// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_PPC #include "src/regexp/ppc/regexp-macro-assembler-ppc.h" #include "src/assembler-inl.h" #include "src/base/bits.h" #include "src/code-stubs.h" #include "src/log.h" #include "src/macro-assembler.h" #include "src/regexp/regexp-macro-assembler.h" #include "src/regexp/regexp-stack.h" #include "src/unicode.h" namespace v8 { namespace internal { #ifndef V8_INTERPRETED_REGEXP /* * This assembler uses the following register assignment convention * - r25: Temporarily stores the index of capture start after a matching pass * for a global regexp. * - r26: Pointer to current code object (Code*) including heap object tag. * - r27: Current position in input, as negative offset from end of string. * Please notice that this is the byte offset, not the character offset! * - r28: Currently loaded character. Must be loaded using * LoadCurrentCharacter before using any of the dispatch methods. * - r29: Points to tip of backtrack stack * - r30: End of input (points to byte after last character in input). * - r31: Frame pointer. Used to access arguments, local variables and * RegExp registers. * - r12: IP register, used by assembler. Very volatile. * - r1/sp : Points to tip of C stack. * * The remaining registers are free for computations. * Each call to a public method should retain this convention. * * The stack will have the following structure: * - fp[40] Isolate* isolate (address of the current isolate) * - fp[36] lr save area (currently unused) * - fp[32] backchain (currently unused) * --- sp when called --- * - fp[28] return address (lr). * - fp[24] old frame pointer (r31). * - fp[0..20] backup of registers r25..r30 * --- frame pointer ---- * - fp[-4] direct_call (if 1, direct call from JavaScript code, * if 0, call through the runtime system). * - fp[-8] stack_area_base (high end of the memory area to use as * backtracking stack). * - fp[-12] capture array size (may fit multiple sets of matches) * - fp[-16] int* capture_array (int[num_saved_registers_], for output). * - fp[-20] end of input (address of end of string). * - fp[-24] start of input (address of first character in string). * - fp[-28] start index (character index of start). * - fp[-32] void* input_string (location of a handle containing the string). * - fp[-36] success counter (only for global regexps to count matches). * - fp[-40] Offset of location before start of input (effectively character * string start - 1). Used to initialize capture registers to a * non-position. * - fp[-44] At start (if 1, we are starting at the start of the * string, otherwise 0) * - fp[-48] register 0 (Only positions must be stored in the first * - register 1 num_saved_registers_ registers) * - ... * - register num_registers-1 * --- sp --- * * The first num_saved_registers_ registers are initialized to point to * "character -1" in the string (i.e., char_size() bytes before the first * character of the string). The remaining registers start out as garbage. * * The data up to the return address must be placed there by the calling * code and the remaining arguments are passed in registers, e.g. by calling the * code entry as cast to a function with the signature: * int (*match)(String* input_string, * int start_index, * Address start, * Address end, * int* capture_output_array, * int num_capture_registers, * byte* stack_area_base, * bool direct_call = false, * Isolate* isolate); * The call is performed by NativeRegExpMacroAssembler::Execute() * (in regexp-macro-assembler.cc) via the GeneratedCode wrapper. */ #define __ ACCESS_MASM(masm_) RegExpMacroAssemblerPPC::RegExpMacroAssemblerPPC(Isolate* isolate, Zone* zone, Mode mode, int registers_to_save) : NativeRegExpMacroAssembler(isolate, zone), masm_(new MacroAssembler(isolate, nullptr, kRegExpCodeSize, CodeObjectRequired::kYes)), mode_(mode), num_registers_(registers_to_save), num_saved_registers_(registers_to_save), entry_label_(), start_label_(), success_label_(), backtrack_label_(), exit_label_(), internal_failure_label_() { DCHECK_EQ(0, registers_to_save % 2); // Called from C __ function_descriptor(); __ b(&entry_label_); // We'll write the entry code later. // If the code gets too big or corrupted, an internal exception will be // raised, and we will exit right away. __ bind(&internal_failure_label_); __ li(r3, Operand(FAILURE)); __ Ret(); __ bind(&start_label_); // And then continue from here. } RegExpMacroAssemblerPPC::~RegExpMacroAssemblerPPC() { delete masm_; // Unuse labels in case we throw away the assembler without calling GetCode. entry_label_.Unuse(); start_label_.Unuse(); success_label_.Unuse(); backtrack_label_.Unuse(); exit_label_.Unuse(); check_preempt_label_.Unuse(); stack_overflow_label_.Unuse(); internal_failure_label_.Unuse(); } int RegExpMacroAssemblerPPC::stack_limit_slack() { return RegExpStack::kStackLimitSlack; } void RegExpMacroAssemblerPPC::AdvanceCurrentPosition(int by) { if (by != 0) { __ addi(current_input_offset(), current_input_offset(), Operand(by * char_size())); } } void RegExpMacroAssemblerPPC::AdvanceRegister(int reg, int by) { DCHECK_LE(0, reg); DCHECK_GT(num_registers_, reg); if (by != 0) { __ LoadP(r3, register_location(reg), r0); __ mov(r0, Operand(by)); __ add(r3, r3, r0); __ StoreP(r3, register_location(reg), r0); } } void RegExpMacroAssemblerPPC::Backtrack() { CheckPreemption(); // Pop Code* offset from backtrack stack, add Code* and jump to location. Pop(r3); __ add(r3, r3, code_pointer()); __ Jump(r3); } void RegExpMacroAssemblerPPC::Bind(Label* label) { __ bind(label); } void RegExpMacroAssemblerPPC::CheckCharacter(uint32_t c, Label* on_equal) { __ Cmpli(current_character(), Operand(c), r0); BranchOrBacktrack(eq, on_equal); } void RegExpMacroAssemblerPPC::CheckCharacterGT(uc16 limit, Label* on_greater) { __ Cmpli(current_character(), Operand(limit), r0); BranchOrBacktrack(gt, on_greater); } void RegExpMacroAssemblerPPC::CheckAtStart(Label* on_at_start) { __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne)); __ addi(r3, current_input_offset(), Operand(-char_size())); __ cmp(r3, r4); BranchOrBacktrack(eq, on_at_start); } void RegExpMacroAssemblerPPC::CheckNotAtStart(int cp_offset, Label* on_not_at_start) { __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne)); __ addi(r3, current_input_offset(), Operand(-char_size() + cp_offset * char_size())); __ cmp(r3, r4); BranchOrBacktrack(ne, on_not_at_start); } void RegExpMacroAssemblerPPC::CheckCharacterLT(uc16 limit, Label* on_less) { __ Cmpli(current_character(), Operand(limit), r0); BranchOrBacktrack(lt, on_less); } void RegExpMacroAssemblerPPC::CheckGreedyLoop(Label* on_equal) { Label backtrack_non_equal; __ LoadP(r3, MemOperand(backtrack_stackpointer(), 0)); __ cmp(current_input_offset(), r3); __ bne(&backtrack_non_equal); __ addi(backtrack_stackpointer(), backtrack_stackpointer(), Operand(kPointerSize)); __ bind(&backtrack_non_equal); BranchOrBacktrack(eq, on_equal); } void RegExpMacroAssemblerPPC::CheckNotBackReferenceIgnoreCase( int start_reg, bool read_backward, bool unicode, Label* on_no_match) { Label fallthrough; __ LoadP(r3, register_location(start_reg), r0); // Index of start of capture __ LoadP(r4, register_location(start_reg + 1), r0); // Index of end __ sub(r4, r4, r3, LeaveOE, SetRC); // Length of capture. // At this point, the capture registers are either both set or both cleared. // If the capture length is zero, then the capture is either empty or cleared. // Fall through in both cases. __ beq(&fallthrough, cr0); // Check that there are enough characters left in the input. if (read_backward) { __ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne)); __ add(r6, r6, r4); __ cmp(current_input_offset(), r6); BranchOrBacktrack(le, on_no_match); } else { __ add(r0, r4, current_input_offset(), LeaveOE, SetRC); BranchOrBacktrack(gt, on_no_match, cr0); } if (mode_ == LATIN1) { Label success; Label fail; Label loop_check; // r3 - offset of start of capture // r4 - length of capture __ add(r3, r3, end_of_input_address()); __ add(r5, end_of_input_address(), current_input_offset()); if (read_backward) { __ sub(r5, r5, r4); // Offset by length when matching backwards. } __ add(r4, r3, r4); // r3 - Address of start of capture. // r4 - Address of end of capture // r5 - Address of current input position. Label loop; __ bind(&loop); __ lbz(r6, MemOperand(r3)); __ addi(r3, r3, Operand(char_size())); __ lbz(r25, MemOperand(r5)); __ addi(r5, r5, Operand(char_size())); __ cmp(r25, r6); __ beq(&loop_check); // Mismatch, try case-insensitive match (converting letters to lower-case). __ ori(r6, r6, Operand(0x20)); // Convert capture character to lower-case. __ ori(r25, r25, Operand(0x20)); // Also convert input character. __ cmp(r25, r6); __ bne(&fail); __ subi(r6, r6, Operand('a')); __ cmpli(r6, Operand('z' - 'a')); // Is r6 a lowercase letter? __ ble(&loop_check); // In range 'a'-'z'. // Latin-1: Check for values in range [224,254] but not 247. __ subi(r6, r6, Operand(224 - 'a')); __ cmpli(r6, Operand(254 - 224)); __ bgt(&fail); // Weren't Latin-1 letters. __ cmpi(r6, Operand(247 - 224)); // Check for 247. __ beq(&fail); __ bind(&loop_check); __ cmp(r3, r4); __ blt(&loop); __ b(&success); __ bind(&fail); BranchOrBacktrack(al, on_no_match); __ bind(&success); // Compute new value of character position after the matched part. __ sub(current_input_offset(), r5, end_of_input_address()); if (read_backward) { __ LoadP(r3, register_location(start_reg)); // Index of start of capture __ LoadP(r4, register_location(start_reg + 1)); // Index of end of capture __ add(current_input_offset(), current_input_offset(), r3); __ sub(current_input_offset(), current_input_offset(), r4); } } else { DCHECK(mode_ == UC16); int argument_count = 4; __ PrepareCallCFunction(argument_count, r5); // r3 - offset of start of capture // r4 - length of capture // Put arguments into arguments registers. // Parameters are // r3: Address byte_offset1 - Address captured