_convert); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(rcx, Heap::kUndefinedValueRootIndex, &convert_global_proxy, Label::kNear); __ JumpIfNotRoot(rcx, Heap::kNullValueRootIndex, &convert_to_object, Label::kNear); __ bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(rcx); } __ jmp(&convert_receiver); } __ bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameScope scope(masm, StackFrame::INTERNAL); __ SmiTag(rax, rax); __ Push(rax); __ Push(rdi); __ movp(rax, rcx); __ Push(rsi); __ Call(BUILTIN_CODE(masm->isolate(), ToObject), RelocInfo::CODE_TARGET); __ Pop(rsi); __ movp(rcx, rax); __ Pop(rdi); __ Pop(rax); __ SmiUntag(rax, rax); } __ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ bind(&convert_receiver); } __ movp(args.GetReceiverOperand(), rcx); } __ bind(&done_convert); // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the shared function info. // -- rdi : the function to call (checked to be a JSFunction) // -- rsi : the function context. // ----------------------------------- __ movzxwq( rbx, FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset)); ParameterCount actual(rax); ParameterCount expected(rbx); __ InvokeFunctionCode(rdi, no_reg, expected, actual, JUMP_FUNCTION); // The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameScope frame(masm, StackFrame::INTERNAL); __ Push(rdi); __ CallRuntime(Runtime::kThrowConstructorNonCallableError); } } namespace { void Generate_PushBoundArguments(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : new.target (only in case of [[Construct]]) // -- rdi : target (checked to be a JSBoundFunction) // ----------------------------------- // Load [[BoundArguments]] into rcx and length of that into rbx. Label no_bound_arguments; __ movp(rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset)); __ SmiUntag(rbx, FieldOperand(rcx, FixedArray::kLengthOffset)); __ testl(rbx, rbx); __ j(zero, &no_bound_arguments); { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : new.target (only in case of [[Construct]]) // -- rdi : target (checked to be a JSBoundFunction) // -- rcx : the [[BoundArguments]] (implemented as FixedArray) // -- rbx : the number of [[BoundArguments]] (checked to be non-zero) // ----------------------------------- // Reserve stack space for the [[BoundArguments]]. { Label done; __ leap(kScratchRegister, Operand(rbx, times_pointer_size, 0)); __ subp(rsp, kScratchRegister); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack // limit". __ CompareRoot(rsp, Heap::kRealStackLimitRootIndex); __ j(greater, &done, Label::kNear); // Signed comparison. // Restore the stack pointer. __ leap(rsp, Operand(rsp, rbx, times_pointer_size, 0)); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } // Adjust effective number of arguments to include return address. __ incl(rax); // Relocate arguments and return address down the stack. { Label loop; __ Set(rcx, 0); __ leap(rbx, Operand(rsp, rbx, times_pointer_size, 0)); __ bind(&loop); __ movp(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0)); __ movp(Operand(rsp, rcx, times_pointer_size, 0), kScratchRegister); __ incl(rcx); __ cmpl(rcx, rax); __ j(less, &loop); } // Copy [[BoundArguments]] to the stack (below the arguments). { Label loop; __ movp(rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset)); __ SmiUntag(rbx, FieldOperand(rcx, FixedArray::kLengthOffset)); __ bind(&loop); __ decl(rbx); __ movp(kScratchRegister, FieldOperand(rcx, rbx, times_pointer_size, FixedArray::kHeaderSize)); __ movp(Operand(rsp, rax, times_pointer_size, 0), kScratchRegister); __ leal(rax, Operand(rax, 1)); __ j(greater, &loop); } // Adjust effective number of arguments (rax contains the number of // arguments from the call plus return address plus the number of // [[BoundArguments]]), so we need to subtract one for the return address. __ decl(rax); } __ bind(&no_bound_arguments); } } // namespace // static void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdi : the function to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(rdi); // Patch the receiver to [[BoundThis]]. StackArgumentsAccessor args(rsp, rax); __ movp(rbx, FieldOperand(rdi, JSBoundFunction::kBoundThisOffset)); __ movp(args.GetReceiverOperand(), rbx); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Call the [[BoundTargetFunction]] via the Call builtin. __ movp(rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdi : the target to call (can be any Object) // ----------------------------------- StackArgumentsAccessor