// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_S390 #include "src/assembler-inl.h" #include "src/base/bits.h" #include "src/code-stubs.h" #include "src/log.h" #include "src/macro-assembler.h" #include "src/regexp/regexp-macro-assembler.h" #include "src/regexp/regexp-stack.h" #include "src/regexp/s390/regexp-macro-assembler-s390.h" #include "src/unicode.h" namespace v8 { namespace internal { #ifndef V8_INTERPRETED_REGEXP /* * This assembler uses the following register assignment convention * - r6: Temporarily stores the index of capture start after a matching pass * for a global regexp. * - r7: Pointer to current code object (Code*) including heap object tag. * - r8: Current position in input, as negative offset from end of string. * Please notice that this is the byte offset, not the character offset! * - r9: Currently loaded character. Must be loaded using * LoadCurrentCharacter before using any of the dispatch methods. * - r13: Points to tip of backtrack stack * - r10: End of input (points to byte after last character in input). * - r11: Frame pointer. Used to access arguments, local variables and * RegExp registers. * - r12: IP register, used by assembler. Very volatile. * - r15/sp : Points to tip of C stack. * * The remaining registers are free for computations. * Each call to a public method should retain this convention. * * The stack will have the following structure: * - fp[108] Isolate* isolate (address of the current isolate) * - fp[104] direct_call (if 1, direct call from JavaScript code, * if 0, call through the runtime system). * - fp[100] stack_area_base (high end of the memory area to use as * backtracking stack). * - fp[96] capture array size (may fit multiple sets of matches) * - fp[0..96] zLinux ABI register saving area * --- sp when called --- * --- frame pointer ---- * - fp[-4] direct_call (if 1, direct call from JavaScript code, * if 0, call through the runtime system). * - fp[-8] stack_area_base (high end of the memory area to use as * backtracking stack). * - fp[-12] capture array size (may fit multiple sets of matches) * - fp[-16] int* capture_array (int[num_saved_registers_], for output). * - fp[-20] end of input (address of end of string). * - fp[-24] start of input (address of first character in string). * - fp[-28] start index (character index of start). * - fp[-32] void* input_string (location of a handle containing the string). * - fp[-36] success counter (only for global regexps to count matches). * - fp[-40] Offset of location before start of input (effectively character * string start - 1). Used to initialize capture registers to a * non-position. * - fp[-44] At start (if 1, we are starting at the start of the * string, otherwise 0) * - fp[-48] register 0 (Only positions must be stored in the first * - register 1 num_saved_registers_ registers) * - ... * - register num_registers-1 * --- sp --- * * The first num_saved_registers_ registers are initialized to point to * "character -1" in the string (i.e., char_size() bytes before the first * character of the string). The remaining registers start out as garbage. * * The data up to the return address must be placed there by the calling * code and the remaining arguments are passed in registers, e.g. by calling the * code entry as cast to a function with the signature: * int (*match)(String* input_string, * int start_index, * Address start, * Address end, * int* capture_output_array, * int num_capture_registers, * byte* stack_area_base, * bool direct_call = false, * Isolate* isolate); * The call is performed by NativeRegExpMacroAssembler::Execute() * (in regexp-macro-assembler.cc) via the GeneratedCode wrapper. */ #define __ ACCESS_MASM(masm_) RegExpMacroAssemblerS390::RegExpMacroAssemblerS390(Isolate* isolate, Zone* zone, Mode mode, int registers_to_save) : NativeRegExpMacroAssembler(isolate, zone), masm_(new MacroAssembler(isolate, nullptr, kRegExpCodeSize, CodeObjectRequired::kYes)), mode_(mode), num_registers_(registers_to_save), num_saved_registers_(registers_to_save), entry_label_(), start_label_(), success_label_(), backtrack_label_(), exit_label_(), internal_failure_label_() { DCHECK_EQ(0, registers_to_save % 2); __ b(&entry_label_); // We'll write the entry code later. // If the code gets too big or corrupted, an internal exception will be // raised, and we will exit right away. __ bind(&internal_failure_label_); __ LoadImmP(r2, Operand(FAILURE)); __ Ret(); __ bind(&start_label_); // And then continue from here. } RegExpMacroAssemblerS390::~RegExpMacroAssemblerS390() { delete masm_; // Unuse labels in case we throw away the assembler without calling GetCode. entry_label_.Unuse(); start_label_.Unuse(); success_label_.Unuse(); backtrack_label_.Unuse(); exit_label_.Unuse(); check_preempt_label_.Unuse(); stack_overflow_label_.Unuse(); internal_failure_label_.Unuse(); } int RegExpMacroAssemblerS390::stack_limit_slack() { return RegExpStack::kStackLimitSlack; } void RegExpMacroAssemblerS390::AdvanceCurrentPosition(int