substring's start. // r4: Address byte_offset2 - Address of current character position. // r5: size_t byte_length - length of capture in bytes(!) // r6: Isolate* isolate or 0 if unicode flag. // Address of start of capture. __ add(r3, r3, end_of_input_address()); // Length of capture. __ mr(r5, r4); // Save length in callee-save register for use on return. __ mr(r25, r4); // Address of current input position. __ add(r4, current_input_offset(), end_of_input_address()); if (read_backward) { __ sub(r4, r4, r25); } // Isolate. #ifdef V8_INTL_SUPPORT if (unicode) { __ li(r6, Operand::Zero()); } else // NOLINT #endif // V8_INTL_SUPPORT { __ mov(r6, Operand(ExternalReference::isolate_address(isolate()))); } { AllowExternalCallThatCantCauseGC scope(masm_); ExternalReference function = ExternalReference::re_case_insensitive_compare_uc16(isolate()); __ CallCFunction(function, argument_count); } // Check if function returned non-zero for success or zero for failure. __ cmpi(r3, Operand::Zero()); BranchOrBacktrack(eq, on_no_match); // On success, advance position by length of capture. if (read_backward) { __ sub(current_input_offset(), current_input_offset(), r25); } else { __ add(current_input_offset(), current_input_offset(), r25); } } __ bind(&fallthrough); } void RegExpMacroAssemblerPPC::CheckNotBackReference(int start_reg, bool read_backward, Label* on_no_match) { Label fallthrough; Label success; // Find length of back-referenced capture. __ LoadP(r3, register_location(start_reg), r0); __ LoadP(r4, register_location(start_reg + 1), r0); __ sub(r4, r4, r3, LeaveOE, SetRC); // Length to check. // At this point, the capture registers are either both set or both cleared. // If the capture length is zero, then the capture is either empty or cleared. // Fall through in both cases. __ beq(&fallthrough, cr0); // Check that there are enough characters left in the input. if (read_backward) { __ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne)); __ add(r6, r6, r4); __ cmp(current_input_offset(), r6); BranchOrBacktrack(le, on_no_match); } else { __ add(r0, r4, current_input_offset(), LeaveOE, SetRC); BranchOrBacktrack(gt, on_no_match, cr0); } // r3 - offset of start of capture // r4 - length of capture __ add(r3, r3, end_of_input_address()); __ add(r5, end_of_input_address(), current_input_offset()); if (read_backward) { __ sub(r5, r5, r4); // Offset by length when matching backwards. } __ add(r4, r4, r3); Label loop; __ bind(&loop); if (mode_ == LATIN1) { __ lbz(r6, MemOperand(r3)); __ addi(r3, r3, Operand(char_size())); __ lbz(r25, MemOperand(r5)); __ addi(r5, r5, Operand(char_size())); } else { DCHECK(mode_ == UC16); __ lhz(r6, MemOperand(r3)); __ addi(r3, r3, Operand(char_size())); __ lhz(r25, MemOperand(r5)); __ addi(r5, r5, Operand(char_size())); } __ cmp(r6, r25); BranchOrBacktrack(ne, on_no_match); __ cmp(r3, r4); __ blt(&loop); // Move current character position to position after match. __ sub(current_input_offset(), r5, end_of_input_address()); if (read_backward) { __ LoadP(r3, register_location(start_reg)); // Index of start of capture __ LoadP(r4, register_location(start_reg + 1)); // Index of end of capture __ add(current_input_offset(), current_input_offset(), r3); __ sub(current_input_offset(), current_input_offset(), r4); } __ bind(&fallthrough); } void RegExpMacroAssemblerPPC::CheckNotCharacter(unsigned c, Label* on_not_equal) { __ Cmpli(current_character(), Operand(c), r0); BranchOrBacktrack(ne, on_not_equal); } void RegExpMacroAssemblerPPC::CheckCharacterAfterAnd(uint32_t c, uint32_t mask, Label* on_equal) { __ mov(r0, Operand(mask)); if (c == 0) { __ and_(r3, current_character(), r0, SetRC); } else { __ and_(r3, current_character(), r0); __ Cmpli(r3, Operand(c), r0, cr0); } BranchOrBacktrack(eq, on_equal, cr0); } void RegExpMacroAssemblerPPC::CheckNotCharacterAfterAnd(unsigned c, unsigned mask, Label* on_not_equal) { __ mov(r0, Operand(mask)); if (c == 0) { __ and_(r3, current_character(), r0, SetRC); } else { __ and_(r3, current_character(), r0); __ Cmpli(r3, Operand(c), r0, cr0); } BranchOrBacktrack(ne, on_not_equal, cr0); } void RegExpMacroAssemblerPPC::CheckNotCharacterAfterMinusAnd( uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) { DCHECK_GT(String::kMaxUtf16CodeUnit, minus); __ subi(r3, current_character(), Operand(minus)); __ mov(r0, Operand(mask)); __ and_(r3, r3, r0); __ Cmpli(r3, Operand(c), r0); BranchOrBacktrack(ne, on_not_equal); } void RegExpMacroAssemblerPPC::CheckCharacterInRange(uc16 from, uc16 to, Label* on_in_range) { __ mov(r0, Operand(from)); __ sub(r3, current_character(), r0); __ Cmpli(r3, Operand(to - from), r0); BranchOrBacktrack(le, on_in_range); // Unsigned lower-or-same condition. } void RegExpMacroAssemblerPPC::CheckCharacterNotInRange(uc16 from, uc16 to, Label* on_not_in_range) { __ mov(r0, Operand(from)); __ sub(r3, current_character(), r0); __ Cmpli(r3, Operand(to - from), r0); BranchOrBacktrack(gt, on_not_in_range); // Unsigned higher