// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_S390_CONSTANTS_S390_H_ #define V8_S390_CONSTANTS_S390_H_ // Get the standard printf format macros for C99 stdint types. #ifndef __STDC_FORMAT_MACROS #define __STDC_FORMAT_MACROS #endif #include #include #include "src/base/logging.h" #include "src/base/macros.h" #include "src/globals.h" // UNIMPLEMENTED_ macro for S390. #ifdef DEBUG #define UNIMPLEMENTED_S390() \ v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \ __FILE__, __LINE__, __func__) #else #define UNIMPLEMENTED_S390() #endif namespace v8 { namespace internal { // TODO(sigurds): Change this value once we use relative jumps. constexpr size_t kMaxPCRelativeCodeRangeInMB = 0; // Number of registers const int kNumRegisters = 16; // FP support. const int kNumDoubleRegisters = 16; const int kNoRegister = -1; // Actual value of root register is offset from the root array's start // to take advantage of negative displacement values. // TODO(sigurds): Choose best value. constexpr int kRootRegisterBias = 128; // sign-extend the least significant 16-bits of value #define SIGN_EXT_IMM16(imm) ((static_cast(imm) << 16) >> 16) // sign-extend the least significant 26-bits of value #define SIGN_EXT_IMM26(imm) ((static_cast(imm) << 6) >> 6) // ----------------------------------------------------------------------------- // Conditions. // Defines constants and accessor classes to assemble, disassemble and // simulate z/Architecture instructions. // // Section references in the code refer to the "z/Architecture Principles // Of Operation" http://publibfi.boulder.ibm.com/epubs/pdf/dz9zr009.pdf // // Constants for specific fields are defined in their respective named enums. // General constants are in an anonymous enum in class Instr. enum Condition { kNoCondition = -1, eq = 0x8, // Equal. ne = 0x7, // Not equal. ge = 0xa, // Greater or equal. lt = 0x4, // Less than. gt = 0x2, // Greater than. le = 0xc, // Less then or equal al = 0xf, // Always. CC_NOP = 0x0, // S390 NOP CC_EQ = 0x08, // S390 condition code 0b1000 CC_LT = 0x04, // S390 condition code 0b0100 CC_LE = CC_EQ | CC_LT, // S390 condition code 0b1100 CC_GT = 0x02, // S390 condition code 0b0010 CC_GE = CC_EQ | CC_GT, // S390 condition code 0b1010 CC_OF = 0x01, // S390 condition code 0b0001 CC_NOF = 0x0E, // S390 condition code 0b1110 CC_ALWAYS = 0x0F, // S390 always taken branch unordered = CC_OF, // Floating-point unordered ordered = CC_NOF, // floating-point ordered overflow = CC_OF, // Summary overflow nooverflow = CC_NOF, mask0x0 = 0, // no jumps mask0x1 = 1, mask0x2 = 2, mask0x3 = 3, mask0x4 = 4, mask0x5 = 5, mask0x6 = 6, mask0x7 = 7, mask0x8 = 8, mask0x9 = 9, mask0xA = 10, mask0xB = 11, mask0xC = 12, mask0xD = 13, mask0xE = 14, mask0xF = 15, // Rounding modes for floating poing facility CURRENT_ROUNDING_MODE = 0, ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0 = 1, ROUND_TO_PREPARE_FOR_SHORTER_PRECISION = 3, ROUND_TO_NEAREST_WITH_TIES_TO_EVEN = 4, ROUND_TOWARD_0 = 5, ROUND_TOWARD_PLUS_INFINITE = 6, ROUND_TOWARD_MINUS_INFINITE = 7 }; inline Condition NegateCondition(Condition cond) { DCHECK(cond != al); switch (cond) { case eq: return ne; case ne: return eq; case ge: return lt; case gt: return le; case le: return gt; case lt: return ge; case lt | gt: return eq; case le | ge: return CC_OF; case CC_OF: return CC_NOF; default: DCHECK(false); } return al; } // ----------------------------------------------------------------------------- // Instructions encoding. // Instr is merely used by the Assembler to distinguish 32bit integers // representing instructions from usual 32 bit values. // Instruction objects are pointers to 32bit values, and provide methods to // access the various ISA fields. typedef int32_t Instr; typedef uint16_t TwoByteInstr; typedef uint32_t FourByteInstr; typedef uint64_t SixByteInstr; #define S390_RSY_A_OPCODE_LIST(V) \ V(lmg, LMG, 0xEB04) /* type = RSY_A LOAD MULTIPLE (64) */ \ V(srag, SRAG, 0xEB0A) /* type = RSY_A SHIFT RIGHT SINGLE (64) */ \ V(slag, SLAG, 0xEB0B) /* type = RSY_A SHIFT LEFT SINGLE (64) */ \ V(srlg, SRLG, 0xEB0C) /* type = RSY_A SHIFT RIGHT SINGLE LOGICAL (64) */ \ V(sllg, SLLG, 0xEB0D) /* type = RSY_A SHIFT LEFT SINGLE LOGICAL (64) */ \ V(tracg, TRACG, 0xEB0F) /* type = RSY_A TRACE (64) */ \ V(csy, CSY, 0xEB14) /* type = RSY_A COMPARE AND SWAP (32) */ \ V(rllg, RLLG, 0xEB1C) /* type = RSY_A ROTATE LEFT SINGLE LOGICAL (64) */ \ V(rll, RLL, 0xEB1D) /* type = RSY_A ROTATE LEFT SINGLE LOGICAL (32) */ \ V(stmg, STMG, 0xEB24) /* type = RSY_A STORE MULTIPLE (64) */ \ V(stctg, STCTG, 0xEB25) /* type = RSY_A STORE CONTROL (64) */ \ V(stmh, STMH, 0xEB26) /* type = RSY_A STORE MULTIPLE HIGH (32) */ \ V(lctlg, LCTLG, 0xEB2F) /* type = RSY_A LOAD CONTROL (64) */ \ V(csg, CSG, 0xEB30) /* type = RSY_A COMPARE AND SWAP (64) */ \ V(cdsy, CDSY, 0xEB31) /* type = RSY_A COMPARE DOUBLE AND SWAP (32) */ \ V(cdsg, CDSG, 0xEB3E) /* type = RSY_A COMPARE DOUBLE AND SWAP (64) */ \ V(bxhg, BXHG, 0xEB44) /* type = RSY_A BRANCH ON INDEX HIGH (64) */ \ V(bxleg, BXLEG, 0xEB45) /* type = RSY_A BRANCH ON INDEX LOW OR EQUAL (64) */ \ V(ecag, ECAG, 0xEB4C) /* type = RSY_A EXTRACT CPU ATTRIBUTE */ \ V(mvclu, MVCLU, 0xEB8E) /* type = RSY_A MOVE LONG UNICODE */ \ V(clclu, CLCLU, 0xEB8F) /* type = RSY_A COMPARE LOGICAL LONG UNICODE */ \ V(stmy, STMY, 0xEB90) /* type = RSY_A STORE MULTIPLE (32) */ \ V(lmh, LMH, 0xEB96) /* type = RSY_A LOAD MULTIPLE HIGH (32) */ \ V(lmy, LMY, 0xEB98) /* type = RSY_A LOAD MULTIPLE (32) */ \ V(lamy, LAMY, 0xEB9A) /* type = RSY_A LOAD ACCESS MULTIPLE */ \ V(stamy, STAMY, 0xEB9B) /* type = RSY_A STORE ACCESS MULTIPLE */ \ V(srak, SRAK, 0xEBDC) /* type = RSY_A SHIFT RIGHT SINGLE (32) */ \ V(slak, SLAK, 0xEBDD) /* type = RSY_A SHIFT LEFT SINGLE (32) */ \ V(srlk, SRLK, 0xEBDE) /* type = RSY_A SHIFT RIGHT SINGLE LOGICAL (32) */ \ V(sllk, SLLK, 0xEBDF) /* type = RSY_A SHIFT LEFT SINGLE LOGICAL (32) */ \ V(lang, LANG, 0xEBE4) /* type = RSY_A LOAD AND AND (64) */ \ V(laog, LAOG, 0xEBE6) /* type = RSY_A LOAD AND OR (64) */ \ V(laxg, LAXG, 0xEBE7) /* type = RSY_A LOAD AND EXCLUSIVE OR (64) */ \ V(laag, LAAG, 0xEBE8) /* type = RSY_A LOAD AND ADD (64) */ \ V(laalg, LAALG, 0xEBEA) /* type = RSY_A LOAD AND ADD LOGICAL (64) */ \ V(lan, LAN, 0xEBF4) /* type = RSY_A LOAD AND AND (32) */ \ V(lao, LAO, 0xEBF6) /* type = RSY_A LOAD AND OR (32) */ \ V(lax, LAX, 0xEBF7) /* type = RSY_A LOAD AND EXCLUSIVE OR (32) */ \ V(laa, LAA, 0xEBF8) /* type = RSY_A LOAD AND ADD (32) */ \ V(laal, LAAL, 0xEBFA) /* type = RSY_A LOAD AND ADD LOGICAL (32) */ #define S390_RSY_B_OPCODE_LIST(V) \ V(clmh, CLMH, \ 0xEB20) /* type = RSY_B COMPARE LOGICAL CHAR. UNDER MASK (high) */ \ V(clmy, CLMY, \ 0xEB21) /* type = RSY_B COMPARE LOGICAL CHAR. UNDER MASK (low) */ \ V(clt, CLT, 0xEB23) /* type = RSY_B COMPARE LOGICAL AND TRAP (32) */ \ V(clgt, CLGT, 0xEB2B) /* type = RSY_B COMPARE LOGICAL AND TRAP (64) */ \ V(stcmh, STCMH, \ 0xEB2C) /* type = RSY_B STORE CHARACTERS UNDER MASK (high) */ \ V(stcmy, STCMY, 0xEB2D) /* type = RSY_B STORE CHARACTERS UNDER MASK (low) */ \ V(icmh, ICMH, 0xEB80) /* type = RSY_B INSERT CHARACTERS UNDER MASK (high) */ \ V(icmy, ICMY, 0xEB81) /* type = RSY_B INSERT CHARACTERS UNDER MASK (low) */ \ V(locfh, LOCFH, 0xEBE0) /* type = RSY_B LOAD HIGH ON CONDITION (32) */ \ V(stocfh, STOCFH, 0xEBE1) /* type = RSY_B STORE HIGH ON CONDITION */ \ V(locg, LOCG, 0xEBE2) /* type = RSY_B LOAD ON CONDITION (64) */ \ V(stocg, STOCG, 0xEBE3) /* type = RSY_B STORE ON CONDITION (64) */ \ V(loc, LOC, 0xEBF2) /* type = RSY_B LOAD ON CONDITION (32) */ \ V(stoc, STOC, 0xEBF3) /* type = RSY_B STORE ON CONDITION (32) */ #define S390_RXE_OPCODE_LIST(V) \ V(lcbb, LCBB, 0xE727) /* type = RXE LOAD COUNT TO BLOCK BOUNDARY */ \ V(ldeb, LDEB, 0xED04) /* type = RXE LOAD LENGTHENED (short to long BFP) */ \ V(lxdb, LXDB, \ 0xED05) /* type = RXE LOAD LENGTHENED (long to extended BFP) */ \ V(lxeb, LXEB, \ 0xED06) /* type = RXE LOAD LENGTHENED (short to extended BFP) */ \ V(mxdb, MXDB, 0xED07) /* type = RXE MULTIPLY (long to extended BFP) */ \ V(keb, KEB, 0xED08) /* type = RXE COMPARE AND SIGNAL (short BFP) */ \ V(ceb, CEB, 0xED09) /* type = RXE COMPARE (short BFP) */ \ V(aeb, AEB, 0xED0A) /* type = RXE ADD (short BFP) */ \ V(seb, SEB, 0xED0B) /* type = RXE SUBTRACT (short BFP) */ \ V(mdeb, MDEB, 0xED0C) /* type = RXE MULTIPLY (short to long BFP) */ \ V(deb, DEB, 0xED0D) /* type = RXE DIVIDE (short BFP) */ \ V(tceb, TCEB, 0xED10) /* type = RXE TEST DATA CLASS (short BFP) */ \ V(tcdb, TCDB, 0xED11) /* type = RXE TEST DATA CLASS (long BFP) */ \ V(tcxb, TCXB, 0xED12) /* type = RXE TEST DATA CLASS (extended BFP) */ \ V(sqeb, SQEB, 0xED14) /* type = RXE SQUARE ROOT (short BFP) */ \ V(sqdb, SQDB, 0xED15) /* type = RXE SQUARE ROOT (long BFP) */ \ V(meeb, MEEB, 0xED17) /* type = RXE MULTIPLY (short BFP) */ \ V(kdb, KDB, 0xED18) /* type = RXE COMPARE AND SIGNAL (long BFP) */ \ V(cdb, CDB, 0xED19) /* type = RXE COMPARE (long BFP) */ \ V(adb, ADB, 0xED1A) /* type = RXE ADD (long BFP) */ \ V(sdb, SDB, 0xED1B) /* type = RXE SUBTRACT (long BFP) */ \ V(mdb, MDB, 0xED1C) /* type = RXE MULTIPLY (long BFP) */ \ V(ddb, DDB, 0xED1D) /* type = RXE DIVIDE (long BFP) */ \ V(lde, LDE, 0xED24) /* type = RXE LOAD LENGTHENED (short to long HFP) */ \ V(lxd, LXD, \ 0xED25) /* type = RXE LOAD LENGTHENED (long to extended HFP) */ \ V(lxe, LXE, \ 0xED26) /* type = RXE LOAD LENGTHENED (short to extended HFP) */ \ V(sqe, SQE, 0xED34) /* type = RXE SQUARE ROOT (short HFP) */ \ V(sqd, SQD, 0xED35) /* type = RXE SQUARE ROOT (long HFP) */ \ V(mee, MEE, 0xED37) /* type = RXE MULTIPLY (short HFP) */ \ V(tdcet, TDCET, 0xED50) /* type = RXE TEST DATA CLASS (short DFP) */ \ V(tdget, TDGET, 0xED51) /* type = RXE TEST DATA GROUP (short DFP) */ \ V(tdcdt, TDCDT, 0xED54) /* type = RXE TEST DATA CLASS (long DFP) */ \ V(tdgdt, TDGDT, 0xED55) /* type = RXE TEST DATA GROUP (long DFP) */ \ V(tdcxt, TDCXT, 0xED58) /* type = RXE TEST DATA CLASS (extended DFP) */ \ V(tdgxt, TDGXT, 0xED59) /* type = RXE TEST DATA GROUP (extended DFP) */ #define S390_RRF_A_OPCODE_LIST(V) \ V(ipte, IPTE, 0xB221) /* type = RRF_A INVALIDATE PAGE TABLE ENTRY */ \ V(mdtra, MDTRA, 0xB3D0) /* type = RRF_A MULTIPLY (long DFP) */ \ V(ddtra, DDTRA, 0xB3D1) /* type = RRF_A DIVIDE (long DFP) */ \ V(adtra, ADTRA, 0xB3D2) /* type = RRF_A ADD (long DFP) */ \ V(sdtra, SDTRA, 0xB3D3) /* type = RRF_A SUBTRACT (long DFP) */ \ V(mxtra, MXTRA, 0xB3D8) /* type = RRF_A MULTIPLY (extended DFP) */ \ V(msrkc, MSRKC, 0xB9FD) /* type = RRF_A MULTIPLY (32)*/ \ V(msgrkc, MSGRKC, 0xB9ED) /* type = RRF_A MULTIPLY (64)*/ \ V(dxtra, DXTRA, 0xB3D9) /* type = RRF_A DIVIDE (extended DFP) */ \ V(axtra, AXTRA, 0xB3DA) /* type = RRF_A ADD (extended DFP) */ \ V(sxtra, SXTRA, 0xB3DB) /* type = RRF_A SUBTRACT (extended DFP) */ \ V(ahhhr, AHHHR, 0xB9C8) /* type = RRF_A ADD HIGH (32) */ \ V(shhhr, SHHHR, 0xB9C9) /* type = RRF_A SUBTRACT HIGH (32) */ \ V(alhhhr, ALHHHR, 0xB9CA) /* type = RRF_A ADD LOGICAL HIGH (32) */ \ V(slhhhr, SLHHHR, 0xB9CB) /* type = RRF_A SUBTRACT LOGICAL HIGH (32) */ \ V(ahhlr, AHHLR, 0xB9D8) /* type = RRF_A ADD HIGH (32) */ \ V(shhlr, SHHLR, 0xB9D9) /* type = RRF_A SUBTRACT HIGH (32) */ \ V(alhhlr, ALHHLR, 0xB9DA) /* type = RRF_A ADD LOGICAL HIGH (32) */ \ V(slhhlr, SLHHLR, 0xB9DB) /* type = RRF_A SUBTRACT LOGICAL HIGH (32) */ \ V(ngrk, NGRK, 0xB9E4) /* type = RRF_A AND (64) */ \ V(ogrk, OGRK, 0xB9E6) /* type = RRF_A OR (64) */ \ V(xgrk, XGRK, 0xB9E7) /* type = RRF_A EXCLUSIVE OR (64) */ \ V(agrk, AGRK, 0xB9E8) /* type = RRF_A ADD (64) */ \ V(sgrk, SGRK, 0xB9E9) /* type = RRF_A SUBTRACT (64) */ \ V(algrk, ALGRK, 0xB9EA) /* type = RRF_A ADD LOGICAL (64) */ \ V(slgrk, SLGRK, 0xB9EB) /* type = RRF_A SUBTRACT LOGICAL (64) */ \ V(nrk, NRK, 0xB9F4) /* type = RRF_A AND (32) */ \ V(ork, ORK, 0xB9F6) /* type = RRF_A OR (32) */ \ V(xrk, XRK, 0xB9F7) /* type = RRF_A EXCLUSIVE OR (32) */ \ V(ark, ARK, 0xB9F8) /* type = RRF_A ADD (32) */ \ V(srk, SRK, 0xB9F9) /* type = RRF_A SUBTRACT (32) */ \ V(alrk, ALRK, 0xB9FA) /* type = RRF_A ADD LOGICAL (32) */ \ V(slrk, SLRK, 0xB9FB) /* type = RRF_A SUBTRACT LOGICAL (32) */ #define S390_RXF_OPCODE_LIST(V) \ V(maeb, MAEB, 0xED0E) /* type = RXF MULTIPLY AND ADD (short BFP) */ \ V(mseb, MSEB, 0xED0F) /* type = RXF MULTIPLY AND SUBTRACT (short BFP) */ \ V(madb, MADB, 0xED1E) /* type = RXF MULTIPLY AND ADD (long BFP) */ \ V(msdb, MSDB, 0xED1F) /* type = RXF MULTIPLY AND SUBTRACT (long BFP) */ \ V(mae, MAE, 0xED2E) /* type = RXF MULTIPLY AND ADD (short HFP) */ \ V(mse, MSE, 0xED2F) /* type = RXF MULTIPLY AND SUBTRACT (short HFP) */ \ V(mayl, MAYL, \ 0xED38) /* type = RXF MULTIPLY AND ADD UNNRM. (long to ext. low HFP) */ \ V(myl, MYL, \ 0xED39) /* type = RXF MULTIPLY UNNORM. (long to ext. low HFP) */ \ V(may, MAY, \ 0xED3A) /* type = RXF MULTIPLY & ADD UNNORMALIZED (long to ext. HFP) */ \ V(my, MY, \ 