// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_MIPS_CONSTANTS_MIPS_H_ #define V8_MIPS_CONSTANTS_MIPS_H_ #include "src/globals.h" // UNIMPLEMENTED_ macro for MIPS. #ifdef DEBUG #define UNIMPLEMENTED_MIPS() \ v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \ __FILE__, __LINE__, __func__) #else #define UNIMPLEMENTED_MIPS() #endif #define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n") enum ArchVariants { kMips32r1 = v8::internal::MIPSr1, kMips32r2 = v8::internal::MIPSr2, kMips32r6 = v8::internal::MIPSr6, kLoongson }; #ifdef _MIPS_ARCH_MIPS32R2 static const ArchVariants kArchVariant = kMips32r2; #elif _MIPS_ARCH_MIPS32R6 static const ArchVariants kArchVariant = kMips32r6; #elif _MIPS_ARCH_LOONGSON // The loongson flag refers to the LOONGSON architectures based on MIPS-III, // which predates (and is a subset of) the mips32r2 and r1 architectures. static const ArchVariants kArchVariant = kLoongson; #elif _MIPS_ARCH_MIPS32RX // This flags referred to compatibility mode that creates universal code that // can run on any MIPS32 architecture revision. The dynamically generated code // by v8 is specialized for the MIPS host detected in runtime probing. static const ArchVariants kArchVariant = kMips32r1; #else static const ArchVariants kArchVariant = kMips32r1; #endif enum Endianness { kLittle, kBig }; #if defined(V8_TARGET_LITTLE_ENDIAN) static const Endianness kArchEndian = kLittle; #elif defined(V8_TARGET_BIG_ENDIAN) static const Endianness kArchEndian = kBig; #else #error Unknown endianness #endif enum FpuMode { kFP32, kFP64, kFPXX }; #if defined(FPU_MODE_FP32) static const FpuMode kFpuMode = kFP32; #elif defined(FPU_MODE_FP64) static const FpuMode kFpuMode = kFP64; #elif defined(FPU_MODE_FPXX) #if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS32R6) static const FpuMode kFpuMode = kFPXX; #else #error "FPXX is supported only on Mips32R2 and Mips32R6" #endif #else static const FpuMode kFpuMode = kFP32; #endif #if(defined(__mips_hard_float) && __mips_hard_float != 0) // Use floating-point coprocessor instructions. This flag is raised when // -mhard-float is passed to the compiler. const bool IsMipsSoftFloatABI = false; #elif(defined(__mips_soft_float) && __mips_soft_float != 0) // This flag is raised when -msoft-float is passed to the compiler. // Although FPU is a base requirement for v8, soft-float ABI is used // on soft-float systems with FPU kernel emulation. const bool IsMipsSoftFloatABI = true; #else const bool IsMipsSoftFloatABI = true; #endif #if defined(V8_TARGET_LITTLE_ENDIAN) const uint32_t kHoleNanUpper32Offset = 4; const uint32_t kHoleNanLower32Offset = 0; #elif defined(V8_TARGET_BIG_ENDIAN) const uint32_t kHoleNanUpper32Offset = 0; const uint32_t kHoleNanLower32Offset = 4; #else #error Unknown endianness #endif #define IsFp64Mode() (kFpuMode == kFP64) #define IsFp32Mode() (kFpuMode == kFP32) #define IsFpxxMode() (kFpuMode == kFPXX) #ifndef _MIPS_ARCH_MIPS32RX #define IsMipsArchVariant(check) \ (kArchVariant == check) #else #define IsMipsArchVariant(check) \ (CpuFeatures::IsSupported(static_cast(check))) #endif #if defined(V8_TARGET_LITTLE_ENDIAN) const uint32_t kMipsLwrOffset = 0; const uint32_t kMipsLwlOffset = 3; const uint32_t kMipsSwrOffset = 0; const uint32_t kMipsSwlOffset = 3; #elif defined(V8_TARGET_BIG_ENDIAN) const uint32_t kMipsLwrOffset = 3; const uint32_t kMipsLwlOffset = 0; const uint32_t kMipsSwrOffset = 3; const uint32_t kMipsSwlOffset = 0; #else #error Unknown endianness #endif #if defined(V8_TARGET_LITTLE_ENDIAN) const uint32_t kLeastSignificantByteInInt32Offset = 0; #elif defined(V8_TARGET_BIG_ENDIAN) const uint32_t kLeastSignificantByteInInt32Offset = 3; #else #error Unknown endianness #endif #ifndef __STDC_FORMAT_MACROS #define __STDC_FORMAT_MACROS #endif #include // Defines constants and accessor classes to assemble, disassemble and // simulate MIPS32 instructions. // // See: MIPS32 Architecture For Programmers // Volume II: The MIPS32 Instruction Set // Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf. namespace v8 { namespace internal { // TODO(sigurds): Change this value once we use relative jumps. constexpr size_t kMaxPCRelativeCodeRangeInMB = 0; // ----------------------------------------------------------------------------- // Registers and FPURegisters. // Number of general purpose registers. const int kNumRegisters = 32; const int kInvalidRegister = -1; // Number of registers with HI, LO, and pc. const int kNumSimuRegisters = 35; // In the simulator, the PC register is simulated as the 34th register. const int kPCRegister = 34; // Number coprocessor registers. const int kNumFPURegisters = 32; const int kInvalidFPURegister = -1; // Number of MSA registers const int kNumMSARegisters = 32; const int kInvalidMSARegister = -1; const int kInvalidMSAControlRegister = -1; const int kMSAIRRegister = 0; const int kMSACSRRegister = 1; const int kMSARegSize = 128; const int kMSALanesByte = kMSARegSize / 8; const int kMSALanesHalf = kMSARegSize / 16; const int kMSALanesWord = kMSARegSize / 32; const int kMSALanesDword = kMSARegSize / 64; // FPU (coprocessor 1) control registers. Currently only FCSR is implemented. const int kFCSRRegister = 31; const int kInvalidFPUControlRegister = -1; const uint32_t kFPUInvalidResult = static_cast(1u << 31) - 1; const int32_t kFPUInvalidResultNegative = static_cast(1u << 31); const uint64_t kFPU64InvalidResult = static_cast(static_cast(1) << 63) - 1; const int64_t kFPU64InvalidResultNegative = static_cast(static_cast(1) << 63); // FCSR constants. const uint32_t kFCSRInexactFlagBit = 2; const uint32_t kFCSRUnderflowFlagBit = 3; const uint32_t kFCSROverflowFlagBit = 4; const uint32_t kFCSRDivideByZeroFlagBit = 5; const uint32_t kFCSRInvalidOpFlagBit = 6; const uint32_t kFCSRNaN2008FlagBit = 18; const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit; const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit; const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit; const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit; const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit; const uint32_t kFCSRNaN2008FlagMask = 1 << kFCSRNaN2008FlagBit; const uint32_t kFCSRFlagMask = kFCSRInexactFlagMask | kFCSRUnderflowFlagMask | kFCSROverflowFlagMask | kFCSRDivideByZeroFlagMask | kFCSRInvalidOpFlagMask; const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask; // 