by) { if (by != 0) { __ AddP(current_input_offset(), Operand(by * char_size())); } } void RegExpMacroAssemblerS390::AdvanceRegister(int reg, int by) { DCHECK_LE(0, reg); DCHECK_GT(num_registers_, reg); if (by != 0) { if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT) && is_int8(by)) { __ AddMI(register_location(reg), Operand(by)); } else { __ LoadP(r2, register_location(reg), r0); __ mov(r0, Operand(by)); __ AddRR(r2, r0); __ StoreP(r2, register_location(reg)); } } } void RegExpMacroAssemblerS390::Backtrack() { CheckPreemption(); // Pop Code* offset from backtrack stack, add Code* and jump to location. Pop(r2); __ AddP(r2, code_pointer()); __ b(r2); } void RegExpMacroAssemblerS390::Bind(Label* label) { __ bind(label); } void RegExpMacroAssemblerS390::CheckCharacter(uint32_t c, Label* on_equal) { __ CmpLogicalP(current_character(), Operand(c)); BranchOrBacktrack(eq, on_equal); } void RegExpMacroAssemblerS390::CheckCharacterGT(uc16 limit, Label* on_greater) { __ CmpLogicalP(current_character(), Operand(limit)); BranchOrBacktrack(gt, on_greater); } void RegExpMacroAssemblerS390::CheckAtStart(Label* on_at_start) { __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne)); __ AddP(r2, current_input_offset(), Operand(-char_size())); __ CmpP(r2, r3); BranchOrBacktrack(eq, on_at_start); } void RegExpMacroAssemblerS390::CheckNotAtStart(int cp_offset, Label* on_not_at_start) { __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne)); __ AddP(r2, current_input_offset(), Operand(-char_size() + cp_offset * char_size())); __ CmpP(r2, r3); BranchOrBacktrack(ne, on_not_at_start); } void RegExpMacroAssemblerS390::CheckCharacterLT(uc16 limit, Label* on_less) { __ CmpLogicalP(current_character(), Operand(limit)); BranchOrBacktrack(lt, on_less); } void RegExpMacroAssemblerS390::CheckGreedyLoop(Label* on_equal) { Label backtrack_non_equal; __ CmpP(current_input_offset(), MemOperand(backtrack_stackpointer(), 0)); __ bne(&backtrack_non_equal); __ AddP(backtrack_stackpointer(), Operand(kPointerSize)); BranchOrBacktrack(al, on_equal); __ bind(&backtrack_non_equal); } void RegExpMacroAssemblerS390::CheckNotBackReferenceIgnoreCase( int start_reg, bool read_backward, bool unicode, Label* on_no_match) { Label fallthrough; __ LoadP(r2, register_location(start_reg)); // Index of start of // capture __ LoadP(r3, register_location(start_reg + 1)); // Index of end __ SubP(r3, r3, r2); // At this point, the capture registers are either both set or both cleared. // If the capture length is zero, then the capture is either empty or cleared. // Fall through in both cases. __ beq(&fallthrough); // Check that there are enough characters left in the input. if (read_backward) { __ LoadP(r5, MemOperand(frame_pointer(), kStringStartMinusOne)); __ AddP(r5, r5, r3); __ CmpP(current_input_offset(), r5); BranchOrBacktrack(le, on_no_match); } else { __ AddP(r0, r3, current_input_offset()); BranchOrBacktrack(gt, on_no_match); } if (mode_ == LATIN1) { Label success; Label fail; Label loop_check; // r2 - offset of start of capture // r3 - length of capture __ AddP(r2, end_of_input_address()); __ AddP(r4, current_input_offset(), end_of_input_address()); if (read_backward) { __ SubP(r4, r4, r3); // Offset by length when matching backwards. } __ mov(r1, Operand::Zero()); // r1 - Loop index // r2 - Address of start of capture. // r4 - Address of current input position. Label loop; __ bind(&loop); __ LoadlB(r5, MemOperand(r2, r1)); __ LoadlB(r6, MemOperand(r4, r1)); __ CmpP(r6, r5); __ beq(&loop_check); // Mismatch, try case-insensitive match (converting letters to lower-case). __ Or(r5, Operand(0x20)); // Convert capture character to lower-case. __ Or(r6, Operand(0x20)); // Also convert input character. __ CmpP(r6, r5); __ bne(&fail); __ SubP(r5, Operand('a')); __ CmpLogicalP(r5, Operand('z' - 'a')); // Is r5 a lowercase letter? __ ble(&loop_check); // In range 'a'-'z'. // Latin-1: Check for values in range [224,254] but not 247. __ SubP(r5, Operand(224 - 'a')); __ CmpLogicalP(r5, Operand(254 - 224)); __ bgt(&fail); // Weren't Latin-1 letters. __ CmpLogicalP(r5, Operand(247 - 224)); // Check for 247. __ beq(&fail); __ bind(&loop_check); __ la(r1, MemOperand(r1, char_size())); __ CmpP(r1, r3); __ blt(&loop); __ b(&success); __ bind(&fail); BranchOrBacktrack(al, on_no_match); __ bind(&success); // Compute new value of character position after the matched part. __ SubP(current_input_offset(), r4, end_of_input_address()); if (read_backward) { __ LoadP(r2, register_location(start_reg)); // Index of start of capture __ LoadP(r3, register_location(start_reg + 1)); // Index of end of capture __ AddP(current_input_offset(), current_input_offset(), r2); __ SubP(current_input_offset(), current_input_offset(), r3); } __ AddP(current_input_offset(), r1); } else { DCHECK(mode_ == UC16); int argument_count = 4; __ PrepareCallCFunction(argument_count, r4); // r2 - offset of start of capture // r3 - length of capture // Put arguments into arguments