#!/usr/bin/python3 -i # # Copyright (c) 2015-2019 The Khronos Group Inc. # Copyright (c) 2015-2019 Valve Corporation # Copyright (c) 2015-2019 LunarG, Inc. # Copyright (c) 2015-2019 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Tobin Ehlis # Author: Mark Lobodzinski import os,re,sys import xml.etree.ElementTree as etree from generator import * from collections import namedtuple from common_codegen import * # LayerChassisDispatchGeneratorOptions - subclass of GeneratorOptions. # # Adds options used by LayerChassisDispatchOutputGenerator objects during # layer chassis dispatch file generation. # # Additional members # prefixText - list of strings to prefix generated header with # (usually a copyright statement + calling convention macros). # protectFile - True if multiple inclusion protection should be # generated (based on the filename) around the entire header. # protectFeature - True if #ifndef..#endif protection should be # generated around a feature interface in the header file. # genFuncPointers - True if function pointer typedefs should be # generated # protectProto - If conditional protection should be generated # around prototype declarations, set to either '#ifdef' # to require opt-in (#ifdef protectProtoStr) or '#ifndef' # to require opt-out (#ifndef protectProtoStr). Otherwise # set to None. # protectProtoStr - #ifdef/#ifndef symbol to use around prototype # declarations, if protectProto is set # apicall - string to use for the function declaration prefix, # such as APICALL on Windows. # apientry - string to use for the calling convention macro, # in typedefs, such as APIENTRY. # apientryp - string to use for the calling convention macro # in function pointer typedefs, such as APIENTRYP. # indentFuncProto - True if prototype declarations should put each # parameter on a separate line # indentFuncPointer - True if typedefed function pointers should put each # parameter on a separate line # alignFuncParam - if nonzero and parameters are being put on a # separate line, align parameter names at the specified column class LayerChassisDispatchGeneratorOptions(GeneratorOptions): def __init__(self, filename = None, directory = '.', apiname = None, profile = None, versions = '.*', emitversions = '.*', defaultExtensions = None, addExtensions = None, removeExtensions = None, emitExtensions = None, sortProcedure = regSortFeatures, prefixText = "", genFuncPointers = True, protectFile = True, protectFeature = True, apicall = '', apientry = '', apientryp = '', indentFuncProto = True, indentFuncPointer = False, alignFuncParam = 0, expandEnumerants = True): GeneratorOptions.__init__(self, filename, directory, apiname, profile, versions, emitversions, defaultExtensions, addExtensions, removeExtensions, emitExtensions, sortProcedure) self.prefixText = prefixText self.genFuncPointers = genFuncPointers self.protectFile = protectFile self.protectFeature = protectFeature self.apicall = apicall self.apientry = apientry self.apientryp = apientryp self.indentFuncProto = indentFuncProto self.indentFuncPointer = indentFuncPointer self.alignFuncParam = alignFuncParam self.expandEnumerants = expandEnumerants # LayerChassisDispatchOutputGenerator - subclass of OutputGenerator. # Generates layer chassis non-dispatchable handle-wrapping code. # # ---- methods ---- # LayerChassisDispatchOutputGenerator(errFile, warnFile, diagFile) - args as for OutputGenerator. Defines additional internal state. # ---- methods overriding base class ---- # beginFile(genOpts) # endFile() # beginFeature(interface, emit) # endFeature() # genCmd(cmdinfo) # genStruct() # genType() class LayerChassisDispatchOutputGenerator(OutputGenerator): """Generate layer chassis handle wrapping code based on XML element attributes""" inline_copyright_message = """ // This file is ***GENERATED***. Do Not Edit. // See layer_chassis_dispatch_generator.py for modifications. /* Copyright (c) 2015-2019 The Khronos Group Inc. * Copyright (c) 2015-2019 Valve Corporation * Copyright (c) 2015-2019 LunarG, Inc. * Copyright (c) 2015-2019 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: Mark Lobodzinski */""" inline_custom_source_preamble = """ VkResult DispatchCreateComputePipelines(ValidationObject *layer_data, VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkComputePipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) { if (!wrap_handles) return layer_data->device_dispatch_table.CreateComputePipelines(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines); safe_VkComputePipelineCreateInfo *local_pCreateInfos = NULL; if (pCreateInfos) { std::lock_guard lock(dispatch_lock); local_pCreateInfos = new safe_VkComputePipelineCreateInfo[createInfoCount]; for (uint32_t idx0 = 0; idx0 < createInfoCount; ++idx0) { local_pCreateInfos[idx0].initialize(&pCreateInfos[idx0]); if (pCreateInfos[idx0].basePipelineHandle) { local_pCreateInfos[idx0].basePipelineHandle = layer_data->Unwrap(pCreateInfos[idx0].basePipelineHandle); } if (pCreateInfos[idx0].layout) { local_pCreateInfos[idx0].layout = layer_data->Unwrap(pCreateInfos[idx0].layout); } if (pCreateInfos[idx0].stage.module) { local_pCreateInfos[idx0].stage.module = layer_data->Unwrap(pCreateInfos[idx0].stage.module); } } } if (pipelineCache) { std::lock_guard lock(dispatch_lock); pipelineCache = layer_data->Unwrap(pipelineCache); } VkResult result = layer_data->device_dispatch_table.CreateComputePipelines(device, pipelineCache, createInfoCount, local_pCreateInfos->ptr(), pAllocator, pPipelines); delete[] local_pCreateInfos; { std::lock_guard lock(dispatch_lock); for (uint32_t i = 0; i < createInfoCount; ++i) { if (pPipelines[i] != VK_NULL_HANDLE) { pPipelines[i] = layer_data->WrapNew(pPipelines[i]); } } } return result; } VkResult DispatchCreateGraphicsPipelines(ValidationObject *layer_data, VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkGraphicsPipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) { if (!wrap_handles) return layer_data->device_dispatch_table.CreateGraphicsPipelines(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines); safe_VkGraphicsPipelineCreateInfo *local_pCreateInfos = nullptr; if (pCreateInfos) { local_pCreateInfos = new safe_VkGraphicsPipelineCreateInfo[createInfoCount]; std::lock_guard lock(dispatch_lock); for (uint32_t idx0 = 0; idx0 < createInfoCount; ++idx0) { bool uses_color_attachment = false; bool uses_depthstencil_attachment = false; { const auto subpasses_uses_it = layer_data->renderpasses_states.find(layer_data->Unwrap(pCreateInfos[idx0].renderPass)); if (subpasses_uses_it != layer_data->renderpasses_states.end()) { const auto &subpasses_uses = subpasses_uses_it->second; if (subpasses_uses.subpasses_using_color_attachment.count(pCreateInfos[idx0].subpass)) uses_color_attachment = true; if (subpasses_uses.subpasses_using_depthstencil_attachment.count(pCreateInfos[idx0].subpass)) uses_depthstencil_attachment = true; } } local_pCreateInfos[idx0].initialize(&pCreateInfos[idx0], uses_color_attachment, uses_depthstencil_attachment); if (pCreateInfos[idx0].basePipelineHandle) { local_pCreateInfos[idx0].basePipelineHandle = layer_data->Unwrap(pCreateInfos[idx0].basePipelineHandle); } if (pCreateInfos[idx0].layout) { local_pCreateInfos[idx0].layout = layer_data->Unwrap(pCreateInfos[idx0].layout); } if (pCreateInfos[idx0].pStages) { for (uint32_t idx1 = 0; idx1 < pCreateInfos[idx0].stageCount; ++idx1) { if (pCreateInfos[idx0].pStages[idx1].module) { local_pCreateInfos[idx0].pStages[idx1].module = layer_data->Unwrap(pCreateInfos[idx0].pStages[idx1].module); } } } if (pCreateInfos[idx0].renderPass) { local_pCreateInfos[idx0].renderPass = layer_data->Unwrap(pCreateInfos[idx0].renderPass); } } } if (pipelineCache) { std::lock_guard lock(dispatch_lock); pipelineCache = layer_data->Unwrap(pipelineCache); } VkResult result = layer_data->device_dispatch_table.CreateGraphicsPipelines(device, pipelineCache, createInfoCount, local_pCreateInfos->ptr(), pAllocator, pPipelines); delete[] local_pCreateInfos; { std::lock_guard lock(dispatch_lock); for (uint32_t i = 0; i < createInfoCount; ++i) { if (pPipelines[i] != VK_NULL_HANDLE) { pPipelines[i] = layer_data->WrapNew(pPipelines[i]); } } } return result; } template static void UpdateCreateRenderPassState(ValidationObject *layer_data, const T *pCreateInfo, VkRenderPass renderPass) { auto &renderpass_state = layer_data->renderpasses_states[renderPass]; for (uint32_t subpass = 0; subpass < pCreateInfo->subpassCount; ++subpass) { bool uses_color = false; for (uint32_t i = 0; i < pCreateInfo->pSubpasses[subpass].colorAttachmentCount && !uses_color; ++i) if (pCreateInfo->pSubpasses[subpass].pColorAttachments[i].attachment != VK_ATTACHMENT_UNUSED) uses_color = true; bool uses_depthstencil = false; if (pCreateInfo->pSubpasses[subpass].pDepthStencilAttachment) if (pCreateInfo->pSubpasses[subpass].pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) uses_depthstencil = true; if (uses_color) renderpass_state.subpasses_using_color_attachment.insert(subpass); if (uses_depthstencil) renderpass_state.subpasses_using_depthstencil_attachment.insert(subpass); } } VkResult DispatchCreateRenderPass(ValidationObject *layer_data, VkDevice device, const VkRenderPassCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkRenderPass *pRenderPass) { VkResult result = layer_data->device_dispatch_table.CreateRenderPass(device, pCreateInfo, pAllocator, pRenderPass); if (!wrap_handles) return result; if (VK_SUCCESS == result) { std::lock_guard lock(dispatch_lock); UpdateCreateRenderPassState(layer_data, pCreateInfo, *pRenderPass); *pRenderPass = layer_data->WrapNew(*pRenderPass); } return result; } VkResult DispatchCreateRenderPass2KHR(ValidationObject *layer_data, VkDevice device, const VkRenderPassCreateInfo2KHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkRenderPass *pRenderPass) { VkResult result = layer_data->device_dispatch_table.CreateRenderPass2KHR(device, pCreateInfo, pAllocator, pRenderPass); if (!wrap_handles) return result; if (VK_SUCCESS == result) { std::lock_guard lock(dispatch_lock); UpdateCreateRenderPassState(layer_data, pCreateInfo, *pRenderPass); *pRenderPass = layer_data->WrapNew(*pRenderPass); } return result; } void DispatchDestroyRenderPass(ValidationObject *layer_data, VkDevice device, VkRenderPass renderPass, const VkAllocationCallbacks *pAllocator) { if (!wrap_handles) return layer_data->device_dispatch_table.DestroyRenderPass(device, renderPass, pAllocator); std::unique_lock lock(dispatch_lock); uint64_t renderPass_id = reinterpret_cast(renderPass); renderPass = (VkRenderPass)unique_id_mapping[renderPass_id]; unique_id_mapping.erase(renderPass_id); lock.unlock(); layer_data->device_dispatch_table.DestroyRenderPass(device, renderPass, pAllocator); lock.lock(); layer_data->renderpasses_states.erase(renderPass); } VkResult DispatchCreateSwapchainKHR(ValidationObject *layer_data, VkDevice device, const VkSwapchainCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSwapchainKHR *pSwapchain) { if (!wrap_handles) return layer_data->device_dispatch_table.CreateSwapchainKHR(device, pCreateInfo, pAllocator, pSwapchain); safe_VkSwapchainCreateInfoKHR *local_pCreateInfo = NULL; if (pCreateInfo) { std::lock_guard lock(dispatch_lock); local_pCreateInfo = new safe_VkSwapchainCreateInfoKHR(pCreateInfo); local_pCreateInfo->oldSwapchain = layer_data->Unwrap(pCreateInfo->oldSwapchain); // Surface is instance-level object local_pCreateInfo->surface = layer_data->Unwrap(pCreateInfo->surface); } VkResult result = layer_data->device_dispatch_table.CreateSwapchainKHR(device, local_pCreateInfo->ptr(), pAllocator, pSwapchain); delete local_pCreateInfo; if (VK_SUCCESS == result) { std::lock_guard lock(dispatch_lock); *pSwapchain = layer_data->WrapNew(*pSwapchain); } return result; } VkResult DispatchCreateSharedSwapchainsKHR(ValidationObject *layer_data, VkDevice device, uint32_t swapchainCount, const VkSwapchainCreateInfoKHR *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkSwapchainKHR *pSwapchains) { if (!wrap_handles) return layer_data->device_dispatch_table.CreateSharedSwapchainsKHR(device, swapchainCount, pCreateInfos, pAllocator, pSwapchains); safe_VkSwapchainCreateInfoKHR *local_pCreateInfos = NULL; { std::lock_guard lock(dispatch_lock); if (pCreateInfos) { local_pCreateInfos = new safe_VkSwapchainCreateInfoKHR[swapchainCount]; for (uint32_t i = 0; i < swapchainCount; ++i) { local_pCreateInfos[i].initialize(&pCreateInfos[i]); if (pCreateInfos[i].surface) { // Surface is instance-level object local_pCreateInfos[i].surface = layer_data->Unwrap(pCreateInfos[i].surface); } if (pCreateInfos[i].oldSwapchain) { local_pCreateInfos[i].oldSwapchain = layer_data->Unwrap(pCreateInfos[i].oldSwapchain); } } } } VkResult result = layer_data->device_dispatch_table.CreateSharedSwapchainsKHR(device, swapchainCount, local_pCreateInfos->ptr(), pAllocator, pSwapchains); delete[] local_pCreateInfos; if (VK_SUCCESS == result) { std::lock_guard lock(dispatch_lock); for (uint32_t i = 0; i < swapchainCount; i++) { pSwapchains[i] = layer_data->WrapNew(pSwapchains[i]); } } return result; } VkResult DispatchGetSwapchainImagesKHR(ValidationObject *layer_data, VkDevice device, VkSwapchainKHR swapchain, uint32_t *pSwapchainImageCount, VkImage *pSwapchainImages) { if (!wrap_handles) return layer_data->device_dispatch_table.GetSwapchainImagesKHR(device, swapchain, pSwapchainImageCount, pSwapchainImages); VkSwapchainKHR wrapped_swapchain_handle = swapchain; if (VK_NULL_HANDLE != swapchain) { std::lock_guard lock(dispatch_lock); swapchain = layer_data->Unwrap(swapchain); } VkResult result = layer_data->device_dispatch_table.GetSwapchainImagesKHR(device, swapchain, pSwapchainImageCount, pSwapchainImages); if ((VK_SUCCESS == result) || (VK_INCOMPLETE == result)) { if ((*pSwapchainImageCount > 0) && pSwapchainImages) { std::lock_guard lock(dispatch_lock); auto &wrapped_swapchain_image_handles = layer_data->swapchain_wrapped_image_handle_map[wrapped_swapchain_handle]; for (uint32_t i = static_cast(wrapped_swapchain_image_handles.size()); i < *pSwapchainImageCount; i++) { wrapped_swapchain_image_handles.emplace_back(layer_data->WrapNew(pSwapchainImages[i])); } for (uint32_t i = 0; i < *pSwapchainImageCount; i++) { pSwapchainImages[i] = wrapped_swapchain_image_handles[i]; } } } return result; } void DispatchDestroySwapchainKHR(ValidationObject *layer_data, VkDevice device, VkSwapchainKHR swapchain, const VkAllocationCallbacks *pAllocator) { if (!wrap_handles) return layer_data->device_dispatch_table.DestroySwapchainKHR(device, swapchain, pAllocator); std::unique_lock lock(dispatch_lock); auto &image_array = layer_data->swapchain_wrapped_image_handle_map[swapchain]; for (auto &image_handle : image_array) { unique_id_mapping.erase(HandleToUint64(image_handle)); } layer_data->swapchain_wrapped_image_handle_map.erase(swapchain); uint64_t swapchain_id = HandleToUint64(swapchain); swapchain = (VkSwapchainKHR)unique_id_mapping[swapchain_id]; unique_id_mapping.erase(swapchain_id); lock.unlock(); layer_data->device_dispatch_table.DestroySwapchainKHR(device, swapchain, pAllocator); } VkResult DispatchQueuePresentKHR(ValidationObject *layer_data, VkQueue queue, const VkPresentInfoKHR *pPresentInfo) { if (!wrap_handles) return layer_data->device_dispatch_table.QueuePresentKHR(queue, pPresentInfo); safe_VkPresentInfoKHR *local_pPresentInfo = NULL; { std::lock_guard lock(dispatch_lock); if (pPresentInfo) { local_pPresentInfo = new safe_VkPresentInfoKHR(pPresentInfo); if (local_pPresentInfo->pWaitSemaphores) { for (uint32_t index1 = 0; index1 < local_pPresentInfo->waitSemaphoreCount; ++index1) { local_pPresentInfo->pWaitSemaphores[index1] = layer_data->Unwrap(pPresentInfo->pWaitSemaphores[index1]); } } if (local_pPresentInfo->pSwapchains) { for (uint32_t index1 = 0; index1 < local_pPresentInfo->swapchainCount; ++index1) { local_pPresentInfo->pSwapchains[index1] = layer_data->Unwrap(pPresentInfo->pSwapchains[index1]); } } } } VkResult result = layer_data->device_dispatch_table.QueuePresentKHR(queue, local_pPresentInfo->ptr()); // pResults is an output array embedded in a structure. The code generator neglects to copy back from the safe_* version, // so handle it as a special case here: if (pPresentInfo && pPresentInfo->pResults) { for (uint32_t i = 0; i < pPresentInfo->swapchainCount; i++) { pPresentInfo->pResults[i] = local_pPresentInfo->pResults[i]; } } delete local_pPresentInfo; return result; } void DispatchDestroyDescriptorPool(ValidationObject *layer_data, VkDevice device, VkDescriptorPool descriptorPool, const VkAllocationCallbacks *pAllocator) { if (!wrap_handles) return layer_data->device_dispatch_table.DestroyDescriptorPool(device, descriptorPool, pAllocator); std::unique_lock lock(dispatch_lock); // remove references to implicitly freed descriptor sets for(auto descriptor_set : layer_data->pool_descriptor_sets_map[descriptorPool]) { unique_id_mapping.erase(reinterpret_cast(descriptor_set)); } layer_data->pool_descriptor_sets_map.erase(descriptorPool); uint64_t descriptorPool_id = reinterpret_cast(descriptorPool); descriptorPool = (VkDescriptorPool)unique_id_mapping[descriptorPool_id]; unique_id_mapping.erase(descriptorPool_id); lock.unlock(); layer_data->device_dispatch_table.DestroyDescriptorPool(device, descriptorPool, pAllocator); } VkResult DispatchResetDescriptorPool(ValidationObject *layer_data, VkDevice device, VkDescriptorPool descriptorPool, VkDescriptorPoolResetFlags flags) { if (!wrap_handles) return layer_data->device_dispatch_table.ResetDescriptorPool(device, descriptorPool, flags); VkDescriptorPool local_descriptor_pool = VK_NULL_HANDLE; { std::lock_guard lock(dispatch_lock); local_descriptor_pool = layer_data->Unwrap(descriptorPool); } VkResult result = layer_data->device_dispatch_table.ResetDescriptorPool(device, local_descriptor_pool, flags); if (VK_SUCCESS == result) { std::lock_guard lock(dispatch_lock); // remove references to implicitly freed descriptor sets for(auto descriptor_set : layer_data->pool_descriptor_sets_map[descriptorPool]) { unique_id_mapping.erase(reinterpret_cast(descriptor_set)); } layer_data->pool_descriptor_sets_map[descriptorPool].clear(); } return result; } VkResult DispatchAllocateDescriptorSets(ValidationObject *layer_data, VkDevice device, const VkDescriptorSetAllocateInfo *pAllocateInfo, VkDescriptorSet *pDescriptorSets) { if (!wrap_handles) return layer_data->device_dispatch_table.AllocateDescriptorSets(device, pAllocateInfo, pDescriptorSets); safe_VkDescriptorSetAllocateInfo *local_pAllocateInfo = NULL; { std::lock_guard lock(dispatch_lock); if (pAllocateInfo) { local_pAllocateInfo = new safe_VkDescriptorSetAllocateInfo(pAllocateInfo); if (pAllocateInfo->descriptorPool) { local_pAllocateInfo->descriptorPool = layer_data->Unwrap(pAllocateInfo->descriptorPool); } if (local_pAllocateInfo->pSetLayouts) { for (uint32_t