'pref' instruction hints const int32_t kPrefHintLoad = 0; const int32_t kPrefHintStore = 1; const int32_t kPrefHintLoadStreamed = 4; const int32_t kPrefHintStoreStreamed = 5; const int32_t kPrefHintLoadRetained = 6; const int32_t kPrefHintStoreRetained = 7; const int32_t kPrefHintWritebackInvalidate = 25; const int32_t kPrefHintPrepareForStore = 30; // Actual value of root register is offset from the root array's start // to take advantage of negative displacement values. // TODO(sigurds): Choose best value. constexpr int kRootRegisterBias = 256; // Helper functions for converting between register numbers and names. class Registers { public: // Return the name of the register. static const char* Name(int reg); // Lookup the register number for the name provided. static int Number(const char* name); struct RegisterAlias { int reg; const char* name; }; static const int32_t kMaxValue = 0x7fffffff; static const int32_t kMinValue = 0x80000000; private: static const char* names_[kNumSimuRegisters]; static const RegisterAlias aliases_[]; }; // Helper functions for converting between register numbers and names. class FPURegisters { public: // Return the name of the register. static const char* Name(int reg); // Lookup the register number for the name provided. static int Number(const char* name); struct RegisterAlias { int creg; const char* name; }; private: static const char* names_[kNumFPURegisters]; static const RegisterAlias aliases_[]; }; // Helper functions for converting between register numbers and names. class MSARegisters { public: // Return the name of the register. static const char* Name(int reg); // Lookup the register number for the name provided. static int Number(const char* name); struct RegisterAlias { int creg; const char* name; }; private: static const char* names_[kNumMSARegisters]; static const RegisterAlias aliases_[]; }; // ----------------------------------------------------------------------------- // Instructions encoding constants. // On MIPS all instructions are 32 bits. typedef int32_t Instr; // Special Software Interrupt codes when used in the presence of the MIPS // simulator. enum SoftwareInterruptCodes { // Transition to C code. call_rt_redirected = 0xfffff }; // On MIPS Simulator breakpoints can have different codes: // - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints, // the simulator will run through them and print the registers. // - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop() // instructions (see Assembler::stop()). // - Breaks larger than kMaxStopCode are simple breaks, dropping you into the // debugger. const uint32_t kMaxWatchpointCode = 31; const uint32_t kMaxStopCode = 127; STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode); // ----- Fields offset and length. const int kOpcodeShift = 26; const int kOpcodeBits = 6; const int kRsShift = 21; const int kRsBits = 5; const int kRtShift = 16; const int kRtBits = 5; const int kRdShift = 11; const int kRdBits = 5; const int kSaShift = 6; const int kSaBits = 5; const int kLsaSaBits = 2; const int kFunctionShift = 0; const int kFunctionBits = 6; const int kLuiShift = 16; const int kBp2Shift = 6; const int kBp2Bits = 2; const int kBaseShift = 21; const int kBaseBits = 5; const int kBit6Shift = 6; const int kBit6Bits = 1; const int kImm9Shift = 7; const int kImm9Bits = 9; const int kImm16Shift = 0; const int kImm16Bits = 16; const int kImm18Shift = 0; const int kImm18Bits = 18; const int kImm19Shift = 0; const int kImm19Bits = 19; const int kImm21Shift = 0; const int kImm21Bits = 21; const int kImm26Shift = 0; const int kImm26Bits = 26; const int kImm28Shift = 0; const int kImm28Bits = 28; const int kImm32Shift = 0; const int kImm32Bits = 32; const int kMsaImm8Shift = 16; const int kMsaImm8Bits = 8; const int kMsaImm5Shift = 16; const int kMsaImm5Bits = 5; const int kMsaImm10Shift = 11; const int kMsaImm10Bits = 10; const int kMsaImmMI10Shift = 16; const int kMsaImmMI10Bits = 10; // In branches and jumps immediate fields point to words, not bytes, // and are therefore shifted by 2. const int kImmFieldShift = 2; const int kFrBits = 5; const int kFrShift = 21; const int kFsShift = 11; const int kFsBits = 5; const int kFtShift = 16; const int kFtBits = 5; const int kFdShift = 6; const int kFdBits = 5; const int kFCccShift = 8; const int kFCccBits = 3; const int kFBccShift = 18; const int kFBccBits = 3; const int kFBtrueShift = 16; const int kFBtrueBits = 1; const int kWtBits = 5; const int kWtShift = 16; const int kWsBits = 5; const int kWsShift = 11; const int kWdBits = 5; const int kWdShift = 6; // ----- Miscellaneous useful masks. // Instruction bit masks. const int kOpcodeMask = ((1 << kOpcodeBits) - 1) << kOpcodeShift; const int kImm9Mask = ((1 << kImm9Bits) - 1) << kImm9Shift; const int kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift; const int kImm18Mask = ((1 << kImm18Bits) - 1) << kImm18Shift; const int kImm19Mask = ((1 << kImm19Bits) - 1) << kImm19Shift; const int kImm21Mask = ((1 << kImm21Bits) - 1) << kImm21Shift; const int kImm26Mask = ((1 << kImm26Bits) - 1) << kImm26Shift; const int kImm28Mask = ((1 << kImm28Bits) - 1) << kImm28Shift; const int kImm5Mask = ((1 << 5) - 1); const int kImm8Mask = ((1 << 8) - 1); const int kImm10Mask = ((1 << 10) - 1); const int kMsaI5I10Mask = ((7U << 23) | ((1 << 6) - 1)); const int kMsaI8Mask = ((3U << 24) | ((1 << 6) - 1)); const int kMsaI5Mask = ((7U << 23) | ((1 << 6) - 1)); const int kMsaMI10Mask = (15U << 2); const int kMsaBITMask = ((7U << 23) | ((1 << 6) - 1)); const int kMsaELMMask = (15U << 22); const int kMsaLongerELMMask = kMsaELMMask | (63U << 16); const int kMsa3RMask = ((7U << 23) | ((1 << 6) - 1)); const int kMsa3RFMask = ((15U << 22) | ((1 << 6) - 1)); const int kMsaVECMask = (23U << 21); const int kMsa2RMask = (7U << 18); const int kMsa2RFMask = (15U << 17); const int kRsFieldMask = ((1 << kRsBits) - 1) << kRsShift; const int kRtFieldMask = ((1 << kRtBits) - 1) << kRtShift; const int kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift; const int kSaFieldMask = ((1 << kSaBits) - 1) << kSaShift; const int kFunctionFieldMask = ((1 << kFunctionBits) - 1) << kFunctionShift; // Misc masks. const int kHiMask = 0xffff << 16; const int kLoMask = 0xffff; const int kSignMask = 0x80000000; const int kJumpAddrMask = (1 << (kImm26Bits + kImmFieldShift)) - 1; // ----- MIPS