args(rsp, rax); Label non_callable; __ JumpIfSmi(rdi, &non_callable); __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ Jump(masm->isolate()->builtins()->CallFunction(mode), RelocInfo::CODE_TARGET, equal); __ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE); __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), RelocInfo::CODE_TARGET, equal); // Check if target has a [[Call]] internal method. __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(Map::IsCallableBit::kMask)); __ j(zero, &non_callable, Label::kNear); // Check if target is a proxy and call CallProxy external builtin __ CmpInstanceType(rcx, JS_PROXY_TYPE); __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET, equal); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). // Overwrite the original receiver with the (original) target. __ movp(args.GetReceiverOperand(), rdi); // Let the "call_as_function_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, rdi); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rdi); __ CallRuntime(Runtime::kThrowCalledNonCallable); } } // static void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the new target (checked to be a constructor) // -- rdi : the constructor to call (checked to be a JSFunction) // ----------------------------------- __ AssertConstructor(rdi); __ AssertFunction(rdi); // Calling convention for function specific ConstructStubs require // rbx to contain either an AllocationSite or undefined. __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ testl(FieldOperand(rcx, SharedFunctionInfo::kFlagsOffset), Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), RelocInfo::CODE_TARGET, not_zero); __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the new target (checked to be a constructor) // -- rdi : the constructor to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertConstructor(rdi); __ AssertBoundFunction(rdi); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Patch new.target to [[BoundTargetFunction]] if new.target equals target. { Label done; __ cmpp(rdi, rdx); __ j(not_equal, &done, Label::kNear); __ movp(rdx, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); __ bind(&done); } // Construct the [[BoundTargetFunction]] via the Construct builtin. __ movp(rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // -- rdi : the constructor to call (can be any Object) // ----------------------------------- StackArgumentsAccessor args(rsp, rax); // Check if target is a Smi. Label non_constructor; __ JumpIfSmi(rdi, &non_constructor); // Check if target has a [[Construct]] internal method. __ movq(rcx, FieldOperand(rdi, HeapObject::kMapOffset)); __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(Map::IsConstructorBit::kMask)); __ j(zero, &non_constructor); // Dispatch based on instance type. __ CmpInstanceType(rcx, JS_FUNCTION_TYPE); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), RelocInfo::CODE_TARGET, equal); // Only dispatch to bound functions after checking whether they are // constructors. __ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), RelocInfo::CODE_TARGET, equal); // Only dispatch to proxies after checking whether they are constructors. __ CmpInstanceType(rcx, JS_PROXY_TYPE); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), RelocInfo::CODE_TARGET, equal); // Called Construct on an exotic Object with a [[Construct]] internal method. { // Overwrite the original receiver with the (original) target. __ movp(args.GetReceiverOperand(), rdi); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, rdi); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), RelocInfo::CODE_TARGET); } static void Generate_OnStackReplacementHelper(MacroAssembler* masm, bool has_handler_frame) { // Lookup the function in the JavaScript frame. if (has_handler_frame) { __ movp(rax, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ movp(rax, Operand(rax, JavaScriptFrameConstants::kFunctionOffset)); } else { __ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); } { FrameScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ Push(rax); __ CallRuntime(Runtime::kCompileForOnStackReplacement); } Label skip; // If the code object is null, just return to the caller. __ testp(rax, rax); __ j(not_equal, &skip, Label::kNear); __ ret(0); __ bind(&skip); // Drop any potential handler frame that is be sitting on top of the actual // JavaScript frame. This is the case then OSR is triggered from bytecode. if (has_handler_frame) { __ leave(); } // Load deoptimization data from the code object. __ movp(rbx, Operand(rax, Code::kDeoptimizationDataOffset - kHeapObjectTag)); // Load the OSR entrypoint offset from the deoptimization data. __ SmiUntag(rbx, Operand(rbx, FixedArray::OffsetOfElementAt( DeoptimizationData::kOsrPcOffsetIndex) - kHeapObjectTag)); // Compute the target address = code_obj + header_size + osr_offset __ leap(rax, Operand(rax, rbx, times_1, Code::kHeaderSize - kHeapObjectTag)); // Overwrite the return address on the stack. __ movq(StackOperandForReturnAddress(0), rax); // And "return" to the OSR entry point of the function. __ ret(0); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, false); } void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, true); } void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { // The function index was pushed to the stack by the caller as int32. __ Pop(r11); // Convert to Smi for the runtime call. __ SmiTag(r11, r11); { HardAbortScope hard_abort(masm); // Avoid calls to Abort. FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY); // Save all parameter registers (see wasm-linkage.cc). They might be // overwritten in the runtime call below. We don't have any callee-saved // registers in wasm, so no need to store anything else. static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedGpParamRegs == arraysize(wasm::kGpParamRegisters), "frame size mismatch"); for (Register reg : wasm::kGpParamRegisters) { __ Push(reg); } static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedFpParamRegs == arraysize(wasm::kFpParamRegisters), "frame size mismatch"); __ subp(rsp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters))); int offset = 0; for (DoubleRegister reg : wasm::kFpParamRegisters) { __ movdqu(Operand(rsp, offset), reg); offset += kSimd128Size; } // Push the WASM instance as an explicit argument to WasmCompileLazy. __ Push(kWasmInstanceRegister); // Push the function index as second argument. __ Push(r11); // Load the correct CEntry builtin from the instance object. __ movp(rcx, FieldOperand(kWasmInstanceRegister, WasmInstanceObject::kCEntryStubOffset)); // Initialize the JavaScript context with 0. CEntry will use it to // set the current context on the isolate. __ Move(kContextRegister, Smi::kZero); __ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, rcx); // The entrypoint address is the return value. __ movq(r11, kReturnRegister0); // Restore registers. for (DoubleRegister reg : base::Reversed(wasm::kFpParamRegisters)) { offset -= kSimd128Size; __ movdqu(reg, Operand(rsp, offset)); } DCHECK_EQ(0, offset); __ addp(rsp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters))); for (Register reg : base::Reversed(wasm::kGpParamRegisters)) { __ Pop(reg); } } // Finally, jump to the entrypoint. __ jmp(r11); } void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, SaveFPRegsMode save_doubles, ArgvMode argv_mode, bool builtin_exit_frame) { // rax: number of arguments including receiver // rbx: pointer to C function (C callee-saved) // rbp: frame pointer of calling JS frame (restored after C call) // rsp: stack pointer (restored after C call) // rsi: current context (restored) // // If argv_mode == kArgvInRegister: // r15: pointer to the first argument ProfileEntryHookStub::MaybeCallEntryHook(masm); #ifdef _WIN64 // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9. It requires the // stack to be aligned to 16 bytes. It only allows a single-word to be // returned in register rax. Larger return sizes must be written to an address // passed as a hidden first argument. const Register kCCallArg0 = rcx; const Register kCCallArg1 = rdx; const Register kCCallArg2 = r8; const Register kCCallArg3 = r9; const int kArgExtraStackSpace = 2; const int kMaxRegisterResultSize = 1; #else // GCC / Clang passes arguments in rdi, rsi, rdx, rcx, r8, r9. Simple results // are returned in rax, and a struct of two pointers are returned in rax+rdx. // Larger return sizes must be written to an address passed as a hidden first // argument. const Register kCCallArg0 = rdi; const Register kCCallArg1 = rsi; const Register kCCallArg2 = rdx; const Register kCCallArg3 = rcx; const int kArgExtraStackSpace = 0; const int kMaxRegisterResultSize = 2; #endif // _WIN64 // Enter the exit frame that transitions from JavaScript to C++. int arg_stack_space = kArgExtraStackSpace + (result_size <= kMaxRegisterResultSize ? 