// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_X64_MACRO_ASSEMBLER_X64_H_ #define V8_X64_MACRO_ASSEMBLER_X64_H_ #include "src/bailout-reason.h" #include "src/base/flags.h" #include "src/globals.h" #include "src/turbo-assembler.h" #include "src/x64/assembler-x64.h" namespace v8 { namespace internal { // Give alias names to registers for calling conventions. constexpr Register kReturnRegister0 = rax; constexpr Register kReturnRegister1 = rdx; constexpr Register kReturnRegister2 = r8; constexpr Register kJSFunctionRegister = rdi; constexpr Register kContextRegister = rsi; constexpr Register kAllocateSizeRegister = rdx; constexpr Register kSpeculationPoisonRegister = r12; constexpr Register kInterpreterAccumulatorRegister = rax; constexpr Register kInterpreterBytecodeOffsetRegister = r9; constexpr Register kInterpreterBytecodeArrayRegister = r14; constexpr Register kInterpreterDispatchTableRegister = r15; constexpr Register kJavaScriptCallArgCountRegister = rax; constexpr Register kJavaScriptCallCodeStartRegister = rcx; constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister; constexpr Register kJavaScriptCallNewTargetRegister = rdx; constexpr Register kJavaScriptCallExtraArg1Register = rbx; constexpr Register kRuntimeCallFunctionRegister = rbx; constexpr Register kRuntimeCallArgCountRegister = rax; constexpr Register kRuntimeCallArgvRegister = r15; constexpr Register kWasmInstanceRegister = rsi; // Default scratch register used by MacroAssembler (and other code that needs // a spare register). The register isn't callee save, and not used by the // function calling convention. constexpr Register kScratchRegister = r10; constexpr XMMRegister kScratchDoubleReg = xmm15; constexpr Register kRootRegister = r13; // callee save constexpr Register kOffHeapTrampolineRegister = kScratchRegister; // Convenience for platform-independent signatures. typedef Operand MemOperand; enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET }; enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK }; struct SmiIndex { SmiIndex(Register index_register, ScaleFactor scale) : reg(index_register), scale(scale) {} Register reg; ScaleFactor scale; }; enum StackArgumentsAccessorReceiverMode { ARGUMENTS_CONTAIN_RECEIVER, ARGUMENTS_DONT_CONTAIN_RECEIVER }; class StackArgumentsAccessor BASE_EMBEDDED { public: StackArgumentsAccessor(Register base_reg, int argument_count_immediate, StackArgumentsAccessorReceiverMode receiver_mode = ARGUMENTS_CONTAIN_RECEIVER, int extra_displacement_to_last_argument = 0) : base_reg_(base_reg), argument_count_reg_(no_reg), argument_count_immediate_(argument_count_immediate), receiver_mode_(receiver_mode), extra_displacement_to_last_argument_( extra_displacement_to_last_argument) {} StackArgumentsAccessor(Register base_reg, Register argument_count_reg, StackArgumentsAccessorReceiverMode receiver_mode = ARGUMENTS_CONTAIN_RECEIVER, int extra_displacement_to_last_argument = 0) : base_reg_(base_reg), argument_count_reg_(argument_count_reg), argument_count_immediate_(0), receiver_mode_(receiver_mode), extra_displacement_to_last_argument_( extra_displacement_to_last_argument) {} StackArgumentsAccessor(Register base_reg, const ParameterCount& parameter_count, StackArgumentsAccessorReceiverMode receiver_mode = ARGUMENTS_CONTAIN_RECEIVER, int extra_displacement_to_last_argument = 0); Operand GetArgumentOperand(int index); Operand GetReceiverOperand() { DCHECK(receiver_mode_ == ARGUMENTS_CONTAIN_RECEIVER); return GetArgumentOperand(0); } private: const Register base_reg_; const Register argument_count_reg_; const int argument_count_immediate_; const StackArgumentsAccessorReceiverMode receiver_mode_; const int extra_displacement_to_last_argument_; DISALLOW_IMPLICIT_CONSTRUCTORS(StackArgumentsAccessor); }; class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase { public: TurboAssembler(Isolate* isolate, const AssemblerOptions& options, void* buffer, int buffer_size, CodeObjectRequired create_code_object) : TurboAssemblerBase(isolate, options, buffer, buffer_size, create_code_object) {} template struct AvxHelper { Assembler* assm; // Call an method where the AVX version expects the dst argument to be // duplicated. template void emit(Dst dst, Args... args) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(assm, AVX); (assm->*avx)(dst, dst, args...); } else { (assm->*no_avx)(dst, args...); } } // Call an method where the AVX version expects no duplicated dst argument. template void emit(Dst dst, Args... args) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(assm, AVX); (assm->*avx)(dst, args...); } else { (assm->*no_avx)(dst, args...); } } }; #define AVX_OP(macro_name, name) \ template \ void macro_name(Dst dst, Args... args) { \ AvxHelper{this} \ .template emit<&Assembler::v##name, &Assembler::name>(dst, args...); \ } AVX_OP(Subsd, subsd) AVX_OP(Divss, divss) AVX_OP(Divsd, divsd) AVX_OP(Xorps, xorps) AVX_OP(Xorpd, xorpd) AVX_OP(Movd, movd) AVX_OP(Movq, movq) AVX_OP(Movaps, movaps) AVX_OP(Movapd, movapd) AVX_OP(Movups, movups) AVX_OP(Movmskps, movmskps) AVX_OP(Movmskpd, movmskpd) AVX_OP(Movss, movss) AVX_OP(Movsd, movsd) AVX_OP(Pcmpeqd, pcmpeqd) AVX_OP(Pslld, pslld) AVX_OP(Psllq, psllq) AVX_OP(Psrld, psrld) AVX_OP(Psrlq, psrlq) AVX_OP(Addsd, addsd) AVX_OP(Mulsd, mulsd) AVX_OP(Andps, andps) AVX_OP(Andpd, andpd) AVX_OP(Orpd, orpd) AVX_OP(Cmpeqps, cmpeqps) AVX_OP(Cmpltps, cmpltps) AVX_OP(Cmpleps, cmpleps) AVX_OP(Cmpneqps, cmpneqps) AVX_OP(Cmpnltps, cmpnltps) AVX_OP(Cmpnleps, cmpnleps) AVX_OP(Cmpeqpd, cmpeqpd) AVX_OP(Cmpltpd, cmpltpd) AVX_OP(Cmplepd, cmplepd) AVX_OP(Cmpneqpd, cmpneqpd) AVX_OP(Cmpnltpd, cmpnltpd) AVX_OP(Cmpnlepd, cmpnlepd) AVX_OP(Roundss, roundss) AVX_OP(Roundsd, roundsd) AVX_OP(Sqrtss, sqrtss) AVX_OP(Sqrtsd, sqrtsd) AVX_OP(Ucomiss, ucomiss) AVX_OP(Ucomisd, ucomisd) #undef AVX_OP void PushReturnAddressFrom(Register src) { pushq(src); } void PopReturnAddressTo(Register dst) { popq(dst); } void Ret(); // Return and drop arguments from stack, where the number of arguments // may be bigger than 2^16 - 1. Requires a scratch register. void Ret(int bytes_dropped, Register scratch); // Load a register with a long value as efficiently as possible. void Set(Register dst, int64_t x); void Set(Operand dst, intptr_t x); // Operations on roots in the root-array. void LoadRoot(Register destination, Heap::RootListIndex index) override; void LoadRoot(Operand destination, Heap::RootListIndex index) { LoadRoot(kScratchRegister, index); movp(destination, kScratchRegister); } void Push(Register src); void Push(Operand src); void Push(Immediate value); void Push(Smi* smi); void Push(Handle source); // Before calling a C-function from generated code, align arguments on stack. // After aligning the frame, arguments must be stored in rsp[0], rsp[8], // etc., not pushed. The argument count assumes all arguments are word sized. // The number of slots reserved for arguments depends on platform. On Windows // stack slots are reserved for the arguments passed in registers. On other // platforms stack slots are only reserved for the arguments actually passed // on the stack. void PrepareCallCFunction(int num_arguments); // Calls a C function and cleans up the space for arguments allocated // by PrepareCallCFunction. The called function is not allowed to trigger a // garbage collection, since that might move the code and invalidate the // return address (unless this is somehow accounted for by the called // function). void CallCFunction(ExternalReference function, int num_arguments); void CallCFunction(Register function, int num_arguments); // Calculate the number of stack slots to reserve for arguments when calling a // C function. int ArgumentStackSlotsForCFunctionCall(int num_arguments); void CheckPageFlag(Register object, Register scratch, int mask, Condition cc, Label* condition_met, Label::Distance condition_met_distance = Label::kFar); void Cvtss2sd(XMMRegister dst, XMMRegister src); void Cvtss2sd(XMMRegister dst, Operand src); void Cvtsd2ss(XMMRegister dst, XMMRegister src); void Cvtsd2ss(XMMRegister dst, Operand src); void Cvttsd2si(Register dst, XMMRegister src); void Cvttsd2si(Register dst, Operand src); void Cvttsd2siq(Register