// Copyright 2015, VIXL authors // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of ARM Limited nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef VIXL_EXAMPLE_EXAMPLES_H_ #define VIXL_EXAMPLE_EXAMPLES_H_ #include "aarch64/macro-assembler-aarch64.h" #include "aarch64/simulator-aarch64.h" using namespace vixl; using namespace vixl::aarch64; // Generate a function with the following prototype: // uint64_t factorial(uint64_t n) // // It provides an iterative implementation of the factorial computation. void GenerateFactorial(MacroAssembler* masm); // Generate a function with the following prototype: // uint64_t factorial_rec(uint64_t n) // // It provides a recursive implementation of the factorial computation. void GenerateFactorialRec(MacroAssembler* masm); // Generate a function with the following prototype: // void neon_matrix_multiply(float* dst, float* mat1, float* mat2) // // It provides an implementation of a column-major 4x4 matrix multiplication. void GenerateNEONMatrixMultiply(MacroAssembler* masm); // Generate a function with the following prototype: // void add2_vectors(int8_t *vecA, const int8_t *vecB, unsigned size) // // Demonstrate how to add two vectors using NEON. The result is stored in vecA. void GenerateAdd2Vectors(MacroAssembler* masm); // Generate a function with the following prototype: // double add3_double(double x, double y, double z) // // This example is intended to show the calling convention with double // floating point arguments. void GenerateAdd3Double(MacroAssembler* masm); // Generate a function with the following prototype: // double add4_double(uint64_t a, double b, uint64_t c, double d) // // The generated function pictures the calling convention for functions // mixing integer and floating point arguments. void GenerateAdd4Double(MacroAssembler* masm); // Generate a function with the following prototype: // uint32_t sum_array(uint8_t* array, uint32_t size) // // The generated function computes the sum of all the elements in // the given array. void GenerateSumArray(MacroAssembler* masm); // Generate a function with the following prototype: // int64_t abs(int64_t x) // // The generated function computes the absolute value of an integer. void GenerateAbs(MacroAssembler* masm); // Generate a function with the following prototype: // uint64_t check_bounds(uint64_t value, uint64_t low, uint64_t high) // // The goal of this example is to illustrate the use of conditional // instructions. The generated function will check that the given value is // contained within the given boundaries. It returns 1 if 'value' is between // 'low' and 'high' (ie. low <= value <= high). void GenerateCheckBounds(MacroAssembler* masm); // Generate a function with the following prototype: // uint32_t crc32(const char *msg, size_t msg_length) // // The generated function computes the CRC-32 checksum on the input msg // with specified length, and returns the result. void GenerateCrc32(MacroAssembler* masm); // Generate a function which uses the stack to swap the content of the x0, x1, // x2 and x3 registers. void GenerateSwap4(MacroAssembler* masm); // Generate a function which swaps the content of w0 and w1. // This example demonstrates some interesting features of VIXL's stack // operations. void GenerateSwapInt32(MacroAssembler* masm); // Generate a function with the following prototype: // uint64_t demo_function(uint64_t x) // // This is the example used in doc/getting-started-aarch64.txt void GenerateDemoFunction(MacroAssembler* masm); // This function generates and runs code that uses literals to sum the `a` and // `b` inputs. int64_t LiteralExample(int64_t a, int64_t b); // Generate a few examples of runtime calls. void GenerateRuntimeCallExamples(MacroAssembler* masm); #endif // VIXL_EXAMPLE_EXAMPLES_H_