0 : result_size); if (argv_mode == kArgvInRegister) { DCHECK(save_doubles == kDontSaveFPRegs); DCHECK(!builtin_exit_frame); __ EnterApiExitFrame(arg_stack_space); // Move argc into r14 (argv is already in r15). __ movp(r14, rax); } else { __ EnterExitFrame( arg_stack_space, save_doubles == kSaveFPRegs, builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); } // rbx: pointer to builtin function (C callee-saved). // rbp: frame pointer of exit frame (restored after C call). // rsp: stack pointer (restored after C call). // r14: number of arguments including receiver (C callee-saved). // r15: argv pointer (C callee-saved). // Check stack alignment. if (FLAG_debug_code) { __ CheckStackAlignment(); } // Call C function. The arguments object will be created by stubs declared by // DECLARE_RUNTIME_FUNCTION(). if (result_size <= kMaxRegisterResultSize) { // Pass a pointer to the Arguments object as the first argument. // Return result in single register (rax), or a register pair (rax, rdx). __ movp(kCCallArg0, r14); // argc. __ movp(kCCallArg1, r15); // argv. __ Move(kCCallArg2, ExternalReference::isolate_address(masm->isolate())); } else { DCHECK_LE(result_size, 2); // Pass a pointer to the result location as the first argument. __ leap(kCCallArg0, StackSpaceOperand(kArgExtraStackSpace)); // Pass a pointer to the Arguments object as the second argument. __ movp(kCCallArg1, r14); // argc. __ movp(kCCallArg2, r15); // argv. __ Move(kCCallArg3, ExternalReference::isolate_address(masm->isolate())); } __ call(rbx); if (result_size > kMaxRegisterResultSize) { // Read result values stored on stack. Result is stored // above the the two Arguments object slots on Win64. DCHECK_LE(result_size, 2); __ movq(kReturnRegister0, StackSpaceOperand(kArgExtraStackSpace + 0)); __ movq(kReturnRegister1, StackSpaceOperand(kArgExtraStackSpace + 1)); } // Result is in rax or rdx:rax - do not destroy these registers! // Check result for exception sentinel. Label exception_returned; __ CompareRoot(rax, Heap::kExceptionRootIndex); __ j(equal, &exception_returned); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (FLAG_debug_code) { Label okay; __ LoadRoot(r14, Heap::kTheHoleValueRootIndex); ExternalReference pending_exception_address = ExternalReference::Create( IsolateAddressId::kPendingExceptionAddress, masm->isolate()); Operand pending_exception_operand = masm->ExternalOperand(pending_exception_address); __ cmpp(r14, pending_exception_operand); __ j(equal, &okay, Label::kNear); __ int3(); __ bind(&okay); } // Exit the JavaScript to C++ exit frame. __ LeaveExitFrame(save_doubles == kSaveFPRegs, argv_mode == kArgvOnStack); __ ret(0); // Handling of exception. __ bind(&exception_returned); ExternalReference pending_handler_context_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerContextAddress, masm->isolate()); ExternalReference pending_handler_entrypoint_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate()); ExternalReference pending_handler_fp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerFPAddress, masm->isolate()); ExternalReference pending_handler_sp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerSPAddress, masm->isolate()); // Ask the runtime for help to determine the handler. This will set rax to // contain the current pending exception, don't clobber it. ExternalReference find_handler = ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler); { FrameScope scope(masm, StackFrame::MANUAL); __ movp(arg_reg_1, Immediate(0)); // argc. __ movp(arg_reg_2, Immediate(0)); // argv. __ Move(arg_reg_3, ExternalReference::isolate_address(masm->isolate())); __ PrepareCallCFunction(3); __ CallCFunction(find_handler, 3); } // Retrieve the handler context, SP and FP. __ movp(rsi, masm->ExternalOperand(pending_handler_context_address)); __ movp(rsp, masm->ExternalOperand(pending_handler_sp_address)); __ movp(rbp, masm->ExternalOperand(pending_handler_fp_address)); // If the handler is a JS frame, restore the context to the frame. Note that // the context will be set to (rsi == 0) for non-JS frames. Label skip; __ testp(rsi, rsi); __ j(zero, &skip, Label::kNear); __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rsi); __ bind(&skip); // Reset the masking register. This is done independent of the underlying // feature flag {FLAG_branch_load_poisoning} to make the snapshot work with // both configurations. It is safe to always do this, because the underlying // register is caller-saved and can be arbitrarily clobbered. __ ResetSpeculationPoisonRegister(); // Compute