0xED3B) /* type = RXF MULTIPLY UNNORMALIZED (long to ext. HFP) */ \ V(mayh, MAYH, \ 0xED3C) /* type = RXF MULTIPLY AND ADD UNNRM. (long to ext. high HFP) */ \ V(myh, MYH, \ 0xED3D) /* type = RXF MULTIPLY UNNORM. (long to ext. high HFP) */ \ V(mad, MAD, 0xED3E) /* type = RXF MULTIPLY AND ADD (long HFP) */ \ V(msd, MSD, 0xED3F) /* type = RXF MULTIPLY AND SUBTRACT (long HFP) */ \ V(sldt, SLDT, 0xED40) /* type = RXF SHIFT SIGNIFICAND LEFT (long DFP) */ \ V(srdt, SRDT, 0xED41) /* type = RXF SHIFT SIGNIFICAND RIGHT (long DFP) */ \ V(slxt, SLXT, \ 0xED48) /* type = RXF SHIFT SIGNIFICAND LEFT (extended DFP) */ \ V(srxt, SRXT, \ 0xED49) /* type = RXF SHIFT SIGNIFICAND RIGHT (extended DFP) */ #define S390_IE_OPCODE_LIST(V) \ V(niai, NIAI, 0xB2FA) /* type = IE NEXT INSTRUCTION ACCESS INTENT */ #define S390_RRF_B_OPCODE_LIST(V) \ V(diebr, DIEBR, 0xB353) /* type = RRF_B DIVIDE TO INTEGER (short BFP) */ \ V(didbr, DIDBR, 0xB35B) /* type = RRF_B DIVIDE TO INTEGER (long BFP) */ \ V(cpsdr, CPSDR, 0xB372) /* type = RRF_B COPY SIGN (long) */ \ V(qadtr, QADTR, 0xB3F5) /* type = RRF_B QUANTIZE (long DFP) */ \ V(iedtr, IEDTR, \ 0xB3F6) /* type = RRF_B INSERT BIASED EXPONENT (64 to long DFP) */ \ V(rrdtr, RRDTR, 0xB3F7) /* type = RRF_B REROUND (long DFP) */ \ V(qaxtr, QAXTR, 0xB3FD) /* type = RRF_B QUANTIZE (extended DFP) */ \ V(iextr, IEXTR, \ 0xB3FE) /* type = RRF_B INSERT BIASED EXPONENT (64 to extended DFP) */ \ V(rrxtr, RRXTR, 0xB3FF) /* type = RRF_B REROUND (extended DFP) */ \ V(kmctr, KMCTR, 0xB92D) /* type = RRF_B CIPHER MESSAGE WITH COUNTER */ \ V(idte, IDTE, 0xB98E) /* type = RRF_B INVALIDATE DAT TABLE ENTRY */ \ V(crdte, CRDTE, \ 0xB98F) /* type = RRF_B COMPARE AND REPLACE DAT TABLE ENTRY */ \ V(lptea, LPTEA, 0xB9AA) /* type = RRF_B LOAD PAGE TABLE ENTRY ADDRESS */ #define S390_RRF_C_OPCODE_LIST(V) \ V(sske, SSKE, 0xB22B) /* type = RRF_C SET STORAGE KEY EXTENDED */ \ V(cu21, CU21, 0xB2A6) /* type = RRF_C CONVERT UTF-16 TO UTF-8 */ \ V(cu12, CU12, 0xB2A7) /* type = RRF_C CONVERT UTF-8 TO UTF-16 */ \ V(ppa, PPA, 0xB2E8) /* type = RRF_C PERFORM PROCESSOR ASSIST */ \ V(cgrt, CGRT, 0xB960) /* type = RRF_C COMPARE AND TRAP (64) */ \ V(clgrt, CLGRT, 0xB961) /* type = RRF_C COMPARE LOGICAL AND TRAP (64) */ \ V(crt, CRT, 0xB972) /* type = RRF_C COMPARE AND TRAP (32) */ \ V(clrt, CLRT, 0xB973) /* type = RRF_C COMPARE LOGICAL AND TRAP (32) */ \ V(trtt, TRTT, 0xB990) /* type = RRF_C TRANSLATE TWO TO TWO */ \ V(trto, TRTO, 0xB991) /* type = RRF_C TRANSLATE TWO TO ONE */ \ V(trot, TROT, 0xB992) /* type = RRF_C TRANSLATE ONE TO TWO */ \ V(troo, TROO, 0xB993) /* type = RRF_C TRANSLATE ONE TO ONE */ \ V(cu14, CU14, 0xB9B0) /* type = RRF_C CONVERT UTF-8 TO UTF-32 */ \ V(cu24, CU24, 0xB9B1) /* type = RRF_C CONVERT UTF-16 TO UTF-32 */ \ V(trtre, TRTRE, \ 0xB9BD) /* type = RRF_C TRANSLATE AND TEST REVERSE EXTENDED */ \ V(trte, TRTE, 0xB9BF) /* type = RRF_C TRANSLATE AND TEST EXTENDED */ \ V(locfhr, LOCFHR, 0xB9E0) /* type = RRF_C LOAD HIGH ON CONDITION (32) */ \ V(locgr, LOCGR, 0xB9E2) /* type = RRF_C LOAD ON CONDITION (64) */ \ V(locr, LOCR, 0xB9F2) /* type = RRF_C LOAD ON CONDITION (32) */ #define S390_MII_OPCODE_LIST(V) \ V(bprp, BPRP, 0xC5) /* type = MII BRANCH PREDICTION RELATIVE PRELOAD */ #define S390_RRF_D_OPCODE_LIST(V) \ V(ldetr, LDETR, \ 0xB3D4) /* type = RRF_D LOAD LENGTHENED (short to long DFP) */ \ V(lxdtr, LXDTR, \ 0xB3DC) /* type = RRF_D LOAD LENGTHENED (long to extended DFP) */ \ V(csdtr, CSDTR, \ 0xB3E3) /* type = RRF_D CONVERT TO SIGNED PACKED (long DFP to 64) */ \ V(csxtr, CSXTR, \ 0xB3EB) /* type = RRF_D CONVERT TO SIGNED PACKED (extended DFP to 128) */ #define S390_RRF_E_OPCODE_LIST(V) \ V(ledbra, LEDBRA, \ 0xB344) /* type = RRF_E LOAD ROUNDED (long to short BFP) */ \ V(ldxbra, LDXBRA, \ 0xB345) /* type = RRF_E LOAD ROUNDED (extended to long BFP) */ \ V(lexbra, LEXBRA, \ 0xB346) /* type = RRF_E LOAD ROUNDED (extended to short BFP) */ \ V(fixbra, FIXBRA, 0xB347) /* type = RRF_E LOAD FP INTEGER (extended BFP) */ \ V(tbedr, TBEDR, \ 0xB350) /* type = RRF_E CONVERT HFP TO BFP (long to short) */ \ V(tbdr, TBDR, 0xB351) /* type = RRF_E CONVERT HFP TO BFP (long) */ \ V(fiebra, FIEBRA, 0xB357) /* type = RRF_E LOAD FP INTEGER (short BFP) */ \ V(fidbra, FIDBRA, 0xB35F) /* type = RRF_E LOAD FP INTEGER (long BFP) */ \ V(celfbr, CELFBR, \ 0xB390) /* type = RRF_E CONVERT FROM LOGICAL (32 to short BFP) */ \ V(cdlfbr, CDLFBR, \ 0xB391) /* type = RRF_E CONVERT FROM LOGICAL (32 to long BFP) */ \ V(cxlfbr, CXLFBR, \ 0xB392) /* type = RRF_E CONVERT FROM LOGICAL (32 to extended BFP) */ \ V(cefbra, CEFBRA, \ 0xB394) /* type = RRF_E CONVERT FROM FIXED (32 to short BFP) */ \ V(cdfbra, CDFBRA, \ 0xB395) /* type = RRF_E CONVERT FROM FIXED (32 to long BFP) */ \ V(cxfbra, CXFBRA, \ 0xB396) /* type = RRF_E CONVERT FROM FIXED (32 to extended BFP) */ \ V(cfebra, CFEBRA, \ 0xB398) /* type = RRF_E CONVERT TO FIXED (short BFP to 32) */ \ V(cfdbra, CFDBRA, \ 0xB399) /* type = RRF_E CONVERT TO FIXED (long BFP to 32) */ \ V(cfxbra, CFXBRA, \ 0xB39A) /* type = RRF_E CONVERT TO FIXED (extended BFP to 32) */ \ V(clfebr, CLFEBR, \ 0xB39C) /* type = RRF_E CONVERT TO LOGICAL (short BFP to 32) */ \ V(clfdbr, CLFDBR, \ 0xB39D) /* type = RRF_E CONVERT TO LOGICAL (long BFP to 32) */ \ V(clfxbr, CLFXBR, \ 0xB39E) /* type = RRF_E CONVERT TO LOGICAL (extended BFP to 32) */ \ V(celgbr, CELGBR, \ 0xB3A0) /* type = RRF_E CONVERT FROM LOGICAL (64 to short BFP) */ \ V(cdlgbr, CDLGBR, \ 0xB3A1) /* type = RRF_E CONVERT FROM LOGICAL (64 to long BFP) */ \ V(cxlgbr, CXLGBR, \ 0xB3A2) /* type = RRF_E CONVERT FROM LOGICAL (64 to extended BFP) */ \ V(cegbra, CEGBRA, \ 0xB3A4) /* type = RRF_E CONVERT FROM FIXED (64 to short BFP) */ \ V(cdgbra, CDGBRA, \ 0xB3A5) /* type = RRF_E CONVERT FROM FIXED (64 to long BFP) */ \ V(cxgbra, CXGBRA, \ 0xB3A6) /* type = RRF_E CONVERT FROM FIXED (64 to extended BFP) */ \ V(cgebra, CGEBRA, \ 0xB3A8) /* type = RRF_E CONVERT TO FIXED (short BFP to 64) */ \ V(cgdbra, CGDBRA, \ 0xB3A9) /* type = RRF_E CONVERT TO FIXED (long BFP to 64) */ \ V(cgxbra, CGXBRA, \ 0xB3AA) /* type = RRF_E CONVERT TO FIXED (extended BFP to 64) */ \ V(clgebr, CLGEBR, \ 0xB3AC) /* type = RRF_E CONVERT TO LOGICAL (short BFP to 64) */ \ V(clgdbr, CLGDBR, \ 0xB3AD) /* type = RRF_E CONVERT TO LOGICAL (long BFP to 64) */ \ V(clgxbr, CLGXBR, \ 0xB3AE) /* type = RRF_E CONVERT TO LOGICAL (extended BFP to 64) */ \ V(cfer, CFER, 0xB3B8) /* type = RRF_E CONVERT TO FIXED (short HFP to 32) */ \ V(cfdr, CFDR, 0xB3B9) /* type = RRF_E CONVERT TO FIXED (long HFP to 32) */ \ V(cfxr, CFXR, \ 0xB3BA) /* type = RRF_E CONVERT TO FIXED (extended HFP to 32) */ \ V(cger, CGER, 0xB3C8) /* type = RRF_E CONVERT TO FIXED (short HFP to 64) */ \ V(cgdr, CGDR, 0xB3C9) /* type = RRF_E CONVERT TO FIXED (long HFP to 64) */ \ V(cgxr, CGXR, \ 0xB3CA) /* type = RRF_E CONVERT TO FIXED (extended HFP to 64) */ \ V(ledtr, LEDTR, 0xB3D5) /* type = RRF_E LOAD ROUNDED (long to short DFP) */ \ V(fidtr, FIDTR, 0xB3D7) /* type = RRF_E LOAD FP INTEGER (long DFP) */ \ V(ldxtr, LDXTR, \ 0xB3DD) /* type = RRF_E LOAD ROUNDED (extended to long DFP) */ \ V(fixtr, FIXTR, 0xB3DF) /* type = RRF_E LOAD FP INTEGER (extended DFP) */ \ V(cgdtra, CGDTRA, \ 0xB3E1) /* type = RRF_E CONVERT TO FIXED (long DFP to 64) */ \ V(cgxtra, CGXTRA, \ 0xB3E9) /* type = RRF_E CONVERT TO FIXED (extended DFP to 64) */ \ V(cdgtra, CDGTRA, \ 0xB3F1) /* type = RRF_E CONVERT FROM FIXED (64 to long DFP) */ \ V(cxgtra, CXGTRA, \ 0xB3F9) /* type = RRF_E CONVERT FROM FIXED (64 to extended DFP) */ \ V(cfdtr, CFDTR, 0xB941) /* type = RRF_E CONVERT TO FIXED (long DFP to 32) */ \ V(clgdtr, CLGDTR, \ 0xB942) /* type = RRF_E CONVERT TO LOGICAL (long DFP to 64) */ \ V(clfdtr, CLFDTR, \ 0xB943) /* type = RRF_E CONVERT TO LOGICAL (long DFP to 32) */ \ V(cfxtr, CFXTR, \ 0xB949) /* type = RRF_E CONVERT TO FIXED (extended DFP to 32) */ \ V(clgxtr, CLGXTR, \ 0xB94A) /* type = RRF_E CONVERT TO LOGICAL (extended DFP to 64) */ \ V(clfxtr, CLFXTR, \ 0xB94B) /* type = RRF_E CONVERT TO LOGICAL (extended DFP to 32) */ \ V(cdlgtr, CDLGTR, \ 0xB952) /* type = RRF_E CONVERT FROM LOGICAL (64 to long DFP) */ \ V(cdlftr, CDLFTR, \ 0xB953) /* type = RRF_E CONVERT FROM LOGICAL (32 to long DFP) */ \ V(cxlgtr, CXLGTR, \ 0xB95A) /* type = RRF_E CONVERT FROM LOGICAL (64 to extended DFP) */ \ V(cxlftr, CXLFTR, \ 0xB95B) /* type = RRF_E CONVERT FROM LOGICAL (32 to extended DFP) */ #define S390_VRR_A_OPCODE_LIST(V) \ V(vpopct, VPOPCT, 0xE750) /* type = VRR_A VECTOR POPULATION COUNT */ \ V(vctz, VCTZ, 0xE752) /* type = VRR_A VECTOR COUNT TRAILING ZEROS */ \ V(vclz, VCLZ, 0xE753) /* type = VRR_A VECTOR COUNT LEADING ZEROS */ \ V(vlr, VLR, 0xE756) /* type = VRR_A VECTOR LOAD */ \ V(vistr, VISTR, 0xE75C) /* type = VRR_A VECTOR ISOLATE STRING */ \ V(vseg, VSEG, 0xE75F) /* type = VRR_A VECTOR SIGN EXTEND TO DOUBLEWORD */ \ V(vclgd, VCLGD, \ 0xE7C0) /* type = VRR_A VECTOR FP CONVERT TO LOGICAL 64-BIT */ \ V(vcdlg, VCDLG, \ 0xE7C1) /* type = VRR_A VECTOR FP CONVERT FROM LOGICAL 64-BIT */ \ V(vcgd, VCGD, 0xE7C2) /* type = VRR_A VECTOR FP CONVERT TO FIXED 64-BIT */ \ V(vcdg, VCDG, 0xE7C3) /* type = VRR_A VECTOR FP CONVERT FROM FIXED 64-BIT */ \ V(vlde, VLDE, 0xE7C4) /* type = VRR_A VECTOR FP LOAD LENGTHENED */ \ V(vled, VLED, 0xE7C5) /* type = VRR_A VECTOR FP LOAD ROUNDED */ \ V(vfi, VFI, 0xE7C7) /* type = VRR_A VECTOR LOAD FP INTEGER */ \ V(wfk, WFK, 0xE7CA) /* type = VRR_A VECTOR FP COMPARE AND SIGNAL SCALAR */ \ V(wfc, WFC, 0xE7CB) /* type = VRR_A VECTOR FP COMPARE SCALAR */ \ V(vfpso, VFPSO, 0xE7CC) /* type = VRR_A VECTOR FP PERFORM SIGN OPERATION */ \ V(vfsq, VFSQ, 0xE7CE) /* type = VRR_A VECTOR FP SQUARE ROOT */ \ V(vupll, VUPLL, 0xE7D4) /* type = VRR_A VECTOR UNPACK LOGICAL LOW */ \ V(vuplh, VUPLH, 0xE7D5) /* type = VRR_A VECTOR UNPACK LOGICAL HIGH */ \ V(vupl, VUPL, 0xE7D6) /* type = VRR_A VECTOR UNPACK LOW */ \ V(vuph, VUPH, 0xE7D7) /* type = VRR_A VECTOR UNPACK HIGH */ \ V(vtm, VTM, 0xE7D8) /* type = VRR_A VECTOR TEST UNDER MASK */ \ V(vecl, VECL, 0xE7D9) /* type = VRR_A VECTOR ELEMENT COMPARE LOGICAL */ \ V(vec, VEC, 0xE7DB) /* type = VRR_A VECTOR ELEMENT COMPARE */ \ V(vlc, VLC, 0xE7DE) /* type = VRR_A VECTOR LOAD COMPLEMENT */ \ V(vlp, VLP, 0xE7DF) /* type = VRR_A VECTOR LOAD POSITIVE */ #define S390_VRR_B_OPCODE_LIST(V) \ V(vfee, VFEE, 0xE780) /* type = VRR_B VECTOR FIND ELEMENT EQUAL */ \ V(vfene, VFENE, 0xE781) /* type = VRR_B VECTOR FIND ELEMENT NOT EQUAL */ \ V(vfae, VFAE, 0xE782) /* type = VRR_B VECTOR FIND ANY ELEMENT EQUAL */ \ V(vpkls, VPKLS, 0xE795) /* type = VRR_B VECTOR PACK LOGICAL SATURATE */ \ V(vpks, VPKS, 0xE797) /* type = VRR_B VECTOR PACK SATURATE */ \ V(vceq, VCEQ, 0xE7F8) /* type = VRR_B VECTOR COMPARE EQUAL */ \ V(vchl, VCHL, 0xE7F9) /* type = VRR_B VECTOR COMPARE HIGH LOGICAL */ \ V(vch, VCH, 0xE7FB) /* type = VRR_B VECTOR COMPARE HIGH */ #define S390_VRR_C_OPCODE_LIST(V) \ V(vmrl, VMRL, 0xE760) /* type = VRR_C VECTOR MERGE LOW */ \ V(vmrh, VMRH, 0xE761) /* type = VRR_C VECTOR MERGE HIGH */ \ V(vsum, VSUM, 0xE764) /* type = VRR_C VECTOR SUM ACROSS WORD */ \ V(vsumg, VSUMG, 0xE765) /* type = VRR_C VECTOR SUM ACROSS DOUBLEWORD */ \ V(vcksm, VCKSM, 0xE766) /* type = VRR_C VECTOR CHECKSUM */ \ V(vsumq, VSUMQ, 0xE767) /* type = VRR_C VECTOR SUM ACROSS QUADWORD */ \ V(vn, VN, 0xE768) /* type = VRR_C VECTOR AND */ \ V(vnc, VNC, 0xE769) /* type = VRR_C VECTOR AND WITH COMPLEMENT */ \ V(vo, VO, 0xE76A) /* type = VRR_C VECTOR OR */ \ V(vno, VNO, 0xE76B) /* type = VRR_C VECTOR NOR */ \ V(vx, VX, 0xE76D) /* type = VRR_C VECTOR EXCLUSIVE OR */ \ V(veslv, VESLV, 0xE770) /* type = VRR_C VECTOR ELEMENT SHIFT LEFT */ \ V(verllv, VERLLV, \ 0xE773) /* type = VRR_C VECTOR ELEMENT ROTATE LEFT LOGICAL */ \ V(vsl, VSL, 0xE774) /* type = VRR_C VECTOR SHIFT LEFT */ \ V(vslb, VSLB, 0xE775) /* type = VRR_C VECTOR SHIFT LEFT BY BYTE */ \ V(vesrlv, VESRLV, \ 0xE778) /* type = VRR_C VECTOR ELEMENT SHIFT RIGHT LOGICAL */ \ V(vesrav, VESRAV, \ 0xE77A) /* type = VRR_C VECTOR ELEMENT SHIFT RIGHT ARITHMETIC */ \ V(vsrl, VSRL, 0xE77C) /* type = VRR_C VECTOR SHIFT RIGHT LOGICAL */ \ V(vsrlb, VSRLB, \ 0xE77D) /* type = VRR_C VECTOR SHIFT RIGHT LOGICAL BY BYTE */ \ V(vsra, VSRA, 0xE77E) /* type = VRR_C VECTOR SHIFT RIGHT ARITHMETIC */ \ V(vsrab, VSRAB, \ 0xE77F) /* type = VRR_C VECTOR SHIFT RIGHT ARITHMETIC BY BYTE */ \ V(vpdi, VPDI, 0xE784) /* type = VRR_C VECTOR PERMUTE DOUBLEWORD IMMEDIATE */ \ V(vpk, VPK, 0xE794) /* type = VRR_C VECTOR PACK */ \ V(vmlh, VMLH, 0xE7A1) /* type = VRR_C VECTOR MULTIPLY LOGICAL HIGH */ \ V(vml, VML, 0xE7A2) /* type = VRR_C VECTOR MULTIPLY LOW */ \ V(vmh, VMH, 0xE7A3) /* type = VRR_C VECTOR MULTIPLY HIGH */ \ V(vmle, VMLE, 0xE7A4) /* type = VRR_C VECTOR MULTIPLY LOGICAL EVEN */ \ V(vmlo, VMLO, 0xE7A5) /* type = VRR_C VECTOR MULTIPLY LOGICAL ODD */ \ V(vme, VME, 0xE7A6) /* type = VRR_C VECTOR MULTIPLY EVEN */ \ V(vmo, VMO, 