Opcodes and Function Fields. // We use this presentation to stay close to the table representation in // MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set. enum Opcode : uint32_t { SPECIAL = 0U << kOpcodeShift, REGIMM = 1U << kOpcodeShift, J = ((0U << 3) + 2) << kOpcodeShift, JAL = ((0U << 3) + 3) << kOpcodeShift, BEQ = ((0U << 3) + 4) << kOpcodeShift, BNE = ((0U << 3) + 5) << kOpcodeShift, BLEZ = ((0U << 3) + 6) << kOpcodeShift, BGTZ = ((0U << 3) + 7) << kOpcodeShift, ADDI = ((1U << 3) + 0) << kOpcodeShift, ADDIU = ((1U << 3) + 1) << kOpcodeShift, SLTI = ((1U << 3) + 2) << kOpcodeShift, SLTIU = ((1U << 3) + 3) << kOpcodeShift, ANDI = ((1U << 3) + 4) << kOpcodeShift, ORI = ((1U << 3) + 5) << kOpcodeShift, XORI = ((1U << 3) + 6) << kOpcodeShift, LUI = ((1U << 3) + 7) << kOpcodeShift, // LUI/AUI family. BEQC = ((2U << 3) + 0) << kOpcodeShift, COP1 = ((2U << 3) + 1) << kOpcodeShift, // Coprocessor 1 class. BEQL = ((2U << 3) + 4) << kOpcodeShift, BNEL = ((2U << 3) + 5) << kOpcodeShift, BLEZL = ((2U << 3) + 6) << kOpcodeShift, BGTZL = ((2U << 3) + 7) << kOpcodeShift, DADDI = ((3U << 3) + 0) << kOpcodeShift, // This is also BNEC. SPECIAL2 = ((3U << 3) + 4) << kOpcodeShift, MSA = ((3U << 3) + 6) << kOpcodeShift, SPECIAL3 = ((3U << 3) + 7) << kOpcodeShift, LB = ((4U << 3) + 0) << kOpcodeShift, LH = ((4U << 3) + 1) << kOpcodeShift, LWL = ((4U << 3) + 2) << kOpcodeShift, LW = ((4U << 3) + 3) << kOpcodeShift, LBU = ((4U << 3) + 4) << kOpcodeShift, LHU = ((4U << 3) + 5) << kOpcodeShift, LWR = ((4U << 3) + 6) << kOpcodeShift, SB = ((5U << 3) + 0) << kOpcodeShift, SH = ((5U << 3) + 1) << kOpcodeShift, SWL = ((5U << 3) + 2) << kOpcodeShift, SW = ((5U << 3) + 3) << kOpcodeShift, SWR = ((5U << 3) + 6) << kOpcodeShift, LL = ((6U << 3) + 0) << kOpcodeShift, LWC1 = ((6U << 3) + 1) << kOpcodeShift, BC = ((6U << 3) + 2) << kOpcodeShift, LDC1 = ((6U << 3) + 5) << kOpcodeShift, POP66 = ((6U << 3) + 6) << kOpcodeShift, // beqzc, jic PREF = ((6U << 3) + 3) << kOpcodeShift, SC = ((7U << 3) + 0) << kOpcodeShift, SWC1 = ((7U << 3) + 1) << kOpcodeShift, BALC = ((7U << 3) + 2) << kOpcodeShift, PCREL = ((7U << 3) + 3) << kOpcodeShift, SDC1 = ((7U << 3) + 5) << kOpcodeShift, POP76 = ((7U << 3) + 6) << kOpcodeShift, // bnezc, jialc COP1X = ((1U << 4) + 3) << kOpcodeShift, // New r6 instruction. POP06 = BLEZ, // bgeuc/bleuc, blezalc, bgezalc POP07 = BGTZ, // bltuc/bgtuc, bgtzalc, bltzalc POP10 = ADDI, // beqzalc, bovc, beqc POP26 = BLEZL, // bgezc, blezc, bgec/blec POP27 = BGTZL, // bgtzc, bltzc, bltc/bgtc POP30 = DADDI, // bnezalc, bnvc, bnec }; enum SecondaryField : uint32_t { // SPECIAL Encoding of Function Field. SLL = ((0U << 3) + 0), MOVCI = ((0U << 3) + 1), SRL = ((0U << 3) + 2), SRA = ((0U << 3) + 3), SLLV = ((0U << 3) + 4), LSA = ((0U << 3) + 5), SRLV = ((0U << 3) + 6), SRAV = ((0U << 3) + 7), JR = ((1U << 3) + 0), JALR = ((1U << 3) + 1), MOVZ = ((1U << 3) + 2), MOVN = ((1U << 3) + 3), BREAK = ((1U << 3) + 5), SYNC = ((1U << 3) + 7), MFHI = ((2U << 3) + 0), CLZ_R6 = ((2U << 3) + 0), CLO_R6 = ((2U << 3) + 1), MFLO = ((2U << 3) + 2), MULT = ((3U << 3) + 0), MULTU = ((3U << 3) + 1), DIV = ((3U << 3) + 2), DIVU = ((3U << 3) + 3), ADD = ((4U << 3) + 0), ADDU = ((4U << 3) + 1), SUB = ((4U << 3) + 2), SUBU = ((4U << 3) + 3), AND = ((4U << 3) + 4), OR = ((4U << 3) + 5), XOR = ((4U << 3) + 6), NOR = ((4U << 3) + 7), SLT = ((5U << 3) + 2), SLTU = ((5U << 3) + 3), TGE = ((6U << 3) + 0), TGEU = ((6U << 3) + 1), TLT = ((6U << 3) + 2), TLTU = ((6U << 3) + 3), TEQ = ((6U << 3) + 4), SELEQZ_S = ((6U << 3) + 5), TNE = ((6U << 3) + 6), SELNEZ_S = ((6U << 3) + 7), // Multiply integers in r6. MUL_MUH = ((3U << 3) + 0), // MUL, MUH. MUL_MUH_U = ((3U << 3) + 1), // MUL_U, MUH_U. RINT = ((3U << 3) + 2), MUL_OP = ((0U << 3) + 2), MUH_OP = ((0U << 3) + 3), DIV_OP = ((0U << 3) + 2), MOD_OP = ((0U << 3) + 3), DIV_MOD = ((3U << 3) + 2), DIV_MOD_U = ((3U << 3) + 3), // SPECIAL2 Encoding of Function Field. MUL = ((0U << 3) + 2), CLZ = ((4U << 3) + 0), CLO = ((4U << 3) + 1), // SPECIAL3 Encoding of Function Field. EXT = ((0U << 3) + 0), INS = ((0U << 3) + 4), BSHFL = ((4U << 3) + 0), SC_R6 = ((4U << 3) + 6), LL_R6 = ((6U << 3) + 6), // SPECIAL3 Encoding of sa Field. BITSWAP = ((0U << 3) + 0), ALIGN = ((0U << 3) + 2), WSBH = ((0U << 3) + 2), SEB = ((2U << 3) + 0), SEH = ((3U << 3) + 0), // REGIMM encoding of rt Field. BLTZ = ((0U << 3) + 0) << 16, BGEZ = ((0U << 3) + 1) << 16, BLTZAL = ((2U << 3) + 0) << 16, BGEZAL = ((2U << 3) + 1) << 16, BGEZALL = ((2U << 3) + 3) << 16, // COP1 Encoding of rs Field. MFC1 = ((0U << 3) + 0) << 21, CFC1 = ((0U << 3) + 2) << 21, MFHC1 = ((0U << 3) + 3) << 21, MTC1 = ((0U << 3) + 4) << 21, CTC1 = ((0U << 3) + 6) << 21, MTHC1 = ((0U << 3) + 7) << 21, BC1 = ((1U << 3) + 0) << 21, S = ((2U << 3) + 0) << 21, D = ((2U << 3) + 1) << 21, W = ((2U << 3) + 4) << 21, L = ((2U << 3) + 5) << 21, PS = ((2U << 3) + 6) << 21, // COP1 Encoding of Function Field When rs=S. ADD_S = ((0U << 3) + 0), SUB_S = ((0U << 3) + 1), MUL_S = ((0U << 3) + 2), DIV_S = ((0U << 3) + 3), ABS_S = ((0U << 3) + 5), SQRT_S = ((0U << 3) + 4), MOV_S = ((0U << 3) + 6), NEG_S = ((0U << 3) + 7), ROUND_L_S = ((1U << 3) + 0), TRUNC_L_S = ((1U << 3) + 1), CEIL_L_S = ((1U << 3) + 2), FLOOR_L_S = ((1U << 3) + 3), ROUND_W_S = ((1U << 3) + 4), TRUNC_W_S = ((1U << 3) + 5), CEIL_W_S = ((1U << 3) + 6), FLOOR_W_S = ((1U << 3) + 7), RECIP_S = ((2U << 3) + 5), RSQRT_S = ((2U << 3) + 6), MADDF_S = ((3U << 3) + 0), MSUBF_S = ((3U << 3) + 1), CLASS_S = ((3U << 3) + 3), CVT_D_S = ((4U << 3) + 1), CVT_W_S = ((4U << 3) + 4), CVT_L_S = ((4U << 3) + 5), CVT_PS_S = ((4U << 3) + 6), // COP1 Encoding of Function Field When rs=D. ADD_D = ((0U << 3) + 0), SUB_D = ((0U << 3) + 1), MUL_D = ((0U << 3) + 2), DIV_D = ((0U << 3) + 3), SQRT_D = ((0U << 3) + 4), ABS_D = ((0U << 3) + 5), MOV_D = ((0U << 3) + 6), NEG_D = ((0U << 3) + 7), ROUND_L_D = ((1U << 3) + 0), TRUNC_L_D = ((1U << 3) + 1), CEIL_L_D = ((1U << 3) + 2), FLOOR_L_D = ((1U << 3) + 3), ROUND_W_D = ((1U << 3) + 4), TRUNC_W_D = ((1U << 3) + 5), CEIL_W_D = ((1U << 3) + 6), FLOOR_W_D = ((1U << 3) + 7), RECIP_D = ((2U << 3) + 5), RSQRT_D = ((2U << 3) + 6), MADDF_D = ((3U << 3) + 0), MSUBF_D = ((3U << 3) + 1), CLASS_D = ((3U << 3) + 3), MIN = ((3U << 3) + 4), MINA = ((3U << 3) + 5), MAX = ((3U << 3) + 6), MAXA = ((3U << 3) + 7), CVT_S_D = ((4U << 3) + 0), CVT_W_D = ((4U << 3) + 4), CVT_L_D = ((4U << 3) + 5), C_F_D = ((6U << 3) + 0), C_UN_D = ((6U << 3) + 1), C_EQ_D = ((6U << 3) + 2), C_UEQ_D = ((6U << 3) + 3), C_OLT_D = ((6U << 3) + 4), C_ULT_D = ((6U << 3) + 5), C_OLE_D = ((6U << 3) + 6), C_ULE_D = ((6U << 3) + 7), // COP1 Encoding of Function Field When rs=W or L. CVT_S_W = ((4U << 3) + 0), CVT_D_W = ((4U << 3) + 1), CVT_S_L = ((4U << 3) + 0), CVT_D_L = ((4U << 3) + 1), BC1EQZ = ((2U << 2) + 1) << 21, BC1NEZ = ((3U << 2) + 1) << 21, // COP1 CMP positive predicates Bit 5..4 = 00. CMP_AF = ((0U << 3) + 0), CMP_UN = ((0U << 3) + 1), CMP_EQ = ((0U << 3) + 2), CMP_UEQ = ((0U << 3) + 3), CMP_LT = ((0U << 3) + 4), CMP_ULT = ((0U << 3) + 5), CMP_LE = ((0U << 3) + 6), CMP_ULE = ((0U << 3) + 7), CMP_SAF = ((1U << 3) + 0), CMP_SUN = ((1U << 3) + 1), CMP_SEQ = ((1U << 3) + 2), CMP_SUEQ = ((1U << 3) + 3), CMP_SSLT = ((1U << 3) + 4), CMP_SSULT = ((1U << 3) + 5), CMP_SLE = ((1U << 3) + 6), CMP_SULE = ((1U << 3) + 7), // COP1 CMP negative predicates Bit 5..4 = 01. CMP_AT = ((2U << 3) + 0), // Reserved, not implemented. CMP_OR = ((2U << 3) + 1), CMP_UNE = ((2U << 3) + 2), CMP_NE = ((2U << 3) + 3), CMP_UGE = ((2U << 3) + 4), // Reserved, not implemented. CMP_OGE = ((2U << 3) + 5), // Reserved, not implemented. CMP_UGT = ((2U << 3) + 6), // Reserved, not implemented. CMP_OGT = ((2U << 3) + 7), // Reserved, not implemented. CMP_SAT = ((3U << 3) + 0), // Reserved, not implemented. CMP_SOR = ((3U << 3) + 1), CMP_SUNE = ((3U << 3) + 2), CMP_SNE = ((3U << 3) + 3), CMP_SUGE = ((3U << 3) + 4), // Reserved, not implemented. CMP_SOGE = ((3U << 3) + 5), // Reserved, not implemented. CMP_SUGT = ((3U << 3) + 6), // Reserved, not implemented. CMP_SOGT = ((3U << 3) + 7), // Reserved, not implemented. SEL = ((2U << 3) + 0), MOVZ_C = ((2U << 3) + 2), MOVN_C = ((2U << 3) + 3), SELEQZ_C = ((2U << 3) + 4), // COP1 on FPR registers. MOVF = ((2U << 3) + 1), // Function field for MOVT.fmt and MOVF.fmt SELNEZ_C = ((2U << 3) + 7), // COP1 on FPR registers. // COP1 Encoding of Function Field When rs=PS. // COP1X Encoding of Function Field. MADD_S = ((4U << 3) + 0), MADD_D = ((4U << 3) + 1), MSUB_S = ((5U << 3) + 0), MSUB_D = ((5U << 3) + 1), // PCREL Encoding of rt Field. ADDIUPC = ((0U << 2) + 0), LWPC = ((0U << 2) + 1), AUIPC = ((3U << 3) + 6), ALUIPC = ((3U << 3) + 7), // POP66 Encoding of rs Field. JIC = ((0U << 5) + 0), // POP76 Encoding of rs Field. JIALC = ((0U << 5) + 0), // COP1 Encoding of rs Field for MSA Branch Instructions BZ_V = (((1U << 3) + 3) << kRsShift), BNZ_V = (((1U << 3) + 7) << kRsShift), BZ_B = (((3U << 3) + 0) << kRsShift), BZ_H = (((3U << 3) + 1) << kRsShift), BZ_W = (((3U << 3) + 2) << kRsShift), BZ_D = (((3U << 3) + 3) << kRsShift), BNZ_B = (((3U << 3) + 4) << kRsShift), BNZ_H = (((3U << 3) + 5) << kRsShift), BNZ_W = (((3U << 3) + 6) << kRsShift), BNZ_D = (((3U << 3) + 7) << kRsShift), // MSA: Operation Field for MI10 Instruction Formats MSA_LD = (8U << 2), MSA_ST = (9U << 2), LD_B = ((8U << 2) + 0), LD_H = ((8U << 2) + 1), LD_W = ((8U << 2) + 2), LD_D = ((8U << 2) + 3), ST_B = ((9U << 2) + 0), ST_H = ((9U << 2) + 1), ST_W = ((9U << 2) + 2), ST_D = ((9U << 2) + 3), // MSA: Operation Field for I5 Instruction Format ADDVI = ((0U << 23) + 6), SUBVI = ((1U << 23) + 6), MAXI_S = ((2U << 23) + 6), MAXI_U = ((3U << 23) + 6), MINI_S = ((4U << 23) + 6), MINI_U = ((5U << 23) + 6), CEQI = ((0U << 23) + 7), CLTI_S = ((2U << 23) + 7), CLTI_U = ((3U << 23) + 7), CLEI_S = ((4U << 23) + 7), CLEI_U = ((5U << 23) + 7), LDI = ((6U << 23) + 7), // I10 instruction format I5_DF_b = (0U << 21), I5_DF_h = (1U << 21), I5_DF_w = (2U << 21), I5_DF_d = (3U << 21), // MSA: Operation Field for I8 Instruction Format ANDI_B = ((0U << 24) + 0), ORI_B = ((1U << 24) + 0), NORI_B = ((2U << 24) + 0), XORI_B = ((3U << 24) + 0), BMNZI_B = ((0U << 24) + 1), BMZI_B = ((1U << 24) + 1), BSELI_B = ((2U << 24) + 1), SHF_B = ((0U << 24) + 2), SHF_H = ((1U << 24) + 2), SHF_W = ((2U << 24) + 2), MSA_VEC_2R_2RF_MINOR = ((3U << 3) + 6), // MSA: Operation Field for VEC Instruction Formats AND_V = (((0U << 2) + 0) << 21), OR_V = (((0U << 2) + 1) << 21), NOR_V = (((0U << 2) + 2) << 21), XOR_V = (((0U << 2) + 3) << 21), BMNZ_V = (((1U << 2) + 0) << 21), BMZ_V = (((1U << 2) + 1) << 21), BSEL_V = (((1U << 2) + 2) << 21), // MSA: Operation Field for 2R Instruction Formats MSA_2R_FORMAT = (((6U << 2) + 0) << 21), FILL = (0U << 18), PCNT = (1U << 18), NLOC = (2U << 18), NLZC = (3U << 18), MSA_2R_DF_b = (0U << 16), MSA_2R_DF_h = (1U << 16), MSA_2R_DF_w = (2U << 16), MSA_2R_DF_d = (3U << 16), // MSA: Operation Field for 2RF Instruction Formats MSA_2RF_FORMAT = (((6U << 2) + 1) << 21), FCLASS = (0U << 17), FTRUNC_S = (1U << 17), FTRUNC_U = (2U << 17), FSQRT = (3U << 17), FRSQRT = (4U << 17), FRCP = (5U << 17), FRINT = (6U << 17), FLOG2 = (7U << 17), FEXUPL = (8U << 17), FEXUPR = (9U << 17), FFQL = (10U << 17), FFQR = (11U << 17), FTINT_S = (12U << 17), FTINT_U = (13U << 17), FFINT_S = (14U << 17), FFINT_U = (15U << 17), MSA_2RF_DF_w = (0U << 16), MSA_2RF_DF_d = (1U << 16), // MSA: Operation Field for 3R Instruction Format SLL_MSA = ((0U << 23) + 13), SRA_MSA = ((1U << 23) + 13), SRL_MSA = ((2U << 23) + 13), BCLR = ((3U << 23) + 13), BSET = ((4U << 23) + 13), BNEG = ((5U << 23) + 13), BINSL = ((6U << 23) + 13), BINSR = ((7U << 23) + 13), ADDV = ((0U << 23) + 14), SUBV = ((1U << 23) + 14), MAX_S = ((2U << 23) + 14), MAX_U = ((3U << 23) + 14), MIN_S = ((4U << 23) + 14), MIN_U = ((5U << 23) + 14), MAX_A = ((6U << 23) + 14), MIN_A = ((7U << 23) + 14), CEQ = ((0U << 23) + 15), CLT_S = ((2U << 23) + 15), CLT_U = ((3U << 23) + 15), CLE_S = ((4U << 23) + 15), CLE_U = ((5U << 23) + 15), ADD_A = ((0U << 23) + 16), ADDS_A = ((1U << 23) + 16), ADDS_S = ((2U << 23) + 16), ADDS_U = ((3U << 23) + 16), AVE_S = ((4U << 23) + 16), AVE_U = ((5U << 23) + 16), AVER_S = ((6U << 23) + 16), AVER_U = ((7U << 23) + 16), SUBS_S = ((0U << 23) + 17), SUBS_U = ((1U << 23) + 17), SUBSUS_U = ((2U << 23) + 17), SUBSUU_S = ((3U << 23) + 17), ASUB_S = ((4U << 23) + 17), ASUB_U = ((5U << 23) + 17), MULV = ((0U << 23) + 18), MADDV = ((1U << 23) + 18), MSUBV = ((2U << 23) + 18), DIV_S_MSA = ((4U << 23) + 18), DIV_U = ((5U << 23) + 18), MOD_S = ((6U << 23) + 18), MOD_U = ((7U << 23) + 18), DOTP_S = ((0U << 23) + 19), DOTP_U = ((1U << 23) + 19), DPADD_S = ((2U << 23) + 19), DPADD_U = ((3U << 23) + 19), DPSUB_S = ((4U << 23) + 19), DPSUB_U = ((5U << 23) + 