the handler entry address and jump to it. __ movp(rdi, masm->ExternalOperand(pending_handler_entrypoint_address)); __ jmp(rdi); } void Builtins::Generate_DoubleToI(MacroAssembler* masm) { Label check_negative, process_64_bits, done; // Account for return address and saved regs. const int kArgumentOffset = 4 * kRegisterSize; MemOperand mantissa_operand(MemOperand(rsp, kArgumentOffset)); MemOperand exponent_operand( MemOperand(rsp, kArgumentOffset + kDoubleSize / 2)); // The result is returned on the stack. MemOperand return_operand = mantissa_operand; Register scratch1 = rbx; // Since we must use rcx for shifts below, use some other register (rax) // to calculate the result if ecx is the requested return register. Register result_reg = rax; // Save ecx if it isn't the return register and therefore volatile, or if it // is the return register, then save the temp register we use in its stead // for the result. Register save_reg = rax; __ pushq(rcx); __ pushq(scratch1); __ pushq(save_reg); __ movl(scratch1, mantissa_operand); __ Movsd(kScratchDoubleReg, mantissa_operand); __ movl(rcx, exponent_operand); __ andl(rcx, Immediate(HeapNumber::kExponentMask)); __ shrl(rcx, Immediate(HeapNumber::kExponentShift)); __ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias)); __ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits)); __ j(below, &process_64_bits, Label::kNear); // Result is entirely in lower 32-bits of mantissa int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize; __ subl(rcx, Immediate(delta)); __ xorl(result_reg, result_reg); __ cmpl(rcx, Immediate(31)); __ j(above, &done, Label::kNear); __ shll_cl(scratch1); __ jmp(&check_negative, Label::kNear); __ bind(&process_64_bits); __ Cvttsd2siq(result_reg, kScratchDoubleReg); __ jmp(&done, Label::kNear); // If the double was negative, negate the integer result. __ bind(&check_negative); __ movl(result_reg, scratch1); __ negl(result_reg); __ cmpl(exponent_operand, Immediate(0)); __ cmovl(greater, result_reg, scratch1); // Restore registers __ bind(&done); __ movl(return_operand, result_reg); __ popq(save_reg); __ popq(scratch1); __ popq(rcx); __ ret(0); } void Builtins::Generate_MathPowInternal(MacroAssembler* masm) { const Register exponent = rdx; const Register scratch = rcx; const XMMRegister double_result = xmm3; const XMMRegister double_base = xmm2; const XMMRegister double_exponent = xmm1; const XMMRegister double_scratch = xmm4; Label call_runtime, done, exponent_not_smi, int_exponent; // Save 1 in double_result - we need this several times later on. __ movp(scratch, Immediate(1)); __ Cvtlsi2sd(double_result, scratch); Label fast_power, try_arithmetic_simplification; // Detect integer exponents stored as double. __ DoubleToI(exponent, double_exponent, double_scratch, &try_arithmetic_simplification, &try_arithmetic_simplification); __ jmp(&int_exponent); __ bind(&try_arithmetic_simplification); __ Cvttsd2si(exponent, double_exponent); // Skip to runtime if possibly NaN (indicated by the indefinite integer). __ cmpl(exponent, Immediate(0x1)); __ j(overflow, &call_runtime); // Using FPU instructions to calculate power. Label fast_power_failed; __ bind(&fast_power); __ fnclex(); // Clear flags to catch exceptions later. // Transfer (B)ase and (E)xponent onto the FPU register stack. __ subp(rsp, Immediate(kDoubleSize)); __ Movsd(Operand(rsp, 0), double_exponent); __ fld_d(Operand(rsp, 0)); // E __ Movsd(Operand(rsp, 0), double_base); __ fld_d(Operand(rsp, 0)); // B, E // Exponent is in st(1) and base is in st(0) // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B) // FYL2X calculates st(1) * log2(st(0)) __ fyl2x(); // X __ fld(0); // X, X __ frndint(); // rnd(X), X __ fsub(1); // rnd(X), X-rnd(X) __ fxch(1); // X - rnd(X), rnd(X) // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X) __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X) __ faddp(1); // 2^(X-rnd(X)), rnd(X) // FSCALE calculates st(0) * 2^st(1) __ fscale(); // 2^X, rnd(X) __ fstp(1); // Bail out to runtime in case of exceptions in the status word. __ fnstsw_ax(); __ testb(rax, Immediate(0x5F)); // Check for all but precision exception. __ j(not_zero, &fast_power_failed, Label::kNear); __ fstp_d(Operand(rsp, 0)); __ Movsd(double_result, Operand(rsp, 0)); __ addp(rsp, Immediate(kDoubleSize)); __ jmp(&done); __ bind(&fast_power_failed); __ fninit(); __ addp(rsp, Immediate(kDoubleSize)); __ jmp(&call_runtime); // Calculate power with integer exponent. __ bind(&int_exponent); const XMMRegister double_scratch2 = double_exponent; // Back up exponent as we need to check if exponent is negative later. __ movp(scratch, exponent); // Back up exponent. __ Movsd(double_scratch, double_base); // Back up base. __ Movsd(double_scratch2, double_result); // Load double_exponent with 1. // Get absolute value of exponent. Label no_neg, while_true, while_false; __ testl(scratch, scratch); __ j(positive, &no_neg, Label::kNear); __ negl(scratch); __ bind(&no_neg); __ j(zero, &while_false, Label::kNear); __ shrl(scratch, Immediate(1)); // Above condition means CF==0 && ZF==0. This means that the // bit that has been shifted out is 0 and the result is not 0. __ j(above, &while_true, Label::kNear); __ Movsd(double_result, double_scratch); __ j(zero, &while_false, Label::kNear); __ bind(&while_true); __ shrl(scratch, Immediate(1)); __ Mulsd(double_scratch, double_scratch); __ j(above, &while_true, Label::kNear); __ Mulsd(double_result, double_scratch); __ j(not_zero, &while_true); __ bind(&while_false); // If the exponent is negative, return 1/result. __ testl(exponent, exponent); __ j(greater, &done); __ Divsd(double_scratch2, double_result); __ Movsd(double_result, double_scratch2); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ Xorpd(double_scratch2, double_scratch2); __ Ucomisd(double_scratch2, double_result); // double_exponent aliased as double_scratch2 has already been overwritten // and may not have contained the exponent value in the first place when the // input was a smi. We reset it with exponent value before bailing out. __ j(not_equal, &done); __ Cvtlsi2sd(double_exponent, exponent); // Returning or bailing out. __ bind(&call_runtime); // Move base to the correct argument register. Exponent is already in xmm1. __ Movsd(xmm0, double_base); DCHECK(double_exponent == xmm1); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(2); __ CallCFunction(ExternalReference::power_double_double_function(), 2); } // Return value is in xmm0. __ Movsd(double_result, xmm0); __ bind(&done); __ ret(0); } namespace { void GenerateInternalArrayConstructorCase(MacroAssembler* masm, ElementsKind kind) { Label not_zero_case, not_one_case; Label normal_sequence; __ testp(rax, rax); __ j(not_zero, ¬_zero_case); __ Jump(CodeFactory::InternalArrayNoArgumentConstructor(masm->isolate(), kind) .code(), RelocInfo::CODE_TARGET); __ bind(¬_zero_case); __ cmpl(rax, Immediate(1)); __ j(greater, ¬_one_case); if (IsFastPackedElementsKind(kind)) { // We might need to create a holey array // look at the first argument StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER); __ movp(rcx, args.GetArgumentOperand(0)); __ testp(rcx, rcx); __ j(zero, &normal_sequence); __ Jump(CodeFactory::InternalArraySingleArgumentConstructor( masm->isolate(), GetHoleyElementsKind(kind)) .code(), RelocInfo::CODE_TARGET); } __ bind(&normal_sequence); __ Jump( CodeFactory::InternalArraySingleArgumentConstructor(masm->isolate(), kind) .code(), RelocInfo::CODE_TARGET); __ bind(¬_one_case); Handle code = BUILTIN_CODE(masm->isolate(), ArrayNArgumentsConstructor); __ Jump(code, RelocInfo::CODE_TARGET); } } // namespace void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rdi : constructor // -- rsp[0] : return address // -- rsp[8] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a nullptr and a Smi. STATIC_ASSERT(kSmiTag == 0); Condition not_smi = NegateCondition(masm->CheckSmi(rcx)); __ Check(not_smi, AbortReason::kUnexpectedInitialMapForArrayFunction); __ CmpObjectType(rcx, MAP_TYPE, rcx); __ Check(equal, AbortReason::kUnexpectedInitialMapForArrayFunction); } // Figure out the right elements kind __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); // Load the map's "bit field 2" into |result|. We only need the first byte, // but the following masking takes care of that anyway. __ movzxbp(rcx, FieldOperand(rcx, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ DecodeField(rcx); if (FLAG_debug_code) { Label done; __ cmpl(rcx, Immediate(PACKED_ELEMENTS)); __ j(equal, &done); __ cmpl(rcx, Immediate(HOLEY_ELEMENTS)); __ Assert( equal, AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray); __ bind(&done); } Label fast_elements_case; __ cmpl(rcx, Immediate(PACKED_ELEMENTS)); __ j(equal, &fast_elements_case); GenerateInternalArrayConstructorCase(masm, HOLEY_ELEMENTS); __ bind(&fast_elements_case); GenerateInternalArrayConstructorCase(masm, PACKED_ELEMENTS); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_X64