registers. // Parameters are // r2: Address byte_offset1 - Address captured substring's start. // r3: Address byte_offset2 - Address of current character position. // r4: size_t byte_length - length of capture in bytes(!) // r5: Isolate* isolate or 0 if unicode flag. // Address of start of capture. __ AddP(r2, end_of_input_address()); // Length of capture. __ LoadRR(r4, r3); // Save length in callee-save register for use on return. __ LoadRR(r6, r3); // Address of current input position. __ AddP(r3, current_input_offset(), end_of_input_address()); if (read_backward) { __ SubP(r3, r3, r6); } // Isolate. #ifdef V8_INTL_SUPPORT if (unicode) { __ LoadImmP(r5, Operand::Zero()); } else // NOLINT #endif // V8_INTL_SUPPORT { __ mov(r5, Operand(ExternalReference::isolate_address(isolate()))); } { AllowExternalCallThatCantCauseGC scope(masm_); ExternalReference function = ExternalReference::re_case_insensitive_compare_uc16(isolate()); __ CallCFunction(function, argument_count); } // Check if function returned non-zero for success or zero for failure. __ CmpP(r2, Operand::Zero()); BranchOrBacktrack(eq, on_no_match); // On success, advance position by length of capture. if (read_backward) { __ SubP(current_input_offset(), current_input_offset(), r6); } else { __ AddP(current_input_offset(), current_input_offset(), r6); } } __ bind(&fallthrough); } void RegExpMacroAssemblerS390::CheckNotBackReference(int start_reg, bool read_backward, Label* on_no_match) { Label fallthrough; Label success; // Find length of back-referenced capture. __ LoadP(r2, register_location(start_reg)); __ LoadP(r3, register_location(start_reg + 1)); __ SubP(r3, r3, r2); // Length to check. // At this point, the capture registers are either both set or both cleared. // If the capture length is zero, then the capture is either empty or cleared. // Fall through in both cases. __ beq(&fallthrough); // Check that there are enough characters left in the input. if (read_backward) { __ LoadP(r5, MemOperand(frame_pointer(), kStringStartMinusOne)); __ AddP(r5, r5, r3); __ CmpP(current_input_offset(), r5); BranchOrBacktrack(le, on_no_match); } else { __ AddP(r0, r3, current_input_offset()); BranchOrBacktrack(gt, on_no_match, cr0); } // r2 - offset of start of capture // r3 - length of capture __ la(r2, MemOperand(r2, end_of_input_address())); __ la(r4, MemOperand(current_input_offset(), end_of_input_address())); if (read_backward) { __ SubP(r4, r4, r3); // Offset by length when matching backwards. } __ mov(r1, Operand::Zero()); Label loop; __ bind(&loop); if (mode_ == LATIN1) { __ LoadlB(r5, MemOperand(r2, r1)); __ LoadlB(r6, MemOperand(r4, r1)); } else { DCHECK(mode_ == UC16); __ LoadLogicalHalfWordP(r5, MemOperand(r2, r1)); __ LoadLogicalHalfWordP(r6, MemOperand(r4, r1)); } __ la(r1, MemOperand(r1, char_size())); __ CmpP(r5, r6); BranchOrBacktrack(ne, on_no_match); __ CmpP(r1, r3); __ blt(&loop); // Move current character position to position after match. __ SubP(current_input_offset(), r4, end_of_input_address()); if (read_backward) { __ LoadP(r2, register_location(start_reg)); // Index of start of capture __ LoadP(r3, register_location(start_reg + 1)); // Index of end of capture __ AddP(current_input_offset(), current_input_offset(), r2); __ SubP(current_input_offset(), current_input_offset(), r3); } __ AddP(current_input_offset(), r1); __ bind(&fallthrough); } void RegExpMacroAssemblerS390::CheckNotCharacter(unsigned c, Label* on_not_equal) { __ CmpLogicalP(current_character(), Operand(c)); BranchOrBacktrack(ne, on_not_equal); } void RegExpMacroAssemblerS390::CheckCharacterAfterAnd(uint32_t c, uint32_t mask, Label* on_equal) { __ AndP(r2, current_character(), Operand(mask)); if (c != 0) { __ CmpLogicalP(r2, Operand(c)); } BranchOrBacktrack(eq, on_equal); } void RegExpMacroAssemblerS390::CheckNotCharacterAfterAnd(unsigned c, unsigned mask, Label* on_not_equal) { __ AndP(r2, current_character(), Operand(mask)); if (c != 0) { __ CmpLogicalP(r2, Operand(c)); } BranchOrBacktrack(ne, on_not_equal); } void RegExpMacroAssemblerS390::CheckNotCharacterAfterMinusAnd( uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) { DCHECK_GT(String::kMaxUtf16CodeUnit, minus); __ lay(r2, MemOperand(current_character(), -minus)); __ And(r2, Operand(mask)); if (c != 0) { __ CmpLogicalP(r2, Operand(c)); } BranchOrBacktrack(ne, on_not_equal); } void RegExpMacroAssemblerS390::CheckCharacterInRange(uc16 from, uc16 to, Label* on_in_range) { __ lay(r2, MemOperand(current_character(), -from)); __ CmpLogicalP(r2, Operand(to - from)); BranchOrBacktrack(le, on_in_range); // Unsigned lower-or-same condition. } void RegExpMacroAssemblerS390::CheckCharacterNotInRange( uc16 from, uc16 to, Label* on_not_in_range) { __ lay(r2, MemOperand(current_character(), -from)); __ CmpLogicalP(r2, Operand(to - from)); BranchOrBacktrack(gt, on_not_in_range); // Unsigned higher condition. } void RegExpMacroAssemblerS390::CheckBitInTable(Handle table, Label* on_bit_set) { __ mov(r2, Operand(table)); Register index = current_character(); if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) { __ AndP(r3, current_character(), Operand(kTableSize - 1)); index = r3; } __ LoadlB(r2, MemOperand(r2, index, (ByteArray::kHeaderSize - kHeapObjectTag))); __ CmpP(r2, Operand::Zero()); BranchOrBacktrack(ne, on_bit_set); } bool RegExpMacroAssemblerS390::CheckSpecialCharacterClass(uc16 type, Label* on_no_match) { // Range checks (c in min..max) are generally implemented by an unsigned // (c - min) <= (max - min) check switch (type) { case 's': // Match space-characters if (mode_ == LATIN1) { // One byte space characters are '\t'..'