19), SLD = ((0U << 23) + 20), SPLAT = ((1U << 23) + 20), PCKEV = ((2U << 23) + 20), PCKOD = ((3U << 23) + 20), ILVL = ((4U << 23) + 20), ILVR = ((5U << 23) + 20), ILVEV = ((6U << 23) + 20), ILVOD = ((7U << 23) + 20), VSHF = ((0U << 23) + 21), SRAR = ((1U << 23) + 21), SRLR = ((2U << 23) + 21), HADD_S = ((4U << 23) + 21), HADD_U = ((5U << 23) + 21), HSUB_S = ((6U << 23) + 21), HSUB_U = ((7U << 23) + 21), MSA_3R_DF_b = (0U << 21), MSA_3R_DF_h = (1U << 21), MSA_3R_DF_w = (2U << 21), MSA_3R_DF_d = (3U << 21), // MSA: Operation Field for 3RF Instruction Format FCAF = ((0U << 22) + 26), FCUN = ((1U << 22) + 26), FCEQ = ((2U << 22) + 26), FCUEQ = ((3U << 22) + 26), FCLT = ((4U << 22) + 26), FCULT = ((5U << 22) + 26), FCLE = ((6U << 22) + 26), FCULE = ((7U << 22) + 26), FSAF = ((8U << 22) + 26), FSUN = ((9U << 22) + 26), FSEQ = ((10U << 22) + 26), FSUEQ = ((11U << 22) + 26), FSLT = ((12U << 22) + 26), FSULT = ((13U << 22) + 26), FSLE = ((14U << 22) + 26), FSULE = ((15U << 22) + 26), FADD = ((0U << 22) + 27), FSUB = ((1U << 22) + 27), FMUL = ((2U << 22) + 27), FDIV = ((3U << 22) + 27), FMADD = ((4U << 22) + 27), FMSUB = ((5U << 22) + 27), FEXP2 = ((7U << 22) + 27), FEXDO = ((8U << 22) + 27), FTQ = ((10U << 22) + 27), FMIN = ((12U << 22) + 27), FMIN_A = ((13U << 22) + 27), FMAX = ((14U << 22) + 27), FMAX_A = ((15U << 22) + 27), FCOR = ((1U << 22) + 28), FCUNE = ((2U << 22) + 28), FCNE = ((3U << 22) + 28), MUL_Q = ((4U << 22) + 28), MADD_Q = ((5U << 22) + 28), MSUB_Q = ((6U << 22) + 28), FSOR = ((9U << 22) + 28), FSUNE = ((10U << 22) + 28), FSNE = ((11U << 22) + 28), MULR_Q = ((12U << 22) + 28), MADDR_Q = ((13U << 22) + 28), MSUBR_Q = ((14U << 22) + 28), // MSA: Operation Field for ELM Instruction Format MSA_ELM_MINOR = ((3U << 3) + 1), SLDI = (0U << 22), CTCMSA = ((0U << 22) | (62U << 16)), SPLATI = (1U << 22), CFCMSA = ((1U << 22) | (62U << 16)), COPY_S = (2U << 22), MOVE_V = ((2U << 22) | (62U << 16)), COPY_U = (3U << 22), INSERT = (4U << 22), INSVE = (5U << 22), ELM_DF_B = ((0U << 4) << 16), ELM_DF_H = ((4U << 3) << 16), ELM_DF_W = ((12U << 2) << 16), ELM_DF_D = ((28U << 1) << 16), // MSA: Operation Field for BIT Instruction Format SLLI = ((0U << 23) + 9), SRAI = ((1U << 23) + 9), SRLI = ((2U << 23) + 9), BCLRI = ((3U << 23) + 9), BSETI = ((4U << 23) + 9), BNEGI = ((5U << 23) + 9), BINSLI = ((6U << 23) + 9), BINSRI = ((7U << 23) + 9), SAT_S = ((0U << 23) + 10), SAT_U = ((1U << 23) + 10), SRARI = ((2U << 23) + 10), SRLRI = ((3U << 23) + 10), BIT_DF_b = ((14U << 3) << 16), BIT_DF_h = ((6U << 4) << 16), BIT_DF_w = ((2U << 5) << 16), BIT_DF_d = ((0U << 6) << 16), nullptrSF = 0U }; enum MSAMinorOpcode : uint32_t { kMsaMinorUndefined = 0, kMsaMinorI8, kMsaMinorI5, kMsaMinorI10, kMsaMinorBIT, kMsaMinor3R, kMsaMinor3RF, kMsaMinorELM, kMsaMinorVEC, kMsaMinor2R, kMsaMinor2RF, kMsaMinorMI10 }; // ----- Emulated conditions. // On MIPS we use this enum to abstract from conditional branch instructions. // The 'U' prefix is used to specify unsigned comparisons. // Opposite conditions must be paired as odd/even numbers // because 'NegateCondition' function flips LSB to negate condition. enum Condition { // Any value < 0 is considered no_condition. kNoCondition = -1, overflow = 0, no_overflow = 1, Uless = 2, Ugreater_equal = 3, Uless_equal = 4, Ugreater = 5, equal = 6, not_equal = 7, // Unordered or Not Equal. negative = 8, positive = 9, parity_even = 10, parity_odd = 11, less = 12, greater_equal = 13, less_equal = 14, greater = 15, ueq = 16, // Unordered or Equal. ogl = 17, // Ordered and Not Equal. cc_always = 18, // Aliases. carry = Uless, not_carry = Ugreater_equal, zero = equal, eq = equal, not_zero = not_equal, ne = not_equal, nz = not_equal, sign = negative, not_sign = positive, mi = negative, pl = positive, hi = Ugreater, ls = Uless_equal, ge = greater_equal, lt = less, gt = greater, le = less_equal, hs = Ugreater_equal, lo = Uless, al = cc_always, ult = Uless, uge = Ugreater_equal, ule = Uless_equal, ugt = Ugreater, cc_default = kNoCondition }; // Returns the equivalent of !cc. // Negation of the default kNoCondition (-1) results in a non-default // no_condition value (-2). As long as tests for no_condition check // for condition < 0, this will work as expected. inline Condition NegateCondition(Condition cc) { DCHECK(cc != cc_always); return static_cast(cc ^ 1); } inline Condition NegateFpuCondition(Condition cc) { DCHECK(cc != cc_always); switch (cc) { case ult: return ge; case ugt: return le; case uge: return lt; case ule: return gt; case lt: return uge; case gt: return ule; case ge: return ult; case le: return ugt; case eq: return ne; case ne: return eq; case ueq: return ogl; case ogl: return ueq; default: return cc; } } enum MSABranchCondition { all_not_zero = 0, // Branch If All Elements Are Not Zero one_elem_not_zero, // Branch If At Least One Element of Any Format Is Not // Zero one_elem_zero, // Branch If At Least One Element Is Zero all_zero // Branch If All Elements of Any Format Are Zero }; inline MSABranchCondition NegateMSABranchCondition(MSABranchCondition cond) { switch (cond) { case all_not_zero: return one_elem_zero; case one_elem_not_zero: return all_zero; case one_elem_zero: return all_not_zero; case all_zero: return one_elem_not_zero; default: return cond; } } enum MSABranchDF { MSA_BRANCH_B = 0, MSA_BRANCH_H, MSA_BRANCH_W, MSA_BRANCH_D, MSA_BRANCH_V }; // ----- Coprocessor conditions. enum FPUCondition { kNoFPUCondition = -1, F = 0x00, // False. UN = 0x01, // Unordered. EQ = 0x02, // Equal. UEQ = 0x03, // Unordered or Equal. OLT = 0x04, // Ordered or Less Than, on Mips release < 6. LT = 0x04, // Ordered or Less Than, on Mips release >= 6. ULT = 0x05, // Unordered or Less Than. OLE = 0x06, // Ordered or Less Than or Equal, on Mips release < 6. LE = 0x06, // Ordered or Less Than or Equal, on Mips release >= 6. ULE = 0x07, // Unordered or Less Than or Equal. // Following constants are available on Mips release >= 6 only. ORD = 0x11, // Ordered, on Mips release >= 6. UNE = 0x12, // Not equal, on Mips release >= 6. NE = 0x13, // Ordered Greater Than or Less Than. on Mips >= 6 only. }; // FPU rounding modes. enum FPURoundingMode { RN = 0 << 0, // Round to Nearest. RZ = 1 << 0, // Round towards zero. RP = 2 << 0, // Round towards Plus Infinity. RM = 3 << 0, // Round towards Minus Infinity. // Aliases. kRoundToNearest = RN, kRoundToZero = RZ, kRoundToPlusInf = RP, kRoundToMinusInf = RM, mode_round = RN, mode_ceil = RP, mode_floor = RM, mode_trunc = RZ }; const uint32_t kFPURoundingModeMask = 3 << 0; enum CheckForInexactConversion { kCheckForInexactConversion, kDontCheckForInexactConversion }; enum class MaxMinKind : int { kMin = 0, kMax = 1 }; // ----------------------------------------------------------------------------- // Hints. // Branch hints are not used on the MIPS. They are defined so that they can // appear in shared function signatures, but will be ignored in MIPS // implementations. enum Hint { no_hint = 0 }; inline Hint NegateHint(Hint hint) { return no_hint; } // ----------------------------------------------------------------------------- // Specific instructions, constants, and masks. // These constants are declared in assembler-mips.cc, as they use named // registers and other constants. // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r) // operations as post-increment of sp. extern const Instr kPopInstruction; // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp. extern const Instr kPushInstruction; // sw(r, MemOperand(sp, 0)) extern const Instr kPushRegPattern; // lw(r, MemOperand(sp, 0)) extern const Instr kPopRegPattern; extern const Instr kLwRegFpOffsetPattern; extern const Instr kSwRegFpOffsetPattern; extern const Instr kLwRegFpNegOffsetPattern; extern const Instr kSwRegFpNegOffsetPattern; // A mask for the Rt register for push, pop, lw, sw instructions. extern const Instr kRtMask; extern const Instr kLwSwInstrTypeMask; extern const Instr kLwSwInstrArgumentMask; extern const Instr kLwSwOffsetMask; // Break 0xfffff, reserved for redirected real time call. const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6; // A nop instruction. (Encoding of sll 0 0 0). const Instr nopInstr = 0; static constexpr uint64_t OpcodeToBitNumber(Opcode opcode) { return 1ULL << (static_cast(opcode) >> kOpcodeShift); } constexpr uint8_t kInstrSize = 4; constexpr uint8_t kInstrSizeLog2 = 2; class InstructionBase { public: enum { // On MIPS PC cannot actually be directly accessed. We behave as if PC was // always the value of the current instruction being executed. kPCReadOffset = 0 }; // Instruction type. enum Type { kRegisterType, kImmediateType, kJumpType, kUnsupported = -1 }; // Get the raw instruction bits. inline Instr InstructionBits() const { return *reinterpret_cast(this); } // Set the raw instruction bits to value. inline void SetInstructionBits(Instr value) { *reinterpret_cast(this) = value; } // Read one particular bit out of the instruction bits. inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; } // Read a bit field out of the instruction bits. inline int Bits(int hi, int lo) const { return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1); } static constexpr uint64_t kOpcodeImmediateTypeMask = OpcodeToBitNumber(REGIMM) | OpcodeToBitNumber(BEQ) | OpcodeToBitNumber(BNE) | OpcodeToBitNumber(BLEZ) | OpcodeToBitNumber(BGTZ) | OpcodeToBitNumber(ADDI) | OpcodeToBitNumber(DADDI) | OpcodeToBitNumber(ADDIU) | OpcodeToBitNumber(SLTI) | OpcodeToBitNumber(SLTIU) | OpcodeToBitNumber(ANDI) | OpcodeToBitNumber(ORI) | OpcodeToBitNumber(XORI) | OpcodeToBitNumber(LUI) | OpcodeToBitNumber(BEQL) | OpcodeToBitNumber(BNEL) | OpcodeToBitNumber(BLEZL) | OpcodeToBitNumber(BGTZL) | OpcodeToBitNumber(POP66) | OpcodeToBitNumber(POP76) | OpcodeToBitNumber(LB) | OpcodeToBitNumber(LH) | OpcodeToBitNumber(LWL) | OpcodeToBitNumber(LW) | OpcodeToBitNumber(LBU) | OpcodeToBitNumber(LHU) | OpcodeToBitNumber(LWR) | OpcodeToBitNumber(SB) | OpcodeToBitNumber(SH) | OpcodeToBitNumber(SWL) | OpcodeToBitNumber(SW) | OpcodeToBitNumber(SWR) | OpcodeToBitNumber(LWC1) | OpcodeToBitNumber(LDC1) | OpcodeToBitNumber(SWC1) | OpcodeToBitNumber(SDC1) | OpcodeToBitNumber(PCREL) | OpcodeToBitNumber(BC) | OpcodeToBitNumber(BALC); #define FunctionFieldToBitNumber(function) (1ULL << function) static const uint64_t kFunctionFieldRegisterTypeMask = FunctionFieldToBitNumber(JR) | FunctionFieldToBitNumber(JALR) | FunctionFieldToBitNumber(BREAK) | FunctionFieldToBitNumber(SLL) | FunctionFieldToBitNumber(SRL) | FunctionFieldToBitNumber(SRA) | FunctionFieldToBitNumber(SLLV) | FunctionFieldToBitNumber(SRLV) | FunctionFieldToBitNumber(SRAV) | FunctionFieldToBitNumber(LSA) | FunctionFieldToBitNumber(MFHI) | FunctionFieldToBitNumber(MFLO) | FunctionFieldToBitNumber(MULT) | FunctionFieldToBitNumber(MULTU) | FunctionFieldToBitNumber(DIV) | FunctionFieldToBitNumber(DIVU) | FunctionFieldToBitNumber(ADD) | FunctionFieldToBitNumber(ADDU) | FunctionFieldToBitNumber(SUB) | FunctionFieldToBitNumber(SUBU) | FunctionFieldToBitNumber(AND) | FunctionFieldToBitNumber(OR) | FunctionFieldToBitNumber(XOR) | FunctionFieldToBitNumber(NOR) | FunctionFieldToBitNumber(SLT) | FunctionFieldToBitNumber(SLTU) | FunctionFieldToBitNumber(TGE) | FunctionFieldToBitNumber(TGEU) | FunctionFieldToBitNumber(TLT) | FunctionFieldToBitNumber(TLTU) | FunctionFieldToBitNumber(TEQ) | FunctionFieldToBitNumber(TNE) | FunctionFieldToBitNumber(MOVZ) | FunctionFieldToBitNumber(MOVN) | FunctionFieldToBitNumber(MOVCI) | FunctionFieldToBitNumber(SELEQZ_S) | FunctionFieldToBitNumber(SELNEZ_S) | FunctionFieldToBitNumber(SYNC); // Accessors for the different named fields used in the MIPS encoding. inline Opcode OpcodeValue() const { return static_cast( Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift)); } inline int FunctionFieldRaw() const { return InstructionBits() & kFunctionFieldMask; } // Return the fields at their original place in the instruction encoding. inline Opcode OpcodeFieldRaw() const { return static_cast(InstructionBits() & kOpcodeMask); } // Safe to call within InstructionType(). inline int RsFieldRawNoAssert() const { return InstructionBits() & kRsFieldMask; } inline int SaFieldRaw() const { return InstructionBits() & kSaFieldMask; } // Get the encoding type of the instruction. inline Type InstructionType() const; inline MSAMinorOpcode MSAMinorOpcodeField() const { int op = this->FunctionFieldRaw(); switch (op) { case 0: case 1: case 2: return kMsaMinorI8; case 6: return kMsaMinorI5; case 7: return (((this->InstructionBits() & kMsaI5I10Mask) == LDI) ? kMsaMinorI10 : kMsaMinorI5); case 9: case 10: return kMsaMinorBIT; case 13: case 14: case 15: case 16: case 17: case 18: case 19: case 20: case 21: return kMsaMinor3R; case 25: return kMsaMinorELM; case 26: case 