dst, XMMRegister src); void Cvttsd2siq(Register dst, Operand src); void Cvttss2si(Register dst, XMMRegister src); void Cvttss2si(Register dst, Operand src); void Cvttss2siq(Register dst, XMMRegister src); void Cvttss2siq(Register dst, Operand src); void Cvtqsi2ss(XMMRegister dst, Register src); void Cvtqsi2ss(XMMRegister dst, Operand src); void Cvtqsi2sd(XMMRegister dst, Register src); void Cvtqsi2sd(XMMRegister dst, Operand src); void Cvtlsi2ss(XMMRegister dst, Register src); void Cvtlsi2ss(XMMRegister dst, Operand src); void Cvtlui2ss(XMMRegister dst, Register src); void Cvtlui2ss(XMMRegister dst, Operand src); void Cvtlui2sd(XMMRegister dst, Register src); void Cvtlui2sd(XMMRegister dst, Operand src); void Cvtqui2ss(XMMRegister dst, Register src); void Cvtqui2ss(XMMRegister dst, Operand src); void Cvtqui2sd(XMMRegister dst, Register src); void Cvtqui2sd(XMMRegister dst, Operand src); void Cvttsd2uiq(Register dst, Operand src, Label* fail = nullptr); void Cvttsd2uiq(Register dst, XMMRegister src, Label* fail = nullptr); void Cvttss2uiq(Register dst, Operand src, Label* fail = nullptr); void Cvttss2uiq(Register dst, XMMRegister src, Label* fail = nullptr); // cvtsi2sd instruction only writes to the low 64-bit of dst register, which // hinders register renaming and makes dependence chains longer. So we use // xorpd to clear the dst register before cvtsi2sd to solve this issue. void Cvtlsi2sd(XMMRegister dst, Register src); void Cvtlsi2sd(XMMRegister dst, Operand src); void Lzcntq(Register dst, Register src); void Lzcntq(Register dst, Operand src); void Lzcntl(Register dst, Register src); void Lzcntl(Register dst, Operand src); void Tzcntq(Register dst, Register src); void Tzcntq(Register dst, Operand src); void Tzcntl(Register dst, Register src); void Tzcntl(Register dst, Operand src); void Popcntl(Register dst, Register src); void Popcntl(Register dst, Operand src); void Popcntq(Register dst, Register src); void Popcntq(Register dst, Operand src); // Is the value a tagged smi. Condition CheckSmi(Register src); Condition CheckSmi(Operand src); // Jump to label if the value is a tagged smi. void JumpIfSmi(Register src, Label* on_smi, Label::Distance near_jump = Label::kFar); void JumpIfEqual(Register a, int32_t b, Label* dest) { cmpl(a, Immediate(b)); j(equal, dest); } void JumpIfLessThan(Register a, int32_t b, Label* dest) { cmpl(a, Immediate(b)); j(less, dest); } void Move(Register dst, Smi* source); void Move(Operand dst, Smi* source) { Register constant = GetSmiConstant(source); movp(dst, constant); } void Move(Register dst, ExternalReference ext); void Move(XMMRegister dst, uint32_t src); void Move(XMMRegister dst, uint64_t src); void Move(XMMRegister dst, float src) { Move(dst, bit_cast(src)); } void Move(XMMRegister dst, double src) { Move(dst, bit_cast(src)); } // Move if the registers are not identical. void Move(Register target, Register source); void Move(Register dst, Handle source, RelocInfo::Mode rmode = RelocInfo::EMBEDDED_OBJECT); void Move(Operand dst, Handle source, RelocInfo::Mode rmode = RelocInfo::EMBEDDED_OBJECT); // Loads a pointer into a register with a relocation mode. void Move(Register dst, Address ptr, RelocInfo::Mode rmode) { // This method must not be used with heap object references. The stored // address is not GC safe. Use the handle version instead. DCHECK(rmode > RelocInfo::LAST_GCED_ENUM); movp(dst, ptr, rmode); } // Convert smi to word-size sign-extended value. void SmiUntag(Register dst, Register src); void SmiUntag(Register dst, Operand src); // Loads the address of the external reference into the destination // register. void LoadAddress(Register destination, ExternalReference source); void LoadFromConstantsTable(Register destination, int constant_index) override; void LoadRootRegisterOffset(Register destination, intptr_t offset) override; void LoadRootRelative(Register destination, int32_t offset) override; // Operand pointing to an external reference. // May emit code to set up the scratch register. The operand is // only guaranteed to be correct as long as the scratch register // isn't changed. // If the operand is used more than once, use a scratch register // that is guaranteed not to be clobbered. Operand ExternalOperand(ExternalReference reference, Register scratch = kScratchRegister); void Call(Register reg) { call(reg); } void Call(Operand op); void Call(Handle code_object, RelocInfo::Mode rmode); void Call(Address destination, RelocInfo::Mode rmode); void Call(ExternalReference ext); void Call(Label* target) { call(target); } void RetpolineCall(Register reg); void RetpolineCall(Address destination, RelocInfo::Mode rmode); void Jump(Address destination, RelocInfo::Mode rmode); void Jump(ExternalReference ext); void Jump(Operand op); void Jump(Handle code_object, RelocInfo::Mode rmode, Condition cc = always); void RetpolineJump(Register reg); void CallForDeoptimization(Address target, int deopt_id, RelocInfo::Mode rmode) { USE(deopt_id); call(target, rmode); } // Non-SSE2 instructions. void Pextrd(Register dst, XMMRegister src, int8_t imm8); void Pinsrd(XMMRegister dst, Register src, int8_t imm8); void Pinsrd(XMMRegister dst, Operand src, int8_t imm8); void CompareRoot(Register with, Heap::RootListIndex index); void CompareRoot(Operand with, Heap::RootListIndex index); // Generates function and stub prologue code. void StubPrologue(StackFrame::Type type); void Prologue(); // Calls Abort(msg) if the condition cc is not satisfied. // Use --debug_code to enable. void Assert(Condition cc, AbortReason reason); // Like Assert(), but without condition. // Use --debug_code to enable. void AssertUnreachable(AbortReason reason); // Abort execution if a 64 bit register containing a 32 bit payload does not // have zeros in the top 32 bits, enabled via --debug-code. void AssertZeroExtended(Register reg); // Like Assert(), but always enabled. void Check(Condition cc, AbortReason reason); // Print a message to stdout and abort execution. void Abort(AbortReason msg); // Check that the stack is aligned. void CheckStackAlignment(); // Activation support. void EnterFrame(StackFrame::Type type); void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) { // Out-of-line constant pool not implemented on x64. UNREACHABLE(); } void LeaveFrame(StackFrame::Type type); // Removes current frame and its arguments from the stack preserving the // arguments and a return address pushed to the stack for the next call. Both // |callee_args_count| and |caller_args_count_reg| do not include receiver. // |callee_args_count| is not modified, |caller_args_count_reg| is trashed. void PrepareForTailCall(const ParameterCount& callee_args_count, Register caller_args_count_reg, Register scratch0, Register scratch1); inline bool AllowThisStubCall(CodeStub* stub); // Call a code stub. This expects {stub} to be zone-allocated, as it does not // trigger generation of the stub's code object but instead files a // HeapObjectRequest that will be fulfilled after code assembly. void CallStubDelayed(CodeStub* stub); // Call a runtime routine. This expects {centry} to contain a fitting CEntry // builtin for the target runtime function and uses an indirect call. void CallRuntimeWithCEntry(Runtime::FunctionId fid, Register centry); void InitializeRootRegister() { ExternalReference roots_array_start = ExternalReference::roots_array_start(isolate()); Move(kRootRegister, roots_array_start); addp(kRootRegister, Immediate(kRootRegisterBias)); } void SaveRegisters(RegList registers); void RestoreRegisters(RegList registers); void CallRecordWriteStub(Register object, Register address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode); void MoveNumber(Register dst, double value); void MoveNonSmi(Register dst, double value); // Calculate how much stack space (in bytes) are required to store caller // registers excluding those specified in the arguments. int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg) const; // PushCallerSaved and PopCallerSaved do not arrange the registers in any // particular order so they are not useful for calls that can cause a GC. // The caller can exclude up to 3 registers that do not need to be saved and // restored. // Push