\r', ' ' and \u00a0. Label success; __ CmpP(current_character(), Operand(' ')); __ beq(&success); // Check range 0x09..0x0D __ SubP(r2, current_character(), Operand('\t')); __ CmpLogicalP(r2, Operand('\r' - '\t')); __ ble(&success); // \u00a0 (NBSP). __ CmpLogicalP(r2, Operand(0x00A0 - '\t')); BranchOrBacktrack(ne, on_no_match); __ bind(&success); return true; } return false; case 'S': // The emitted code for generic character classes is good enough. return false; case 'd': // Match ASCII digits ('0'..'9') __ SubP(r2, current_character(), Operand('0')); __ CmpLogicalP(r2, Operand('9' - '0')); BranchOrBacktrack(gt, on_no_match); return true; case 'D': // Match non ASCII-digits __ SubP(r2, current_character(), Operand('0')); __ CmpLogicalP(r2, Operand('9' - '0')); BranchOrBacktrack(le, on_no_match); return true; case '.': { // Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029) __ XorP(r2, current_character(), Operand(0x01)); // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C __ SubP(r2, Operand(0x0B)); __ CmpLogicalP(r2, Operand(0x0C - 0x0B)); BranchOrBacktrack(le, on_no_match); if (mode_ == UC16) { // Compare original value to 0x2028 and 0x2029, using the already // computed (current_char ^ 0x01 - 0x0B). I.e., check for // 0x201D (0x2028 - 0x0B) or 0x201E. __ SubP(r2, Operand(0x2028 - 0x0B)); __ CmpLogicalP(r2, Operand(1)); BranchOrBacktrack(le, on_no_match); } return true; } case 'n': { // Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029) __ XorP(r2, current_character(), Operand(0x01)); // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C __ SubP(r2, Operand(0x0B)); __ CmpLogicalP(r2, Operand(0x0C - 0x0B)); if (mode_ == LATIN1) { BranchOrBacktrack(gt, on_no_match); } else { Label done; __ ble(&done); // Compare original value to 0x2028 and 0x2029, using the already // computed (current_char ^ 0x01 - 0x0B). I.e., check for // 0x201D (0x2028 - 0x0B) or 0x201E. __ SubP(r2, Operand(0x2028 - 0x0B)); __ CmpLogicalP(r2, Operand(1)); BranchOrBacktrack(gt, on_no_match); __ bind(&done); } return true; } case 'w': { if (mode_ != LATIN1) { // Table is 1256 entries, so all LATIN1 characters can be tested. __ CmpP(current_character(), Operand('z')); BranchOrBacktrack(gt, on_no_match); } ExternalReference map = ExternalReference::re_word_character_map(isolate()); __ mov(r2, Operand(map)); __ LoadlB(r2, MemOperand(r2, current_character())); __ CmpLogicalP(r2, Operand::Zero()); BranchOrBacktrack(eq, on_no_match); return true; } case 'W': { Label done; if (mode_ != LATIN1) { // Table is 256 entries, so all LATIN characters can be tested. __ CmpLogicalP(current_character(), Operand('z')); __ bgt(&done); } ExternalReference map = ExternalReference::re_word_character_map(isolate()); __ mov(r2, Operand(map)); __ LoadlB(r2, MemOperand(r2, current_character())); __ CmpLogicalP(r2, Operand::Zero()); BranchOrBacktrack(ne, on_no_match); if (mode_ != LATIN1) { __ bind(&done); } return true; } case '*': // Match any character. return true; // No custom implementation (yet): s(UC16), S(UC16). default: return false; } } void RegExpMacroAssemblerS390::Fail() { __ LoadImmP(r2, Operand(FAILURE)); __ b(&exit_label_); } Handle RegExpMacroAssemblerS390::GetCode(Handle source) { Label return_r2; // Finalize code - write the entry point code now we know how many // registers we need. // Entry code: __ bind(&entry_label_); // Tell the system that we have a stack frame. Because the type // is MANUAL, no is generated. FrameScope scope(masm_, StackFrame::MANUAL); // Ensure register assigments are consistent with callee save mask DCHECK(r6.bit() & kRegExpCalleeSaved); DCHECK(code_pointer().bit() & kRegExpCalleeSaved); DCHECK(current_input_offset().bit() & kRegExpCalleeSaved); DCHECK(current_character().bit() & kRegExpCalleeSaved); DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved); DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved); DCHECK(frame_pointer().bit() & kRegExpCalleeSaved); // zLinux ABI // Incoming parameters: // r2: input_string // r3: start_index // r4: start addr // r5: end addr // r6: capture output arrray // Requires us to save the callee-preserved registers r6-r13 // General convention is to also save r14 (return addr) and // sp/r15 as well in a single STM/STMG __ StoreMultipleP(r6, sp, MemOperand(sp, 6 * kPointerSize)); // Load stack parameters from caller stack frame __ LoadMultipleP(r7, r9, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize)); // r7 = capture array size // r8 = stack area base // r9 = direct call // Actually emit code to start a new stack frame. // Push arguments // Save callee-save registers. // Start new stack frame. // Store link register in existing stack-cell. // Order here should correspond to order of offset constants in header file. // // Set frame pointer in space for it if this is not a direct call // from generated code. __ LoadRR(frame_pointer(), sp); __ lay(sp, MemOperand(sp, -10 * kPointerSize)); __ mov(r1, Operand::Zero()); // success counter __ LoadRR(r0, r1); // offset of location __ StoreMultipleP(r0, r9, MemOperand(sp, 0)); // Check if we have space on the stack for registers. Label stack_limit_hit; Label stack_ok; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(isolate()); __ mov(r2, Operand(stack_limit)); __ LoadP(r2, MemOperand(r2)); __ SubP(r2, sp, r2); // Handle it if the stack pointer is already below the stack limit. __ ble(&stack_limit_hit); // Check if there is room for the variable number of registers above // the stack limit. __ CmpLogicalP(r2, Operand(num_registers_ * kPointerSize)); __ bge(&stack_ok); // Exit with OutOfMemory exception. There is not enough space on the stack // for our working registers. __ mov(r2, Operand(EXCEPTION)); __ b(&return_r2); __ bind(&stack_limit_hit); CallCheckStackGuardState(r2); __ CmpP(r2, Operand::Zero()); // If returned value is non-zero, we exit with the returned value as result. __ bne(&return_r2); __ bind(&stack_ok); // Allocate space on stack for registers. __ lay(sp, MemOperand(sp, (-num_registers_ * kPointerSize))); // Load string end. __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); // Load input start. __ LoadP(r4, MemOperand(frame_pointer(), kInputStart)); // Find negative length (offset of start relative to end). __ SubP(current_input_offset(), r4, end_of_input_address()); __ LoadP(r3, MemOperand(frame_pointer(), kStartIndex)); // Set r1 to address of char before start of the input string // (effectively string position -1). __ LoadRR(r1, r4); __ SubP(r1, current_input_offset(), Operand(char_size())); if (mode_ == UC16) { __ ShiftLeftP(r0, r3, Operand(1)); __ SubP(r1, r1, r0); } else { __ SubP(r1, r1, r3); } // Store this value in a local variable, for use when clearing // position registers. __ StoreP(r1, MemOperand(frame_pointer(), kStringStartMinusOne)); // Initialize code pointer register __ mov(code_pointer(), Operand(masm_->CodeObject())); Label load_char_start_regexp, start_regexp; // Load newline if index is at start, previous character otherwise. __ CmpP(r3, Operand::Zero()); __ bne(&load_char_start_regexp); __ mov(current_character(), Operand('\n')); __ b(&start_regexp); // Global regexp restarts matching here. __ bind(&load_char_start_regexp); // Load previous char as initial value of current character register. LoadCurrentCharacterUnchecked(-1, 1); __ bind(&start_regexp); // Initialize on-stack registers. if (num_saved_registers_ > 0) { // Always is, if generated from a regexp. // Fill saved registers with initial value = start offset - 1 if (num_saved_registers_ > 8) { // One slot beyond address of register 0. __ lay(r3, MemOperand(frame_pointer(), kRegisterZero + kPointerSize)); __ LoadImmP(r4, Operand(num_saved_registers_)); Label init_loop; __ bind(&init_loop); __ StoreP(r1, MemOperand(r3, -kPointerSize)); __ lay(r3, MemOperand(r3, -kPointerSize)); __ BranchOnCount(r4, &init_loop); } else { for (int i = 0; i < num_saved_registers_; i++) { __ StoreP(r1, register_location(i)); } } } // Initialize backtrack stack pointer. __ LoadP(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd)); __ b(&start_label_); // Exit code: if (success_label_.is_linked()) { // Save captures when successful. __ bind(&success_label_); if (num_saved_registers_ > 0) { // copy captures to output __ LoadP(r0, MemOperand(frame_pointer(), kInputStart)); __ LoadP(r2, MemOperand(frame_pointer(), kRegisterOutput)); __ LoadP(r4, MemOperand(frame_pointer(), kStartIndex)); __ SubP(r0, end_of_input_address(), r0); // r0 is length of input in bytes. if (mode_ == UC16) { __ ShiftRightP(r0, r0, Operand(1)); } // r0 is length of input in characters. __ AddP(r0, r4); // r0 is length of string in characters. DCHECK_EQ(0, num_saved_registers_ % 2); // Always an even number of capture registers. This allows us to // unroll the loop once to add an operation between a load of a register // and the following use of that register. __ lay(r2, MemOperand(r2, num_saved_registers_ * kIntSize)); for (int i = 0; i < num_saved_registers_;) { if ((false) && i < num_saved_registers_ - 4) { // TODO(john.yan): Can be optimized by SIMD instructions __ LoadMultipleP(r3, r6, register_location(i + 3)); if (mode_ == UC16) { __ ShiftRightArithP(r3, r3, Operand(1)); __ ShiftRightArithP(r4, r4, Operand(1)); __ ShiftRightArithP(r5, r5, Operand(1)); __ ShiftRightArithP(r6, r6, Operand(1)); } __ AddP(r3, r0); __ AddP(r4, r0); __ AddP(r5, r0); __ AddP(r6, r0); __ StoreW(r3, MemOperand(r2, -(num_saved_registers_ - i - 3) * kIntSize)); __ StoreW(r4, MemOperand(r2, -(num_saved_registers_ - i - 2) * kIntSize)); __ StoreW(r5, MemOperand(r2, -(num_saved_registers_ - i - 1) * kIntSize)); __ StoreW(r6, MemOperand(r2, -(num_saved_registers_ - i) * kIntSize)); i += 4; } else { __ LoadMultipleP(r3, r4, register_location(i + 1)); if (mode_ == UC16) { __ ShiftRightArithP(r3, r3, Operand(1)); __ ShiftRightArithP(r4, r4, Operand(1)); } __ AddP(r3, r0); __ AddP(r4, r0); __ StoreW(r3, MemOperand(r2, -(num_saved_registers_ - i - 1) * kIntSize)); __ StoreW(r4, MemOperand(r2, -(num_saved_registers_ - i) * kIntSize)); i += 2; } } if (global_with_zero_length_check()) { // Keep capture start in r6 for the zero-length check later. __ LoadP(r6, register_location(0)); } } if (global()) { // Restart matching if the regular expression is flagged as global. __ LoadP(r2, MemOperand(frame_pointer(), kSuccessfulCaptures)); __ LoadP(r3, MemOperand(frame_pointer(), kNumOutputRegisters)); __ LoadP(r4, MemOperand(frame_pointer(), kRegisterOutput)); // Increment success counter. __ AddP(r2, Operand(1)); __ StoreP(r2, MemOperand(frame_pointer(), kSuccessfulCaptures)); // Capture results have been stored, so the number of remaining global // output registers is reduced by the number of stored captures. __ SubP(r3, Operand(num_saved_registers_)); // Check whether we have enough room for another set of capture results. __ CmpP(r3, Operand(num_saved_registers_)); __ blt(&return_r2); __ StoreP(r3, MemOperand(frame_pointer(), kNumOutputRegisters)); // Advance the location for output. __ AddP(r4, Operand(num_saved_registers_ * kIntSize)); __ StoreP(r4, MemOperand(frame_pointer(), kRegisterOutput)); // Prepare r2 to initialize registers with its value in the next run. __ LoadP(r2, MemOperand(frame_pointer(), kStringStartMinusOne)); if (global_with_zero_length_check()) { // Special case for zero-length matches. // r6: capture start index __ CmpP(current_input_offset(), r6); // Not a zero-length match, restart. __ bne(&load_char_start_regexp); // Offset from the end is zero if we already reached the end. __ CmpP(current_input_offset(), Operand::Zero()); __ beq(&exit_label_); // Advance current position after a zero-length match. Label advance; __ bind(&advance); __ AddP(current_input_offset(), Operand((mode_ == UC16) ? 2 : 1)); if (global_unicode()) CheckNotInSurrogatePair(0, &advance); } __ b(&load_char_start_regexp); } else { __ LoadImmP(r2, Operand(SUCCESS)); } } // Exit and return r2 __ bind(&exit_label_); if (global()) { __ LoadP(r2, MemOperand(frame_pointer(), kSuccessfulCaptures)); } __ bind(&return_r2); // Skip sp past regexp registers and local variables.. __ LoadRR(sp, frame_pointer()); // Restore registers r6..r15. __ LoadMultipleP(r6, sp, MemOperand(sp, 6 * kPointerSize)); __ b(r14); // Backtrack code (branch target for conditional backtracks). if (backtrack_label_.is_linked()) { __ bind(&backtrack_label_); Backtrack(); } Label exit_with_exception; // Preempt-code if (check_preempt_label_.is_linked()) { SafeCallTarget(&check_preempt_label_); CallCheckStackGuardState(r2); __ CmpP(r2, Operand::Zero()); // If returning non-zero, we should end execution with the given // result as return value. __ bne(&return_r2); // String might have moved: Reload end of string from frame. __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); SafeReturn(); } // Backtrack stack overflow code. if (stack_overflow_label_.is_linked()) { SafeCallTarget(&stack_overflow_label_); // Reached if the backtrack-stack limit has been hit. Label grow_failed; // Call GrowStack(backtrack_stackpointer(), &stack_base) static const int num_arguments = 3; __ PrepareCallCFunction(num_arguments, r2); __ LoadRR(r2, backtrack_stackpointer()); __ AddP(r3, frame_pointer(), Operand(kStackHighEnd)); __ mov(r4, Operand(ExternalReference::isolate_address(isolate()))); ExternalReference grow_stack = ExternalReference::re_grow_stack(isolate()); __ CallCFunction(grow_stack, num_arguments); // If return nullptr, we have failed to grow the stack, and // must exit with a stack-overflow exception. __ CmpP(r2, Operand::Zero()); __ beq(&exit_with_exception); // Otherwise use return value as new stack pointer. __ LoadRR(backtrack_stackpointer(), r2); // Restore saved registers and continue. SafeReturn(); } if (exit_with_exception.is_linked()) { // If any of the code above needed to exit with an exception. __ bind(&exit_with_exception); // Exit with Result EXCEPTION(-1) to signal thrown exception. __ LoadImmP(r2, Operand(EXCEPTION)); __ b(&return_r2); } CodeDesc code_desc; masm_->GetCode(isolate(), &code_desc); Handle code = isolate()->factory()->NewCode(code_desc, Code::REGEXP, masm_->CodeObject()); PROFILE(masm_->isolate(), RegExpCodeCreateEvent(AbstractCode::cast(*code), *source)); return Handle::cast(code); } void RegExpMacroAssemblerS390::GoTo(Label* to) { BranchOrBacktrack(al, to); } void