0xE7A7) /* type = VRR_C VECTOR MULTIPLY ODD */ \ V(vgfm, VGFM, 0xE7B4) /* type = VRR_C VECTOR GALOIS FIELD MULTIPLY SUM */ \ V(vfs, VFS, 0xE7E2) /* type = VRR_C VECTOR FP SUBTRACT */ \ V(vfa, VFA, 0xE7E3) /* type = VRR_C VECTOR FP ADD */ \ V(vfd, VFD, 0xE7E5) /* type = VRR_C VECTOR FP DIVIDE */ \ V(vfm, VFM, 0xE7E7) /* type = VRR_C VECTOR FP MULTIPLY */ \ V(vfce, VFCE, 0xE7E8) /* type = VRR_C VECTOR FP COMPARE EQUAL */ \ V(vfche, VFCHE, 0xE7EA) /* type = VRR_C VECTOR FP COMPARE HIGH OR EQUAL */ \ V(vfch, VFCH, 0xE7EB) /* type = VRR_C VECTOR FP COMPARE HIGH */ \ V(vavgl, VAVGL, 0xE7F0) /* type = VRR_C VECTOR AVERAGE LOGICAL */ \ V(vacc, VACC, 0xE7F1) /* type = VRR_C VECTOR ADD COMPUTE CARRY */ \ V(vavg, VAVG, 0xE7F2) /* type = VRR_C VECTOR AVERAGE */ \ V(va, VA, 0xE7F3) /* type = VRR_C VECTOR ADD */ \ V(vscbi, VSCBI, \ 0xE7F5) /* type = VRR_C VECTOR SUBTRACT COMPUTE BORROW INDICATION */ \ V(vs, VS, 0xE7F7) /* type = VRR_C VECTOR SUBTRACT */ \ V(vmnl, VMNL, 0xE7FC) /* type = VRR_C VECTOR MINIMUM LOGICAL */ \ V(vmxl, VMXL, 0xE7FD) /* type = VRR_C VECTOR MAXIMUM LOGICAL */ \ V(vmn, VMN, 0xE7FE) /* type = VRR_C VECTOR MINIMUM */ \ V(vmx, VMX, 0xE7FF) /* type = VRR_C VECTOR MAXIMUM */ #define S390_VRI_A_OPCODE_LIST(V) \ V(vleib, VLEIB, 0xE740) /* type = VRI_A VECTOR LOAD ELEMENT IMMEDIATE (8) */ \ V(vleih, VLEIH, \ 0xE741) /* type = VRI_A VECTOR LOAD ELEMENT IMMEDIATE (16) */ \ V(vleig, VLEIG, \ 0xE742) /* type = VRI_A VECTOR LOAD ELEMENT IMMEDIATE (64) */ \ V(vleif, VLEIF, \ 0xE743) /* type = VRI_A VECTOR LOAD ELEMENT IMMEDIATE (32) */ \ V(vgbm, VGBM, 0xE744) /* type = VRI_A VECTOR GENERATE BYTE MASK */ \ V(vrepi, VREPI, 0xE745) /* type = VRI_A VECTOR REPLICATE IMMEDIATE */ #define S390_VRR_D_OPCODE_LIST(V) \ V(vstrc, VSTRC, 0xE78A) /* type = VRR_D VECTOR STRING RANGE COMPARE */ \ V(vmalh, VMALH, \ 0xE7A9) /* type = VRR_D VECTOR MULTIPLY AND ADD LOGICAL HIGH */ \ V(vmal, VMAL, 0xE7AA) /* type = VRR_D VECTOR MULTIPLY AND ADD LOW */ \ V(vmah, VMAH, 0xE7AB) /* type = VRR_D VECTOR MULTIPLY AND ADD HIGH */ \ V(vmale, VMALE, \ 0xE7AC) /* type = VRR_D VECTOR MULTIPLY AND ADD LOGICAL EVEN */ \ V(vmalo, VMALO, \ 0xE7AD) /* type = VRR_D VECTOR MULTIPLY AND ADD LOGICAL ODD */ \ V(vmae, VMAE, 0xE7AE) /* type = VRR_D VECTOR MULTIPLY AND ADD EVEN */ \ V(vmao, VMAO, 0xE7AF) /* type = VRR_D VECTOR MULTIPLY AND ADD ODD */ \ V(vaccc, VACCC, \ 0xE7B9) /* type = VRR_D VECTOR ADD WITH CARRY COMPUTE CARRY */ \ V(vac, VAC, 0xE7BB) /* type = VRR_D VECTOR ADD WITH CARRY */ \ V(vgfma, VGFMA, \ 0xE7BC) /* type = VRR_D VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE */ \ V(vsbcbi, VSBCBI, 0xE7BD) /* type = VRR_D VECTOR SUBTRACT WITH BORROW */ \ /* COMPUTE BORROW INDICATION */ \ V(vsbi, VSBI, \ 0xE7BF) /* type = VRR_D VECTOR SUBTRACT WITH BORROW INDICATION */ #define S390_VRI_B_OPCODE_LIST(V) \ V(vgm, VGM, 0xE746) /* type = VRI_B VECTOR GENERATE MASK */ #define S390_VRR_E_OPCODE_LIST(V) \ V(vperm, VPERM, 0xE78C) /* type = VRR_E VECTOR PERMUTE */ \ V(vsel, VSEL, 0xE78D) /* type = VRR_E VECTOR SELECT */ \ V(vfms, VFMS, 0xE78E) /* type = VRR_E VECTOR FP MULTIPLY AND SUBTRACT */ \ V(vfma, VFMA, 0xE78F) /* type = VRR_E VECTOR FP MULTIPLY AND ADD */ #define S390_VRI_C_OPCODE_LIST(V) \ V(vrep, VREP, 0xE74D) /* type = VRI_C VECTOR REPLICATE */ #define S390_VRI_D_OPCODE_LIST(V) \ V(verim, VERIM, \ 0xE772) /* type = VRI_D VECTOR ELEMENT ROTATE AND INSERT UNDER MASK */ \ V(vsldb, VSLDB, 0xE777) /* type = VRI_D VECTOR SHIFT LEFT DOUBLE BY BYTE */ #define S390_VRR_F_OPCODE_LIST(V) \ V(vlvgp, VLVGP, 0xE762) /* type = VRR_F VECTOR LOAD VR FROM GRS DISJOINT */ #define S390_RIS_OPCODE_LIST(V) \ V(cgib, CGIB, \ 0xECFC) /* type = RIS COMPARE IMMEDIATE AND BRANCH (64<-8) */ \ V(clgib, CLGIB, \ 0xECFD) /* type = RIS COMPARE LOGICAL IMMEDIATE AND BRANCH (64<-8) */ \ V(cib, CIB, 0xECFE) /* type = RIS COMPARE IMMEDIATE AND BRANCH (32<-8) */ \ V(clib, CLIB, \ 0xECFF) /* type = RIS COMPARE LOGICAL IMMEDIATE AND BRANCH (32<-8) */ #define S390_VRI_E_OPCODE_LIST(V) \ V(vftci, VFTCI, \ 0xE74A) /* type = VRI_E VECTOR FP TEST DATA CLASS IMMEDIATE */ #define S390_RSL_A_OPCODE_LIST(V) \ V(tp, TP, 0xEBC0) /* type = RSL_A TEST DECIMAL */ #define S390_RSL_B_OPCODE_LIST(V) \ V(cpdt, CPDT, 0xEDAC) /* type = RSL_B CONVERT TO PACKED (from long DFP) */ \ V(cpxt, CPXT, \ 0xEDAD) /* type = RSL_B CONVERT TO PACKED (from extended DFP) */ \ V(cdpt, CDPT, 0xEDAE) /* type = RSL_B CONVERT FROM PACKED (to long DFP) */ \ V(cxpt, CXPT, \ 0xEDAF) /* type = RSL_B CONVERT FROM PACKED (to extended DFP) */ \ V(czdt, CZDT, 0xEDA8) /* type = RSL CONVERT TO ZONED (from long DFP) */ \ V(czxt, CZXT, 0xEDA9) /* type = RSL CONVERT TO ZONED (from extended DFP) */ \ V(cdzt, CDZT, 0xEDAA) /* type = RSL CONVERT FROM ZONED (to long DFP) */ \ V(cxzt, CXZT, 0xEDAB) /* type = RSL CONVERT FROM ZONED (to extended DFP) */ #define S390_SI_OPCODE_LIST(V) \ V(tm, TM, 0x91) /* type = SI TEST UNDER MASK */ \ V(mvi, MVI, 0x92) /* type = SI MOVE (immediate) */ \ V(ni, NI, 0x94) /* type = SI AND (immediate) */ \ V(cli, CLI, 0x95) /* type = SI COMPARE LOGICAL (immediate) */ \ V(oi, OI, 0x96) /* type = SI OR (immediate) */ \ V(xi, XI, 0x97) /* type = SI EXCLUSIVE OR (immediate) */ \ V(stnsm, STNSM, 0xAC) /* type = SI STORE THEN AND SYSTEM MASK */ \ V(stosm, STOSM, 0xAD) /* type = SI STORE THEN OR SYSTEM MASK */ \ V(mc, MC, 0xAF) /* type = SI MONITOR CALL */ #define S390_SIL_OPCODE_LIST(V) \ V(mvhhi, MVHHI, 0xE544) /* type = SIL MOVE (16<-16) */ \ V(mvghi, MVGHI, 0xE548) /* type = SIL MOVE (64<-16) */ \ V(mvhi, MVHI, 0xE54C) /* type = SIL MOVE (32<-16) */ \ V(chhsi, CHHSI, \ 0xE554) /* type = SIL COMPARE HALFWORD IMMEDIATE (16<-16) */ \ V(clhhsi, CLHHSI, \ 0xE555) /* type = SIL COMPARE LOGICAL IMMEDIATE (16<-16) */ \ V(cghsi, CGHSI, \ 0xE558) /* type = SIL COMPARE HALFWORD IMMEDIATE (64<-16) */ \ V(clghsi, CLGHSI, \ 0xE559) /* type = SIL COMPARE LOGICAL IMMEDIATE (64<-16) */ \ V(chsi, CHSI, 0xE55C) /* type = SIL COMPARE HALFWORD IMMEDIATE (32<-16) */ \ V(clfhsi, CLFHSI, \ 0xE55D) /* type = SIL COMPARE LOGICAL IMMEDIATE (32<-16) */ \ V(tbegin, TBEGIN, \ 0xE560) /* type = SIL TRANSACTION BEGIN (nonconstrained) */ \ V(tbeginc, TBEGINC, \ 0xE561) /* type = SIL TRANSACTION BEGIN (constrained) */ #define S390_VRS_A_OPCODE_LIST(V) \ V(vesl, VESL, 0xE730) /* type = VRS_A VECTOR ELEMENT SHIFT LEFT */ \ V(verll, VERLL, \ 0xE733) /* type = VRS_A VECTOR ELEMENT ROTATE LEFT LOGICAL */ \ V(vlm, VLM, 0xE736) /* type = VRS_A VECTOR LOAD MULTIPLE */ \ V(vesrl, VESRL, \ 0xE738) /* type = VRS_A VECTOR ELEMENT SHIFT RIGHT LOGICAL */ \ V(vesra, VESRA, \ 0xE73A) /* type = VRS_A VECTOR ELEMENT SHIFT RIGHT ARITHMETIC */ \ V(vstm, VSTM, 0xE73E) /* type = VRS_A VECTOR STORE MULTIPLE */ #define S390_RIL_A_OPCODE_LIST(V) \ V(lgfi, LGFI, 0xC01) /* type = RIL_A LOAD IMMEDIATE (64<-32) */ \ V(xihf, XIHF, 0xC06) /* type = RIL_A EXCLUSIVE OR IMMEDIATE (high) */ \ V(xilf, XILF, 0xC07) /* type = RIL_A EXCLUSIVE OR IMMEDIATE (low) */ \ V(iihf, IIHF, 0xC08) /* type = RIL_A INSERT IMMEDIATE (high) */ \ V(iilf, IILF, 0xC09) /* type = RIL_A INSERT IMMEDIATE (low) */ \ V(nihf, NIHF, 0xC0A) /* type = RIL_A AND IMMEDIATE (high) */ \ V(nilf, NILF, 0xC0B) /* type = RIL_A AND IMMEDIATE (low) */ \ V(oihf, OIHF, 0xC0C) /* type = RIL_A OR IMMEDIATE (high) */ \ V(oilf, OILF, 0xC0D) /* type = RIL_A OR IMMEDIATE (low) */ \ V(llihf, LLIHF, 0xC0E) /* type = RIL_A LOAD LOGICAL IMMEDIATE (high) */ \ V(llilf, LLILF, 0xC0F) /* type = RIL_A LOAD LOGICAL IMMEDIATE (low) */ \ V(msgfi, MSGFI, 0xC20) /* type = RIL_A MULTIPLY SINGLE IMMEDIATE (64<-32) */ \ V(msfi, MSFI, 0xC21) /* type = RIL_A MULTIPLY SINGLE IMMEDIATE (32) */ \ V(slgfi, SLGFI, \ 0xC24) /* type = RIL_A SUBTRACT LOGICAL IMMEDIATE (64<-32) */ \ V(slfi, SLFI, 0xC25) /* type = RIL_A SUBTRACT LOGICAL IMMEDIATE (32) */ \ V(agfi, AGFI, 0xC28) /* type = RIL_A ADD IMMEDIATE (64<-32) */ \ V(afi, AFI, 0xC29) /* type = RIL_A ADD IMMEDIATE (32) */ \ V(algfi, ALGFI, 0xC2A) /* type = RIL_A ADD LOGICAL IMMEDIATE (64<-32) */ \ V(alfi, ALFI, 0xC2B) /* type = RIL_A ADD LOGICAL IMMEDIATE (32) */ \ V(cgfi, CGFI, 0xC2C) /* type = RIL_A COMPARE IMMEDIATE (64<-32) */ \ V(cfi, CFI, 0xC2D) /* type = RIL_A COMPARE IMMEDIATE (32) */ \ V(clgfi, CLGFI, 0xC2E) /* type = RIL_A COMPARE LOGICAL IMMEDIATE (64<-32) */ \ V(clfi, CLFI, 0xC2F) /* type = RIL_A COMPARE LOGICAL IMMEDIATE (32) */ \ V(aih, AIH, 0xCC8) /* type = RIL_A ADD IMMEDIATE HIGH (32) */ \ V(alsih, ALSIH, \ 0xCCA) /* type = RIL_A ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32) */ \ V(alsihn, ALSIHN, \ 0xCCB) /* type = RIL_A ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32) */ \ V(cih, CIH, 0xCCD) /* type = RIL_A COMPARE IMMEDIATE HIGH (32) */ \ V(clih, CLIH, 0xCCF) /* type = RIL_A COMPARE LOGICAL IMMEDIATE HIGH (32) */ #define S390_RIL_B_OPCODE_LIST(V) \ V(larl, LARL, 0xC00) /* type = RIL_B LOAD ADDRESS RELATIVE LONG */ \ V(brasl, BRASL, 0xC05) /* type = RIL_B BRANCH RELATIVE AND SAVE LONG */ \ V(llhrl, LLHRL, \ 0xC42) /* type = RIL_B LOAD LOGICAL HALFWORD RELATIVE LONG (32<-16) */ \ V(lghrl, LGHRL, \ 0xC44) /* type = RIL_B LOAD HALFWORD RELATIVE LONG (64<-16) */ \ V(lhrl, LHRL, 0xC45) /* type = RIL_B LOAD HALFWORD RELATIVE LONG (32<-16) */ \ V(llghrl, LLGHRL, \ 0xC46) /* type = RIL_B LOAD LOGICAL HALFWORD RELATIVE LONG (64<-16) */ \ V(sthrl, STHRL, 0xC47) /* type = RIL_B STORE HALFWORD RELATIVE LONG (16) */ \ V(lgrl, LGRL, 0xC48) /* type = RIL_B LOAD RELATIVE LONG (64) */ \ V(stgrl, STGRL, 0xC4B) /* type = RIL_B STORE RELATIVE LONG (64) */ \ V(lgfrl, LGFRL, 0xC4C) /* type = RIL_B LOAD RELATIVE LONG (64<-32) */ \ V(lrl, LRL, 0xC4D) /* type = RIL_B LOAD RELATIVE LONG (32) */ \ V(llgfrl, LLGFRL, \ 0xC4E) /* type = RIL_B LOAD LOGICAL RELATIVE LONG (64<-32) */ \ V(strl, STRL, 0xC4F) /* type = RIL_B STORE RELATIVE LONG (32) */ \ V(exrl, EXRL, 0xC60) /* type = RIL_B EXECUTE RELATIVE LONG */ \ V(cghrl, CGHRL, \ 0xC64) /* type = RIL_B COMPARE HALFWORD RELATIVE LONG (64<-16) */ \ V(chrl, CHRL, \ 0xC65) /* type = RIL_B COMPARE HALFWORD RELATIVE LONG (32<-16) */ \ V(clghrl, CLGHRL, \ 0xC66) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (64<-16) */ \ V(clhrl, CLHRL, \ 0xC67) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (32<-16) */ \ V(cgrl, CGRL, 0xC68) /* type = RIL_B COMPARE RELATIVE LONG (64) */ \ V(clgrl, CLGRL, 0xC6A) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (64) */ \ V(cgfrl, CGFRL, 0xC6C) /* type = RIL_B COMPARE RELATIVE LONG (64<-32) */ \ V(crl, CRL, 0xC6D) /* type = RIL_B COMPARE RELATIVE LONG (32) */ \ V(clgfrl, CLGFRL, \ 0xC6E) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (64<-32) */ \ V(clrl, CLRL, 0xC6F) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (32) */ \ V(brcth, BRCTH, 0xCC6) /* type = RIL_B BRANCH RELATIVE ON COUNT HIGH (32) */ #define S390_VRS_B_OPCODE_LIST(V) \ V(vlvg, VLVG, 0xE722) /* type = VRS_B VECTOR LOAD VR ELEMENT FROM GR */ \ V(vll, VLL, 0xE737) /* type = VRS_B VECTOR LOAD WITH LENGTH */ \ V(vstl, VSTL, 0xE73F) /* type = VRS_B VECTOR STORE WITH LENGTH */ #define S390_RIL_C_OPCODE_LIST(V) \ V(brcl, BRCL, 0xC04) /* type = RIL_C BRANCH RELATIVE ON CONDITION LONG */ \ V(pfdrl, PFDRL, 0xC62) /* type = RIL_C PREFETCH DATA RELATIVE LONG */ #define S390_VRS_C_OPCODE_LIST(V) \ V(vlgv, VLGV, 0xE721) /* type = VRS_C VECTOR LOAD GR FROM VR ELEMENT */ #define S390_RI_A_OPCODE_LIST(V) \ V(iihh, IIHH, 0xA50) /* type = RI_A INSERT IMMEDIATE (high high) */ \ V(iihl, IIHL, 0xA51) /* type = RI_A INSERT IMMEDIATE (high low) */ \ V(iilh, IILH, 0xA52) /* type = RI_A INSERT IMMEDIATE (low high) */ \ V(iill, IILL, 0xA53) /* type = RI_A INSERT IMMEDIATE (low low) */ \ V(nihh, NIHH, 0xA54) /* type = RI_A AND IMMEDIATE (high high) */ \ V(nihl, NIHL, 0xA55) /* type = RI_A AND IMMEDIATE (high low) */ \ V(nilh, NILH, 0xA56) /* type = RI_A AND IMMEDIATE (low high) */ \ V(nill, NILL, 0xA57) /* type = RI_A AND IMMEDIATE (low low) */ \ V(oihh, OIHH, 0xA58) /* type = RI_A OR IMMEDIATE (high high) */ \ V(oihl, OIHL, 0xA59) /* type = RI_A OR IMMEDIATE (high low) */ \ V(oilh, OILH, 0xA5A) /* type = RI_A OR IMMEDIATE (low high) */ \ V(oill, OILL, 0xA5B) /* type = RI_A OR IMMEDIATE (low low) */ \ V(llihh, LLIHH, 0xA5C) /* type = RI_A LOAD LOGICAL IMMEDIATE (high high) */ \ V(llihl, LLIHL, 0xA5D) /* type = RI_A LOAD LOGICAL IMMEDIATE (high low) */ \ V(llilh, LLILH, 0xA5E) /* type = RI_A LOAD LOGICAL IMMEDIATE (low high) */ \ V(llill, LLILL, 0xA5F) /* type = RI_A LOAD LOGICAL IMMEDIATE (low low) */ \ V(tmlh, TMLH, 0xA70) /* type = RI_A TEST UNDER MASK (low high) */ \ V(tmll, TMLL, 0xA71) /* type = RI_A TEST UNDER MASK (low low) */ \ V(tmhh, TMHH, 0xA72) /* type = RI_A TEST UNDER MASK (high high) */ \ V(tmhl, TMHL, 0xA73) /* type = RI_A TEST UNDER MASK (high low) */ \ V(lhi, LHI, 0xA78) /* type = RI_A LOAD HALFWORD IMMEDIATE (32)<-16 */ \ V(lghi, LGHI, 0xA79) /* type = RI_A LOAD HALFWORD IMMEDIATE (64<-16) */ \ V(ahi, AHI, 0xA7A) /* type = RI_A ADD HALFWORD IMMEDIATE (32<-16) */ \ V(aghi, AGHI, 0xA7B) /* type = RI_A ADD HALFWORD IMMEDIATE (64<-16) */ \ V(mhi, MHI, 0xA7C) /* type = RI_A MULTIPLY HALFWORD IMMEDIATE (32<-16) */ \ V(mghi, MGHI, 0xA7D) /* type = RI_A MULTIPLY HALFWORD IMMEDIATE (64<-16) */ \ V(chi, CHI, 0xA7E) /* type = RI_A COMPARE HALFWORD IMMEDIATE (32<-16) */ \ V(cghi, CGHI, 0xA7F) /* type = RI_A COMPARE HALFWORD IMMEDIATE (64<-16) */ #define S390_RSI_OPCODE_LIST(V) \ V(brxh, BRXH, 0x84) /* type = RSI BRANCH RELATIVE ON INDEX HIGH (32) */ \ V(brxle, BRXLE, \ 0x85) /* type = RSI BRANCH RELATIVE ON INDEX LOW OR EQ. (32) */ #define S390_RI_B_OPCODE_LIST(V) \ V(bras, BRAS, 0xA75) /* type = RI_B BRANCH RELATIVE AND SAVE */ \ V(brct, BRCT, 0xA76) /* type = RI_B BRANCH RELATIVE ON COUNT (32) */ \ V(brctg, BRCTG, 0xA77) /* type = RI_B BRANCH RELATIVE ON COUNT (64) */ #define S390_RI_C_OPCODE_LIST(V) \ V(brc, BRC, 0xA74) /* type = RI_C BRANCH RELATIVE ON CONDITION */ #define S390_SMI_OPCODE_LIST(V) \ V(bpp, BPP, 0xC7) /* type = SMI BRANCH PREDICTION PRELOAD */ #define S390_RXY_A_OPCODE_LIST(V) \ V(ltg, LTG, 0xE302) /* type = RXY_A LOAD AND TEST (64) */ \ V(lrag, LRAG, 0xE303) /* type = RXY_A LOAD REAL ADDRESS (64) */ \ V(lg, LG, 0xE304) /* type = RXY_A LOAD (64) */ \ V(cvby, CVBY, 0xE306) /* type = RXY_A CONVERT TO BINARY (32) */ \ V(ag, AG, 0xE308) /* type = RXY_A ADD (64) */ \ V(sg, SG, 0xE309) /* type = RXY_A SUBTRACT (64) */ \ V(alg, ALG, 0xE30A) /* type = RXY_A ADD LOGICAL (64) */ \ V(slg, SLG, 0xE30B) /* type = RXY_A SUBTRACT LOGICAL (64) */ \ V(msg, MSG, 0xE30C) /* type = RXY_A MULTIPLY SINGLE (64) */ \ V(dsg, DSG, 0xE30D) /* type = RXY_A DIVIDE SINGLE (64) */ \ V(cvbg, CVBG, 0xE30E) /* type = RXY_A CONVERT TO BINARY (64) */ \ V(lrvg, LRVG, 0xE30F) /* type = RXY_A LOAD REVERSED (64) */ \ V(lt_z, LT, 0xE312) /* type = RXY_A LOAD AND TEST (32) */ \ V(lray, LRAY, 0xE313) /* type = RXY_A LOAD REAL ADDRESS (32) */ \ V(lgf, LGF, 0xE314) /* type = RXY_A LOAD (64<-32) */ \ V(lgh, LGH, 0xE315) /* type = RXY_A LOAD HALFWORD (64<-16) */ \ V(llgf, LLGF, 0xE316) /* type = RXY_A LOAD LOGICAL (64<-32) */ \ V(llgt, LLGT, \ 0xE317) /* type = RXY_A LOAD LOGICAL THIRTY ONE BITS (64<-31) */ \ V(agf, AGF, 0xE318) /* type = RXY_A ADD (64<-32) */ \ V(sgf, SGF, 0xE319) /* type = RXY_A SUBTRACT (64<-32) */ \ V(algf, ALGF, 0xE31A) /* type = RXY_A ADD LOGICAL (64<-32) */ \ V(slgf, SLGF, 0xE31B) /* type = RXY_A SUBTRACT LOGICAL (64<-32) */ \ V(msgf, MSGF, 0xE31C) /* type = RXY_A MULTIPLY SINGLE (64<-32) */ \ V(dsgf, DSGF, 0xE31D) /* type = RXY_A DIVIDE SINGLE (64<-32) */ \ V(lrv, LRV, 0xE31E) /* type = RXY_A LOAD REVERSED (32) */ \ V(lrvh, LRVH, 0xE31F) /* type = RXY_A LOAD REVERSED (16) */ \ V(cg, CG, 0xE320) /* type = RXY_A COMPARE (64) */ \ V(clg, CLG, 0xE321) /* type = RXY_A COMPARE LOGICAL (64) */ \ V(stg, STG, 0xE324) /* type = RXY_A STORE (64) */ \ V(ntstg, NTSTG, 0xE325) /* type = RXY_A NONTRANSACTIONAL STORE (64) */ \ V(cvdy, CVDY, 0xE326) /* type = RXY_A CONVERT TO DECIMAL (32) */ \ V(lzrg, LZRG, 0xE32A) /* type = RXY_A LOAD AND ZERO RIGHTMOST BYTE (64) */ \ V(cvdg, CVDG, 0xE32E) /* type = RXY_A CONVERT TO DECIMAL (64) */ \ V(strvg, STRVG, 0xE32F) /* type = RXY_A STORE REVERSED (64) */ \ V(cgf, CGF, 0xE330) /* type = RXY_A COMPARE (64<-32) */ \ V(clgf, CLGF, 0xE331) /* type = RXY_A COMPARE LOGICAL (64<-32) */ \ V(ltgf, LTGF, 0xE332) /* type = RXY_A LOAD AND TEST (64<-32) */ \ V(cgh, CGH, 0xE334) /* type = RXY_A COMPARE HALFWORD (64<-16) */ \ V(llzrgf, LLZRGF, \ 0xE33A) /* type = RXY_A LOAD LOGICAL AND ZERO RIGHTMOST BYTE (64<-32) */ \ V(lzrf, LZRF, 0xE33B) /* type = RXY_A LOAD AND ZERO RIGHTMOST BYTE (32) */ \ V(strv, STRV, 0xE33E) /* type = RXY_A STORE REVERSED (32) */ \ V(strvh, STRVH, 0xE33F) /* type = RXY_A STORE REVERSED (16) */ \ V(bctg, BCTG, 0xE346) /* type = RXY_A BRANCH ON COUNT (64) */ \ V(sty, STY, 0xE350) /* type = RXY_A STORE (32) */ \ V(msy, MSY, 0xE351) /* type = RXY_A MULTIPLY SINGLE (32) */ \ V(ny, NY, 0xE354) /* type = RXY_A AND (32) */ \ V(cly, CLY, 0xE355) /* type = RXY_A COMPARE LOGICAL (32) */ \ V(oy, OY, 0xE356) /* type = RXY_A OR (32) */ \ V(xy, XY, 0xE357) /* type = RXY_A EXCLUSIVE OR (32) */ \ V(ly, LY, 0xE358) /* type = RXY_A LOAD (32) */ \ V(cy, CY, 0xE359) /* type = RXY_A COMPARE (32) */ \ V(ay, AY, 0xE35A) /* type = RXY_A ADD (32) */ \ V(sy, SY, 0xE35B) /* type = RXY_A SUBTRACT (32) */ \ V(mfy, MFY, 0xE35C) /* type = RXY_A MULTIPLY (64<-32) */ \ V(aly, ALY, 0xE35E) /* type = RXY_A ADD LOGICAL (32) */ \ V(sly, SLY, 0xE35F) /* type = RXY_A SUBTRACT LOGICAL (32) */ \ V(sthy, STHY, 0xE370) /* type = RXY_A STORE HALFWORD (16) */ \ V(lay, LAY, 0xE371) /* type = RXY_A LOAD ADDRESS */ \ V(stcy, STCY, 0xE372) /* type = RXY_A STORE CHARACTER */ \ V(icy, ICY, 0xE373) /* type = RXY_A INSERT CHARACTER */ \ V(laey, LAEY, 0xE375) /* type = RXY_A LOAD ADDRESS EXTENDED */ \ V(lb, LB, 0xE376) /* type = RXY_A LOAD BYTE (32<-8) */ \ V(lgb, LGB, 0xE377) /* type = RXY_A LOAD BYTE (64<-8) */ \ V(lhy, LHY, 0xE378) /* type = RXY_A LOAD HALFWORD (32)<-16 */ \ V(chy, CHY, 0xE379) /* type = RXY_A COMPARE HALFWORD (32<-16) */ \ V(ahy, AHY, 0xE37A) /* type = RXY_A ADD HALFWORD (32<-16) */ \ V(shy, SHY, 0xE37B) /* type = RXY_A SUBTRACT HALFWORD (32<-16) */ \ V(mhy, MHY, 0xE37C) /* type = RXY_A MULTIPLY HALFWORD (32<-16) */ \ V(ng, NG, 0xE380) /* type = RXY_A AND (64) */ \ V(og, OG, 0xE381) /* type = RXY_A OR (64) */ \ V(xg, XG, 0xE382) /* type = RXY_A EXCLUSIVE OR (64) */ \ V(lgat, LGAT, 0xE385) /* type = RXY_A LOAD AND TRAP (64) */ \ V(mlg, MLG, 0xE386) /* type = RXY_A MULTIPLY LOGICAL (128<-64) */ \ V(dlg, DLG, 0xE387) /* type = RXY_A DIVIDE LOGICAL (64<-128) */ \ V(alcg, ALCG, 0xE388) /* type = RXY_A ADD LOGICAL WITH CARRY (64) */ \ V(slbg, SLBG, 0xE389) /* type = RXY_A SUBTRACT LOGICAL WITH BORROW (64) */ \ V(stpq, STPQ, 0xE38E) /* type = RXY_A STORE PAIR TO QUADWORD */ \ V(lpq, LPQ, 0xE38F) /* type = RXY_A LOAD PAIR FROM QUADWORD (64&64<-128) */ \ V(llgc, LLGC, 0xE390) /* type = RXY_A LOAD LOGICAL CHARACTER (64<-8) */ \ V(llgh, LLGH, 0xE391) /* type = RXY_A LOAD LOGICAL HALFWORD (64<-16) */ \ V(llc, LLC, 0xE394) /* type = RXY_A LOAD LOGICAL CHARACTER (32<-8) */ \ V(llh, LLH, 0xE395) /* type = RXY_A LOAD LOGICAL HALFWORD (32<-16) */ \ V(ml, ML, 0xE396) /* type = RXY_A MULTIPLY LOGICAL (64<-32) */ \ V(dl, DL, 0xE397) /* type = RXY_A DIVIDE LOGICAL (32<-64) */ \ V(alc, ALC, 0xE398) /* type = RXY_A ADD LOGICAL WITH CARRY (32) */ \ V(slb, SLB, 0xE399) /* type = RXY_A SUBTRACT LOGICAL WITH BORROW (32) */ \ V(llgtat, LLGTAT, \ 0xE39C) /* type = RXY_A LOAD LOGICAL THIRTY ONE BITS AND TRAP (64<-31) */ \ V(llgfat, LLGFAT, 0xE39D) /* type = RXY_A LOAD LOGICAL AND TRAP (64<-32) */ \ V(lat, LAT, 0xE39F) /* type = RXY_A LOAD AND TRAP (32L<-32) */ \ V(lbh, LBH, 0xE3C0) /* type = RXY_A LOAD BYTE HIGH (32<-8) */ \ V(llch, LLCH, 0xE3C2) /* type = RXY_A LOAD LOGICAL CHARACTER HIGH (32<-8) */ \ V(stch, STCH, 0xE3C3) /* type = RXY_A STORE CHARACTER HIGH (8) */ \ V(lhh, LHH, 0xE3C4) /* type = RXY_A LOAD HALFWORD HIGH (32<-16) */ \ V(llhh, LLHH, 0xE3C6) /* type = RXY_A LOAD LOGICAL HALFWORD HIGH (32<-16) */ \ V(sthh, STHH, 0xE3C7) /* type = RXY_A STORE HALFWORD HIGH (16) */ \ V(lfhat, LFHAT, 0xE3C8) /* type = RXY_A LOAD HIGH AND TRAP (32H<-32) */ \ V(lfh, LFH, 0xE3CA) /* type = RXY_A LOAD HIGH (32) */ \ V(stfh, STFH, 0xE3CB) /* type = RXY_A STORE HIGH (32) */ \ V(chf, CHF, 0xE3CD) /* type = RXY_A COMPARE HIGH (32) */ \ V(clhf, CLHF, 0xE3CF) /* type = RXY_A COMPARE LOGICAL HIGH (32) */ \ V(ley, LEY, 0xED64) /* type = RXY_A LOAD (short) */ \ V(ldy, LDY, 0xED65) /* type = RXY_A LOAD (long) */ \ V(stey, STEY, 0xED66) /* type = RXY_A STORE (short) */ \ V(stdy, STDY, 0xED67) /* type = RXY_A STORE (long) */ \ V(msc, MSC, 0xE353) /* type = RSY_A MULTIPLY SINGLE (32) */ \ V(msgc, MSGC, 0xE383) /* type = RSY_A MULTIPLY SINGLE (64) */ #define S390_RXY_B_OPCODE_LIST(V) \ V(pfd, PFD, 0xE336) /* type = RXY_B PREFETCH DATA */ #define S390_SIY_OPCODE_LIST(V) \ V(tmy, TMY, 0xEB51) /* type = SIY TEST UNDER MASK */ \ V(mviy, MVIY, 0xEB52) /* type = SIY MOVE (immediate) */ \ V(niy, NIY, 0xEB54) /* type = SIY AND (immediate) */ \ V(cliy, CLIY, 0xEB55) /* type = SIY COMPARE LOGICAL (immediate) */ \ V(oiy, OIY, 0xEB56) /* type = SIY OR (immediate) */ \ V(xiy, XIY, 0xEB57) /* type = SIY EXCLUSIVE OR (immediate) */ \ V(asi, ASI, 0xEB6A) /* type = SIY ADD IMMEDIATE (32<-8) */ \ V(alsi, ALSI, \ 0xEB6E) /* type = SIY ADD LOGICAL WITH SIGNED IMMEDIATE (32<-8) */ \ V(agsi, AGSI, 0xEB7A) /* type = SIY ADD IMMEDIATE (64<-8) */ \ V(algsi, ALGSI, \ 0xEB7E) /* type = SIY ADD LOGICAL WITH SIGNED IMMEDIATE (64<-8) */ #define S390_SS_A_OPCODE_LIST(V) \ V(trtr, TRTR, 0xD0) /* type = SS_A TRANSLATE AND TEST REVERSE */ \ V(mvn, MVN, 0xD1) /* type = SS_A MOVE NUMERICS */ \ V(mvc, MVC, 0xD2) /* type = SS_A MOVE (character) */ \ V(mvz, MVZ, 0xD3) /* type = SS_A MOVE ZONES */ \ V(nc, NC, 0xD4) /* type = SS_A AND (character) */ \ V(clc, CLC, 0xD5) /* type = SS_A COMPARE LOGICAL (character) */ \ V(oc, OC, 0xD6) /* type = SS_A OR (character) */ \ V(xc, XC, 0xD7) /* type = SS_A EXCLUSIVE OR (character) */ \ V(tr, TR, 0xDC) /* type = SS_A TRANSLATE */ \ V(trt, TRT, 0xDD) /* type = SS_A TRANSLATE AND TEST */ \ V(ed, ED, 0xDE) /* type = SS_A EDIT */ \ V(edmk, EDMK, 0xDF) /* type = SS_A EDIT AND MARK */ \ V(unpku, UNPKU, 0xE2) /* type = SS_A UNPACK UNICODE */ \ V(mvcin, MVCIN, 0xE8) /* type = SS_A MOVE INVERSE */ \ V(unpka, UNPKA, 0xEA) /* type = SS_A UNPACK ASCII */ #define S390_E_OPCODE_LIST(V) \ V(pr, PR, 0x0101) /* type = E PROGRAM RETURN */ \ V(upt, UPT, 0x0102) /* type = E UPDATE TREE */ \ V(ptff, PTFF, 0x0104) /* type = E PERFORM TIMING FACILITY FUNCTION */ \ V(sckpf, SCKPF, 0x0107) /* type = E SET CLOCK PROGRAMMABLE FIELD */ \ V(pfpo, PFPO, 0x010A) /* type = E PERFORM FLOATING-POINT OPERATION */ \ V(tam, TAM, 0x010B) /* type = E TEST ADDRESSING MODE */ \ V(sam24, SAM24, 0x010C) /* type = E SET ADDRESSING MODE (24) */ \ V(sam31, SAM31, 0x010D) /* type = E SET ADDRESSING MODE (31) */ \ V(sam64, SAM64, 0x010E) /* type = E SET ADDRESSING MODE (64) */ \ V(trap2, TRAP2, 0x01FF) /* type = E TRAP */ #define S390_SS_B_OPCODE_LIST(V) \ V(mvo, MVO, 0xF1) /* type = SS_B MOVE WITH OFFSET */ \ V(pack, PACK, 0xF2) /* type = SS_B PACK */ \ V(unpk, UNPK, 0xF3) /* type = SS_B UNPACK */ \ V(zap, ZAP, 0xF8) /* type = SS_B ZERO AND ADD */ \ V(cp, CP, 0xF9) /* type = SS_B COMPARE DECIMAL */ \ V(ap, AP, 0xFA) /* type = SS_B ADD DECIMAL */ \ V(sp, SP, 0xFB) /* type = SS_B SUBTRACT DECIMAL */ \ V(mp, MP, 0xFC) /* type = SS_B MULTIPLY DECIMAL */ \ V(dp, DP, 0xFD) /* type = SS_B DIVIDE DECIMAL */ #define S390_SS_C_OPCODE_LIST(V) \ V(srp, SRP, 0xF0) /* type = SS_C SHIFT AND ROUND DECIMAL */ #define S390_SS_D_OPCODE_LIST(V) \ V(mvck, MVCK, 0xD9) /* type = SS_D MOVE WITH KEY */ \ V(mvcp, MVCP, 0xDA) /* type = SS_D MOVE TO PRIMARY */ \ V(mvcs, MVCS, 0xDB) /* type = SS_D MOVE TO SECONDARY */ #define S390_SS_E_OPCODE_LIST(V) \ V(plo, PLO, 0xEE) /* type = SS_E PERFORM LOCKED OPERATION */ \ V(lmd, LMD, 0xEF) /* type = SS_E LOAD MULTIPLE DISJOINT (64<-32&32) */ #define S390_I_OPCODE_LIST(V) \ V(svc, SVC, 0x0A) /* type = I SUPERVISOR CALL */ #define S390_SS_F_OPCODE_LIST(V) \ V(pku, PKU, 0xE1) /* type = SS_F PACK UNICODE */ \ V(pka, PKA, 0xE9) /* type = SS_F PACK ASCII */ #define S390_SSE_OPCODE_LIST(V) \ V(lasp, LASP, 0xE500) /* type = SSE LOAD ADDRESS SPACE PARAMETERS */ \ V(tprot, TPROT, 0xE501) /* type = SSE TEST PROTECTION */ \ V(strag, STRAG, 0xE502) /* type = SSE STORE REAL ADDRESS */ \ V(mvcsk, MVCSK, 0xE50E) /* type = SSE MOVE WITH SOURCE KEY */ \ V(mvcdk, MVCDK, 0xE50F) /* type = SSE MOVE WITH DESTINATION KEY */ #define S390_SSF_OPCODE_LIST(V) \ V(mvcos, MVCOS, 0xC80) /* type = SSF MOVE WITH OPTIONAL SPECIFICATIONS */ \ V(ectg, ECTG, 0xC81) /* type = SSF EXTRACT CPU TIME */ \ V(csst, CSST, 0xC82) /* type = SSF COMPARE AND SWAP AND STORE */ \ V(lpd, LPD, 0xC84) /* type = SSF LOAD PAIR DISJOINT (32) */ \ V(lpdg, LPDG, 0xC85) /* type = SSF LOAD PAIR DISJOINT (64) */ #define S390_RS_A_OPCODE_LIST(V) \ V(bxh, BXH, 0x86) /* type = RS_A BRANCH ON INDEX HIGH (32) */ \ V(bxle, BXLE, 0x87) /* type = RS_A BRANCH ON INDEX LOW OR EQUAL (32) */ \ V(srl, SRL, 0x88) /* type = RS_A SHIFT RIGHT SINGLE LOGICAL (32) */ \ V(sll, SLL, 0x89) /* type = RS_A SHIFT LEFT SINGLE LOGICAL (32) */ \ V(sra, SRA, 0x8A) /* type = RS_A SHIFT RIGHT SINGLE (32) */ \ V(sla, SLA, 0x8B) /* type = RS_A SHIFT LEFT SINGLE (32) */ \ V(srdl, SRDL, 0x8C) /* type = RS_A SHIFT RIGHT DOUBLE LOGICAL (64) */ \ V(sldl, SLDL, 0x8D) /* type = RS_A SHIFT LEFT DOUBLE LOGICAL (64) */ \ V(srda, SRDA, 0x8E) /* type = RS_A SHIFT RIGHT DOUBLE (64) */ \ V(slda, SLDA, 0x8F) /* type = RS_A SHIFT LEFT DOUBLE (64) */ \ V(stm, STM, 0x90) /* type = RS_A STORE MULTIPLE (32) */ \ V(lm, LM, 0x98) /* type = RS_A LOAD