index1 = 0; index1 < local_pAllocateInfo->descriptorSetCount; ++index1) { local_pAllocateInfo->pSetLayouts[index1] = layer_data->Unwrap(local_pAllocateInfo->pSetLayouts[index1]); } } } } VkResult result = layer_data->device_dispatch_table.AllocateDescriptorSets( device, (const VkDescriptorSetAllocateInfo *)local_pAllocateInfo, pDescriptorSets); if (local_pAllocateInfo) { delete local_pAllocateInfo; } if (VK_SUCCESS == result) { std::lock_guard lock(dispatch_lock); auto &pool_descriptor_sets = layer_data->pool_descriptor_sets_map[pAllocateInfo->descriptorPool]; for (uint32_t index0 = 0; index0 < pAllocateInfo->descriptorSetCount; index0++) { pDescriptorSets[index0] = layer_data->WrapNew(pDescriptorSets[index0]); pool_descriptor_sets.insert(pDescriptorSets[index0]); } } return result; } VkResult DispatchFreeDescriptorSets(ValidationObject *layer_data, VkDevice device, VkDescriptorPool descriptorPool, uint32_t descriptorSetCount, const VkDescriptorSet *pDescriptorSets) { if (!wrap_handles) return layer_data->device_dispatch_table.FreeDescriptorSets(device, descriptorPool, descriptorSetCount, pDescriptorSets); VkDescriptorSet *local_pDescriptorSets = NULL; VkDescriptorPool local_descriptor_pool = VK_NULL_HANDLE; { std::lock_guard lock(dispatch_lock); local_descriptor_pool = layer_data->Unwrap(descriptorPool); if (pDescriptorSets) { local_pDescriptorSets = new VkDescriptorSet[descriptorSetCount]; for (uint32_t index0 = 0; index0 < descriptorSetCount; ++index0) { local_pDescriptorSets[index0] = layer_data->Unwrap(pDescriptorSets[index0]); } } } VkResult result = layer_data->device_dispatch_table.FreeDescriptorSets(device, local_descriptor_pool, descriptorSetCount, (const VkDescriptorSet *)local_pDescriptorSets); if (local_pDescriptorSets) delete[] local_pDescriptorSets; if ((VK_SUCCESS == result) && (pDescriptorSets)) { std::unique_lock lock(dispatch_lock); auto &pool_descriptor_sets = layer_data->pool_descriptor_sets_map[descriptorPool]; for (uint32_t index0 = 0; index0 < descriptorSetCount; index0++) { VkDescriptorSet handle = pDescriptorSets[index0]; pool_descriptor_sets.erase(handle); uint64_t unique_id = reinterpret_cast(handle); unique_id_mapping.erase(unique_id); } } return result; } // This is the core version of this routine. The extension version is below. VkResult DispatchCreateDescriptorUpdateTemplate(ValidationObject *layer_data, VkDevice device, const VkDescriptorUpdateTemplateCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDescriptorUpdateTemplateKHR *pDescriptorUpdateTemplate) { if (!wrap_handles) return layer_data->device_dispatch_table.CreateDescriptorUpdateTemplate(device, pCreateInfo, pAllocator, pDescriptorUpdateTemplate); safe_VkDescriptorUpdateTemplateCreateInfo *local_create_info = NULL; { std::lock_guard lock(dispatch_lock); if (pCreateInfo) { local_create_info = new safe_VkDescriptorUpdateTemplateCreateInfo(pCreateInfo); if (pCreateInfo->descriptorSetLayout) { local_create_info->descriptorSetLayout = layer_data->Unwrap(pCreateInfo->descriptorSetLayout); } if (pCreateInfo->pipelineLayout) { local_create_info->pipelineLayout = layer_data->Unwrap(pCreateInfo->pipelineLayout); } } } VkResult result = layer_data->device_dispatch_table.CreateDescriptorUpdateTemplate(device, local_create_info->ptr(), pAllocator, pDescriptorUpdateTemplate); if (VK_SUCCESS == result) { std::lock_guard lock(dispatch_lock); *pDescriptorUpdateTemplate = layer_data->WrapNew(*pDescriptorUpdateTemplate); // Shadow template createInfo for later updates std::unique_ptr template_state(new TEMPLATE_STATE(*pDescriptorUpdateTemplate, local_create_info)); layer_data->desc_template_map[(uint64_t)*pDescriptorUpdateTemplate] = std::move(template_state); } return result; } // This is the extension version of this routine. The core version is above. VkResult DispatchCreateDescriptorUpdateTemplateKHR(ValidationObject *layer_data, VkDevice device, const VkDescriptorUpdateTemplateCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDescriptorUpdateTemplateKHR *pDescriptorUpdateTemplate) { if (!wrap_handles) return layer_data->device_dispatch_table.CreateDescriptorUpdateTemplateKHR(device, pCreateInfo, pAllocator, pDescriptorUpdateTemplate); safe_VkDescriptorUpdateTemplateCreateInfo *local_create_info = NULL; { std::lock_guard lock(dispatch_lock); if (pCreateInfo) { local_create_info = new safe_VkDescriptorUpdateTemplateCreateInfo(pCreateInfo); if (pCreateInfo->descriptorSetLayout) { local_create_info->descriptorSetLayout = layer_data->Unwrap(pCreateInfo->descriptorSetLayout); } if (pCreateInfo->pipelineLayout) { local_create_info->pipelineLayout = layer_data->Unwrap(pCreateInfo->pipelineLayout); } } } VkResult result = layer_data->device_dispatch_table.CreateDescriptorUpdateTemplateKHR(device, local_create_info->ptr(), pAllocator, pDescriptorUpdateTemplate); if (VK_SUCCESS == result) { std::lock_guard lock(dispatch_lock); *pDescriptorUpdateTemplate = layer_data->WrapNew(*pDescriptorUpdateTemplate); // Shadow template createInfo for later updates std::unique_ptr template_state(new TEMPLATE_STATE(*pDescriptorUpdateTemplate, local_create_info)); layer_data->desc_template_map[(uint64_t)*pDescriptorUpdateTemplate] = std::move(template_state); } return result; } // This is the core version of this routine. The extension version is below. void DispatchDestroyDescriptorUpdateTemplate(ValidationObject *layer_data, VkDevice device, VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate, const VkAllocationCallbacks *pAllocator) { if (!wrap_handles) return layer_data->device_dispatch_table.DestroyDescriptorUpdateTemplate(device, descriptorUpdateTemplate, pAllocator); std::unique_lock lock(dispatch_lock); uint64_t descriptor_update_template_id = reinterpret_cast(descriptorUpdateTemplate); layer_data->desc_template_map.erase(descriptor_update_template_id); descriptorUpdateTemplate = (VkDescriptorUpdateTemplate)unique_id_mapping[descriptor_update_template_id]; unique_id_mapping.erase(descriptor_update_template_id); lock.unlock(); layer_data->device_dispatch_table.DestroyDescriptorUpdateTemplate(device, descriptorUpdateTemplate, pAllocator); } // This is the extension version of this routine. The core version is above. void DispatchDestroyDescriptorUpdateTemplateKHR(ValidationObject *layer_data, VkDevice device, VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate, const VkAllocationCallbacks *pAllocator) { if (!wrap_handles) return layer_data->device_dispatch_table.DestroyDescriptorUpdateTemplateKHR(device, descriptorUpdateTemplate, pAllocator); std::unique_lock lock(dispatch_lock); uint64_t descriptor_update_template_id = reinterpret_cast(descriptorUpdateTemplate); layer_data->desc_template_map.erase(descriptor_update_template_id); descriptorUpdateTemplate = (VkDescriptorUpdateTemplate)unique_id_mapping[descriptor_update_template_id]; unique_id_mapping.erase(descriptor_update_template_id); lock.unlock(); layer_data->device_dispatch_table.DestroyDescriptorUpdateTemplateKHR(device, descriptorUpdateTemplate, pAllocator); } void *BuildUnwrappedUpdateTemplateBuffer(ValidationObject *layer_data, uint64_t descriptorUpdateTemplate, const void *pData) { auto const template_map_entry = layer_data->desc_template_map.find(descriptorUpdateTemplate); if (template_map_entry == layer_data->desc_template_map.end()) { assert(0); } auto const &create_info = template_map_entry->second->create_info; size_t allocation_size = 0; std::vector> template_entries; for (uint32_t i = 0; i < create_info.descriptorUpdateEntryCount; i++) { for (uint32_t j = 0; j < create_info.pDescriptorUpdateEntries[i].descriptorCount; j++) { size_t offset = create_info.pDescriptorUpdateEntries[i].offset + j * create_info.pDescriptorUpdateEntries[i].stride; char *update_entry = (char *)(pData) + offset; switch (create_info.pDescriptorUpdateEntries[i].descriptorType) { case VK_DESCRIPTOR_TYPE_SAMPLER: case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: { auto image_entry = reinterpret_cast(update_entry); allocation_size = std::max(allocation_size, offset + sizeof(VkDescriptorImageInfo)); VkDescriptorImageInfo *wrapped_entry = new VkDescriptorImageInfo(*image_entry); wrapped_entry->sampler = layer_data->Unwrap(image_entry->sampler); wrapped_entry->imageView = layer_data->Unwrap(image_entry->imageView); template_entries.emplace_back(offset, kVulkanObjectTypeImage, reinterpret_cast(wrapped_entry), 0); } break; case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: { auto buffer_entry = reinterpret_cast(update_entry); allocation_size = std::max(allocation_size, offset + sizeof(VkDescriptorBufferInfo)); VkDescriptorBufferInfo *wrapped_entry = new VkDescriptorBufferInfo(*buffer_entry); wrapped_entry->buffer = layer_data->Unwrap(buffer_entry->buffer); template_entries.emplace_back(offset, kVulkanObjectTypeBuffer, reinterpret_cast(wrapped_entry), 0); } break; case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: { auto buffer_view_handle = reinterpret_cast(update_entry); allocation_size = std::max(allocation_size, offset + sizeof(VkBufferView)); VkBufferView wrapped_entry = layer_data->Unwrap(*buffer_view_handle); template_entries.emplace_back(offset, kVulkanObjectTypeBufferView, reinterpret_cast(wrapped_entry), 0); } break; case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT: { size_t numBytes = create_info.pDescriptorUpdateEntries[i].descriptorCount; allocation_size = std::max(allocation_size, offset + numBytes); // nothing to unwrap, just plain data template_entries.emplace_back(offset, kVulkanObjectTypeUnknown, reinterpret_cast(update_entry), numBytes); // to break out of the loop j = create_info.pDescriptorUpdateEntries[i].descriptorCount; } break; default: assert(0); break; } } } // Allocate required buffer size and populate with source/unwrapped data void *unwrapped_data = malloc(allocation_size); for (auto &this_entry : template_entries) { VulkanObjectType type = std::get<1>(this_entry); void *destination = (char *)unwrapped_data + std::get<0>(this_entry); void *source = (char *)std::get<2>(this_entry); size_t size = std::get<3>(this_entry); if (size != 0) { assert(type == kVulkanObjectTypeUnknown); memcpy(destination, source, size); } else { switch (type) { case kVulkanObjectTypeImage: *(reinterpret_cast(destination)) = *(reinterpret_cast(source)); delete reinterpret_cast(source); break; case kVulkanObjectTypeBuffer: *(reinterpret_cast(destination)) = *(reinterpret_cast(source)); delete reinterpret_cast(source); break; case kVulkanObjectTypeBufferView: *(reinterpret_cast(destination)) = reinterpret_cast(source); break; default: assert(0); break; } } } return (void *)unwrapped_data; } void DispatchUpdateDescriptorSetWithTemplate(ValidationObject *layer_data, VkDevice device, VkDescriptorSet descriptorSet, VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate, const void *pData) { if (!wrap_handles) return layer_data->device_dispatch_table.UpdateDescriptorSetWithTemplate(device, descriptorSet, descriptorUpdateTemplate, pData); uint64_t template_handle = reinterpret_cast(descriptorUpdateTemplate); { std::lock_guard lock(dispatch_lock); descriptorSet = layer_data->Unwrap(descriptorSet); descriptorUpdateTemplate = (VkDescriptorUpdateTemplate)unique_id_mapping[template_handle]; } void *unwrapped_buffer = BuildUnwrappedUpdateTemplateBuffer(layer_data, template_handle, pData); layer_data->device_dispatch_table.UpdateDescriptorSetWithTemplate(device, descriptorSet, descriptorUpdateTemplate, unwrapped_buffer); free(unwrapped_buffer); } void DispatchUpdateDescriptorSetWithTemplateKHR(ValidationObject *layer_data, VkDevice device, VkDescriptorSet descriptorSet, VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate, const void *pData) { if (!wrap_handles) return layer_data->device_dispatch_table.UpdateDescriptorSetWithTemplateKHR(device, descriptorSet, descriptorUpdateTemplate, pData); uint64_t template_handle = reinterpret_cast(descriptorUpdateTemplate); void *unwrapped_buffer = nullptr; { std::lock_guard lock(dispatch_lock); descriptorSet = layer_data->Unwrap(descriptorSet); descriptorUpdateTemplate = (VkDescriptorUpdateTemplate)unique_id_mapping[template_handle]; unwrapped_buffer = BuildUnwrappedUpdateTemplateBuffer(layer_data, template_handle, pData); } layer_data->device_dispatch_table.UpdateDescriptorSetWithTemplateKHR(device, descriptorSet, descriptorUpdateTemplate, unwrapped_buffer); free(unwrapped_buffer); } void DispatchCmdPushDescriptorSetWithTemplateKHR(ValidationObject *layer_data, VkCommandBuffer commandBuffer, VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate, VkPipelineLayout layout, uint32_t set, const void *pData) { if (!wrap_handles) return layer_data->device_dispatch_table.CmdPushDescriptorSetWithTemplateKHR(commandBuffer, descriptorUpdateTemplate, layout, set, pData); uint64_t template_handle = reinterpret_cast(descriptorUpdateTemplate); void *unwrapped_buffer = nullptr; { std::lock_guard lock(dispatch_lock); descriptorUpdateTemplate = layer_data->Unwrap(descriptorUpdateTemplate); layout = layer_data->Unwrap(layout); unwrapped_buffer = BuildUnwrappedUpdateTemplateBuffer(layer_data, template_handle, pData); } layer_data->device_dispatch_table.CmdPushDescriptorSetWithTemplateKHR(commandBuffer, descriptorUpdateTemplate, layout, set, unwrapped_buffer); free(unwrapped_buffer); } VkResult DispatchGetPhysicalDeviceDisplayPropertiesKHR(ValidationObject *layer_data, VkPhysicalDevice physicalDevice, uint32_t *pPropertyCount, VkDisplayPropertiesKHR *pProperties) { VkResult result = layer_data->instance_dispatch_table.GetPhysicalDeviceDisplayPropertiesKHR(physicalDevice, pPropertyCount, pProperties); if (!wrap_handles) return result; if ((result == VK_SUCCESS || result == VK_INCOMPLETE) && pProperties) { std::lock_guard lock(dispatch_lock); for (uint32_t idx0 = 0; idx0 < *pPropertyCount; ++idx0) { pProperties[idx0].display = layer_data->MaybeWrapDisplay(pProperties[idx0].display, layer_data); } } return result; } VkResult DispatchGetPhysicalDeviceDisplayProperties2KHR(ValidationObject *layer_data, VkPhysicalDevice physicalDevice, uint32_t *pPropertyCount, VkDisplayProperties2KHR *pProperties) { VkResult result = layer_data->instance_dispatch_table.GetPhysicalDeviceDisplayProperties2KHR(physicalDevice, pPropertyCount, pProperties); if (!wrap_handles) return result; if ((result == VK_SUCCESS || result == VK_INCOMPLETE) && pProperties) { std::lock_guard lock(dispatch_lock); for (uint32_t idx0 = 0; idx0 < *pPropertyCount; ++idx0) { pProperties[idx0].displayProperties.display = layer_data->MaybeWrapDisplay(pProperties[idx0].displayProperties.display, layer_data); } } return result; } VkResult DispatchGetPhysicalDeviceDisplayPlanePropertiesKHR(ValidationObject *layer_data, VkPhysicalDevice physicalDevice, uint32_t *pPropertyCount, VkDisplayPlanePropertiesKHR *pProperties) { VkResult result = layer_data->instance_dispatch_table.GetPhysicalDeviceDisplayPlanePropertiesKHR(physicalDevice, pPropertyCount, pProperties); if (!wrap_handles) return result; if ((result == VK_SUCCESS || result == VK_INCOMPLETE) && pProperties) { std::lock_guard lock(dispatch_lock); for (uint32_t idx0 = 0; idx0 < *pPropertyCount; ++idx0) { VkDisplayKHR &opt_display = pProperties[idx0].currentDisplay; if (opt_display) opt_display = layer_data->MaybeWrapDisplay(opt_display, layer_data); } } return result; } VkResult DispatchGetPhysicalDeviceDisplayPlaneProperties2KHR(ValidationObject *layer_data,VkPhysicalDevice physicalDevice, uint32_t *pPropertyCount, VkDisplayPlaneProperties2KHR *pProperties) { VkResult result = layer_data->instance_dispatch_table.GetPhysicalDeviceDisplayPlaneProperties2KHR(physicalDevice, pPropertyCount, pProperties); if (!wrap_handles) return result; if ((result == VK_SUCCESS || result == VK_INCOMPLETE) && pProperties) { std::lock_guard lock(dispatch_lock); for (uint32_t idx0 = 0; idx0 < *pPropertyCount; ++idx0) { VkDisplayKHR &opt_display = pProperties[idx0].displayPlaneProperties.currentDisplay; if (opt_display) opt_display = layer_data->MaybeWrapDisplay(opt_display, layer_data); } } return result; } VkResult DispatchGetDisplayPlaneSupportedDisplaysKHR(ValidationObject *layer_data, VkPhysicalDevice physicalDevice, uint32_t planeIndex, uint32_t *pDisplayCount, VkDisplayKHR *pDisplays) { VkResult result = layer_data->instance_dispatch_table.GetDisplayPlaneSupportedDisplaysKHR(physicalDevice, planeIndex, pDisplayCount, pDisplays); if ((result == VK_SUCCESS || result == VK_INCOMPLETE) && pDisplays) { if (!wrap_handles) return result; std::lock_guard lock(dispatch_lock); for (uint32_t i = 0; i < *pDisplayCount; ++i) { if (pDisplays[i]) pDisplays[i] = layer_data->MaybeWrapDisplay(pDisplays[i], layer_data); } } return result; } VkResult DispatchGetDisplayModePropertiesKHR(ValidationObject *layer_data, VkPhysicalDevice physicalDevice, VkDisplayKHR display, uint32_t *pPropertyCount, VkDisplayModePropertiesKHR *pProperties) { if (!wrap_handles) return layer_data->instance_dispatch_table.GetDisplayModePropertiesKHR(physicalDevice, display, pPropertyCount, pProperties); { std::lock_guard lock(dispatch_lock); display = layer_data->Unwrap(display); } VkResult result = layer_data->instance_dispatch_table.GetDisplayModePropertiesKHR(physicalDevice, display, pPropertyCount, pProperties); if ((result == VK_SUCCESS || result == VK_INCOMPLETE) && pProperties) { std::lock_guard lock(dispatch_lock); for (uint32_t idx0 = 0; idx0 < *pPropertyCount; ++idx0) { pProperties[idx0].displayMode = layer_data->WrapNew(pProperties[idx0].displayMode); } } return result; } VkResult DispatchGetDisplayModeProperties2KHR(ValidationObject *layer_data, VkPhysicalDevice physicalDevice, VkDisplayKHR display, uint32_t *pPropertyCount, VkDisplayModeProperties2KHR *pProperties) { if (!wrap_handles) return layer_data->instance_dispatch_table.GetDisplayModeProperties2KHR(physicalDevice, display, pPropertyCount, pProperties); { std::lock_guard lock(dispatch_lock); display = layer_data->Unwrap(display); } VkResult result = layer_data->instance_dispatch_table.GetDisplayModeProperties2KHR(physicalDevice, display, pPropertyCount, pProperties); if ((result == VK_SUCCESS || result == VK_INCOMPLETE) && pProperties) { std::lock_guard lock(dispatch_lock); for (uint32_t idx0 = 0; idx0 < *pPropertyCount; ++idx0) { pProperties[idx0].displayModeProperties.displayMode = layer_data->WrapNew(pProperties[idx0].displayModeProperties.displayMode); } } return result; } VkResult DispatchDebugMarkerSetObjectTagEXT(ValidationObject *layer_data, VkDevice device, const VkDebugMarkerObjectTagInfoEXT *pTagInfo) { if (!wrap_handles) return layer_data->device_dispatch_table.DebugMarkerSetObjectTagEXT(device, pTagInfo); safe_VkDebugMarkerObjectTagInfoEXT local_tag_info(pTagInfo); { std::lock_guard lock(dispatch_lock); auto it = unique_id_mapping.find(reinterpret_cast(local_tag_info.object)); if (it != unique_id_mapping.end()) { local_tag_info.object = it->second; } } VkResult result = layer_data->device_dispatch_table.DebugMarkerSetObjectTagEXT(device, reinterpret_cast(&local_tag_info)); return result; } VkResult DispatchDebugMarkerSetObjectNameEXT(ValidationObject *layer_data, VkDevice device, const VkDebugMarkerObjectNameInfoEXT *pNameInfo) { if (!wrap_handles) return layer_data->device_dispatch_table.DebugMarkerSetObjectNameEXT(device, pNameInfo); safe_VkDebugMarkerObjectNameInfoEXT local_name_info(pNameInfo); { std::lock_guard lock(dispatch_lock); auto it = unique_id_mapping.find(reinterpret_cast(local_name_info.object)); if (it != unique_id_mapping.end()) { local_name_info.object = it->second; } } VkResult result = layer_data->device_dispatch_table.DebugMarkerSetObjectNameEXT( device, reinterpret_cast(&local_name_info)); return result; } // VK_EXT_debug_utils VkResult DispatchSetDebugUtilsObjectTagEXT(ValidationObject *layer_data, VkDevice device, const VkDebugUtilsObjectTagInfoEXT *pTagInfo) { if (!wrap_handles) return layer_data->device_dispatch_table.SetDebugUtilsObjectTagEXT(device, pTagInfo); safe_VkDebugUtilsObjectTagInfoEXT local_tag_info(pTagInfo); { std::lock_guard lock(dispatch_lock); auto it = unique_id_mapping.find(reinterpret_cast(local_tag_info.objectHandle)); if (it != unique_id_mapping.end()) { local_tag_info.objectHandle = it->second; } } VkResult result = layer_data->device_dispatch_table.SetDebugUtilsObjectTagEXT( device, reinterpret_cast(&local_tag_info)); return result; } VkResult DispatchSetDebugUtilsObjectNameEXT(ValidationObject *layer_data, VkDevice device, const VkDebugUtilsObjectNameInfoEXT *pNameInfo) { if (!wrap_handles) return layer_data->device_dispatch_table.SetDebugUtilsObjectNameEXT(device, pNameInfo); safe_VkDebugUtilsObjectNameInfoEXT local_name_info(pNameInfo); { std::lock_guard lock(dispatch_lock); auto it = unique_id_mapping.find(reinterpret_cast(local_name_info.objectHandle)); if (it != unique_id_mapping.end()) { local_name_info.objectHandle = it->second; } } VkResult result = layer_data->device_dispatch_table.SetDebugUtilsObjectNameEXT( device, reinterpret_cast(&local_name_info)); return result; } """ # Separate generated text for source and headers ALL_SECTIONS = ['source_file', 'header_file'] def __init__(self, errFile = sys.stderr, warnFile = sys.stderr, diagFile = sys.stdout): OutputGenerator.__init__(self, errFile, warnFile, diagFile) self.INDENT_SPACES = 4 self.instance_extensions = [] self.device_extensions = [] # Commands which are not autogenerated but still intercepted self.no_autogen_list = [ 'vkCreateInstance', 'vkDestroyInstance', 'vkCreateDevice', 'vkDestroyDevice', 'vkCreateComputePipelines', 'vkCreateGraphicsPipelines', 'vkCreateSwapchainKHR', 'vkCreateSharedSwapchainsKHR', 'vkGetSwapchainImagesKHR', 'vkDestroySwapchainKHR', 'vkQueuePresentKHR', 'vkResetDescriptorPool', 'vkDestroyDescriptorPool', 'vkAllocateDescriptorSets', 'vkFreeDescriptorSets', 'vkCreateDescriptorUpdateTemplate', 'vkCreateDescriptorUpdateTemplateKHR', 'vkDestroyDescriptorUpdateTemplate', 'vkDestroyDescriptorUpdateTemplateKHR', 'vkUpdateDescriptorSetWithTemplate', 'vkUpdateDescriptorSetWithTemplateKHR', 'vkCmdPushDescriptorSetWithTemplateKHR', 'vkDebugMarkerSetObjectTagEXT', 'vkDebugMarkerSetObjectNameEXT', 'vkCreateRenderPass', 'vkCreateRenderPass2KHR', 'vkDestroyRenderPass', 'vkSetDebugUtilsObjectNameEXT', 'vkSetDebugUtilsObjectTagEXT', 'vkGetPhysicalDeviceDisplayPropertiesKHR', 'vkGetPhysicalDeviceDisplayProperties2KHR', 'vkGetPhysicalDeviceDisplayPlanePropertiesKHR', 'vkGetPhysicalDeviceDisplayPlaneProperties2KHR', 'vkGetDisplayPlaneSupportedDisplaysKHR', 'vkGetDisplayModePropertiesKHR', 'vkGetDisplayModeProperties2KHR', 'vkEnumerateInstanceExtensionProperties', 'vkEnumerateInstanceLayerProperties', 'vkEnumerateDeviceExtensionProperties', 'vkEnumerateDeviceLayerProperties', 'vkEnumerateInstanceVersion', ] self.headerVersion = None # Internal state - accumulators for different inner block text self.sections = dict([(section, []) for section in self.ALL_SECTIONS]) self.cmdMembers = [] self.cmd_feature_protect = [] # Save ifdef's for each command self.cmd_info_data = [] # Save the cmdinfo data for wrapping the handles when processing is complete self.structMembers = [] # List of StructMemberData records for all Vulkan structs self.extension_structs = [] # List of all structs or sister-structs containing handles # A sister-struct may contain no handles but shares a structextends attribute with one that does self.pnext_extension_structs = [] # List of all structs which can be extended by a pnext chain self.structTypes = dict() # Map of Vulkan struct typename to required VkStructureType self.struct_member_dict = dict() # Named tuples to store struct and command data self.StructType = namedtuple('StructType', ['name', 'value']) self.CmdMemberData = namedtuple('CmdMemberData', ['name', 'members']) self.CmdInfoData = namedtuple('CmdInfoData', ['name', 'cmdinfo']) self.CmdExtraProtect = namedtuple('CmdExtraProtect', ['name', 'extra_protect']) self.CommandParam = namedtuple('CommandParam', ['type', 'name', 'ispointer', 'isconst', 'iscount', 'len', 'extstructs', 'cdecl', 'islocal', 'iscreate', 'isdestroy', 'feature_protect']) self.StructMemberData = namedtuple('StructMemberData', ['name', 'members']) # def incIndent(self, indent): inc = ' ' * self.INDENT_SPACES if indent: return indent + inc return inc # def decIndent(self, indent): if indent and (len(indent) > self.INDENT_SPACES): return indent[:-self.INDENT_SPACES] return '' # # Override makeProtoName to drop the "vk" prefix def makeProtoName(self, name, tail): return self.genOpts.apientry + name[2:] + tail # # Check if the parameter passed in is a pointer to an array def paramIsArray(self, param): return param.attrib.get('len') is not None # def beginFile(self, genOpts): OutputGenerator.beginFile(self, genOpts) self.appendSection('header_file', self.inline_copyright_message) # Multiple inclusion protection & C++ namespace. self.header = False if (self.genOpts.filename and 'h' == self.genOpts.filename[-1]): self.header = True self.appendSection('header_file', '#pragma once') self.appendSection('header_file', '') self.appendSection('header_file', '#if defined(LAYER_CHASSIS_CAN_WRAP_HANDLES)') self.appendSection('header_file', 'extern bool wrap_handles;') self.appendSection('header_file', '#else') self.appendSection('header_file', 'extern const bool wrap_handles;') self.appendSection('header_file', '#endif') # Now that the data is all collected and complete, generate and output the wrapping/unwrapping routines def endFile(self): self.struct_member_dict = dict(self.structMembers) # Generate the list of APIs that might need to handle wrapped extension structs self.GenerateCommandWrapExtensionList() # Write out wrapping/unwrapping functions self.WrapCommands() # Build and write out pNext processing function extension_proc = self.build_extension_processing_func() if not self.header: write(self.inline_copyright_message, file=self.outFile) self.newline() write('#include ', file=self.outFile) write('#include "chassis.h"', file=self.outFile) write('#include "layer_chassis_dispatch.h"', file=self.outFile) self.newline() write('// This intentionally includes a cpp file', file=self.outFile) write('#include "vk_safe_struct.cpp"', file=self.outFile) self.newline() write('std::mutex dispatch_lock;', file=self.outFile) self.newline() write('// Unique Objects pNext extension handling function', file=self.outFile) write('%s' % extension_proc, file=self.outFile) self.newline() write('// Manually written Dispatch routines', file=self.outFile) write('%s' % self.inline_custom_source_preamble, file=self.outFile) self.newline() if (self.sections['source_file']): write('\n'.join(self.sections['source_file']), end=u'', file=self.outFile) else: self.newline() if (self.sections['header_file']): write('\n'.join(self.sections['header_file']), end=u'', file=self.outFile) # Finish processing in superclass OutputGenerator.endFile(self) # def beginFeature(self, interface, emit): # Start processing in superclass OutputGenerator.beginFeature(self, interface, emit) self.headerVersion = None self.featureExtraProtect = GetFeatureProtect(interface) if self.featureName != 'VK_VERSION_1_0' and self.featureName != 'VK_VERSION_1_1': white_list_entry = [] if (self.featureExtraProtect is not None): white_list_entry += [ '#ifdef %s' % self.featureExtraProtect ] white_list_entry += [ '"%s"' % self.featureName ] if (self.featureExtraProtect is not None): white_list_entry += [ '#endif' ] featureType = interface.get('type') if featureType == 'instance': self.instance_extensions += white_list_entry elif featureType == 'device': self.device_extensions += white_list_entry # def endFeature(self): # Finish processing in superclass OutputGenerator.endFeature(self) # def genType(self, typeinfo, name, alias): OutputGenerator.genType(self, typeinfo, name, alias) typeElem = typeinfo.elem # If the type is a struct type, traverse the imbedded tags generating a structure. # Otherwise, emit the tag text. category = typeElem.get('category') if (category == 'struct' or category == 'union'): self.genStruct(typeinfo, name, alias) # # Append a definition to the specified section def appendSection(self, section, text): # self.sections[section].append('SECTION: ' + section + '\n') self.sections[section].append(text) # # Check if the parameter