caller saved registers on the stack, and return the number of bytes // stack pointer is adjusted. int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg); // Restore caller saved registers from the stack, and return the number of // bytes stack pointer is adjusted. int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg); // Compute the start of the generated instruction stream from the current PC. // This is an alternative to embedding the {CodeObject} handle as a reference. void ComputeCodeStartAddress(Register dst); void ResetSpeculationPoisonRegister(); protected: static const int kSmiShift = kSmiTagSize + kSmiShiftSize; int smi_count = 0; int heap_object_count = 0; int64_t RootRegisterDelta(ExternalReference other); // Returns a register holding the smi value. The register MUST NOT be // modified. It may be the "smi 1 constant" register. Register GetSmiConstant(Smi* value); }; // MacroAssembler implements a collection of frequently used macros. class MacroAssembler : public TurboAssembler { public: // TODO(titzer): inline this utility constructor. MacroAssembler(Isolate* isolate, void* buffer, int size, CodeObjectRequired create_code_object) : MacroAssembler(isolate, AssemblerOptions::Default(isolate), buffer, size, create_code_object) {} MacroAssembler(Isolate* isolate, const AssemblerOptions& options, void* buffer, int size, CodeObjectRequired create_code_object); // Loads and stores the value of an external reference. // Special case code for load and store to take advantage of // load_rax/store_rax if possible/necessary. // For other operations, just use: // Operand operand = ExternalOperand(extref); // operation(operand, ..); void Load(Register destination, ExternalReference source); void Store(ExternalReference destination, Register source); // Pushes the address of the external reference onto the stack. void PushAddress(ExternalReference source); // Operations on roots in the root-array. // Load a root value where the index (or part of it) is variable. // The variable_offset register is added to the fixed_offset value // to get the index into the root-array. void PushRoot(Heap::RootListIndex index); // Compare the object in a register to a value and jump if they are equal. void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal, Label::Distance if_equal_distance = Label::kFar) { CompareRoot(with, index); j(equal, if_equal, if_equal_distance); } void JumpIfRoot(Operand with, Heap::RootListIndex index, Label* if_equal, Label::Distance if_equal_distance = Label::kFar) { CompareRoot(with, index); j(equal, if_equal, if_equal_distance); } // Compare the object in a register to a value and jump if they are not equal. void JumpIfNotRoot(Register with, Heap::RootListIndex index, Label* if_not_equal, Label::Distance if_not_equal_distance = Label::kFar) { CompareRoot(with, index); j(not_equal, if_not_equal, if_not_equal_distance); } void JumpIfNotRoot(Operand with, Heap::RootListIndex index, Label* if_not_equal, Label::Distance if_not_equal_distance = Label::kFar) { CompareRoot(with, index); j(not_equal, if_not_equal, if_not_equal_distance); } // --------------------------------------------------------------------------- // GC Support // Notify the garbage collector that we wrote a pointer into an object. // |object| is the object being stored into, |value| is the object being // stored. value and scratch registers are clobbered by the operation. // The offset is the offset from the start of the object, not the offset from // the tagged HeapObject pointer. For use with FieldOperand(reg, off). void RecordWriteField( Register object, int offset, Register value, Register scratch, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK); // For page containing |object| mark region covering |address| // dirty. |object| is the object being stored into, |value| is the // object being stored. The address and value registers are clobbered by the // operation. RecordWrite filters out smis so it does not update // the write barrier if the value is a smi. void RecordWrite( Register object, Register address, Register value, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK); // Frame restart support. void MaybeDropFrames(); // Enter specific kind of exit frame; either in normal or // debug mode. Expects the number of arguments in register rax and // sets up the number of arguments in register rdi and the pointer // to the first argument in register rsi. // // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack // accessible via StackSpaceOperand. void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false, StackFrame::Type frame_type = StackFrame::EXIT); // Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize // memory (not GCed) on the stack accessible via StackSpaceOperand. void EnterApiExitFrame(int arg_stack_space); // Leave the current exit frame. Expects/provides the return value in // register rax:rdx (untouched) and the pointer to the first // argument in register rsi (if pop_arguments == true). void LeaveExitFrame(bool save_doubles = false, bool pop_arguments = true); // Leave the current exit frame. Expects/provides the return value in // register rax (untouched). void LeaveApiExitFrame(); // Push and pop the registers that can hold pointers. void PushSafepointRegisters() { Pushad(); } void PopSafepointRegisters() { Popad(); } // --------------------------------------------------------------------------- // JavaScript invokes // Invoke the JavaScript function code by either calling or jumping. void InvokeFunctionCode(Register function, Register new_target, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag); // On function call, call into the debugger if necessary. void CheckDebugHook(Register fun, Register new_target, const ParameterCount& expected, const ParameterCount& actual); // Invoke the JavaScript function in the given register. Changes the // current context to the context in the function before invoking. void InvokeFunction(Register function, Register new_target, const ParameterCount& actual, InvokeFlag flag); void InvokeFunction(Register function, Register new_target, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag); // --------------------------------------------------------------------------- // Conversions between tagged smi values and non-tagged integer values. // Tag an word-size value. The result must be known to be a valid smi value. void SmiTag(Register dst, Register src); // Simple comparison of smis. Both sides must be known smis to use these, // otherwise use Cmp. void SmiCompare(Register smi1, Register smi2); void SmiCompare(Register dst, Smi* src); void SmiCompare(Register dst, Operand src); void SmiCompare(Operand dst, Register src); void SmiCompare(Operand dst, Smi* src); // Functions performing a check on a known or potential smi. Returns // a condition that is satisfied if the check is successful. // Test-and-jump functions. Typically combines a check function // above with a conditional jump. // Jump to label if the value is not a tagged smi. void JumpIfNotSmi(Register src, Label* on_not_smi, Label::Distance near_jump = Label::kFar); // Jump to label if the value is not a tagged smi. void JumpIfNotSmi(Operand src, Label* on_not_smi, Label::Distance near_jump = Label::kFar); // Operations on tagged smi values. // Smis represent a subset of integers. The subset is always equivalent to // a two's complement interpretation of a fixed number of bits. // Add an integer constant to a tagged smi, giving a tagged smi as result. // No overflow testing on the result is done. void SmiAddConstant(Operand dst, Smi* constant); // Specialized operations // Converts, if necessary, a smi to a combination of number and // multiplier to be used as a scaled index. // The src register contains a *positive* smi value. The shift is the // power of two to multiply the index value by (e.g. // to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2). // The returned index register may be either src or dst, depending // on what is most efficient. If src and dst are different registers, // src is always unchanged. SmiIndex SmiToIndex(Register dst, Register src, int