MULTIPLE (32) */ \ V(trace, TRACE, 0x99) /* type = RS_A TRACE (32) */ \ V(lam, LAM, 0x9A) /* type = RS_A LOAD ACCESS MULTIPLE */ \ V(stam, STAM, 0x9B) /* type = RS_A STORE ACCESS MULTIPLE */ \ V(mvcle, MVCLE, 0xA8) /* type = RS_A MOVE LONG EXTENDED */ \ V(clcle, CLCLE, 0xA9) /* type = RS_A COMPARE LOGICAL LONG EXTENDED */ \ V(sigp, SIGP, 0xAE) /* type = RS_A SIGNAL PROCESSOR */ \ V(stctl, STCTL, 0xB6) /* type = RS_A STORE CONTROL (32) */ \ V(lctl, LCTL, 0xB7) /* type = RS_A LOAD CONTROL (32) */ \ V(cs, CS, 0xBA) /* type = RS_A COMPARE AND SWAP (32) */ \ V(cds, CDS, 0xBB) /* type = RS_A COMPARE DOUBLE AND SWAP (32) */ #define S390_RS_B_OPCODE_LIST(V) \ V(clm, CLM, 0xBD) /* type = RS_B COMPARE LOGICAL CHAR. UNDER MASK (low) */ \ V(stcm, STCM, 0xBE) /* type = RS_B STORE CHARACTERS UNDER MASK (low) */ \ V(icm, ICM, 0xBF) /* type = RS_B INSERT CHARACTERS UNDER MASK (low) */ #define S390_S_OPCODE_LIST(V) \ V(lpsw, LPSW, 0x82) /* type = S LOAD PSW */ \ V(diagnose, DIAGNOSE, 0x83) /* type = S DIAGNOSE */ \ V(ts, TS, 0x93) /* type = S TEST AND SET */ \ V(stidp, STIDP, 0xB202) /* type = S STORE CPU ID */ \ V(sck, SCK, 0xB204) /* type = S SET CLOCK */ \ V(stck, STCK, 0xB205) /* type = S STORE CLOCK */ \ V(sckc, SCKC, 0xB206) /* type = S SET CLOCK COMPARATOR */ \ V(stckc, STCKC, 0xB207) /* type = S STORE CLOCK COMPARATOR */ \ V(spt, SPT, 0xB208) /* type = S SET CPU TIMER */ \ V(stpt, STPT, 0xB209) /* type = S STORE CPU TIMER */ \ V(spka, SPKA, 0xB20A) /* type = S SET PSW KEY FROM ADDRESS */ \ V(ipk, IPK, 0xB20B) /* type = S INSERT PSW KEY */ \ V(ptlb, PTLB, 0xB20D) /* type = S PURGE TLB */ \ V(spx, SPX, 0xB210) /* type = S SET PREFIX */ \ V(stpx, STPX, 0xB211) /* type = S STORE PREFIX */ \ V(stap, STAP, 0xB212) /* type = S STORE CPU ADDRESS */ \ V(pc, PC, 0xB218) /* type = S PROGRAM CALL */ \ V(sac, SAC, 0xB219) /* type = S SET ADDRESS SPACE CONTROL */ \ V(cfc, CFC, 0xB21A) /* type = S COMPARE AND FORM CODEWORD */ \ V(csch, CSCH, 0xB230) /* type = S CLEAR SUBCHANNEL */ \ V(hsch, HSCH, 0xB231) /* type = S HALT SUBCHANNEL */ \ V(msch, MSCH, 0xB232) /* type = S MODIFY SUBCHANNEL */ \ V(ssch, SSCH, 0xB233) /* type = S START SUBCHANNEL */ \ V(stsch, STSCH, 0xB234) /* type = S STORE SUBCHANNEL */ \ V(tsch, TSCH, 0xB235) /* type = S TEST SUBCHANNEL */ \ V(tpi, TPI, 0xB236) /* type = S TEST PENDING INTERRUPTION */ \ V(sal, SAL, 0xB237) /* type = S SET ADDRESS LIMIT */ \ V(rsch, RSCH, 0xB238) /* type = S RESUME SUBCHANNEL */ \ V(stcrw, STCRW, 0xB239) /* type = S STORE CHANNEL REPORT WORD */ \ V(stcps, STCPS, 0xB23A) /* type = S STORE CHANNEL PATH STATUS */ \ V(rchp, RCHP, 0xB23B) /* type = S RESET CHANNEL PATH */ \ V(schm, SCHM, 0xB23C) /* type = S SET CHANNEL MONITOR */ \ V(xsch, XSCH, 0xB276) /* type = S CANCEL SUBCHANNEL */ \ V(rp, RP_Z, 0xB277) /* type = S RESUME PROGRAM */ \ V(stcke, STCKE, 0xB278) /* type = S STORE CLOCK EXTENDED */ \ V(sacf, SACF, 0xB279) /* type = S SET ADDRESS SPACE CONTROL FAST */ \ V(stckf, STCKF, 0xB27C) /* type = S STORE CLOCK FAST */ \ V(stsi, STSI, 0xB27D) /* type = S STORE SYSTEM INFORMATION */ \ V(srnm, SRNM, 0xB299) /* type = S SET BFP ROUNDING MODE (2 bit) */ \ V(stfpc, STFPC, 0xB29C) /* type = S STORE FPC */ \ V(lfpc, LFPC, 0xB29D) /* type = S LOAD FPC */ \ V(stfle, STFLE, 0xB2B0) /* type = S STORE FACILITY LIST EXTENDED */ \ V(stfl, STFL, 0xB2B1) /* type = S STORE FACILITY LIST */ \ V(lpswe, LPSWE, 0xB2B2) /* type = S LOAD PSW EXTENDED */ \ V(srnmb, SRNMB, 0xB2B8) /* type = S SET BFP ROUNDING MODE (3 bit) */ \ V(srnmt, SRNMT, 0xB2B9) /* type = S SET DFP ROUNDING MODE */ \ V(lfas, LFAS, 0xB2BD) /* type = S LOAD FPC AND SIGNAL */ \ V(tend, TEND, 0xB2F8) /* type = S TRANSACTION END */ \ V(tabort, TABORT, 0xB2FC) /* type = S TRANSACTION ABORT */ \ V(trap4, TRAP4, 0xB2FF) /* type = S TRAP */ #define S390_RX_A_OPCODE_LIST(V) \ V(la, LA, 0x41) /* type = RX_A LOAD ADDRESS */ \ V(stc, STC, 0x42) /* type = RX_A STORE CHARACTER */ \ V(ic_z, IC_z, 0x43) /* type = RX_A INSERT CHARACTER */ \ V(ex, EX, 0x44) /* type = RX_A EXECUTE */ \ V(bal, BAL, 0x45) /* type = RX_A BRANCH AND LINK */ \ V(bct, BCT, 0x46) /* type = RX_A BRANCH ON COUNT (32) */ \ V(lh, LH, 0x48) /* type = RX_A LOAD HALFWORD (32<-16) */ \ V(ch, CH, 0x49) /* type = RX_A COMPARE HALFWORD (32<-16) */ \ V(ah, AH, 0x4A) /* type = RX_A ADD HALFWORD (32<-16) */ \ V(sh, SH, 0x4B) /* type = RX_A SUBTRACT HALFWORD (32<-16) */ \ V(mh, MH, 0x4C) /* type = RX_A MULTIPLY HALFWORD (32<-16) */ \ V(bas, BAS, 0x4D) /* type = RX_A BRANCH AND SAVE */ \ V(cvd, CVD, 0x4E) /* type = RX_A CONVERT TO DECIMAL (32) */ \ V(cvb, CVB, 0x4F) /* type = RX_A CONVERT TO BINARY (32) */ \ V(st, ST, 0x50) /* type = RX_A STORE (32) */ \ V(lae, LAE, 0x51) /* type = RX_A LOAD ADDRESS EXTENDED */ \ V(n, N, 0x54) /* type = RX_A AND (32) */ \ V(cl, CL, 0x55) /* type = RX_A COMPARE LOGICAL (32) */ \ V(o, O, 0x56) /* type = RX_A OR (32) */ \ V(x, X, 0x57) /* type = RX_A EXCLUSIVE OR (32) */ \ V(l, L, 0x58) /* type = RX_A LOAD (32) */ \ V(c, C, 0x59) /* type = RX_A COMPARE (32) */ \ V(a, A, 0x5A) /* type = RX_A ADD (32) */ \ V(s, S, 0x5B) /* type = RX_A SUBTRACT (32) */ \ V(m, M, 0x5C) /* type = RX_A MULTIPLY (64<-32) */ \ V(d, D, 0x5D) /* type = RX_A DIVIDE (32<-64) */ \ V(al_z, AL, 0x5E) /* type = RX_A ADD LOGICAL (32) */ \ V(sl, SL, 0x5F) /* type = RX_A SUBTRACT LOGICAL (32) */ \ V(std, STD, 0x60) /* type = RX_A STORE (long) */ \ V(mxd, MXD, 0x67) /* type = RX_A MULTIPLY (long to extended HFP) */ \ V(ld, LD, 0x68) /* type = RX_A LOAD (long) */ \ V(cd, CD, 0x69) /* type = RX_A COMPARE (long HFP) */ \ V(ad, AD, 0x6A) /* type = RX_A ADD NORMALIZED (long HFP) */ \ V(sd, SD, 0x6B) /* type = RX_A SUBTRACT NORMALIZED (long HFP) */ \ V(md, MD, 0x6C) /* type = RX_A MULTIPLY (long HFP) */ \ V(dd, DD, 0x6D) /* type = RX_A DIVIDE (long HFP) */ \ V(aw, AW, 0x6E) /* type = RX_A ADD UNNORMALIZED (long HFP) */ \ V(sw, SW, 0x6F) /* type = RX_A SUBTRACT UNNORMALIZED (long HFP) */ \ V(ste, STE, 0x70) /* type = RX_A STORE (short) */ \ V(ms, MS, 0x71) /* type = RX_A MULTIPLY SINGLE (32) */ \ V(le_z, LE, 0x78) /* type = RX_A LOAD (short) */ \ V(ce, CE, 0x79) /* type = RX_A COMPARE (short HFP) */ \ V(ae, AE, 0x7A) /* type = RX_A ADD NORMALIZED (short HFP) */ \ V(se, SE, 0x7B) /* type = RX_A SUBTRACT NORMALIZED (short HFP) */ \ V(mde, MDE, 0x7C) /* type = RX_A MULTIPLY (short to long HFP) */ \ V(de, DE, 0x7D) /* type = RX_A DIVIDE (short HFP) */ \ V(au, AU, 0x7E) /* type = RX_A ADD UNNORMALIZED (short HFP) */ \ V(su, SU, 0x7F) /* type = RX_A SUBTRACT UNNORMALIZED (short HFP) */ \ V(ssm, SSM, 0x80) /* type = RX_A SET SYSTEM MASK */ \ V(lra, LRA, 0xB1) /* type = RX_A LOAD REAL ADDRESS (32) */ \ V(sth, STH, 0x40) /* type = RX_A STORE HALFWORD (16) */ #define S390_RX_B_OPCODE_LIST(V) \ V(bc, BC, 0x47) /* type = RX_B BRANCH ON CONDITION */ #define S390_RIE_A_OPCODE_LIST(V) \ V(cgit, CGIT, 0xEC70) /* type = RIE_A COMPARE IMMEDIATE AND TRAP (64<-16) */ \ V(clgit, CLGIT, \ 0xEC71) /* type = RIE_A COMPARE LOGICAL IMMEDIATE AND TRAP (64<-16) */ \ V(cit, CIT, 0xEC72) /* type = RIE_A COMPARE IMMEDIATE AND TRAP (32<-16) */ \ V(clfit, CLFIT, \ 0xEC73) /* type = RIE_A COMPARE LOGICAL IMMEDIATE AND TRAP (32<-16) */ #define S390_RRD_OPCODE_LIST(V) \ V(maebr, MAEBR, 0xB30E) /* type = RRD MULTIPLY AND ADD (short BFP) */ \ V(msebr, MSEBR, 0xB30F) /* type = RRD MULTIPLY AND SUBTRACT (short BFP) */ \ V(madbr, MADBR, 0xB31E) /* type = RRD MULTIPLY AND ADD (long BFP) */ \ V(msdbr, MSDBR, 0xB31F) /* type = RRD MULTIPLY AND SUBTRACT (long BFP) */ \ V(maer, MAER, 0xB32E) /* type = RRD MULTIPLY AND ADD (short HFP) */ \ V(mser, MSER, 0xB32F) /* type = RRD MULTIPLY AND SUBTRACT (short HFP) */ \ V(maylr, MAYLR, \ 0xB338) /* type = RRD MULTIPLY AND ADD UNNRM. (long to ext. low HFP) */ \ V(mylr, MYLR, \ 0xB339) /* type = RRD MULTIPLY UNNORM. (long to ext. low HFP) */ \ V(mayr, MAYR, \ 0xB33A) /* type = RRD MULTIPLY & ADD UNNORMALIZED (long to ext. HFP) */ \ V(myr, MYR, \ 0xB33B) /* type = RRD MULTIPLY UNNORMALIZED (long to ext. HFP) */ \ V(mayhr, MAYHR, \ 0xB33C) /* type = RRD MULTIPLY AND ADD UNNRM. (long to ext. high HFP) */ \ V(myhr, MYHR, \ 0xB33D) /* type = RRD MULTIPLY UNNORM. (long to ext. high HFP) */ \ V(madr, MADR, 0xB33E) /* type = RRD MULTIPLY AND ADD (long HFP) */ \ V(msdr, MSDR, 0xB33F) /* type = RRD MULTIPLY AND SUBTRACT (long HFP) */ #define S390_RIE_B_OPCODE_LIST(V) \ V(cgrj, CGRJ, 0xEC64) /* type = RIE_B COMPARE AND BRANCH RELATIVE (64) */ \ V(clgrj, CLGRJ, \ 0xEC65) /* type = RIE_B COMPARE LOGICAL AND BRANCH RELATIVE (64) */ \ V(crj, CRJ, 0xEC76) /* type = RIE_B COMPARE AND BRANCH RELATIVE (32) */ \ V(clrj, CLRJ, \ 0xEC77) /* type = RIE_B COMPARE LOGICAL AND BRANCH RELATIVE (32) */ #define S390_RRE_OPCODE_LIST(V) \ V(ipm, IPM, 0xB222) /* type = RRE INSERT PROGRAM MASK */ \ V(ivsk, IVSK, 0xB223) /* type = RRE INSERT VIRTUAL STORAGE KEY */ \ V(iac, IAC, 0xB224) /* type = RRE INSERT ADDRESS SPACE CONTROL */ \ V(ssar, SSAR, 0xB225) /* type = RRE SET SECONDARY ASN */ \ V(epar, EPAR, 0xB226) /* type = RRE EXTRACT PRIMARY ASN */ \ V(esar, ESAR, 0xB227) /* type = RRE EXTRACT SECONDARY ASN */ \ V(pt, PT, 0xB228) /* type = RRE PROGRAM TRANSFER */ \ V(iske, ISKE, 0xB229) /* type = RRE INSERT STORAGE KEY EXTENDED */ \ V(rrbe, RRBE, 0xB22A) /* type = RRE RESET REFERENCE BIT EXTENDED */ \ V(tb, TB, 0xB22C) /* type = RRE TEST BLOCK */ \ V(dxr, DXR, 0xB22D) /* type = RRE DIVIDE (extended HFP) */ \ V(pgin, PGIN, 0xB22E) /* type = RRE PAGE IN */ \ V(pgout, PGOUT, 0xB22F) /* type = RRE PAGE OUT */ \ V(bakr, BAKR, 0xB240) /* type = RRE BRANCH AND STACK */ \ V(cksm, CKSM, 0xB241) /* type = RRE CHECKSUM */ \ V(sqdr, SQDR, 0xB244) /* type = RRE SQUARE ROOT (long HFP) */ \ V(sqer, SQER, 0xB245) /* type = RRE SQUARE ROOT (short HFP) */ \ V(stura, STURA, 0xB246) /* type = RRE STORE USING REAL ADDRESS (32) */ \ V(msta, MSTA, 0xB247) /* type = RRE MODIFY STACKED STATE */ \ V(palb, PALB, 0xB248) /* type = RRE PURGE ALB */ \ V(ereg, EREG, 0xB249) /* type = RRE EXTRACT STACKED REGISTERS (32) */ \ V(esta, ESTA, 0xB24A) /* type = RRE EXTRACT STACKED STATE */ \ V(lura, LURA, 0xB24B) /* type = RRE LOAD USING REAL ADDRESS (32) */ \ V(tar, TAR, 0xB24C) /* type = RRE TEST ACCESS */ \ V(cpya, CPYA, 0xB24D) /* type = RRE COPY ACCESS */ \ V(sar, SAR, 0xB24E) /* type = RRE SET ACCESS */ \ V(ear, EAR, 0xB24F) /* type = RRE EXTRACT ACCESS */ \ V(csp, CSP, 0xB250) /* type = RRE COMPARE AND SWAP AND PURGE (32) */ \ V(msr, MSR, 0xB252) /* type = RRE MULTIPLY SINGLE (32) */ \ V(mvpg, MVPG, 0xB254) /* type = RRE MOVE PAGE */ \ V(mvst, MVST, 0xB255) /* type = RRE MOVE STRING */ \ V(cuse, CUSE, 0xB257) /* type = RRE COMPARE UNTIL SUBSTRING EQUAL */ \ V(bsg, BSG, 0xB258) /* type = RRE BRANCH IN SUBSPACE GROUP */ \ V(bsa, BSA, 0xB25A) /* type = RRE BRANCH AND SET AUTHORITY */ \ V(clst, CLST, 0xB25D) /* type = RRE COMPARE LOGICAL STRING */ \ V(srst, SRST, 0xB25E) /* type = RRE SEARCH STRING */ \ V(cmpsc, CMPSC, 0xB263) /* type = RRE COMPRESSION CALL */ \ V(tre, TRE, 0xB2A5) /* type = RRE TRANSLATE EXTENDED */ \ V(etnd, ETND, 0xB2EC) /* type = RRE EXTRACT TRANSACTION NESTING DEPTH */ \ V(lpebr, LPEBR, 0xB300) /* type = RRE LOAD POSITIVE (short BFP) */ \ V(lnebr, LNEBR, 0xB301) /* type = RRE LOAD NEGATIVE (short BFP) */ \ V(ltebr, LTEBR, 0xB302) /* type = RRE LOAD AND TEST (short BFP) */ \ V(lcebr, LCEBR, 0xB303) /* type = RRE LOAD COMPLEMENT (short BFP) */ \ V(ldebr, LDEBR, \ 0xB304) /* type = RRE LOAD LENGTHENED (short to long BFP) */ \ V(lxdbr, LXDBR, \ 0xB305) /* type = RRE LOAD LENGTHENED (long to extended BFP) */ \ V(lxebr, LXEBR, \ 0xB306) /* type = RRE LOAD LENGTHENED (short to extended BFP) */ \ V(mxdbr, MXDBR, 0xB307) /* type = RRE MULTIPLY (long to extended BFP) */ \ V(kebr, KEBR, 0xB308) /* type = RRE COMPARE AND SIGNAL (short BFP) */ \ V(cebr, CEBR, 0xB309) /* type = RRE COMPARE (short BFP) */ \ V(aebr, AEBR, 0xB30A) /* type = RRE ADD (short BFP) */ \ V(sebr, SEBR, 0xB30B) /* type = RRE SUBTRACT (short BFP) */ \ V(mdebr, MDEBR, 0xB30C) /* type = RRE MULTIPLY (short to long BFP) */ \ V(debr, DEBR, 0xB30D) /* type = RRE DIVIDE (short BFP) */ \ V(lpdbr, LPDBR, 0xB310) /* type = RRE LOAD POSITIVE (long BFP) */ \ V(lndbr, LNDBR, 0xB311) /* type = RRE LOAD NEGATIVE (long BFP) */ \ V(ltdbr, LTDBR, 0xB312) /* type = RRE LOAD AND TEST (long BFP) */ \ V(lcdbr, LCDBR, 0xB313) /* type = RRE LOAD COMPLEMENT (long BFP) */ \ V(sqebr, SQEBR, 0xB314) /* type = RRE SQUARE ROOT (short BFP) */ \ V(sqdbr, SQDBR, 0xB315) /* type = RRE SQUARE ROOT (long BFP) */ \ V(sqxbr, SQXBR, 0xB316) /* type = RRE SQUARE ROOT (extended BFP) */ \ V(meebr, MEEBR, 0xB317) /* type = RRE MULTIPLY (short BFP) */ \ V(kdbr, KDBR, 0xB318) /* type = RRE COMPARE AND SIGNAL (long BFP) */ \ V(cdbr, CDBR, 0xB319) /* type = RRE COMPARE (long BFP) */ \ V(adbr, ADBR, 0xB31A) /* type = RRE ADD (long BFP) */ \ V(sdbr, SDBR, 0xB31B) /* type = RRE SUBTRACT (long BFP) */ \ V(mdbr, MDBR, 0xB31C) /* type = RRE MULTIPLY (long BFP) */ \ V(ddbr, DDBR, 0xB31D) /* type = RRE DIVIDE (long BFP) */ \ V(lder, LDER, 0xB324) /* type = RRE LOAD LENGTHENED (short to long HFP) */ \ V(lxdr, LXDR, \ 0xB325) /* type = RRE LOAD LENGTHENED (long to extended HFP) */ \ V(lxer, LXER, \ 0xB326) /* type = RRE LOAD LENGTHENED (short to extended HFP) */ \ V(sqxr, SQXR, 0xB336) /* type = RRE SQUARE ROOT (extended HFP) */ \ V(meer, MEER, 0xB337) /* type = RRE MULTIPLY (short HFP) */ \ V(lpxbr, LPXBR, 0xB340) /* type = RRE LOAD POSITIVE (extended BFP) */ \ V(lnxbr, LNXBR, 0xB341) /* type = RRE LOAD NEGATIVE (extended BFP) */ \ V(ltxbr, LTXBR, 0xB342) /* type = RRE LOAD AND TEST (extended BFP) */ \ V(lcxbr, LCXBR, 0xB343) /* type = RRE LOAD COMPLEMENT (extended BFP) */ \ V(kxbr, KXBR, 0xB348) /* type = RRE COMPARE AND SIGNAL (extended BFP) */ \ V(cxbr, CXBR, 0xB349) /* type = RRE COMPARE (extended BFP) */ \ V(axbr, AXBR, 0xB34A) /* type = RRE ADD (extended BFP) */ \ V(sxbr, SXBR, 0xB34B) /* type = RRE SUBTRACT (extended BFP) */ \ V(mxbr, MXBR, 0xB34C) /* type = RRE MULTIPLY (extended BFP) */ \ V(dxbr, DXBR, 0xB34D) /* type = RRE DIVIDE (extended BFP) */ \ V(thder, THDER, \ 0xB358) /* type = RRE CONVERT BFP TO HFP (short to long) */ \ V(thdr, THDR, 0xB359) /* type = RRE CONVERT BFP TO HFP (long) */ \ V(lpxr, LPXR, 0xB360) /* type = RRE LOAD POSITIVE (extended HFP) */ \ V(lnxr, LNXR, 0xB361) /* type = RRE LOAD NEGATIVE (extended HFP) */ \ V(ltxr, LTXR, 0xB362) /* type = RRE LOAD AND TEST (extended HFP) */ \ V(lcxr, LCXR, 0xB363) /* type = RRE LOAD COMPLEMENT (extended HFP) */ \ V(lxr, LXR, 0xB365) /* type = RRE LOAD (extended) */ \ V(lexr, LEXR, \ 0xB366) /* type = RRE LOAD ROUNDED (extended to short HFP) */ \ V(fixr, FIXR, 0xB367) /* type = RRE LOAD FP INTEGER (extended HFP) */ \ V(cxr, CXR, 0xB369) /* type = RRE COMPARE (extended HFP) */ \ V(lpdfr, LPDFR, 0xB370) /* type = RRE LOAD POSITIVE (long) */ \ V(lndfr, LNDFR, 0xB371) /* type = RRE LOAD NEGATIVE (long) */ \ V(lcdfr, LCDFR, 0xB373) /* type = RRE LOAD COMPLEMENT (long) */ \ V(lzer, LZER, 0xB374) /* type = RRE LOAD ZERO (short) */ \ V(lzdr, LZDR, 0xB375) /* type = RRE LOAD ZERO (long) */ \ V(lzxr, LZXR, 0xB376) /* type = RRE LOAD ZERO (extended) */ \ V(fier, FIER, 0xB377) /* type = RRE LOAD FP INTEGER (short HFP) */ \ V(fidr, FIDR, 0xB37F) /* type = RRE LOAD FP INTEGER (long HFP) */ \ V(sfpc, SFPC, 0xB384) /* type = RRE SET FPC */ \ V(sfasr, SFASR, 0xB385) /* type = RRE SET FPC AND SIGNAL */ \ V(efpc, EFPC, 0xB38C) /* type = RRE EXTRACT FPC */ \ V(cefr, CEFR, \ 0xB3B4) /* type = RRE CONVERT FROM FIXED (32 to short HFP) */ \ V(cdfr, CDFR, 0xB3B5) /* type = RRE CONVERT FROM FIXED (32 to long HFP) */ \ V(cxfr, CXFR, \ 0xB3B6) /* type = RRE CONVERT FROM FIXED (32 to extended HFP) */ \ V(ldgr, LDGR, 0xB3C1) /* type = RRE LOAD FPR FROM GR (64 to long) */ \ V(cegr, CEGR, \ 0xB3C4) /* type = RRE CONVERT FROM FIXED (64 to short HFP) */ \ V(cdgr, CDGR, 0xB3C5) /* type = RRE CONVERT FROM FIXED (64 to long HFP) */ \ V(cxgr, CXGR, \ 0xB3C6) /* type = RRE CONVERT FROM FIXED (64 to extended HFP) */ \ V(lgdr, LGDR, 0xB3CD) /* type = RRE LOAD GR FROM FPR (long to 64) */ \ V(ltdtr, LTDTR, 0xB3D6) /* type = RRE LOAD AND TEST (long DFP) */ \ V(ltxtr, LTXTR, 0xB3DE) /* type = RRE LOAD AND TEST (extended DFP) */ \ V(kdtr, KDTR, 0xB3E0) /* type = RRE COMPARE AND SIGNAL (long DFP) */ \ V(cudtr, CUDTR, 0xB3E2) /* type = RRE CONVERT TO UNSIGNED PACKED (long */ \ /* DFP to 64) CUDTR */ \ V(cdtr, CDTR, 0xB3E4) /* type = RRE COMPARE (long DFP) */ \ V(eedtr, EEDTR, \ 0xB3E5) /* type = RRE EXTRACT BIASED EXPONENT (long DFP to 64) */ \ V(esdtr, ESDTR, \ 0xB3E7) /* type = RRE EXTRACT SIGNIFICANCE (long DFP to 64) */ \ V(kxtr, KXTR, 0xB3E8) /* type = RRE COMPARE AND SIGNAL (extended DFP) */ \ V(cuxtr, CUXTR, \ 0xB3EA) /* type = RRE CONVERT TO UNSIGNED PACKED (extended DFP */ \ /* CUXTR to 128) */ \ V(cxtr, CXTR, 0xB3EC) /* type = RRE COMPARE (extended DFP) */ \ V(eextr, EEXTR, \ 0xB3ED) /* type = RRE EXTRACT BIASED EXPONENT (extended DFP to 64) */ \ V(esxtr, ESXTR, \ 0xB3EF) /* type = RRE EXTRACT SIGNIFICANCE (extended DFP to 64) */ \ V(cdutr, CDUTR, \ 0xB3F2) /* type = RRE CONVERT FROM UNSIGNED PACKED (64 to long DFP) */ \ V(cdstr, CDSTR, \ 0xB3F3) /* type = RRE CONVERT FROM SIGNED PACKED (64 to long DFP) */ \ V(cedtr, CEDTR, \ 0xB3F4) /* type = RRE COMPARE BIASED EXPONENT (long DFP) */ \ V(cxutr, CXUTR, \ 0xB3FA) /* type = RRE CONVERT FROM UNSIGNED PACKED (128 to ext. DFP) */ \ V(cxstr, CXSTR, 0xB3FB) /* type = RRE CONVERT FROM SIGNED PACKED (128 to*/ \ /* extended DFP) */ \ V(cextr, CEXTR, \ 0xB3FC) /* type = RRE COMPARE BIASED EXPONENT (extended DFP) */ \ V(lpgr, LPGR, 0xB900) /* type = RRE LOAD POSITIVE (64) */ \ V(lngr, LNGR, 0xB901) /* type = RRE LOAD NEGATIVE (64) */ \ V(ltgr, LTGR, 0xB902) /* type = RRE LOAD AND TEST (64) */ \ V(lcgr, LCGR, 0xB903) /* type = RRE LOAD COMPLEMENT (64) */ \ V(lgr, LGR, 0xB904) /* type = RRE LOAD (64) */ \ V(lurag, LURAG, 0xB905) /* type = RRE LOAD USING REAL ADDRESS (64) */ \ V(lgbr, LGBR, 0xB906) /* type = RRE LOAD BYTE (64<-8) */ \ V(lghr, LGHR, 0xB907) /* type = RRE LOAD HALFWORD (64<-16) */ \ V(agr, AGR, 0xB908) /* type = RRE ADD (64) */ \ V(sgr, SGR, 0xB909) /* type = RRE SUBTRACT (64) */ \ V(algr, ALGR, 0xB90A) /* type = RRE ADD LOGICAL (64) */ \ V(slgr, SLGR, 0xB90B) /* type = RRE SUBTRACT LOGICAL (64) */ \ V(msgr, MSGR, 0xB90C) /* type = RRE MULTIPLY SINGLE (64) */ \ V(dsgr, DSGR, 0xB90D) /* type = RRE DIVIDE SINGLE (64) */ \ V(eregg, EREGG, 0xB90E) /* type = RRE EXTRACT STACKED REGISTERS (64) */ \ V(lrvgr, LRVGR, 0xB90F) /* type = RRE LOAD REVERSED (64) */ \ V(lpgfr, LPGFR, 0xB910) /* type = RRE LOAD POSITIVE (64<-32) */ \ V(lngfr, LNGFR, 0xB911) /* type = RRE LOAD NEGATIVE (64<-32) */ \ V(ltgfr, LTGFR, 0xB912) /* type = RRE LOAD AND TEST (64<-32) */ \ V(lcgfr, LCGFR, 0xB913) /* type = RRE LOAD COMPLEMENT (64<-32) */ \ V(lgfr, LGFR, 0xB914) /* type = RRE LOAD (64<-32) */ \ V(llgfr, LLGFR, 0xB916) /* type = RRE LOAD LOGICAL (64<-32) */ \ V(llgtr, LLGTR, \ 0xB917) /* type = RRE LOAD LOGICAL THIRTY ONE BITS (64<-31) */ \ V(agfr, AGFR, 0xB918) /* type = RRE ADD (64<-32) */ \ V(sgfr, SGFR, 0xB919) /* type = RRE SUBTRACT (64<-32) */ \ V(algfr, ALGFR, 0xB91A) /* type = RRE ADD LOGICAL (64<-32) */ \ V(slgfr, SLGFR, 0xB91B) /* type = RRE SUBTRACT LOGICAL (64<-32) */ \ V(msgfr, MSGFR, 0xB91C) /* type = RRE MULTIPLY SINGLE (64<-32) */ \ V(dsgfr, DSGFR, 0xB91D) /* type = RRE DIVIDE SINGLE (64<-32) */ \ V(kmac, KMAC, 0xB91E) /* type = RRE COMPUTE MESSAGE AUTHENTICATION CODE */ \ V(lrvr, LRVR, 0xB91F) /* type = RRE LOAD REVERSED (32) */ \ V(cgr, CGR, 0xB920) /* type = RRE COMPARE (64) */ \ V(clgr, CLGR, 0xB921) /* type = RRE COMPARE LOGICAL (64) */ \ V(sturg, STURG, 0xB925) /* type = RRE STORE USING REAL ADDRESS (64) */ \ V(lbr, LBR, 0xB926) /* type = RRE LOAD BYTE (32<-8) */ \ V(lhr, LHR, 0xB927) /* type = RRE LOAD HALFWORD (32<-16) */ \ V(pckmo, PCKMO, \ 0xB928) /* type = RRE PERFORM CRYPTOGRAPHIC KEY MGMT. OPERATIONS */ \ V(kmf, KMF, 0xB92A) /* type = RRE CIPHER MESSAGE WITH CIPHER FEEDBACK */ \ V(kmo, KMO, 0xB92B) /* type = RRE CIPHER MESSAGE WITH OUTPUT FEEDBACK */ \ V(pcc, PCC, 0xB92C) /* type = RRE PERFORM CRYPTOGRAPHIC COMPUTATION */ \ V(km, KM, 0xB92E) /* type = RRE CIPHER MESSAGE */ \ V(kmc, KMC, 0xB92F) /* type = RRE CIPHER MESSAGE WITH CHAINING */ \ V(cgfr, CGFR, 0xB930) /* type = RRE COMPARE (64<-32) */ \ V(clgfr, CLGFR, 0xB931) /* type = RRE COMPARE LOGICAL (64<-32) */ \ V(ppno, PPNO, \ 0xB93C) /* type = RRE PERFORM PSEUDORANDOM NUMBER OPERATION */ \ V(kimd, KIMD, 0xB93E) /* type = RRE COMPUTE INTERMEDIATE MESSAGE DIGEST */ \ V(klmd, KLMD, 0xB93F) /* type = RRE COMPUTE LAST MESSAGE DIGEST */ \ V(bctgr, BCTGR, 0xB946) /* type = RRE BRANCH ON COUNT (64) */ \ V(cdftr, CDFTR, \ 0xB951) /* type = RRE CONVERT FROM FIXED (32 to long DFP) */ \ V(cxftr, CXFTR, \ 0xB959) /* type = RRE CONVERT FROM FIXED (32 to extended DFP) */ \ V(ngr, NGR, 0xB980) /* type = RRE AND (64) */ \ V(ogr, OGR, 0xB981) /* type = RRE OR (64) */ \ V(xgr, XGR, 0xB982) /* type = RRE EXCLUSIVE OR (64) */ \ V(flogr, FLOGR, 0xB983) /* type = RRE FIND LEFTMOST ONE */ \ V(llgcr, LLGCR, 0xB984) /* type = RRE LOAD LOGICAL CHARACTER (64<-8) */ \ V(llghr, LLGHR, 0xB985) /* type = RRE LOAD LOGICAL HALFWORD (64<-16) */ \ V(mlgr, MLGR, 0xB986) /* type = RRE MULTIPLY LOGICAL (128<-64) */ \ V(dlgr, DLGR, 0xB987) /* type = RRE DIVIDE LOGICAL (64<-128) */ \ V(alcgr, ALCGR, 0xB988) /* type = RRE ADD LOGICAL WITH CARRY (64) */ \ V(slbgr, SLBGR, 0xB989) /* type = RRE SUBTRACT LOGICAL WITH BORROW (64) */ \ V(cspg, CSPG, 0xB98A) /* type = RRE COMPARE AND SWAP AND PURGE (64) */ \ V(epsw, EPSW, 0xB98D) /* type = RRE EXTRACT PSW */ \ V(llcr, LLCR, 0xB994) /* type = RRE LOAD LOGICAL CHARACTER (32<-8) */ \ V(llhr, LLHR, 0xB995) /* type = RRE LOAD LOGICAL HALFWORD (32<-16) */ \ V(mlr, MLR, 0xB996) /* type = RRE MULTIPLY LOGICAL (64<-32) */ \ V(dlr, DLR, 0xB997) /* type = RRE DIVIDE LOGICAL (32<-64) */ \ V(alcr, ALCR, 0xB998) /* type = RRE ADD LOGICAL WITH CARRY (32) */ \ V(slbr, SLBR, 0xB999) /* type = RRE SUBTRACT LOGICAL WITH BORROW (32) */ \ V(epair, EPAIR, 0xB99A) /* type = RRE EXTRACT PRIMARY ASN AND INSTANCE */ \ V(esair, ESAIR, \ 0xB99B) /* type = RRE EXTRACT SECONDARY ASN AND INSTANCE */ \ V(esea, ESEA, 0xB99D) /* type = RRE EXTRACT AND SET EXTENDED AUTHORITY */ \ V(pti, PTI, 0xB99E) /* type = RRE PROGRAM TRANSFER WITH INSTANCE */ \ V(ssair, SSAIR, 0xB99F) /* type = RRE SET SECONDARY ASN WITH INSTANCE */ \ V(ptf, PTF, 0xB9A2) /* type = RRE PERFORM TOPOLOGY FUNCTION */ \ V(rrbm, RRBM, 0xB9AE) /* type = RRE RESET REFERENCE BITS MULTIPLE */ \ V(pfmf, PFMF, 0xB9AF) /* type = RRE PERFORM FRAME MANAGEMENT FUNCTION */ \ V(cu41, CU41, 0xB9B2) /* type = RRE CONVERT UTF-32 TO UTF-8 */ \ V(cu42, CU42, 0xB9B3) /* type = RRE CONVERT UTF-32 TO UTF-16 */ \ V(srstu, SRSTU, 0xB9BE) /* type = RRE SEARCH STRING UNICODE */ \ V(chhr, CHHR, 0xB9CD) /* type = RRE COMPARE HIGH (32) */ \ V(clhhr, CLHHR, 0xB9CF) /* type = RRE COMPARE LOGICAL HIGH (32) */ \ V(chlr, CHLR, 0xB9DD) /* type = RRE COMPARE HIGH (32) */ \ V(clhlr, CLHLR, 0xB9DF) /* type = RRE COMPARE LOGICAL HIGH (32) */ \ V(popcnt, POPCNT_Z, 0xB9E1) /* type = RRE POPULATION COUNT */ #define S390_RIE_C_OPCODE_LIST(V) \ V(cgij, CGIJ, \ 0xEC7C) /* type = RIE_C COMPARE IMMEDIATE AND BRANCH RELATIVE (64<-8) */ \ V(clgij, CLGIJ, \ 0xEC7D) /* type = RIE_C COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE */ \ /* (64<-8) */ \ V(cij, CIJ, \ 0xEC7E) /* type = RIE_C COMPARE IMMEDIATE AND BRANCH RELATIVE (32<-8) */ \ V(clij, CLIJ, 0xEC7F) /* type = RIE_C COMPARE LOGICAL IMMEDIATE AND */ \ /* BRANCH RELATIVE (32<-8) */ #define S390_RIE_D_OPCODE_LIST(V) \ V(ahik, AHIK, 0xECD8) /* type = RIE_D ADD IMMEDIATE (32<-16) */ \ V(aghik, AGHIK, 0xECD9) /* type = RIE_D ADD IMMEDIATE (64<-16) */ \ V(alhsik, ALHSIK, \ 0xECDA) /* type = RIE_D ADD LOGICAL WITH SIGNED IMMEDIATE (32<-16) */ \ V(alghsik, ALGHSIK, \ 0xECDB) /* type = RIE_D ADD LOGICAL WITH SIGNED IMMEDIATE (64<-16) */ #define S390_VRV_OPCODE_LIST(V) \ V(vgeg, VGEG, 0xE712) /* type = VRV VECTOR GATHER ELEMENT (64) */ \ V(vgef, VGEF, 0xE713) /* type = VRV VECTOR GATHER ELEMENT (32) */ \ V(vsceg, VSCEG, 0xE71A) /* type = VRV VECTOR SCATTER ELEMENT (64) */ \ V(vscef, VSCEF, 0xE71B) /* type = VRV VECTOR SCATTER ELEMENT (32) */ #define S390_RIE_E_OPCODE_LIST(V) \ V(brxhg, BRXHG, \ 0xEC44) /* type = RIE_E BRANCH RELATIVE ON INDEX HIGH (64) */ \ V(brxlg, BRXLG, \ 0xEC45) /* type = RIE_E BRANCH RELATIVE ON INDEX LOW OR EQ. (64) */ #define S390_RR_OPCODE_LIST(V) \ V(awr, AWR, 0x2E) /* type = RR ADD UNNORMALIZED (long HFP) */ \ V(spm, SPM, 0x04) /* type = RR SET PROGRAM MASK */ \ V(balr, BALR, 0x05) /* type = RR BRANCH AND LINK */ \ V(bctr, BCTR, 0x06) /* type = RR BRANCH ON COUNT (32) */ \ V(bcr, BCR, 0x07) /* type = RR BRANCH ON CONDITION */ \ V(bsm, BSM, 0x0B) /* type = RR BRANCH AND SET MODE */ \ V(bassm, BASSM, 0x0C) /* type = RR BRANCH AND SAVE AND SET MODE */ \ V(basr, BASR, 0x0D) /* type = RR BRANCH AND SAVE */ \ V(mvcl, MVCL, 0x0E) /* type = RR MOVE LONG */ \ V(clcl, CLCL, 0x0F) /* type = RR COMPARE LOGICAL LONG */ \ V(lpr, LPR, 0x10) /* type = RR LOAD POSITIVE (32) */ \ V(lnr, LNR, 0x11) /* type = RR LOAD NEGATIVE (32) */ \ V(ltr, LTR, 0x12) /* type = RR LOAD AND TEST (32) */ \ V(lcr, LCR, 0x13) /* type = RR LOAD COMPLEMENT (32) */ \ V(nr, NR, 0x14) /* type = RR AND (32) */ \ V(clr, CLR, 0x15) /* type = RR COMPARE LOGICAL (32) */ \ V(or_z, OR, 0x16) /* type = RR OR (32) */ \ V(xr, XR, 0x17) /* type = RR EXCLUSIVE OR (32) */ \ V(lr, LR, 0x18) /* type = RR LOAD (32) */ \ V(cr_z, CR, 0x19) /* type = RR COMPARE (32) */ \ V(ar, AR, 0x1A) /* type = RR ADD (32) */ \ V(sr, SR, 0x1B) /* type = RR SUBTRACT (32) */ \ V(mr_z, MR, 0x1C) /* type = RR MULTIPLY (64<-32) */ \ V(dr, DR, 0x1D) /* type = RR DIVIDE (32<-64) */ \ V(alr, ALR, 0x1E) /* type = RR ADD LOGICAL (32) */ \ V(slr, SLR, 0x1F) /* type = RR SUBTRACT LOGICAL (32) */ \ V(lpdr, LPDR, 0x20) /* type = RR LOAD POSITIVE (long HFP) */ \ V(lndr, LNDR, 0x21) /* type = RR LOAD NEGATIVE (long HFP) */ \ V(ltdr, LTDR, 0x22) /* type = RR LOAD AND TEST (long HFP) */ \ V(lcdr, LCDR, 0x23) /* type = RR LOAD COMPLEMENT (long HFP) */ \ V(hdr, HDR, 0x24) /* type = RR HALVE (long HFP) */ \ V(ldxr, LDXR, 0x25) /* type = RR LOAD ROUNDED (extended to long HFP) */ \ V(mxr, MXR, 0x26) /* type = RR MULTIPLY (extended HFP) */ \ V(mxdr, MXDR, 0x27) /* type = RR MULTIPLY (long to extended HFP) */ \ V(ldr, LDR, 0x28) /* type = RR LOAD (long) */ \ V(cdr, CDR, 0x29) /* type = RR COMPARE (long HFP) */ \ V(adr, ADR, 0x2A) /* type = RR ADD NORMALIZED (long HFP) */ \ V(sdr, SDR, 0x2B) /* type = RR SUBTRACT NORMALIZED (long HFP) */ \ V(mdr, MDR, 0x2C) /* type = RR MULTIPLY (long HFP) */ \ V(ddr, DDR, 0x2D) /* type = RR DIVIDE (long HFP) */ \ V(swr, SWR, 0x2F) /* type = RR SUBTRACT UNNORMALIZED (long HFP) */ \ V(lper, LPER, 0x30) /* type = RR LOAD POSITIVE (short HFP) */ \ V(lner, LNER, 0x31) /* type = RR LOAD NEGATIVE (short HFP) */ \ V(lter, LTER, 0x32) /* type = RR LOAD AND TEST (short HFP) */ \ V(lcer, LCER, 0x33) /* type = RR LOAD COMPLEMENT (short HFP) */ \ V(her_z, HER_Z, 0x34) /* type = RR HALVE (short HFP) */ \ V(ledr, LEDR, 0x35) /* type = RR LOAD ROUNDED (long to short HFP) */ \ V(axr, AXR, 0x36) /* type = RR ADD NORMALIZED (extended HFP) */ \ V(sxr, SXR, 0x37) /* type = RR SUBTRACT NORMALIZED (extended HFP) */ \ V(ler, LER, 0x38) /* type = RR LOAD (short) */ \ V(cer, CER, 0x39) /* type = RR COMPARE (short HFP) */ \ V(aer, AER, 0x3A) /* type = RR ADD NORMALIZED (short HFP) */ \ V(ser, SER, 0x3B) /* type = RR SUBTRACT NORMALIZED (short HFP) */ \ V(mder, MDER, 0x3C) /* type = RR MULTIPLY (short to long HFP) */ \ V(der, DER, 0x3D) /* type = RR DIVIDE (short HFP) */ \ V(aur, AUR, 0x3E) /* type = RR ADD UNNORMALIZED (short HFP) */ \ V(sur, SUR, 0x3F) /* type = RR SUBTRACT UNNORMALIZED (short HFP) */ #define S390_RIE_F_OPCODE_LIST(V) \ V(risblg, RISBLG, \ 0xEC51) /* type = RIE_F ROTATE THEN INSERT SELECTED BITS LOW (64) */ \ V(rnsbg, RNSBG, \ 0xEC54) /* type = RIE_F ROTATE THEN AND SELECTED BITS (64) */ \ V(risbg, RISBG, \ 0xEC55) /* type = RIE_F ROTATE THEN INSERT SELECTED BITS (64) */ \ V(rosbg, ROSBG, 0xEC56) /* type = RIE_F ROTATE THEN OR SELECTED BITS (64) */ \ V(rxsbg, RXSBG, \ 0xEC57) /* type = RIE_F ROTATE THEN EXCLUSIVE OR SELECT. BITS (64) */ \ V(risbgn, RISBGN, \ 0xEC59) /* type = RIE_F ROTATE THEN INSERT SELECTED BITS (64) */ \ V(risbhg, RISBHG, \ 0xEC5D) /* type = RIE_F ROTATE THEN INSERT SELECTED BITS HIGH (64) */ #define S390_VRX_OPCODE_LIST(V) \ V(vleb, VLEB, 0xE700) /* type = VRX VECTOR LOAD ELEMENT (8) */ \ V(vleh, VLEH, 0xE701) /* type = VRX VECTOR LOAD ELEMENT (16) */ \ V(vleg, VLEG, 0xE702) /* type = VRX VECTOR LOAD ELEMENT (64) */ \ V(vlef, VLEF, 0xE703) /* type = VRX VECTOR LOAD ELEMENT (32) */ \ V(vllez, VLLEZ, \ 0xE704) /* type = VRX VECTOR LOAD LOGICAL ELEMENT AND ZERO */ \ V(vlrep, VLREP, 0xE705) /* type = VRX VECTOR LOAD AND REPLICATE */ \ V(vl, VL, 0xE706) /* type = VRX VECTOR LOAD */ \ V(vlbb, VLBB, 0xE707) /* type = VRX VECTOR LOAD TO BLOCK BOUNDARY */ \ V(vsteb, VSTEB, 0xE708) /* type = VRX VECTOR STORE ELEMENT (8) */ \ V(vsteh, VSTEH, 0xE709) /* type = VRX VECTOR STORE ELEMENT (16) */ \ V(vsteg, VSTEG, 0xE70A) /* type = VRX VECTOR STORE ELEMENT (64) */ \ V(vstef, VSTEF, 0xE70B) /* type = VRX VECTOR STORE ELEMENT (32) */ \ V(vst, VST, 0xE70E) /* type = VRX VECTOR STORE */ #define S390_RIE_G_OPCODE_LIST(V) \ V(lochi, LOCHI, \ 0xEC42) /* type = RIE_G LOAD HALFWORD IMMEDIATE ON CONDITION (32<-16) */ \ V(locghi, LOCGHI, \ 0xEC46) /* type = RIE_G LOAD HALFWORD IMMEDIATE ON CONDITION (64<-16) */ \ V(lochhi, LOCHHI, 0xEC4E) /* type = RIE_G LOAD HALFWORD HIGH IMMEDIATE */ \ /* ON CONDITION (32<-16) */ #define S390_RRS_OPCODE_LIST(V) \ V(cgrb, CGRB, 0xECE4) /* type = RRS COMPARE AND BRANCH (64) */ \ V(clgrb, CLGRB, 0xECE5) /* type = RRS COMPARE LOGICAL AND BRANCH (64) */ \ V(crb, CRB, 0xECF6) /* type = RRS COMPARE AND BRANCH (32) */ \ V(clrb, CLRB, 0xECF7) /* type = RRS COMPARE LOGICAL AND BRANCH (32) */ #define S390_OPCODE_LIST(V) \ S390_RSY_A_OPCODE_LIST(V) \ S390_RSY_B_OPCODE_LIST(V) \ S390_RXE_OPCODE_LIST(V) \ S390_RRF_A_OPCODE_LIST(V) \ S390_RXF_OPCODE_LIST(V) \ S390_IE_OPCODE_LIST(V) \ S390_RRF_B_OPCODE_LIST(V) \ S390_RRF_C_OPCODE_LIST(V) \ S390_MII_OPCODE_LIST(V) \ S390_RRF_D_OPCODE_LIST(V) \ S390_RRF_E_OPCODE_LIST(V) \ S390_VRR_A_OPCODE_LIST(V) \ S390_VRR_B_OPCODE_LIST(V) \ S390_VRR_C_OPCODE_LIST(V) \ S390_VRI_A_OPCODE_LIST(V) \ S390_VRR_D_OPCODE_LIST(V) \ S390_VRI_B_OPCODE_LIST(V) \ S390_VRR_E_OPCODE_LIST(V) \ S390_VRI_C_OPCODE_LIST(V) \ S390_VRI_D_OPCODE_LIST(V) \ S390_VRR_F_OPCODE_LIST(V) \ S390_RIS_OPCODE_LIST(V) \ S390_VRI_E_OPCODE_LIST(V) \ S390_RSL_A_OPCODE_LIST(V) \ S390_RSL_B_OPCODE_LIST(V) \ S390_SI_OPCODE_LIST(V) \ S390_SIL_OPCODE_LIST(V) \ S390_VRS_A_OPCODE_LIST(V) \ S390_RIL_A_OPCODE_LIST(V) \ S390_RIL_B_OPCODE_LIST(V) \ S390_VRS_B_OPCODE_LIST(V) \ S390_RIL_C_OPCODE_LIST(V) \ S390_VRS_C_OPCODE_LIST(V) \ S390_RI_A_OPCODE_LIST(V) \ S390_RSI_OPCODE_LIST(V) \ S390_RI_B_OPCODE_LIST(V) \ S390_RI_C_OPCODE_LIST(V) \ S390_SMI_OPCODE_LIST(V) \ S390_RXY_A_OPCODE_LIST(V) \ S390_RXY_B_OPCODE_LIST(V) \ S390_SIY_OPCODE_LIST(V) \ S390_SS_A_OPCODE_LIST(V) \ S390_E_OPCODE_LIST(V) \ S390_SS_B_OPCODE_LIST(V) \ S390_SS_C_OPCODE_LIST(V) \ S390_SS_D_OPCODE_LIST(V) \ S390_SS_E_OPCODE_LIST(V) \ S390_I_OPCODE_LIST(V) \ S390_SS_F_OPCODE_LIST(V) \ S390_SSE_OPCODE_LIST(V) \ S390_SSF_OPCODE_LIST(V) \ S390_RS_A_OPCODE_LIST(V) \ S390_RS_B_OPCODE_LIST(V) \ S390_S_OPCODE_LIST(V) \ S390_RX_A_OPCODE_LIST(V) \ S390_RX_B_OPCODE_LIST(V) \ S390_RIE_A_OPCODE_LIST(V) \ S390_RRD_OPCODE_LIST(V) \ S390_RIE_B_OPCODE_LIST(V) \ S390_RRE_OPCODE_LIST(V) \ S390_RIE_C_OPCODE_LIST(V) \ S390_RIE_D_OPCODE_LIST(V) \ S390_VRV_OPCODE_LIST(V) \ S390_RIE_E_OPCODE_LIST(V) \ S390_RR_OPCODE_LIST(V) \ S390_RIE_F_OPCODE_LIST(V) \ S390_VRX_OPCODE_LIST(V) \ S390_RIE_G_OPCODE_LIST(V) \ S390_RRS_OPCODE_LIST(V) // Opcodes as defined in Appendix B-2 table enum Opcode { #define DECLARE_OPCODES(name, opcode_name, opcode_value) \ opcode_name = opcode_value, S390_OPCODE_LIST(DECLARE_OPCODES) #undef DECLARE_OPCODES BKPT = 0x0001, // GDB Software Breakpoint DUMY = 0xE352 // Special dummy opcode }; // Instruction encoding bits and masks. enum { // Instruction encoding bit B1 = 1 << 1, B4 = 1 << 4, B5 = 1 << 5, B7 = 1 << 7, B8 = 1 << 8, B9 = 1 << 9, B12 = 1 << 12, B18 = 1 << 18, B19 = 1 << 19, B20 = 1 << 20, B22 = 1 << 22, B23 = 1 << 23, B24 = 1 << 24, B25 = 1 << 25, B26 = 1 << 26, B27 = 1 << 27, B28 = 1 << 28, B6 = 1 << 6, B10 = 1 << 10, B11 = 1 << 11, B16 = 1 << 16, B17 = 1 << 17, B21 = 1 << 21, // Instruction bit masks kCondMask = 0x1F << 21, kOff12Mask = (1 << 12) - 1, kImm24Mask = (1 << 24) - 1, kOff16Mask = (1 << 16) - 1, kImm16Mask = (1 << 16) - 1, kImm26Mask = (1 << 26) - 1, kBOfieldMask = 0x1f << 21, kOpcodeMask = 0x3f << 26, kExt2OpcodeMask = 0x1f << 1, kExt5OpcodeMask = 0x3 << 2, kBIMask = 0x1F << 16, kBDMask = 0x14 << 2, kAAMask = 0x01 << 1, kLKMask = 0x01, kRCMask = 0x01, kTOMask = 0x1f << 21 }; // S390 instructions requires bigger shifts, // make them macros instead of enum because of the typing issue #define B32 ((uint64_t)1 << 32) #define B36 ((uint64_t)1 << 36) #define B40 ((uint64_t)1 << 40) const FourByteInstr kFourByteBrCondMask = 0xF << 20; const SixByteInstr kSixByteBrCondMask = static_cast(0xF) << 36; // ----------------------------------------------------------------------------- // Addressing modes and instruction variants. // Overflow Exception enum OEBit { SetOE = 1 << 10, // Set overflow exception LeaveOE = 0 << 10 // No overflow exception }; // Record bit enum RCBit { // Bit 0 SetRC = 1, // LT,GT,EQ,SO LeaveRC = 0 // None }; // Link bit enum LKBit { // Bit 0 SetLK = 1, // Load effective address of next instruction LeaveLK = 0 // No action }; enum BOfield { // Bits 25-21 DCBNZF = 0 << 21, // Decrement CTR; branch if CTR != 0 and condition false DCBEZF = 2 << 21, // Decrement CTR; branch if CTR == 0 and condition false BF = 4 << 21, // Branch if condition false DCBNZT = 8 << 21, // Decrement CTR; branch if CTR != 0 and condition true DCBEZT = 10 << 21, // Decrement CTR; branch if CTR == 0 and condition true BT = 12 << 21, // Branch if condition true DCBNZ = 16 << 21, // Decrement CTR; branch if CTR != 0 DCBEZ = 18 << 21, // Decrement CTR; branch if CTR == 0 BA = 20 << 21 // Branch always }; #ifdef _AIX #undef CR_LT #undef CR_GT #undef CR_EQ #undef CR_SO #endif enum CRBit { CR_LT = 0, CR_GT = 1, CR_EQ = 2, CR_SO = 3, CR_FU = 3 }; #define CRWIDTH 4 // ----------------------------------------------------------------------------- // Supervisor Call (svc) specific support. // Special Software Interrupt codes when used in the presence of the S390 // simulator. // SVC provides a 24bit immediate value. Use bits 22:0 for standard // SoftwareInterrupCode. Bit 23 is reserved for the stop feature. enum SoftwareInterruptCodes { // Transition to C code kCallRtRedirected = 0x0010, // Breakpoint kBreakpoint = 0x0000, // Stop kStopCode = 1 << 23 }; const uint32_t kStopCodeMask = kStopCode - 1; const uint32_t kMaxStopCode = kStopCode - 1; const int32_t kDefaultStopCode = -1; // FP rounding modes. enum FPRoundingMode { RN = 0, // Round to Nearest. RZ = 1, // Round towards zero. RP = 2, // Round towards Plus Infinity. RM = 3, // Round towards Minus Infinity. // Aliases. kRoundToNearest = RN, kRoundToZero = RZ, kRoundToPlusInf = RP, kRoundToMinusInf = RM }; const uint32_t kFPRoundingModeMask = 3; enum CheckForInexactConversion { kCheckForInexactConversion, kDontCheckForInexactConversion }; // ----------------------------------------------------------------------------- // Specific instructions, constants, and masks. // use TRAP4 to indicate redirection call for simulation mode const Instr rtCallRedirInstr = TRAP4; // ----------------------------------------------------------------------------- // Instruction abstraction. // The class Instruction enables access to individual fields defined in the // z/Architecture instruction set encoding. class Instruction { public: // S390 Opcode Format Types // Based on the first byte of the opcode, we can determine how to extract // the entire opcode of the instruction. The various favours include: enum OpcodeFormatType { ONE_BYTE_OPCODE, // One Byte - Bits 0 to 7 TWO_BYTE_OPCODE, // Two Bytes - Bits 0 to 15 TWO_BYTE_DISJOINT_OPCODE, // Two Bytes - Bits 0 to 7, 40 to 47 THREE_NIBBLE_OPCODE // Three Nibbles - Bits 0 to 7, 12 to 15 }; static OpcodeFormatType OpcodeFormatTable[256]; // Helper macro to define static accessors. // We use the cast to char* trick to bypass the strict anti-aliasing rules. #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \ static inline return_type Name(Instr instr) { \ char* temp = reinterpret_cast(&instr); \ return reinterpret_cast(temp)->Name(); \ } #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name) // Get the raw instruction bits. template inline T InstructionBits() const { return Instruction::InstructionBits(reinterpret_cast(this)); } inline Instr InstructionBits() const { return *reinterpret_cast(this); } // Set the raw instruction bits to value. template inline void SetInstructionBits(T value) const { Instruction::SetInstructionBits(reinterpret_cast(this), value); } inline void SetInstructionBits(Instr value) { *reinterpret_cast(this) = value; } // Read one particular bit out of the instruction bits. inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; } // Read a bit field's value out of the instruction bits. inline int Bits(int hi, int lo) const { return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1); } // Read bits according to instruction type template inline U Bits(int hi, int lo) const { return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1); } // Read a bit field out of the instruction bits. inline int BitField(int hi, int lo) const { return InstructionBits() & (((2 << (hi - lo)) - 1) << lo); } // Determine the instruction length inline int InstructionLength() { return Instruction::InstructionLength(reinterpret_cast(this)); } // Extract the Instruction Opcode inline Opcode S390OpcodeValue() { return Instruction::S390OpcodeValue(reinterpret_cast(this)); } // Static support. // Read one particular bit out of the instruction bits. static inline int Bit(Instr instr, int nr) { return (instr >> nr) & 1; } // Read the value of a bit field out of the instruction bits. static inline int Bits(Instr instr, int hi, int lo) { return (instr >> lo) & ((2 << (hi - lo)) - 1); } // Read a bit field out of the instruction bits. static inline int BitField(Instr instr, int hi, int lo) { return instr & (((2 << (hi - lo)) - 1) << lo); } // Determine the instruction length of the given instruction static inline int InstructionLength(const byte* instr) { // Length can be determined by the first nibble. // 0x0 to 0x3 => 2-bytes // 0x4 to 0xB => 4-bytes // 0xC to 0xF => 6-bytes byte topNibble = (*instr >> 4) & 0xF; if (topNibble <= 3) return 2; else if (topNibble <= 0xB) return 4; return 6; } // Returns the instruction bits of the given instruction static inline uint64_t InstructionBits(const byte* instr) { int length = InstructionLength(instr); if (2 == length) return static_cast(InstructionBits(instr)); else if (4 == length) return static_cast(InstructionBits(instr)); else return InstructionBits(instr); } // Extract the raw instruction bits template static inline T InstructionBits(const byte* instr) { #if !V8_TARGET_LITTLE_ENDIAN if (sizeof(T) <= 4) { return *reinterpret_cast(instr); } else { // We cannot read 8-byte instructon address directly, because for a // six-byte instruction, the extra 2-byte address might not be // allocated. uint64_t fourBytes = *reinterpret_cast(instr); uint16_t twoBytes = *reinterpret_cast(instr + 4); return (fourBytes << 16 | twoBytes); } #else // Even on little endian hosts (simulation), the instructions // are stored as big-endian in order to decode the opcode and // instruction length. T instr_bits = 0; // 6-byte instrs are represented by uint64_t uint32_t size = (sizeof(T) == 8) ? 