RegExpMacroAssemblerS390::IfRegisterGE(int reg, int comparand, Label* if_ge) { __ LoadP(r2, register_location(reg), r0); __ CmpP(r2, Operand(comparand)); BranchOrBacktrack(ge, if_ge); } void RegExpMacroAssemblerS390::IfRegisterLT(int reg, int comparand, Label* if_lt) { __ LoadP(r2, register_location(reg), r0); __ CmpP(r2, Operand(comparand)); BranchOrBacktrack(lt, if_lt); } void RegExpMacroAssemblerS390::IfRegisterEqPos(int reg, Label* if_eq) { __ LoadP(r2, register_location(reg), r0); __ CmpP(r2, current_input_offset()); BranchOrBacktrack(eq, if_eq); } RegExpMacroAssembler::IrregexpImplementation RegExpMacroAssemblerS390::Implementation() { return kS390Implementation; } void RegExpMacroAssemblerS390::LoadCurrentCharacter(int cp_offset, Label* on_end_of_input, bool check_bounds, int characters) { DCHECK(cp_offset < (1 << 30)); // Be sane! (And ensure negation works) if (check_bounds) { if (cp_offset >= 0) { CheckPosition(cp_offset + characters - 1, on_end_of_input); } else { CheckPosition(cp_offset, on_end_of_input); } } LoadCurrentCharacterUnchecked(cp_offset, characters); } void RegExpMacroAssemblerS390::PopCurrentPosition() { Pop(current_input_offset()); } void RegExpMacroAssemblerS390::PopRegister(int register_index) { Pop(r2); __ StoreP(r2, register_location(register_index)); } void RegExpMacroAssemblerS390::PushBacktrack(Label* label) { if (label->is_bound()) { int target = label->pos(); __ mov(r2, Operand(target + Code::kHeaderSize - kHeapObjectTag)); } else { masm_->load_label_offset(r2, label); } Push(r2); CheckStackLimit(); } void RegExpMacroAssemblerS390::PushCurrentPosition() { Push(current_input_offset()); } void RegExpMacroAssemblerS390::PushRegister(int register_index, StackCheckFlag check_stack_limit) { __ LoadP(r2, register_location(register_index), r0); Push(r2); if (check_stack_limit) CheckStackLimit(); } void RegExpMacroAssemblerS390::ReadCurrentPositionFromRegister(int reg) { __ LoadP(current_input_offset(), register_location(reg), r0); } void RegExpMacroAssemblerS390::ReadStackPointerFromRegister(int reg) { __ LoadP(backtrack_stackpointer(), register_location(reg), r0); __ LoadP(r2, MemOperand(frame_pointer(), kStackHighEnd)); __ AddP(backtrack_stackpointer(), r2); } void RegExpMacroAssemblerS390::SetCurrentPositionFromEnd(int by) { Label after_position; __ CmpP(current_input_offset(), Operand(-by * char_size())); __ bge(&after_position); __ mov(current_input_offset(), Operand(-by * char_size())); // On RegExp code entry (where this operation is used), the character before // the current position is expected to be already loaded. // We have advanced the position, so it's safe to read backwards. LoadCurrentCharacterUnchecked(-1, 1); __ bind(&after_position); } void RegExpMacroAssemblerS390::SetRegister(int register_index, int to) { DCHECK(register_index >= num_saved_registers_); // Reserved for positions! __ mov(r2, Operand(to)); __ StoreP(r2, register_location(register_index)); } bool RegExpMacroAssemblerS390::Succeed() { __ b(&success_label_); return global(); } void RegExpMacroAssemblerS390::WriteCurrentPositionToRegister(int reg, int cp_offset) { if (cp_offset == 0) { __ StoreP(current_input_offset(), register_location(reg)); } else { __ AddP(r2, current_input_offset(), Operand(cp_offset * char_size())); __ StoreP(r2, register_location(reg)); } } void RegExpMacroAssemblerS390::ClearRegisters(int reg_from, int reg_to) { DCHECK(reg_from <= reg_to); __ LoadP(r2, MemOperand(frame_pointer(), kStringStartMinusOne)); for (int reg = reg_from; reg <= reg_to; reg++) { __ StoreP(r2, register_location(reg)); } } void RegExpMacroAssemblerS390::WriteStackPointerToRegister(int reg) { __ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd)); __ SubP(r2, backtrack_stackpointer(), r3); __ StoreP(r2, register_location(reg)); } // Private methods: void RegExpMacroAssemblerS390::CallCheckStackGuardState(Register scratch) { static const int num_arguments = 3; __ PrepareCallCFunction(num_arguments, scratch); // RegExp code frame pointer. __ LoadRR(r4, frame_pointer()); // Code* of self. __ mov(r3, Operand(masm_->CodeObject())); // r2 becomes return address pointer. __ lay(r2, MemOperand(sp, kStackFrameRASlot * kPointerSize)); ExternalReference stack_guard_check = ExternalReference::re_check_stack_guard_state(isolate()); CallCFunctionUsingStub(stack_guard_check, num_arguments); } // Helper function for reading a value out of a stack frame. template static T& frame_entry(Address re_frame, int frame_offset) { DCHECK_EQ(kPointerSize, sizeof(T)); #ifdef V8_TARGET_ARCH_S390X return reinterpret_cast(Memory(re_frame + frame_offset)); #else return reinterpret_cast(Memory(re_frame + frame_offset)); #endif } template static T* frame_entry_address(Address re_frame, int frame_offset) { return reinterpret_cast(re_frame + frame_offset); } int RegExpMacroAssemblerS390::CheckStackGuardState(Address* return_address, Code* re_code, Address re_frame) { return