passed in is a pointer def paramIsPointer(self, param): ispointer = False for elem in param: if ((elem.tag is not 'type') and (elem.tail is not None)) and '*' in elem.tail: ispointer = True return ispointer # # Get the category of a type def getTypeCategory(self, typename): types = self.registry.tree.findall("types/type") for elem in types: if (elem.find("name") is not None and elem.find('name').text == typename) or elem.attrib.get('name') == typename: return elem.attrib.get('category') # # Check if a parent object is dispatchable or not def isHandleTypeNonDispatchable(self, handletype): handle = self.registry.tree.find("types/type/[name='" + handletype + "'][@category='handle']") if handle is not None and handle.find('type').text == 'VK_DEFINE_NON_DISPATCHABLE_HANDLE': return True else: return False # # Retrieve the type and name for a parameter def getTypeNameTuple(self, param): type = '' name = '' for elem in param: if elem.tag == 'type': type = noneStr(elem.text) elif elem.tag == 'name': name = noneStr(elem.text) return (type, name) # # Retrieve the value of the len tag def getLen(self, param): result = None len = param.attrib.get('len') if len and len != 'null-terminated': # For string arrays, 'len' can look like 'count,null-terminated', indicating that we # have a null terminated array of strings. We strip the null-terminated from the # 'len' field and only return the parameter specifying the string count if 'null-terminated' in len: result = len.split(',')[0] else: result = len # Spec has now notation for len attributes, using :: instead of platform specific pointer symbol result = str(result).replace('::', '->') return result # # Generate a VkStructureType based on a structure typename def genVkStructureType(self, typename): # Add underscore between lowercase then uppercase value = re.sub('([a-z0-9])([A-Z])', r'\1_\2', typename) # Change to uppercase value = value.upper() # Add STRUCTURE_TYPE_ return re.sub('VK_', 'VK_STRUCTURE_TYPE_', value) # # Struct parameter check generation. # This is a special case of the tag where the contents are interpreted as a set of # tags instead of freeform C type declarations. The tags are just like # tags - they are a declaration of a struct or union member. Only simple member # declarations are supported (no nested structs etc.) def genStruct(self, typeinfo, typeName, alias): OutputGenerator.genStruct(self, typeinfo, typeName, alias) members = typeinfo.elem.findall('.//member') # Iterate over members once to get length parameters for arrays lens = set() for member in members: len = self.getLen(member) if len: lens.add(len) # Generate member info membersInfo = [] for member in members: # Get the member's type and name info = self.getTypeNameTuple(member) type = info[0] name = info[1] cdecl = self.makeCParamDecl(member, 0) # Process VkStructureType if type == 'VkStructureType': # Extract the required struct type value from the comments # embedded in the original text defining the 'typeinfo' element rawXml = etree.tostring(typeinfo.elem).decode('ascii') result = re.search(r'VK_STRUCTURE_TYPE_\w+', rawXml) if result: value = result.group(0) else: value = self.genVkStructureType(typeName) # Store the required type value self.structTypes[typeName] = self.StructType(name=name, value=value) # Store pointer/array/string info extstructs = self.registry.validextensionstructs[typeName] if name == 'pNext' else None membersInfo.append(self.CommandParam(type=type, name=name, ispointer=self.paramIsPointer(member), isconst=True if 'const' in cdecl else False, iscount=True if name in lens else False, len=self.getLen(member), extstructs=extstructs, cdecl=cdecl, islocal=False, iscreate=False, isdestroy=False, feature_protect=self.featureExtraProtect)) self.structMembers.append(self.StructMemberData(name=typeName, members=membersInfo)) # # Insert a lock_guard line def lock_guard(self, indent): return '%sstd::lock_guard lock(dispatch_lock);\n' % indent # # Determine if a struct has an NDO as a member or an embedded member def struct_contains_ndo(self, struct_item): struct_member_dict = dict(self.structMembers) struct_members = struct_member_dict[struct_item] for member in struct_members: if self.isHandleTypeNonDispatchable(member.type): return True elif member.type in struct_member_dict: if self.struct_contains_ndo(member.type) == True: return True return False # # Return list of struct members which contain, or which sub-structures contain # an NDO in a given list of parameters or members def getParmeterStructsWithNdos(self, item_list): struct_list = set() for item in item_list: paramtype = item.find('type') typecategory = self.getTypeCategory(paramtype.text) if typecategory == 'struct': if self.struct_contains_ndo(paramtype.text) == True: struct_list.add(item) return struct_list # # Return list of non-dispatchable objects from a given list of parameters or members def getNdosInParameterList(self, item_list, create_func): ndo_list = set() if create_func == True: member_list = item_list[0:-1] else: member_list = item_list for item in member_list: if self.isHandleTypeNonDispatchable(paramtype.text): ndo_list.add(item) return ndo_list # # Construct list of extension structs containing handles, or extension structs that share a structextends attribute # WITH an extension struct containing handles. All extension structs in any pNext chain will have to be copied. # TODO: make this recursive -- structs buried three or more levels deep are not searched for extensions def GenerateCommandWrapExtensionList(self): for struct in self.structMembers: if (len(struct.members) > 1) and struct.members[1].extstructs is not None: found = False; for item in struct.members[1].extstructs: if item != '' and item not in self.pnext_extension_structs: self.pnext_extension_structs.append(item) if item != '' and self.struct_contains_ndo(item) == True: found = True if found == True: for item in struct.members[1].extstructs: if item != '' and item not in self.extension_structs: self.extension_structs.append(item) # # Returns True if a struct may have a pNext chain containing an NDO def StructWithExtensions(self, struct_type): if struct_type in self.struct_member_dict: param_info = self.struct_member_dict[struct_type] if (len(param_info) > 1) and param_info[1].extstructs is not None: for item in param_info[1].extstructs: if item in self.extension_structs: return True return False # # Generate pNext handling function def build_extension_processing_func(self): # Construct helper functions to build and free pNext extension chains pnext_proc = '' pnext_proc += 'void *CreateUnwrappedExtensionStructs(ValidationObject *layer_data, const void *pNext) {\n' pnext_proc += ' void *cur_pnext = const_cast(pNext);\n' pnext_proc += ' void *head_pnext = NULL;\n' pnext_proc += ' void *prev_ext_struct = NULL;\n' pnext_proc += ' void *cur_ext_struct = NULL;\n\n' pnext_proc += ' while (cur_pnext != NULL) {\n' pnext_proc += ' VkBaseOutStructure *header = reinterpret_cast(cur_pnext);\n\n' pnext_proc += ' switch (header->sType) {\n' for item in self.pnext_extension_structs: struct_info = self.struct_member_dict[item] if struct_info[0].feature_protect is not None: pnext_proc += '#ifdef %s \n' % struct_info[0].feature_protect pnext_proc += ' case %s: {\n' % self.structTypes[item].value pnext_proc += ' safe_%s *safe_struct = new safe_%s;\n' % (item, item) pnext_proc += ' safe_struct->initialize(reinterpret_cast(cur_pnext));\n' % item # Generate code to unwrap the handles indent = ' ' (tmp_decl, tmp_pre, tmp_post) = self.uniquify_members(struct_info, indent, 'safe_struct->', 0, False, False, False, False) pnext_proc += tmp_pre pnext_proc += ' cur_ext_struct = reinterpret_cast(safe_struct);\n' pnext_proc += ' } break;\n' if struct_info[0].feature_protect is not None: pnext_proc += '#endif // %s \n' % struct_info[0].feature_protect pnext_proc += '\n' pnext_proc += ' default:\n' pnext_proc += ' break;\n' pnext_proc += ' }\n\n' pnext_proc += ' // Save pointer to the first structure in the pNext chain\n' pnext_proc += ' head_pnext = (head_pnext ? head_pnext : cur_ext_struct);\n\n' pnext_proc += ' // For any extension structure but the first, link the last struct\'s pNext to the current ext struct\n' pnext_proc += ' if (prev_ext_struct) {\n' pnext_proc += ' reinterpret_cast(prev_ext_struct)->pNext = reinterpret_cast(cur_ext_struct);\n' pnext_proc += ' }\n' pnext_proc += ' prev_ext_struct = cur_ext_struct;\n\n' pnext_proc += ' // Process the next structure in the chain\n' pnext_proc += ' cur_pnext = header->pNext;\n' pnext_proc += ' }\n' pnext_proc += ' return head_pnext;\n' pnext_proc += '}\n\n' pnext_proc += '// Free a pNext extension chain\n' pnext_proc += 'void FreeUnwrappedExtensionStructs(void *head) {\n' pnext_proc += ' VkBaseOutStructure *curr_ptr = reinterpret_cast(head);\n' pnext_proc += ' while (curr_ptr) {\n' pnext_proc += ' VkBaseOutStructure *header = curr_ptr;\n' pnext_proc += ' curr_ptr = reinterpret_cast(header->pNext);\n\n' pnext_proc += ' switch (header->sType) {\n'; for item in self.pnext_extension_structs: struct_info = self.struct_member_dict[item] if struct_info[0].feature_protect is not None: pnext_proc += '#ifdef %s \n' % struct_info[0].feature_protect pnext_proc += ' case %s:\n' % self.structTypes[item].value pnext_proc += ' delete reinterpret_cast(header);\n' % item pnext_proc += ' break;\n' if struct_info[0].feature_protect is not None: pnext_proc += '#endif // %s \n' % struct_info[0].feature_protect pnext_proc += '\n' pnext_proc += ' default:\n' pnext_proc += ' assert(0);\n' pnext_proc += ' }\n' pnext_proc += ' }\n' pnext_proc += '}\n' return pnext_proc # # Generate source for creating a non-dispatchable object def generate_create_ndo_code(self, indent, proto, params, cmd_info): create_ndo_code = '' handle_type = params[-1].find('type') if self.isHandleTypeNonDispatchable(handle_type.text): # Check for special case where multiple handles are returned ndo_array = False if cmd_info[-1].len is not None: ndo_array = True; handle_name = params[-1].find('name') create_ndo_code += '%sif (VK_SUCCESS == result) {\n' % (indent) indent = self.incIndent(indent) create_ndo_code += '%sstd::lock_guard lock(dispatch_lock);\n' % (indent) ndo_dest = '*%s' % handle_name.text if ndo_array == True: create_ndo_code += '%sfor (uint32_t index0 = 0; index0 < %s; index0++) {\n' % (indent, cmd_info[-1].len) indent = self.incIndent(indent) ndo_dest = '%s[index0]' % cmd_info[-1].name create_ndo_code += '%s%s = layer_data->WrapNew(%s);\n' % (indent, ndo_dest, ndo_dest) if ndo_array == True: indent = self.decIndent(indent) create_ndo_code += '%s}\n' % indent indent = self.decIndent(indent) create_ndo_code += '%s}\n' % (indent) return create_ndo_code # # Generate source for destroying a non-dispatchable object def generate_destroy_ndo_code(self, indent, proto, cmd_info): destroy_ndo_code = '' ndo_array = False if True in [destroy_txt in proto.text for destroy_txt in ['Destroy', 'Free']]: # Check for special case where multiple handles are returned if cmd_info[-1].len is not None: ndo_array = True; param = -1 else: param = -2 if self.isHandleTypeNonDispatchable(cmd_info[param].type) == True: if ndo_array == True: # This API is freeing an array of handles. Remove them from the unique_id map. destroy_ndo_code += '%sif ((VK_SUCCESS == result) && (%s)) {\n' % (indent, cmd_info[param].name) indent = self.incIndent(indent) destroy_ndo_code += '%sstd::unique_lock lock(dispatch_lock);\n' % (indent) destroy_ndo_code += '%sfor (uint32_t index0 = 0; index0 < %s; index0++) {\n' % (indent, cmd_info[param].len) indent = self.incIndent(indent) destroy_ndo_code += '%s%s handle = %s[index0];\n' % (indent, cmd_info[param].type, cmd_info[param].name) destroy_ndo_code += '%suint64_t unique_id = reinterpret_cast(handle);\n' % (indent) destroy_ndo_code += '%sunique_id_mapping.erase(unique_id);\n' % (indent) indent = self.decIndent(indent); destroy_ndo_code += '%s}\n' % indent indent = self.decIndent(indent); destroy_ndo_code += '%s}\n' % indent else: # Remove a single handle from the map destroy_ndo_code += '%sstd::unique_lock lock(dispatch_lock);\n' % (indent) destroy_ndo_code += '%suint64_t %s_id = reinterpret_cast(%s);\n' % (indent, cmd_info[param].name, cmd_info[param].name) destroy_ndo_code += '%s%s = (%s)unique_id_mapping[%s_id];\n' % (indent, cmd_info[param].name, cmd_info[param].type, cmd_info[param].name) destroy_ndo_code += '%sunique_id_mapping.erase(%s_id);\n' % (indent, cmd_info[param].name) destroy_ndo_code += '%slock.unlock();\n' % (indent) return ndo_array, destroy_ndo_code # # Clean up local declarations def cleanUpLocalDeclarations(self, indent, prefix, name, len, index, process_pnext): cleanup = '%sif (local_%s%s) {\n' % (indent, prefix, name) if len is not None: if process_pnext: cleanup += '%s for (uint32_t %s = 0; %s < %s%s; ++%s) {\n' % (indent, index, index, prefix, len, index) cleanup += '%s FreeUnwrappedExtensionStructs(const_cast(local_%s%s[%s].pNext));\n' % (indent, prefix, name, index) cleanup += '%s }\n' % indent cleanup += '%s delete[] local_%s%s;\n' % (indent, prefix, name) else: if process_pnext: cleanup += '%s FreeUnwrappedExtensionStructs(const_cast(local_%s%s->pNext));\n' % (indent, prefix, name) cleanup += '%s delete local_%s%s;\n' % (indent, prefix, name) cleanup += "%s}\n" % (indent) return cleanup # # Output UO code for a single NDO (ndo_count is NULL) or a counted list of NDOs def outputNDOs(self, ndo_type, ndo_name, ndo_count, prefix, index, indent, destroy_func, destroy_array, top_level): decl_code = '' pre_call_code = '' post_call_code = '' if ndo_count is not None: if top_level == True: decl_code += '%s%s *local_%s%s = NULL;\n' % (indent, ndo_type, prefix, ndo_name) pre_call_code += '%s if (%s%s) {\n' % (indent, prefix, ndo_name) indent = self.incIndent(indent) if top_level == True: pre_call_code += '%s local_%s%s = new %s[%s];\n' % (indent, prefix, ndo_name, ndo_type, ndo_count) pre_call_code += '%s for (uint32_t %s = 0; %s < %s; ++%s) {\n' % (indent, index, index, ndo_count, index) indent = self.incIndent(indent) pre_call_code += '%s local_%s%s[%s] = layer_data->Unwrap(%s[%s]);\n' % (indent, prefix, ndo_name, index, ndo_name, index) else: pre_call_code += '%s for (uint32_t %s = 0; %s < %s; ++%s) {\n' % (indent, index, index, ndo_count, index) indent = self.incIndent(indent) pre_call_code += '%s %s%s[%s] = layer_data->Unwrap(%s%s[%s]);\n' % (indent, prefix, ndo_name, index, prefix, ndo_name, index) indent = self.decIndent(indent) pre_call_code += '%s }\n' % indent indent = self.decIndent(indent) pre_call_code += '%s }\n' % indent if top_level == True: post_call_code += '%sif (local_%s%s)\n' % (indent, prefix, ndo_name) indent = self.incIndent(indent) post_call_code += '%sdelete[] local_%s;\n' % (indent, ndo_name) else: if top_level == True: if (destroy_func == False) or (destroy_array == True): pre_call_code += '%s %s = layer_data->Unwrap(%s);\n' % (indent, ndo_name, ndo_name) else: # Make temp copy of this var with the 'local' removed. It may be better to not pass in 'local_' # as part of the string and explicitly print it fix = str(prefix).strip('local_'); pre_call_code += '%s if (%s%s) {\n' % (indent, fix, ndo_name) indent = self.incIndent(indent) pre_call_code += '%s %s%s = layer_data->Unwrap(%s%s);\n' % (indent, prefix, ndo_name, fix, ndo_name) indent = self.decIndent(indent) pre_call_code += '%s }\n' % indent return decl_code, pre_call_code, post_call_code # # first_level_param indicates if elements are passed directly into the function else they're below a ptr/struct # create_func means that this is API creates or allocates NDOs # destroy_func indicates that this API destroys or frees NDOs # destroy_array means that the destroy_func operated on an array of NDOs def uniquify_members(self, members, indent, prefix, array_index, create_func, destroy_func, destroy_array, first_level_param): decls = '' pre_code = '' post_code = '' index = 'index%s' % str(array_index) array_index += 1 # Process any NDOs in this structure and recurse for any sub-structs in this struct for member in members: process_pnext = self.StructWithExtensions(member.type) # Handle NDOs if self.isHandleTypeNonDispatchable(member.type) == True: count_name = member.len if (count_name is not None): if first_level_param == False: count_name = '%s%s' % (prefix, member.len) if (first_level_param == False) or (create_func == False) or (not '*' in member.cdecl): (tmp_decl, tmp_pre, tmp_post) = self.outputNDOs(member.type, member.name, count_name, prefix, index, indent, destroy_func, destroy_array, first_level_param) decls += tmp_decl pre_code += tmp_pre post_code += tmp_post # Handle Structs that contain NDOs at some level elif member.type in self.struct_member_dict: # Structs at first level will have an NDO, OR, we need a safe_struct for the pnext chain if self.struct_contains_ndo(member.type) == True or process_pnext: struct_info = self.struct_member_dict[member.type] # TODO (jbolz): Can this use paramIsPointer? ispointer = '*' in member.cdecl; # Struct Array if member.len is not None: # Update struct prefix if first_level_param == True: new_prefix = 'local_%s' % member.name # Declare safe_VarType for struct decls += '%ssafe_%s *%s = NULL;\n' % (indent, member.type, new_prefix) else: new_prefix = '%s%s' % (prefix, member.name) pre_code += '%s if (%s%s) {\n' % (indent, prefix, member.name) indent = self.incIndent(indent) if first_level_param == True: pre_code += '%s %s = new safe_%s[%s];\n' % (indent, new_prefix, member.type, member.len) pre_code += '%s for (uint32_t %s = 0; %s < %s%s; ++%s) {\n' % (indent, index, index, prefix, member.len, index) indent = self.incIndent(indent) if first_level_param == True: pre_code += '%s %s[%s].initialize(&%s[%s]);\n' % (indent, new_prefix, index, member.name, index) if process_pnext: pre_code += '%s %s[%s].pNext = CreateUnwrappedExtensionStructs(layer_data, %s[%s].pNext);\n' % (indent, new_prefix, index, new_prefix, index) local_prefix = '%s[%s].' % (new_prefix, index) # Process sub-structs in this struct (tmp_decl, tmp_pre, tmp_post) = self.uniquify_members(struct_info, indent, local_prefix, array_index, create_func, destroy_func, destroy_array, False) decls += tmp_decl pre_code += tmp_pre post_code += tmp_post indent = self.decIndent(indent) pre_code += '%s }\n' % indent indent = self.decIndent(indent) pre_code += '%s }\n' % indent if first_level_param == True: post_code += self.cleanUpLocalDeclarations(indent, prefix, member.name, member.len, index, process_pnext) # Single Struct elif ispointer: # Update struct prefix if first_level_param == True: new_prefix = 'local_%s->' % member.name decls += '%ssafe_%s *local_%s%s = NULL;\n' % (indent, member.type, prefix, member.name) else: new_prefix = '%s%s->' % (prefix, member.name) # Declare safe_VarType for struct pre_code += '%s if (%s%s) {\n' % (indent, prefix, member.name) indent = self.incIndent(indent) if first_level_param == True: pre_code += '%s local_%s%s = new safe_%s(%s);\n' % (indent, prefix, member.name, member.type, member.name) # Process sub-structs in this struct (tmp_decl, tmp_pre, tmp_post) = self.uniquify_members(struct_info, indent, new_prefix, array_index, create_func, destroy_func, destroy_array, False) decls += tmp_decl pre_code += tmp_pre post_code += tmp_post if process_pnext: pre_code += '%s local_%s%s->pNext = CreateUnwrappedExtensionStructs(layer_data, local_%s%s->pNext);\n' % (indent, prefix, member.name, prefix, member.name) indent = self.decIndent(indent) pre_code += '%s }\n' % indent if first_level_param == True: post_code += self.cleanUpLocalDeclarations(indent, prefix, member.name, member.len, index, process_pnext) else: # Update struct prefix if first_level_param == True: sys.exit(1) else: new_prefix = '%s%s.' % (prefix, member.name) # Process sub-structs in this struct (tmp_decl, tmp_pre, tmp_post) = self.uniquify_members(struct_info, indent, new_prefix, array_index, create_func, destroy_func, destroy_array, False) decls += tmp_decl pre_code += tmp_pre post_code += tmp_post if process_pnext: pre_code += '%s local_%s%s.pNext = CreateUnwrappedExtensionStructs(layer_data, local_%s%s.pNext);\n' % (indent, prefix, member.name, prefix, member.name) return decls, pre_code, post_code # # For a particular API, generate the non-dispatchable-object wrapping/unwrapping code def generate_wrapping_code(self, cmd): indent = ' ' proto = cmd.find('proto/name') params = cmd.findall('param') if proto.text is not None: cmd_member_dict = dict(self.cmdMembers) cmd_info = cmd_member_dict[proto.text] # Handle ndo create/allocate operations if cmd_info[0].iscreate: create_ndo_code = self.generate_create_ndo_code(indent, proto, params, cmd_info) else: create_ndo_code = '' # Handle ndo destroy/free operations if cmd_info[0].isdestroy: (destroy_array, destroy_ndo_code) = self.generate_destroy_ndo_code(indent, proto, cmd_info) else: destroy_array = False destroy_ndo_code = '' paramdecl = '' param_pre_code = '' param_post_code = '' create_func = True if create_ndo_code else False destroy_func = True if destroy_ndo_code else False (paramdecl, param_pre_code, param_post_code) = self.uniquify_members(cmd_info, indent, '', 0, create_func, destroy_func, destroy_array, True) param_post_code += create_ndo_code if destroy_ndo_code: if destroy_array == True: param_post_code += destroy_ndo_code else: param_pre_code += destroy_ndo_code if param_pre_code: if (not destroy_func) or (destroy_array): param_pre_code = '%s{\n%s%s%s%s}\n' % (' ', indent, self.lock_guard(indent), param_pre_code, indent) return paramdecl, param_pre_code, param_post_code # # Capture command parameter info needed to wrap NDOs as well as handling some boilerplate code def genCmd(self, cmdinfo, cmdname, alias): # Add struct-member type information to command parameter information OutputGenerator.genCmd(self, cmdinfo, cmdname, alias) members = cmdinfo.elem.findall('.//param') # Iterate over members once to get length parameters for arrays lens = set() for member in members: len = self.getLen(member) if len: lens.add(len) struct_member_dict = dict(self.structMembers) # Generate member info membersInfo = [] for member in members: # Get type and name of member info = self.getTypeNameTuple(member) type = info[0] name = info[1] cdecl = self.makeCParamDecl(member, 0) # Check for parameter name in lens set iscount = True if name in lens else False len = self.getLen(member) isconst = True if 'const' in cdecl else False ispointer = self.paramIsPointer(member) # Mark param as local if it is an array of NDOs islocal = False; if self.isHandleTypeNonDispatchable(type) == True: if (len is not None) and (isconst == True): islocal = True # Or if it's a struct that contains an NDO elif type in struct_member_dict: if self.struct_contains_ndo(type) == True: islocal = True isdestroy = True if True in [destroy_txt in cmdname for destroy_txt in ['Destroy', 'Free']] else False iscreate = True if True in [create_txt in cmdname for create_txt in ['Create', 'Allocate', 'GetRandROutputDisplayEXT', 'RegisterDeviceEvent', 'RegisterDisplayEvent']] else False extstructs = self.registry.validextensionstructs[type] if name == 'pNext' else None membersInfo.append(self.CommandParam(type=type, name=name, ispointer=ispointer, isconst=isconst, iscount=iscount, len=len, extstructs=extstructs, cdecl=cdecl, islocal=islocal, iscreate=iscreate, isdestroy=isdestroy, feature_protect=self.featureExtraProtect)) self.cmdMembers.append(self.CmdMemberData(name=cmdname, members=membersInfo)) self.cmd_info_data.append(self.CmdInfoData(name=cmdname, cmdinfo=cmdinfo)) self.cmd_feature_protect.append(self.CmdExtraProtect(name=cmdname, extra_protect=self.featureExtraProtect)) # # Create prototype for dispatch header file def GenDispatchFunctionPrototype(self, cmdinfo, ifdef_text): decls = self.makeCDecls(cmdinfo.elem) func_sig = decls[0][:-1] func_sig = func_sig.replace("VKAPI_ATTR ", "") func_sig = func_sig.replace("VKAPI_CALL ", "Dispatch") func_sig = func_sig.replace("(", "(ValidationObject *layer_data, ") func_sig += ';' dispatch_prototype = '' if ifdef_text is not None: dispatch_prototype = '#ifdef %s\n' % ifdef_text dispatch_prototype += func_sig if ifdef_text is not None: dispatch_prototype += '\n#endif // %s' % ifdef_text return dispatch_prototype # # Create code to wrap NDOs as well as handling some boilerplate code def WrapCommands(self): cmd_member_dict = dict(self.cmdMembers) cmd_info_dict = dict(self.cmd_info_data) cmd_protect_dict = dict(self.cmd_feature_protect) for api_call in self.cmdMembers: cmdname = api_call.name cmdinfo = cmd_info_dict[api_call.name] feature_extra_protect = cmd_protect_dict[api_call.name] # Add fuction prototype to header data self.appendSection('header_file', self.GenDispatchFunctionPrototype(cmdinfo, feature_extra_protect)) if cmdname in self.no_autogen_list: decls = self.makeCDecls(cmdinfo.elem) self.appendSection('source_file', '') self.appendSection('source_file', '// Skip %s dispatch, manually generated' % cmdname) continue # Generate NDO wrapping/unwrapping code for all parameters (api_decls, api_pre, api_post) = self.generate_wrapping_code(cmdinfo.elem) # If API doesn't contain NDO's, we still need to make a down-chain call down_chain_call_only = False if not api_decls and not api_pre and not api_post: down_chain_call_only = True if (feature_extra_protect is not None): self.appendSection('source_file', '') self.appendSection('source_file', '#ifdef ' + feature_extra_protect) decls = self.makeCDecls(cmdinfo.elem) func_sig = decls[0][:-1] func_sig = func_sig.replace("VKAPI_ATTR ", "") func_sig = func_sig.replace("VKAPI_CALL ", "Dispatch") func_sig = func_sig.replace("(", "(ValidationObject *layer_data, ") self.appendSection('source_file', '') self.appendSection('source_file', func_sig) self.appendSection('source_file', '{') # Setup common to call wrappers, first parameter is always dispatchable dispatchable_type = cmdinfo.elem.find('param/type').text dispatchable_name = cmdinfo.elem.find('param/name').text # Gather the parameter items params = cmdinfo.elem.findall('param/name') # Pull out the text for each of the parameters, separate them by commas in a list paramstext = ', '.join([str(param.text) for param in params]) wrapped_paramstext = paramstext # If any of these paramters has been replaced by a local var, fix up the list params = cmd_member_dict[cmdname] for param in params: if param.islocal == True or self.StructWithExtensions(param.type): if param.ispointer == True: wrapped_paramstext = wrapped_paramstext.replace(param.name, '(%s %s*)local_%s' % ('const', param.type, param.name)) else: wrapped_paramstext = wrapped_paramstext.replace(param.name, '(%s %s)local_%s' % ('const', param.type, param.name)) # First, add check and down-chain call. Use correct dispatch table dispatch_table_type = "device_dispatch_table" if dispatchable_type in ["VkPhysicalDevice", "VkInstance"]: dispatch_table_type = "instance_dispatch_table" api_func = cmdinfo.elem.attrib.get('name').replace('vk','layer_data->%s.',1) % dispatch_table_type # Put all this together for the final down-chain call if not down_chain_call_only: unwrapped_dispatch_call = api_func + '(' + paramstext + ')' self.appendSection('source_file', ' if (!wrap_handles) return %s;' % unwrapped_dispatch_call) # Handle return values, if any resulttype = cmdinfo.elem.find('proto/type') if (resulttype is not None and resulttype.text == 'void'): resulttype = None if (resulttype is not None): assignresult = resulttype.text + ' result = ' else: assignresult = '' # Pre-pend declarations and pre-api-call codegen if api_decls: self.appendSection('source_file', "\n".join(str(api_decls).rstrip().split("\n"))) if api_pre: self.appendSection('source_file', "\n".join(str(api_pre).rstrip().split("\n"))) # Generate the wrapped dispatch call self.appendSection('source_file', ' ' + assignresult + api_func + '(' + wrapped_paramstext + ');') # And add the post-API-call codegen self.appendSection('source_file', "\n".join(str(api_post).rstrip().split("\n"))) # Handle the return result variable, if any if (resulttype is not None): self.appendSection('source_file', ' return result;') self.appendSection('source_file', '}') if (feature_extra_protect is not None): self.appendSection('source_file', '#endif // '+ feature_extra_protect)