27: case 28: return kMsaMinor3RF; case 30: switch (this->RsFieldRawNoAssert()) { case MSA_2R_FORMAT: return kMsaMinor2R; case MSA_2RF_FORMAT: return kMsaMinor2RF; default: return kMsaMinorVEC; } break; case 32: case 33: case 34: case 35: case 36: case 37: case 38: case 39: return kMsaMinorMI10; default: return kMsaMinorUndefined; } } protected: InstructionBase() {} }; template class InstructionGetters : public T { public: inline int RsValue() const { DCHECK(this->InstructionType() == InstructionBase::kRegisterType || this->InstructionType() == InstructionBase::kImmediateType); return InstructionBase::Bits(kRsShift + kRsBits - 1, kRsShift); } inline int RtValue() const { DCHECK(this->InstructionType() == InstructionBase::kRegisterType || this->InstructionType() == InstructionBase::kImmediateType); return this->Bits(kRtShift + kRtBits - 1, kRtShift); } inline int RdValue() const { DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType); return this->Bits(kRdShift + kRdBits - 1, kRdShift); } inline int BaseValue() const { DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType); return this->Bits(kBaseShift + kBaseBits - 1, kBaseShift); } inline int SaValue() const { DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType); return this->Bits(kSaShift + kSaBits - 1, kSaShift); } inline int LsaSaValue() const { DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType); return this->Bits(kSaShift + kLsaSaBits - 1, kSaShift); } inline int FunctionValue() const { DCHECK(this->InstructionType() == InstructionBase::kRegisterType || this->InstructionType() == InstructionBase::kImmediateType); return this->Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift); } inline int FdValue() const { return this->Bits(kFdShift + kFdBits - 1, kFdShift); } inline int FsValue() const { return this->Bits(kFsShift + kFsBits - 1, kFsShift); } inline int FtValue() const { return this->Bits(kFtShift + kFtBits - 1, kFtShift); } inline int FrValue() const { return this->Bits(kFrShift + kFrBits - 1, kFrShift); } inline int WdValue() const { return this->Bits(kWdShift + kWdBits - 1, kWdShift); } inline int WsValue() const { return this->Bits(kWsShift + kWsBits - 1, kWsShift); } inline int WtValue() const { return this->Bits(kWtShift + kWtBits - 1, kWtShift); } inline int Bp2Value() const { DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType); return this->Bits(kBp2Shift + kBp2Bits - 1, kBp2Shift); } // Float Compare condition code instruction bits. inline int FCccValue() const { return this->Bits(kFCccShift + kFCccBits - 1, kFCccShift); } // Float Branch condition code instruction bits. inline int FBccValue() const { return this->Bits(kFBccShift + kFBccBits - 1, kFBccShift); } // Float Branch true/false instruction bit. inline int FBtrueValue() const { return this->Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift); } // Return the fields at their original place in the instruction encoding. inline Opcode OpcodeFieldRaw() const { return static_cast(this->InstructionBits() & kOpcodeMask); } inline int RsFieldRaw() const { DCHECK(this->InstructionType() == InstructionBase::kRegisterType || this->InstructionType() == InstructionBase::kImmediateType); return this->InstructionBits() & kRsFieldMask; } inline int RtFieldRaw() const { DCHECK(this->InstructionType() == InstructionBase::kRegisterType || this->InstructionType() == InstructionBase::kImmediateType); return this->InstructionBits() & kRtFieldMask; } inline int RdFieldRaw() const { DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType); return this->InstructionBits() & kRdFieldMask; } inline int SaFieldRaw() const { return this->InstructionBits() & kSaFieldMask; } inline int FunctionFieldRaw() const { return this->InstructionBits() & kFunctionFieldMask; } // Get the secondary field according to the opcode. inline int SecondaryValue() const { Opcode op = this->OpcodeFieldRaw(); switch (op) { case SPECIAL: case SPECIAL2: return FunctionValue(); case COP1: return RsValue(); case REGIMM: return RtValue(); default: return nullptrSF; } } inline int32_t ImmValue(int bits) const { DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType); return this->Bits(bits - 1, 0); } inline int32_t Imm9Value() const { DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType); return this->Bits(kImm9Shift + kImm9Bits - 1, kImm9Shift); } inline int32_t Imm16Value() const { DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType); return this->Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift); } inline int32_t Imm18Value() const { DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType); return this->Bits(kImm18Shift + kImm18Bits - 1, kImm18Shift); } inline int32_t Imm19Value() const { DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType); return this->Bits(kImm19Shift + kImm19Bits - 1, kImm19Shift); } inline int32_t Imm21Value() const { DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType); return this->Bits(kImm21Shift + kImm21Bits - 1, kImm21Shift); } inline int32_t Imm26Value() const { DCHECK((this->InstructionType() == InstructionBase::kJumpType) || (this->InstructionType() == InstructionBase::kImmediateType)); return this->Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift); } inline int32_t MsaImm8Value() const { DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType); return this->Bits(kMsaImm8Shift + kMsaImm8Bits - 1, kMsaImm8Shift); } inline int32_t MsaImm5Value() const { DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType); return this->Bits(kMsaImm5Shift + kMsaImm5Bits - 1, kMsaImm5Shift); } inline int32_t MsaImm10Value() const { DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType); return this->Bits(kMsaImm10Shift + kMsaImm10Bits - 1, kMsaImm10Shift); } inline int32_t MsaImmMI10Value() const { DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType); return this->Bits(kMsaImmMI10Shift + kMsaImmMI10Bits - 1, kMsaImmMI10Shift); } inline int32_t MsaBitDf() const { DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType); int32_t df_m = this->Bits(22, 16); if (((df_m >> 6) & 1U) == 0) { return 3; } else if (((df_m >> 5) & 3U) == 2) { return 2; } else if (((df_m >> 4) & 7U) == 6) { return 1; } else if (((df_m >> 3) & 15U) == 14) { return 0; } else { return -1; } } inline int32_t MsaBitMValue() const { DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType); return