condition. } void RegExpMacroAssemblerPPC::CheckBitInTable(Handle table, Label* on_bit_set) { __ mov(r3, Operand(table)); if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) { __ andi(r4, current_character(), Operand(kTableSize - 1)); __ addi(r4, r4, Operand(ByteArray::kHeaderSize - kHeapObjectTag)); } else { __ addi(r4, current_character(), Operand(ByteArray::kHeaderSize - kHeapObjectTag)); } __ lbzx(r3, MemOperand(r3, r4)); __ cmpi(r3, Operand::Zero()); BranchOrBacktrack(ne, on_bit_set); } bool RegExpMacroAssemblerPPC::CheckSpecialCharacterClass(uc16 type, Label* on_no_match) { // Range checks (c in min..max) are generally implemented by an unsigned // (c - min) <= (max - min) check switch (type) { case 's': // Match space-characters if (mode_ == LATIN1) { // One byte space characters are '\t'..'\r', ' ' and \u00a0. Label success; __ cmpi(current_character(), Operand(' ')); __ beq(&success); // Check range 0x09..0x0D __ subi(r3, current_character(), Operand('\t')); __ cmpli(r3, Operand('\r' - '\t')); __ ble(&success); // \u00a0 (NBSP). __ cmpi(r3, Operand(0x00A0 - '\t')); BranchOrBacktrack(ne, on_no_match); __ bind(&success); return true; } return false; case 'S': // The emitted code for generic character classes is good enough. return false; case 'd': // Match ASCII digits ('0'..'9') __ subi(r3, current_character(), Operand('0')); __ cmpli(r3, Operand('9' - '0')); BranchOrBacktrack(gt, on_no_match); return true; case 'D': // Match non ASCII-digits __ subi(r3, current_character(), Operand('0')); __ cmpli(r3, Operand('9' - '0')); BranchOrBacktrack(le, on_no_match); return true; case '.': { // Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029) __ xori(r3, current_character(), Operand(0x01)); // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C __ subi(r3, r3, Operand(0x0B)); __ cmpli(r3, Operand(0x0C - 0x0B)); BranchOrBacktrack(le, on_no_match); if (mode_ == UC16) { // Compare original value to 0x2028 and 0x2029, using the already // computed (current_char ^ 0x01 - 0x0B). I.e., check for // 0x201D (0x2028 - 0x0B) or 0x201E. __ subi(r3, r3, Operand(0x2028 - 0x0B)); __ cmpli(r3, Operand(1)); BranchOrBacktrack(le, on_no_match); } return true; } case 'n': { // Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029) __ xori(r3, current_character(), Operand(0x01)); // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C __ subi(r3, r3, Operand(0x0B)); __ cmpli(r3, Operand(0x0C - 0x0B)); if (mode_ == LATIN1) { BranchOrBacktrack(gt, on_no_match); } else { Label done; __ ble(&done); // Compare original value to 0x2028 and 0x2029, using the already // computed (current_char ^ 0x01 - 0x0B). I.e., check for // 0x201D (0x2028 - 0x0B) or 0x201E. __ subi(r3, r3, Operand(0x2028 - 0x0B)); __ cmpli(r3, Operand(1)); BranchOrBacktrack(gt, on_no_match); __ bind(&done); } return true; } case 'w': { if (mode_ != LATIN1) { // Table is 256 entries, so all Latin1 characters can be tested. __ cmpi(current_character(), Operand('z')); BranchOrBacktrack(gt, on_no_match); } ExternalReference map = ExternalReference::re_word_character_map(isolate()); __ mov(r3, Operand(map)); __ lbzx(r3, MemOperand(r3, current_character())); __ cmpli(r3, Operand::Zero()); BranchOrBacktrack(eq, on_no_match); return true; } case 'W': { Label done; if (mode_ != LATIN1) { // Table is 256 entries, so all Latin1 characters can be tested. __ cmpli(current_character(), Operand('z')); __ bgt(&done); } ExternalReference map = ExternalReference::re_word_character_map(isolate()); __ mov(r3, Operand(map)); __ lbzx(r3, MemOperand(r3, current_character())); __ cmpli(r3, Operand::Zero()); BranchOrBacktrack(ne, on_no_match); if (mode_ != LATIN1) { __ bind(&done); } return true; } case '*': // Match any character. return true; // No custom implementation (yet): s(UC16), S(UC16). default: return false; } } void RegExpMacroAssemblerPPC::Fail() { __ li(r3, Operand(FAILURE)); __ b(&exit_label_); } Handle RegExpMacroAssemblerPPC::GetCode(Handle source) { Label return_r3; if (masm_->has_exception()) { // If the code gets corrupted due to long regular expressions and lack of // space on trampolines, an internal exception flag is set. If this case // is detected, we will jump into exit sequence right away. __ bind_to(&entry_label_, internal_failure_label_.pos()); } else { // Finalize code - write the entry point code now we know how many // registers we need. // Entry code: __ bind(&entry_label_); // Tell the system that we have a stack frame. Because the type // is MANUAL, no is generated. FrameScope scope(masm_, StackFrame::MANUAL); // Ensure register assigments are consistent with callee save mask DCHECK(r25.bit() & kRegExpCalleeSaved); DCHECK(code_pointer().bit() & kRegExpCalleeSaved); DCHECK(current_input_offset().bit() & kRegExpCalleeSaved); DCHECK(current_character().bit() & kRegExpCalleeSaved); DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved); DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved); DCHECK(frame_pointer().bit() & kRegExpCalleeSaved); // Actually