NativeRegExpMacroAssembler::CheckStackGuardState( frame_entry(re_frame, kIsolate), frame_entry(re_frame, kStartIndex), frame_entry(re_frame, kDirectCall) == 1, return_address, re_code, frame_entry_address(re_frame, kInputString), frame_entry_address(re_frame, kInputStart), frame_entry_address(re_frame, kInputEnd)); } MemOperand RegExpMacroAssemblerS390::register_location(int register_index) { DCHECK(register_index < (1 << 30)); if (num_registers_ <= register_index) { num_registers_ = register_index + 1; } return MemOperand(frame_pointer(), kRegisterZero - register_index * kPointerSize); } void RegExpMacroAssemblerS390::CheckPosition(int cp_offset, Label* on_outside_input) { if (cp_offset >= 0) { __ CmpP(current_input_offset(), Operand(-cp_offset * char_size())); BranchOrBacktrack(ge, on_outside_input); } else { __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne)); __ AddP(r2, current_input_offset(), Operand(cp_offset * char_size())); __ CmpP(r2, r3); BranchOrBacktrack(le, on_outside_input); } } void RegExpMacroAssemblerS390::BranchOrBacktrack(Condition condition, Label* to, CRegister cr) { if (condition == al) { // Unconditional. if (to == nullptr) { Backtrack(); return; } __ b(to); return; } if (to == nullptr) { __ b(condition, &backtrack_label_); return; } __ b(condition, to); } void RegExpMacroAssemblerS390::SafeCall(Label* to, Condition cond, CRegister cr) { Label skip; __ b(NegateCondition(cond), &skip); __ b(r14, to); __ bind(&skip); } void RegExpMacroAssemblerS390::SafeReturn() { __ pop(r14); __ mov(ip, Operand(masm_->CodeObject())); __ AddP(r14, ip); __ Ret(); } void RegExpMacroAssemblerS390::SafeCallTarget(Label* name) { __ bind(name); __ CleanseP(r14); __ LoadRR(r0, r14); __ mov(ip, Operand(masm_->CodeObject())); __ SubP(r0, r0, ip); __ push(r0); } void RegExpMacroAssemblerS390::Push(Register source) { DCHECK(source != backtrack_stackpointer()); __ lay(backtrack_stackpointer(), MemOperand(backtrack_stackpointer(), -kPointerSize)); __ StoreP(source, MemOperand(backtrack_stackpointer())); } void RegExpMacroAssemblerS390::Pop(Register target) { DCHECK(target != backtrack_stackpointer()); __ LoadP(target, MemOperand(backtrack_stackpointer())); __ la(backtrack_stackpointer(), MemOperand(backtrack_stackpointer(), kPointerSize)); } void RegExpMacroAssemblerS390::CheckPreemption() { // Check for preemption. ExternalReference stack_limit = ExternalReference::address_of_stack_limit(isolate()); __ mov(r2, Operand(stack_limit)); __ CmpLogicalP(sp, MemOperand(r2)); SafeCall(&check_preempt_label_, le); } void RegExpMacroAssemblerS390::CheckStackLimit() { ExternalReference stack_limit = ExternalReference::address_of_regexp_stack_limit(isolate()); __ mov(r2, Operand(stack_limit)); __ CmpLogicalP(backtrack_stackpointer(), MemOperand(r2)); SafeCall(&stack_overflow_label_, le); } void RegExpMacroAssemblerS390::CallCFunctionUsingStub( ExternalReference function, int num_arguments) { // Must pass all arguments in registers. The stub pushes on the stack. DCHECK_GE(8, num_arguments); __ mov(code_pointer(), Operand(function)); Label ret; __ larl(r14, &ret); __ StoreP(r14, MemOperand(sp, kStackFrameRASlot * kPointerSize)); __ b(code_pointer()); __ bind(&ret); if (base::OS::ActivationFrameAlignment() > kPointerSize) { __ LoadP(sp, MemOperand(sp, (kNumRequiredStackFrameSlots * kPointerSize))); } else { __ la(sp, MemOperand(sp, (kNumRequiredStackFrameSlots * kPointerSize))); } __ mov(code_pointer(), Operand(masm_->CodeObject())); } void RegExpMacroAssemblerS390::LoadCurrentCharacterUnchecked(int cp_offset, int characters) { if (mode_ == LATIN1) { // using load reverse for big-endian platforms if (characters == 4) { #if V8_TARGET_LITTLE_ENDIAN __ LoadlW(current_character(), MemOperand(current_input_offset(), end_of_input_address(), cp_offset * char_size())); #else __ LoadLogicalReversedWordP(current_character(), MemOperand(current_input_offset(), end_of_input_address(), cp_offset * char_size())); #endif } else if (characters == 2) { #if V8_TARGET_LITTLE_ENDIAN __ LoadLogicalHalfWordP(current_character(), MemOperand(current_input_offset(), end_of_input_address(), cp_offset * char_size())); #else __ LoadLogicalReversedHalfWordP(current_character(), MemOperand(current_input_offset(), end_of_input_address(), cp_offset * char_size())); #endif } else { DCHECK_EQ(1, characters); __ LoadlB(current_character(), MemOperand(current_input_offset(), end_of_input_address(), cp_offset * char_size())); } } else { DCHECK(mode_ == UC16); if (characters == 2) { __ LoadlW(current_character(), MemOperand(current_input_offset(), end_of_input_address(), cp_offset * char_size())); #if !V8_TARGET_LITTLE_ENDIAN // need to swap the order of the characters for big-endian platforms __ rll(current_character(), current_character(), Operand(16)); #endif } else { DCHECK_EQ(1, characters); __ LoadLogicalHalfWordP( current_character(), MemOperand(current_input_offset(), end_of_input_address(), cp_offset * char_size())); } } } #undef __ #endif // V8_INTERPRETED_REGEXP } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_S390