6 : sizeof(T); for (T i = 0; i < size; i++) { instr_bits <<= 8; instr_bits |= *(instr + i); } return instr_bits; #endif } // Set the Instruction Bits to value template static inline void SetInstructionBits(byte* instr, T value) { #if V8_TARGET_LITTLE_ENDIAN // The instruction bits are stored in big endian format even on little // endian hosts, in order to decode instruction length and opcode. // The following code will reverse the bytes so that the stores later // (which are in native endianess) will effectively save the instruction // in big endian. if (sizeof(T) == 2) { // Two Byte Instruction value = ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8); } else if (sizeof(T) == 4) { // Four Byte Instruction value = ((value & 0x000000FF) << 24) | ((value & 0x0000FF00) << 8) | ((value & 0x00FF0000) >> 8) | ((value & 0xFF000000) >> 24); } else if (sizeof(T) == 8) { // Six Byte Instruction uint64_t orig_value = static_cast(value); value = (static_cast(orig_value & 0xFF) << 40) | (static_cast((orig_value >> 8) & 0xFF) << 32) | (static_cast((orig_value >> 16) & 0xFF) << 24) | (static_cast((orig_value >> 24) & 0xFF) << 16) | (static_cast((orig_value >> 32) & 0xFF) << 8) | (static_cast((orig_value >> 40) & 0xFF)); } #endif if (sizeof(T) <= 4) { *reinterpret_cast(instr) = value; } else { #if V8_TARGET_LITTLE_ENDIAN uint64_t orig_value = static_cast(value); *reinterpret_cast(instr) = static_cast(value); *reinterpret_cast(instr + 4) = static_cast((orig_value >> 32) & 0xFFFF); #else *reinterpret_cast(instr) = static_cast(value >> 16); *reinterpret_cast(instr + 4) = static_cast(value & 0xFFFF); #endif } } // Get Instruction Format Type static OpcodeFormatType getOpcodeFormatType(const byte* instr) { const byte firstByte = *instr; return OpcodeFormatTable[firstByte]; } // Extract the full opcode from the instruction. static inline Opcode S390OpcodeValue(const byte* instr) { OpcodeFormatType opcodeType = getOpcodeFormatType(instr); // The native instructions are encoded in big-endian format // even if running on little-endian host. Hence, we need // to ensure we use byte* based bit-wise logic. switch (opcodeType) { case ONE_BYTE_OPCODE: // One Byte - Bits 0 to 7 return static_cast(*instr); case TWO_BYTE_OPCODE: // Two Bytes - Bits 0 to 15 return static_cast((*instr << 8) | (*(instr + 1))); case TWO_BYTE_DISJOINT_OPCODE: // Two Bytes - Bits 0 to 7, 40 to 47 return static_cast((*instr << 8) | (*(instr + 5) & 0xFF)); default: // case THREE_NIBBLE_OPCODE: // Three Nibbles - Bits 0 to 7, 12 to 15 return static_cast((*instr << 4) | (*(instr + 1) & 0xF)); } UNREACHABLE(); } // Fields used in Software interrupt instructions inline SoftwareInterruptCodes SvcValue() const { return static_cast(Bits(15, 0)); } // Instructions are read of out a code stream. The only way to get a // reference to an instruction is to convert a pointer. There is no way // to allocate or create instances of class Instruction. // Use the At(pc) function to create references to Instruction. static Instruction* At(byte* pc) { return reinterpret_cast(pc); } private: // We need to prevent the creation of instances of class Instruction. DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction); }; #define DECLARE_FIELD_FOR_TWO_BYTE_INSTR(name, T, lo, hi) \ inline int name() const { \ return Bits(15 - (lo), 15 - (hi) + 1); \ } #define DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(name, T, lo, hi) \ inline int name() const { \ return Bits(31 - (lo), 31 - (hi) + 1); \ } #define DECLARE_FIELD_FOR_SIX_BYTE_INSTR(name, T, lo, hi) \ inline int name() const { \ return Bits(47 - (lo), 47 - (hi) + 1); \ } class TwoByteInstruction : public Instruction { public: inline int size() const { return 2; } }; class FourByteInstruction : public Instruction { public: inline int size() const { return 4; } }; class SixByteInstruction : public Instruction { public: inline int size() const { return 6; } }; // I Instruction class IInstruction : public TwoByteInstruction { public: DECLARE_FIELD_FOR_TWO_BYTE_INSTR(IValue, int, 8, 16); }; // E Instruction class EInstruction : public TwoByteInstruction {}; // IE Instruction class IEInstruction : public FourByteInstruction { public: DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(I1Value, int, 24, 28); DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(I2Value, int, 28, 32); }; // MII Instruction class MIIInstruction : public SixByteInstruction { public: DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M1Value, uint32_t, 8, 12); DECLARE_FIELD_FOR_SIX_BYTE_INSTR(RI2Value, int, 12, 24); DECLARE_FIELD_FOR_SIX_BYTE_INSTR(RI3Value, int, 24, 47); }; // RI Instruction class RIInstruction : public FourByteInstruction { public: DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(R1Value, int, 8, 12); DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(I2Value, int, 16, 32); DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(I2UnsignedValue, uint32_t, 16, 32); DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(M1Value, uint32_t, 8, 12); }; // RR Instruction class RRInstruction : Instruction { public: inline int R1Value() const { // the high and low parameters of Bits is the number of bits from // rightmost place return Bits(7, 4); } inline int R2Value() const { return Bits(3, 0); } inline Condition M1Value() const { return static_cast(Bits(7, 4)); } inline int size() const { return 2; } }; // RRE Instruction class RREInstruction : Instruction { public: inline int R1Value() const { return Bits(7, 4); } inline int R2Value() const { return Bits(3, 0); } inline int M3Value() const { return Bits(15, 12); } inline int M4Value() const { return Bits(19, 16); } inline int size() const { return 4; } }; // RRF Instruction class RRFInstruction : Instruction { public: inline int R1Value() const { return Bits(7, 4); } inline int R2Value() const { return Bits(3, 0); } inline int R3Value() const { return Bits(15, 12); } inline int M3Value() const { return Bits(15, 12); } inline int M4Value() const { return Bits(11, 8); } inline int size() const { return 4; } }; // RRD Isntruction class RRDInstruction : Instruction { public: inline int R1Value() const { return Bits(15, 12); } inline int R2Value() const { return Bits(3, 0); } inline int R3Value() const { return Bits(7, 4); } inline int size() const { return 4; } }; // RS Instruction class RSInstruction : Instruction { public: inline int R1Value() const { return Bits(23, 20); } inline int R3Value() const { return Bits(19, 16); } inline int B2Value() const { return Bits(15, 12); } inline unsigned int D2Value() const { return Bits(11, 0); } inline int size() const { return 4; } }; // RSI Instruction class RSIInstruction : Instruction { public: inline int R1Value() const { return Bits(23, 20); } inline int R3Value() const { return Bits(19, 16); } inline int I2Value() const { return static_cast(Bits(15, 0)); } inline int size() const { return 4; } }; // RSY Instruction class RSYInstruction : Instruction { public: inline int R1Value() const { return Bits(39, 36); } inline int R3Value() const { return Bits(35, 32); } inline int B2Value() const { return Bits(31, 28); } inline int32_t D2Value() const { int32_t value = Bits(27, 16); value += Bits(15, 8) << 12; return value; } inline int size() const { return 6; } }; // RX Instruction class RXInstruction : Instruction { public: inline int R1Value() const { return Bits(23, 20); } inline int X2Value() const { return Bits(19, 16); } inline int B2Value() const { return Bits(15, 12); } inline uint32_t D2Value() const { return Bits(11, 0); } inline int size() const { return 4; } }; // RXY Instruction class RXYInstruction : Instruction { public: inline int R1Value() const { return Bits(39, 36); } inline int X2Value() const { return Bits(35, 32); } inline int B2Value() const { return Bits(31, 28); } inline int32_t D2Value() const { int32_t value = Bits(27, 16); value += Bits(15, 8) << 12; return value; } inline int size() const { return 6; } }; // RIL Instruction class RILInstruction : Instruction { public: inline int R1Value() const { return Bits(39, 36); } inline int32_t I2Value() const { return Bits(31, 0); } inline uint32_t I2UnsignedValue() const { return Bits(31, 0); } inline int size() const { return 6; } }; // SI Instruction class SIInstruction : Instruction { public: inline int B1Value() const { return Bits(15, 12); } inline uint32_t D1Value() const { return Bits(11, 0); } inline uint8_t I2Value() const { return Bits(23, 16); } inline int size() const { return 4; } }; // SIY Instruction class SIYInstruction : Instruction { public: inline int B1Value() const { return Bits(31, 28); } inline int32_t D1Value() const { int32_t value = Bits(27, 16); value += Bits(15, 8) << 12; return value; } inline uint8_t I2Value() const { return Bits(39, 32); } inline int size() const { return 6; } }; // SIL Instruction class SILInstruction : Instruction { public: inline int B1Value() const { return Bits(31, 28); } inline int D1Value() const { return Bits(27, 16); } inline int I2Value() const { return Bits(15, 0); } inline int size() const { return 6; } }; // SS Instruction class SSInstruction : Instruction { public: inline int B1Value() const { return Bits(31, 28); } inline int B2Value() const { return Bits(15, 12); } inline int D1Value() const { return Bits(27, 16); } inline int D2Value() const { return Bits(11, 0); } inline int Length() const { return Bits(39, 32); } inline int size() const { return 6; } }; // RXE Instruction class RXEInstruction : Instruction { public: inline int R1Value() const { return Bits(39, 36); } inline int X2Value() const { return Bits(35, 32); } inline int B2Value() const { return Bits(31, 28); } inline int D2Value() const { return Bits(27, 16); } inline int size() const { return 6; } }; // RIE Instruction class RIEInstruction : Instruction { public: inline int R1Value() const { return Bits(39, 36); } inline int R2Value() const { return Bits(35, 32); } inline int I3Value() const { return Bits(31, 24); } inline int I4Value() const { return Bits(23, 16); } inline int I5Value() const { return Bits(15, 8); } inline int I6Value() const { return static_cast(Bits(31, 16)); } inline int size() const { return 6; } }; // VRR Instruction class VRR_C_Instruction : SixByteInstruction { public: DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12); DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R2Value, int, 12, 16); DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R3Value, int, 16, 20); DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M6Value, uint32_t, 24, 28); DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M5Value, uint32_t, 28, 32); DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M4Value, uint32_t, 32, 36); }; // Helper functions for converting between register numbers and names. class Registers { public: // Lookup the register number for the name provided. static int Number(const char* name); private: static const char* names_[kNumRegisters]; }; // Helper functions for converting between FP register numbers and names. class DoubleRegisters { public: // Lookup the register number for the name provided. static int Number(const char* name); private: static const char* names_[kNumDoubleRegisters]; }; } // namespace internal } // namespace v8 #endif // V8_S390_CONSTANTS_S390_H_