emit code to start a new stack frame. // Push arguments // Save callee-save registers. // Start new stack frame. // Store link register in existing stack-cell. // Order here should correspond to order of offset constants in header file. RegList registers_to_retain = kRegExpCalleeSaved; RegList argument_registers = r3.bit() | r4.bit() | r5.bit() | r6.bit() | r7.bit() | r8.bit() | r9.bit() | r10.bit(); __ mflr(r0); __ push(r0); __ MultiPush(argument_registers | registers_to_retain); // Set frame pointer in space for it if this is not a direct call // from generated code. __ addi(frame_pointer(), sp, Operand(8 * kPointerSize)); __ li(r3, Operand::Zero()); __ push(r3); // Make room for success counter and initialize it to 0. __ push(r3); // Make room for "string start - 1" constant. // Check if we have space on the stack for registers. Label stack_limit_hit; Label stack_ok; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(isolate()); __ mov(r3, Operand(stack_limit)); __ LoadP(r3, MemOperand(r3)); __ sub(r3, sp, r3, LeaveOE, SetRC); // Handle it if the stack pointer is already below the stack limit. __ ble(&stack_limit_hit, cr0); // Check if there is room for the variable number of registers above // the stack limit. __ Cmpli(r3, Operand(num_registers_ * kPointerSize), r0); __ bge(&stack_ok); // Exit with OutOfMemory exception. There is not enough space on the stack // for our working registers. __ li(r3, Operand(EXCEPTION)); __ b(&return_r3); __ bind(&stack_limit_hit); CallCheckStackGuardState(r3); __ cmpi(r3, Operand::Zero()); // If returned value is non-zero, we exit with the returned value as result. __ bne(&return_r3); __ bind(&stack_ok); // Allocate space on stack for registers. __ Add(sp, sp, -num_registers_ * kPointerSize, r0); // Load string end. __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); // Load input start. __ LoadP(r3, MemOperand(frame_pointer(), kInputStart)); // Find negative length (offset of start relative to end). __ sub(current_input_offset(), r3, end_of_input_address()); // Set r3 to address of char before start of the input string // (effectively string position -1). __ LoadP(r4, MemOperand(frame_pointer(), kStartIndex)); __ subi(r3, current_input_offset(), Operand(char_size())); if (mode_ == UC16) { __ ShiftLeftImm(r0, r4, Operand(1)); __ sub(r3, r3, r0); } else { __ sub(r3, r3, r4); } // Store this value in a local variable, for use when clearing // position registers. __ StoreP(r3, MemOperand(frame_pointer(), kStringStartMinusOne)); // Initialize code pointer register __ mov(code_pointer(), Operand(masm_->CodeObject())); Label load_char_start_regexp, start_regexp; // Load newline if index is at start, previous character otherwise. __ cmpi(r4, Operand::Zero()); __ bne(&load_char_start_regexp); __ li(current_character(), Operand('\n')); __ b(&start_regexp); // Global regexp restarts matching here. __ bind(&load_char_start_regexp); // Load previous char as initial value of current character register. LoadCurrentCharacterUnchecked(-1, 1); __ bind(&start_regexp); // Initialize on-stack registers. if (num_saved_registers_ > 0) { // Always is, if generated from a regexp. // Fill saved registers with initial value = start offset - 1 if (num_saved_registers_ > 8) { // One slot beyond address of register 0. __ addi(r4, frame_pointer(), Operand(kRegisterZero + kPointerSize)); __ li(r5, Operand(num_saved_registers_)); __ mtctr(r5); Label init_loop; __ bind(&init_loop); __ StorePU(r3, MemOperand(r4, -kPointerSize)); __ bdnz(&init_loop); } else { for (int i = 0; i < num_saved_registers_; i++) { __ StoreP(r3, register_location(i), r0); } } } // Initialize backtrack stack pointer. __ LoadP(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd)); __ b(&start_label_); // Exit code: if (success_label_.is_linked()) { // Save captures when successful. __ bind(&success_label_); if (num_saved_registers_ > 0) { // copy captures to output __ LoadP(r4, MemOperand(frame_pointer(), kInputStart)); __ LoadP(r3, MemOperand(frame_pointer(), kRegisterOutput)); __ LoadP(r5, MemOperand(frame_pointer(), kStartIndex)); __ sub(r4, end_of_input_address(), r4); // r4 is length of input in bytes. if (mode_ == UC16) { __ ShiftRightImm(r4, r4, Operand(1)); } // r4 is length of input in characters. __ add(r4, r4, r5); // r4 is length of string in characters. DCHECK_EQ(0, num_saved_registers_ % 2); // Always an even number of capture registers. This allows us to // unroll the loop once to add an operation between a load of a register // and the following use of that register. for (int i = 0; i < num_saved_registers_; i += 2) { __ LoadP(r5, register_location(i), r0); __ LoadP(r6, register_location(i + 1), r0); if (i == 0 && global_with_zero_length_check()) { // Keep capture start in r25 for the zero-length check later. __ mr(r25, r5); } if (mode_ == UC16) { __ ShiftRightArithImm(r5, r5, 1); __ add(r5, r4, r5); __ ShiftRightArithImm(r6, r6, 1); __ add(r6, r4, r6); } else { __ add(r5, r4, r5); __ add(r6, r4, r6); } __ stw(r5, MemOperand(r3)); __ addi(r3, r3, Operand(kIntSize)); __ stw(r6, MemOperand(r3)); __ addi(r3, r3, Operand(kIntSize)); } } if (global()) { // Restart matching if the regular expression is flagged as global. __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures)); __ LoadP(r4, MemOperand(frame_pointer(), kNumOutputRegisters)); __ LoadP(r5, MemOperand(frame_pointer(), kRegisterOutput)); // Increment success counter. __ addi(r3, r3, Operand(1)); __ StoreP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures)); // Capture results have been stored, so the number of remaining global // output registers is reduced by the number of stored captures. __ subi(r4, r4, Operand(num_saved_registers_)); // Check whether we have enough room for another set of capture results. __ cmpi(r4, Operand(num_saved_registers_)); __ blt(&return_r3); __ StoreP(r4, MemOperand(frame_pointer(), kNumOutputRegisters)); // Advance the location for output. __ addi(r5, r5, Operand(num_saved_registers_ * kIntSize)); __ StoreP(r5, MemOperand(frame_pointer(), kRegisterOutput)); // Prepare r3 to initialize registers with its value in the next run. __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne)); if (global_with_zero_length_check()) { // Special case for zero-length matches. // r25: capture start index __ cmp(current_input_offset(), r25); // Not a zero-length match, restart. __ bne(&load_char_start_regexp); // Offset from the end is zero if we already reached the end. __ cmpi(current_input_offset(), Operand::Zero()); __ beq(&exit_label_); // Advance current position after a zero-length match. Label advance; __ bind(&advance); __ addi(current_input_offset(), current_input_offset(), Operand((mode_ == UC16) ? 2 : 1)); if (global_unicode()) CheckNotInSurrogatePair(0, &advance); } __ b(&load_char_start_regexp); } else { __ li(r3, Operand(SUCCESS)); } } // Exit and return r3 __ bind(&exit_label_); if (global()) { __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures)); } __ bind(&return_r3); // Skip sp past regexp registers and local variables.. __ mr(sp, frame_pointer()); // Restore registers r25..r31 and return (restoring lr to pc). __ MultiPop(registers_to_retain); __ pop(r0); __ mtlr(r0); __ blr(); // Backtrack code (branch target for conditional backtracks). if (backtrack_label_.is_linked()) { __ bind(&backtrack_label_); Backtrack(); } Label exit_with_exception; // Preempt-code if (check_preempt_label_.is_linked()) { SafeCallTarget(&check_preempt_label_); CallCheckStackGuardState(r3); __ cmpi(r3, Operand::Zero()); // If returning non-zero, we should end execution with the given // result as return value. __ bne(&return_r3); // String might have moved: Reload end of string from frame. __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); SafeReturn(); } // Backtrack stack overflow code. if (stack_overflow_label_.is_linked()) { SafeCallTarget(&stack_overflow_label_); // Reached if the backtrack-stack limit has been hit. Label grow_failed; // Call GrowStack(backtrack_stackpointer(), &stack_base) static const int num_arguments = 3; __ PrepareCallCFunction(num_arguments, r3); __ mr(r3, backtrack_stackpointer()); __ addi(r4, frame_pointer(), Operand(kStackHighEnd)); __ mov(r5, Operand(ExternalReference::isolate_address(isolate()))); ExternalReference grow_stack = ExternalReference::re_grow_stack(isolate()); __ CallCFunction(grow_stack, num_arguments); // If return nullptr, we have failed to grow the stack, and // must exit with a stack-overflow exception. __ cmpi(r3, Operand::Zero()); __ beq(&exit_with_exception); // Otherwise use return value as new stack pointer. __ mr(backtrack_stackpointer(), r3); // Restore saved registers and continue. SafeReturn(); } if (exit_with_exception.is_linked()) { // If any of the code above needed to exit with an exception. __ bind(&exit_with_exception); // Exit with Result EXCEPTION(-1) to signal thrown exception. __ li(r3, Operand(EXCEPTION)); __ b(&return_r3); } } CodeDesc code_desc; masm_->GetCode(isolate(), &code_desc); Handle code = isolate()->factory()->NewCode(code_desc, Code::REGEXP, masm_->CodeObject()); PROFILE(masm_->isolate(), RegExpCodeCreateEvent(AbstractCode::cast(*code), *source)); return Handle::cast(code); } void RegExpMacroAssemblerPPC::GoTo(Label* to) { BranchOrBacktrack(al, to); } void RegExpMacroAssemblerPPC::IfRegisterGE(int reg, int comparand, Label* if_ge) { __ LoadP(r3, register_location(reg), r0); __ Cmpi(r3, Operand(comparand), r0); BranchOrBacktrack(ge, if_ge); } void RegExpMacroAssemblerPPC::IfRegisterLT(int reg, int comparand, Label* if_lt) { __ LoadP(r3, register_location(reg), r0); __ Cmpi(r3, Operand(comparand), r0); BranchOrBacktrack(lt, if_lt); } void RegExpMacroAssemblerPPC::IfRegisterEqPos(int reg, Label* if_eq) { __ LoadP(r3, register_location(reg), r0); __ cmp(r3, current_input_offset()); BranchOrBacktrack(eq, if_eq); } RegExpMacroAssembler::IrregexpImplementation