shift); // --------------------------------------------------------------------------- // Macro instructions. // Load/store with specific representation. void Load(Register dst, Operand src, Representation r); void Store(Operand dst, Register src, Representation r); void Cmp(Register dst, Handle source); void Cmp(Operand dst, Handle source); void Cmp(Register dst, Smi* src); void Cmp(Operand dst, Smi* src); // Emit code to discard a non-negative number of pointer-sized elements // from the stack, clobbering only the rsp register. void Drop(int stack_elements); // Emit code to discard a positive number of pointer-sized elements // from the stack under the return address which remains on the top, // clobbering the rsp register. void DropUnderReturnAddress(int stack_elements, Register scratch = kScratchRegister); void PushQuad(Operand src); void PushImm32(int32_t imm32); void Pop(Register dst); void Pop(Operand dst); void PopQuad(Operand dst); // --------------------------------------------------------------------------- // SIMD macros. void Absps(XMMRegister dst); void Negps(XMMRegister dst); void Abspd(XMMRegister dst); void Negpd(XMMRegister dst); // Generates a trampoline to jump to the off-heap instruction stream. void JumpToInstructionStream(Address entry); // Non-x64 instructions. // Push/pop all general purpose registers. // Does not push rsp/rbp nor any of the assembler's special purpose registers // (kScratchRegister, kRootRegister). void Pushad(); void Popad(); // Compare object type for heap object. // Always use unsigned comparisons: above and below, not less and greater. // Incoming register is heap_object and outgoing register is map. // They may be the same register, and may be kScratchRegister. void CmpObjectType(Register heap_object, InstanceType type, Register map); // Compare instance type for map. // Always use unsigned comparisons: above and below, not less and greater. void CmpInstanceType(Register map, InstanceType type); void DoubleToI(Register result_reg, XMMRegister input_reg, XMMRegister scratch, Label* lost_precision, Label* is_nan, Label::Distance dst = Label::kFar); template void DecodeField(Register reg) { static const int shift = Field::kShift; static const int mask = Field::kMask >> Field::kShift; if (shift != 0) { shrp(reg, Immediate(shift)); } andp(reg, Immediate(mask)); } // Abort execution if argument is a smi, enabled via --debug-code. void AssertNotSmi(Register object); // Abort execution if argument is not a smi, enabled via --debug-code. void AssertSmi(Register object); void AssertSmi(Operand object); // Abort execution if argument is not a Constructor, enabled via --debug-code. void AssertConstructor(Register object); // Abort execution if argument is not a JSFunction, enabled via --debug-code. void AssertFunction(Register object); // Abort execution if argument is not a JSBoundFunction, // enabled via --debug-code. void AssertBoundFunction(Register object); // Abort execution if argument is not a JSGeneratorObject (or subclass), // enabled via --debug-code. void AssertGeneratorObject(Register object); // Abort execution if argument is not undefined or an AllocationSite, enabled // via --debug-code. void AssertUndefinedOrAllocationSite(Register object); // --------------------------------------------------------------------------- // Exception handling // Push a new stack handler and link it into stack handler chain. void PushStackHandler(); // Unlink the stack handler on top of the stack from the stack handler chain. void PopStackHandler(); // --------------------------------------------------------------------------- // Support functions. // Load the global proxy from the current context. void LoadGlobalProxy(Register dst) { LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst); } // Load the native context slot with the current index. void LoadNativeContextSlot(int index, Register dst); // --------------------------------------------------------------------------- // Runtime calls // Call a code stub. // The code object is generated immediately, in contrast to // TurboAssembler::CallStubDelayed. void