this->Bits(16 + this->MsaBitDf() + 3, 16); } inline int32_t MsaElmDf() const { DCHECK(this->InstructionType() == InstructionBase::kRegisterType || this->InstructionType() == InstructionBase::kImmediateType); int32_t df_n = this->Bits(21, 16); if (((df_n >> 4) & 3U) == 0) { return 0; } else if (((df_n >> 3) & 7U) == 4) { return 1; } else if (((df_n >> 2) & 15U) == 12) { return 2; } else if (((df_n >> 1) & 31U) == 28) { return 3; } else { return -1; } } inline int32_t MsaElmNValue() const { DCHECK(this->InstructionType() == InstructionBase::kRegisterType || this->InstructionType() == InstructionBase::kImmediateType); return this->Bits(16 + 4 - this->MsaElmDf(), 16); } static bool IsForbiddenAfterBranchInstr(Instr instr); // Say if the instruction should not be used in a branch delay slot or // immediately after a compact branch. inline bool IsForbiddenAfterBranch() const { return IsForbiddenAfterBranchInstr(this->InstructionBits()); } inline bool IsForbiddenInBranchDelay() const { return IsForbiddenAfterBranch(); } // Say if the instruction 'links'. e.g. jal, bal. bool IsLinkingInstruction() const; // Say if the instruction is a break or a trap. bool IsTrap() const; inline bool IsMSABranchInstr() const { if (this->OpcodeFieldRaw() == COP1) { switch (this->RsFieldRaw()) { case BZ_V: case BZ_B: case BZ_H: case BZ_W: case BZ_D: case BNZ_V: case BNZ_B: case BNZ_H: case BNZ_W: case BNZ_D: return true; default: return false; } } return false; } inline bool IsMSAInstr() const { if (this->IsMSABranchInstr() || (this->OpcodeFieldRaw() == MSA)) return true; return false; } }; class Instruction : public InstructionGetters { public: // Instructions are read of out a code stream. The only way to get a // reference to an instruction is to convert a pointer. There is no way // to allocate or create instances of class Instruction. // Use the At(pc) function to create references to Instruction. static Instruction* At(byte* pc) { return reinterpret_cast(pc); } private: // We need to prevent the creation of instances of class Instruction. DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction); }; // ----------------------------------------------------------------------------- // MIPS assembly various constants. // C/C++ argument slots size. const int kCArgSlotCount = 4; const int kCArgsSlotsSize = kCArgSlotCount * kInstrSize; const int kInvalidStackOffset = -1; // JS argument slots size. const int kJSArgsSlotsSize = 0 * kInstrSize; // Assembly builtins argument slots size. const int kBArgsSlotsSize = 0 * kInstrSize; const int kBranchReturnOffset = 2 * kInstrSize; InstructionBase::Type InstructionBase::InstructionType() const { switch (OpcodeFieldRaw()) { case SPECIAL: if (FunctionFieldToBitNumber(FunctionFieldRaw()) & kFunctionFieldRegisterTypeMask) { return kRegisterType; } return kUnsupported; case SPECIAL2: switch (FunctionFieldRaw()) { case MUL: case CLZ: return kRegisterType; default: return kUnsupported; } break; case SPECIAL3: switch (FunctionFieldRaw()) { case INS: case EXT: return kRegisterType; case BSHFL: { int sa = SaFieldRaw() >> kSaShift; switch (sa) { case BITSWAP: case WSBH: case SEB: case SEH: return kRegisterType; } sa >>= kBp2Bits; switch (sa) { case ALIGN: return kRegisterType; default: return kUnsupported; } } case LL_R6: case SC_R6: { DCHECK(IsMipsArchVariant(kMips32r6)); return kImmediateType; } default: return kUnsupported; } break; case COP1: // Coprocessor instructions. switch (RsFieldRawNoAssert()) { case BC1: // Branch on coprocessor condition. case BC1EQZ: case BC1NEZ: return kImmediateType; // MSA Branch instructions case BZ_V: case BNZ_V: case BZ_B: case BZ_H: case BZ_W: case BZ_D: case BNZ_B: case BNZ_H: case BNZ_W: case BNZ_D: return kImmediateType; default: return kRegisterType; } break; case COP1X: return kRegisterType; // 26 bits immediate type instructions. e.g.: j imm26. case J: case JAL: return kJumpType; case MSA: switch (MSAMinorOpcodeField()) { case kMsaMinor3R: case kMsaMinor3RF: case kMsaMinorVEC: case kMsaMinor2R: case kMsaMinor2RF: return kRegisterType; case kMsaMinorELM: switch (InstructionBits() & kMsaLongerELMMask) { case CFCMSA: case CTCMSA: case MOVE_V: return kRegisterType; default: return kImmediateType; } default: return kImmediateType; } default: return kImmediateType; } } #undef OpcodeToBitNumber #undef FunctionFieldToBitNumber // ----------------------------------------------------------------------------- // Instructions. template bool InstructionGetters

::IsLinkingInstruction() const { uint32_t op = this->OpcodeFieldRaw(); switch (op) { case JAL: return true; case POP76: if (this->RsFieldRawNoAssert() == JIALC) return true; // JIALC else return false; // BNEZC case REGIMM: switch (this->RtFieldRaw()) { case BGEZAL: case BLTZAL: return true; default: return false; } case SPECIAL: switch (this->FunctionFieldRaw()) { case JALR: return true; default: return false; } default: return false; } } template bool InstructionGetters

::IsTrap() const { if (this->OpcodeFieldRaw() != SPECIAL) { return false; } else { switch (this->FunctionFieldRaw()) { case BREAK: case TGE: case TGEU: case TLT: case TLTU: case TEQ: case TNE: return true; default: return false; } } } // static template bool InstructionGetters::IsForbiddenAfterBranchInstr(Instr instr) { Opcode opcode = static_cast(instr & kOpcodeMask); switch (opcode) { case J: case JAL: case BEQ: case BNE: case BLEZ: // POP06 bgeuc/bleuc, blezalc, bgezalc case BGTZ: // POP07 bltuc/bgtuc, bgtzalc, bltzalc case BEQL: case BNEL: case BLEZL: // POP26 bgezc, blezc, bgec/blec case BGTZL: // POP27 bgtzc, bltzc, bltc/bgtc case BC: case BALC: case POP10: // beqzalc, bovc, beqc case POP30: // bnezalc, bnvc, bnec case POP66: // beqzc, jic case POP76: // bnezc, jialc return true; case REGIMM: switch (instr & kRtFieldMask) { case BLTZ: case BGEZ: case BLTZAL: case BGEZAL: return true; default: return false; } break; case SPECIAL: switch (instr & kFunctionFieldMask) { case JR: case JALR: return true; default: return false; } break; case COP1: switch (instr & kRsFieldMask) { case BC1: case BC1EQZ: case BC1NEZ: case BZ_V: case BZ_B: case BZ_H: case BZ_W: case BZ_D: case BNZ_V: case BNZ_B: case BNZ_H: case BNZ_W: case BNZ_D: return true; break; default: return false; } break; default: return false; } } } // namespace internal } // namespace v8 #endif // V8_MIPS_CONSTANTS_MIPS_H_