RegExpMacroAssemblerPPC::Implementation() { return kPPCImplementation; } void RegExpMacroAssemblerPPC::LoadCurrentCharacter(int cp_offset, Label* on_end_of_input, bool check_bounds, int characters) { DCHECK(cp_offset < (1 << 30)); // Be sane! (And ensure negation works) if (check_bounds) { if (cp_offset >= 0) { CheckPosition(cp_offset + characters - 1, on_end_of_input); } else { CheckPosition(cp_offset, on_end_of_input); } } LoadCurrentCharacterUnchecked(cp_offset, characters); } void RegExpMacroAssemblerPPC::PopCurrentPosition() { Pop(current_input_offset()); } void RegExpMacroAssemblerPPC::PopRegister(int register_index) { Pop(r3); __ StoreP(r3, register_location(register_index), r0); } void RegExpMacroAssemblerPPC::PushBacktrack(Label* label) { __ mov_label_offset(r3, label); Push(r3); CheckStackLimit(); } void RegExpMacroAssemblerPPC::PushCurrentPosition() { Push(current_input_offset()); } void RegExpMacroAssemblerPPC::PushRegister(int register_index, StackCheckFlag check_stack_limit) { __ LoadP(r3, register_location(register_index), r0); Push(r3); if (check_stack_limit) CheckStackLimit(); } void RegExpMacroAssemblerPPC::ReadCurrentPositionFromRegister(int reg) { __ LoadP(current_input_offset(), register_location(reg), r0); } void RegExpMacroAssemblerPPC::ReadStackPointerFromRegister(int reg) { __ LoadP(backtrack_stackpointer(), register_location(reg), r0); __ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd)); __ add(backtrack_stackpointer(), backtrack_stackpointer(), r3); } void RegExpMacroAssemblerPPC::SetCurrentPositionFromEnd(int by) { Label after_position; __ Cmpi(current_input_offset(), Operand(-by * char_size()), r0); __ bge(&after_position); __ mov(current_input_offset(), Operand(-by * char_size())); // On RegExp code entry (where this operation is used), the character before // the current position is expected to be already loaded. // We have advanced the position, so it's safe to read backwards. LoadCurrentCharacterUnchecked(-1, 1); __ bind(&after_position); } void RegExpMacroAssemblerPPC::SetRegister(int register_index, int to) { DCHECK(register_index >= num_saved_registers_); // Reserved for positions! __ mov(r3, Operand(to)); __ StoreP(r3, register_location(register_index), r0); } bool RegExpMacroAssemblerPPC::Succeed() { __ b(&success_label_); return global(); } void RegExpMacroAssemblerPPC::WriteCurrentPositionToRegister(int reg, int cp_offset) { if (cp_offset == 0) { __ StoreP(current_input_offset(), register_location(reg), r0); } else { __ mov(r0, Operand(cp_offset * char_size())); __ add(r3, current_input_offset(), r0); __ StoreP(r3, register_location(reg), r0); } } void RegExpMacroAssemblerPPC::ClearRegisters(int reg_from, int reg_to) { DCHECK(reg_from <= reg_to); __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne)); for (int reg = reg_from; reg <= reg_to; reg++) { __ StoreP(r3, register_location(reg), r0); } } void RegExpMacroAssemblerPPC::WriteStackPointerToRegister(int reg) { __ LoadP(r4, MemOperand(frame_pointer(), kStackHighEnd)); __ sub(r3, backtrack_stackpointer(), r4); __ StoreP(r3, register_location(reg), r0); } // Private methods: void RegExpMacroAssemblerPPC::CallCheckStackGuardState(Register scratch) { int frame_alignment = masm_->ActivationFrameAlignment(); int stack_space = kNumRequiredStackFrameSlots; int stack_passed_arguments = 1; // space for return address pointer // The following stack manipulation logic is similar to // PrepareCallCFunction. However, we need an extra slot on the // stack to house the return address parameter. if (frame_alignment > kPointerSize) { // Make stack end at alignment and make room for stack arguments // -- preserving original value of sp. __ mr(scratch, sp); __ addi(sp, sp, Operand(-(stack_passed_arguments + 1) * kPointerSize)); DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment))); __ StoreP(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); } else { // Make room for stack arguments stack_space += stack_passed_arguments; } // Allocate frame with required slots to make ABI work. __ li(r0, Operand::Zero()); __ StorePU(r0, MemOperand(sp, -stack_space * kPointerSize)); // RegExp code frame pointer. __ mr(r5, frame_pointer()); // Code* of self. __ mov(r4, Operand(masm_->CodeObject())); // r3 will point to the return address, placed by DirectCEntry. __ addi(r3, sp, Operand(kStackFrameExtraParamSlot * kPointerSize)); ExternalReference stack_guard_check = ExternalReference::re_check_stack_guard_state(isolate()); __ mov(ip, Operand(stack_guard_check)); DirectCEntryStub stub(isolate()); stub.GenerateCall(masm_, ip); // Restore the stack pointer stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments; if (frame_alignment > kPointerSize) { __ LoadP(sp, MemOperand(sp, stack_space * kPointerSize)); } else { __ addi(sp, sp, Operand(stack_space * kPointerSize)); } __ mov(code_pointer(), Operand(masm_->CodeObject())); } // Helper function for reading a value out of a stack frame. template static