CallStub(CodeStub* stub); // Tail call a code stub (jump). void TailCallStub(CodeStub* stub); // Call a runtime routine. void CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles = kDontSaveFPRegs); // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId fid, SaveFPRegsMode save_doubles = kDontSaveFPRegs) { const Runtime::Function* function = Runtime::FunctionForId(fid); CallRuntime(function, function->nargs, save_doubles); } // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId fid, int num_arguments, SaveFPRegsMode save_doubles = kDontSaveFPRegs) { CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles); } // Convenience function: tail call a runtime routine (jump) void TailCallRuntime(Runtime::FunctionId fid); // Jump to a runtime routines void JumpToExternalReference(const ExternalReference& ext, bool builtin_exit_frame = false); // --------------------------------------------------------------------------- // StatsCounter support void IncrementCounter(StatsCounter* counter, int value); void DecrementCounter(StatsCounter* counter, int value); // --------------------------------------------------------------------------- // In-place weak references. void LoadWeakValue(Register in_out, Label* target_if_cleared); // --------------------------------------------------------------------------- // Debugging static int SafepointRegisterStackIndex(Register reg) { return SafepointRegisterStackIndex(reg.code()); } void EnterBuiltinFrame(Register context, Register target, Register argc); void LeaveBuiltinFrame(Register context, Register target, Register argc); private: // Order general registers are pushed by Pushad. // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r12, r14, r15. static const int kSafepointPushRegisterIndices[Register::kNumRegisters]; static const int kNumSafepointSavedRegisters = 12; // Helper functions for generating invokes. void InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Label* done, bool* definitely_mismatches, InvokeFlag flag, Label::Distance near_jump); void EnterExitFramePrologue(bool save_rax, StackFrame::Type frame_type); // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack // accessible via StackSpaceOperand. void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles); void LeaveExitFrameEpilogue(); // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace. void InNewSpace(Register object, Register scratch, Condition cc, Label* branch, Label::Distance distance = Label::kFar); // Compute memory operands for safepoint stack slots. static int SafepointRegisterStackIndex(int reg_code) { return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1; } // Needs access to SafepointRegisterStackIndex for compiled frame // traversal. friend class StandardFrame; }; // ----------------------------------------------------------------------------- // Static helper functions. // Generate an Operand for loading a field from an object. inline Operand FieldOperand(Register object, int offset) { return Operand(object, offset - kHeapObjectTag); } // Generate an Operand for loading an indexed field from an object. inline Operand FieldOperand(Register object, Register index, ScaleFactor scale, int offset) { return Operand(object, index, scale, offset - kHeapObjectTag); } inline Operand ContextOperand(Register context, int index) { return Operand(context, Context::SlotOffset(index)); } inline Operand ContextOperand(Register context, Register index) { return Operand(context, index, times_pointer_size, Context::SlotOffset(0)); } inline Operand NativeContextOperand() { return ContextOperand(rsi, Context::NATIVE_CONTEXT_INDEX); } // Provides access to exit frame stack space (not GCed). inline Operand StackSpaceOperand(int index) { #ifdef _WIN64 const int kShaddowSpace = 4; return Operand(rsp, (index + kShaddowSpace) * kPointerSize); #else return Operand(rsp, index * kPointerSize); #endif } inline Operand StackOperandForReturnAddress(int32_t disp) { return Operand(rsp, disp); } #define ACCESS_MASM(masm) masm-> } // namespace internal } // namespace v8 #endif // V8_X64_MACRO_ASSEMBLER_X64_H_