T& frame_entry(Address re_frame, int frame_offset) { return reinterpret_cast(Memory(re_frame + frame_offset)); } template static T* frame_entry_address(Address re_frame, int frame_offset) { return reinterpret_cast(re_frame + frame_offset); } int RegExpMacroAssemblerPPC::CheckStackGuardState(Address* return_address, Code* re_code, Address re_frame) { return NativeRegExpMacroAssembler::CheckStackGuardState( frame_entry(re_frame, kIsolate), frame_entry(re_frame, kStartIndex), frame_entry(re_frame, kDirectCall) == 1, return_address, re_code, frame_entry_address(re_frame, kInputString), frame_entry_address(re_frame, kInputStart), frame_entry_address(re_frame, kInputEnd)); } MemOperand RegExpMacroAssemblerPPC::register_location(int register_index) { DCHECK(register_index < (1 << 30)); if (num_registers_ <= register_index) { num_registers_ = register_index + 1; } return MemOperand(frame_pointer(), kRegisterZero - register_index * kPointerSize); } void RegExpMacroAssemblerPPC::CheckPosition(int cp_offset, Label* on_outside_input) { if (cp_offset >= 0) { __ Cmpi(current_input_offset(), Operand(-cp_offset * char_size()), r0); BranchOrBacktrack(ge, on_outside_input); } else { __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne)); __ addi(r3, current_input_offset(), Operand(cp_offset * char_size())); __ cmp(r3, r4); BranchOrBacktrack(le, on_outside_input); } } void RegExpMacroAssemblerPPC::BranchOrBacktrack(Condition condition, Label* to, CRegister cr) { if (condition == al) { // Unconditional. if (to == nullptr) { Backtrack(); return; } __ b(to); return; } if (to == nullptr) { __ b(condition, &backtrack_label_, cr); return; } __ b(condition, to, cr); } void RegExpMacroAssemblerPPC::SafeCall(Label* to, Condition cond, CRegister cr) { __ b(cond, to, cr, SetLK); } void RegExpMacroAssemblerPPC::SafeReturn() { __ pop(r0); __ mov(ip, Operand(masm_->CodeObject())); __ add(r0, r0, ip); __ mtlr(r0); __ blr(); } void RegExpMacroAssemblerPPC::SafeCallTarget(Label* name) { __ bind(name); __ mflr(r0); __ mov(ip, Operand(masm_->CodeObject())); __ sub(r0, r0, ip); __ push(r0); } void RegExpMacroAssemblerPPC::Push(Register source) { DCHECK(source != backtrack_stackpointer()); __ StorePU(source, MemOperand(backtrack_stackpointer(), -kPointerSize)); } void RegExpMacroAssemblerPPC::Pop(Register target) { DCHECK(target != backtrack_stackpointer()); __ LoadP(target, MemOperand(backtrack_stackpointer())); __ addi(backtrack_stackpointer(), backtrack_stackpointer(), Operand(kPointerSize)); } void RegExpMacroAssemblerPPC::CheckPreemption() { // Check for preemption. ExternalReference stack_limit = ExternalReference::address_of_stack_limit(isolate()); __ mov(r3, Operand(stack_limit)); __ LoadP(r3, MemOperand(r3)); __ cmpl(sp, r3); SafeCall(&check_preempt_label_, le); } void RegExpMacroAssemblerPPC::CheckStackLimit() { ExternalReference stack_limit = ExternalReference::address_of_regexp_stack_limit(isolate()); __ mov(r3, Operand(stack_limit)); __ LoadP(r3, MemOperand(r3)); __ cmpl(backtrack_stackpointer(), r3); SafeCall(&stack_overflow_label_, le); } void RegExpMacroAssemblerPPC::LoadCurrentCharacterUnchecked(int cp_offset, int characters) { Register offset = current_input_offset(); if (cp_offset != 0) { // r25 is not being used to store the capture start index at this point. __ addi(r25, current_input_offset(), Operand(cp_offset * char_size())); offset = r25; } // The lwz, stw, lhz, sth instructions can do unaligned accesses, if the CPU // and the operating system running on the target allow it. // We assume we don't want to do unaligned loads on PPC, so this function // must only be used to load a single character at a time. __ add(current_character(), end_of_input_address(), offset); #if V8_TARGET_LITTLE_ENDIAN if (mode_ == LATIN1) { if (characters == 4) { __ lwz(current_character(), MemOperand(current_character())); } else if (characters == 2) { __ lhz(current_character(), MemOperand(current_character())); } else { DCHECK_EQ(1, characters); __ lbz(current_character(), MemOperand(current_character())); } } else { DCHECK(mode_ == UC16); if (characters == 2) { __ lwz(current_character(), MemOperand(current_character())); } else { DCHECK_EQ(1, characters); __ lhz(current_character(), MemOperand(current_character())); } } #else if (mode_ == LATIN1) { if (characters == 4) { __ lwbrx(current_character(), MemOperand(r0, current_character())); } else if (characters == 2) { __ lhbrx(current_character(), MemOperand(r0, current_character())); } else { DCHECK_EQ(1, characters); __ lbz(current_character(), MemOperand(current_character())); } } else { DCHECK(mode_ == UC16); if (characters == 2) { __ lwz(current_character(), MemOperand(current_character())); __ rlwinm(current_character(), current_character(), 16, 0, 31); } else { DCHECK_EQ(1, characters); __ lhz(current_character(), MemOperand(current_character())); } } #endif } #undef __ #endif // V8_INTERPRETED_REGEXP } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_PPC