/* * Copyright 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * Test FlowGraph */ #include #include #include "flowgraph/ClipToRange.h" #include "flowgraph/MonoToMultiConverter.h" #include "flowgraph/SourceFloat.h" #include "flowgraph/RampLinear.h" #include "flowgraph/SinkFloat.h" #include "flowgraph/SinkI16.h" #include "flowgraph/SinkI24.h" #include "flowgraph/SourceI16.h" #include "flowgraph/SourceI24.h" using namespace flowgraph; constexpr int kBytesPerI24Packed = 3; TEST(test_flowgraph, module_sinki16) { static const float input[] = {1.0f, 0.5f, -0.25f, -1.0f, 0.0f, 53.9f, -87.2f}; static const int16_t expected[] = {32767, 16384, -8192, -32768, 0, 32767, -32768}; int16_t output[20]; SourceFloat sourceFloat{1}; SinkI16 sinkI16{1}; int numInputFrames = sizeof(input) / sizeof(input[0]); sourceFloat.setData(input, numInputFrames); sourceFloat.output.connect(&sinkI16.input); int numOutputFrames = sizeof(output) / sizeof(int16_t); int32_t numRead = sinkI16.read(output, numOutputFrames); ASSERT_EQ(numInputFrames, numRead); for (int i = 0; i < numRead; i++) { EXPECT_EQ(expected[i], output[i]); } } TEST(test_flowgraph, module_mono_to_stereo) { static const float input[] = {1.0f, 2.0f, 3.0f}; float output[100] = {}; SourceFloat sourceFloat{1}; MonoToMultiConverter monoToStereo{2}; SinkFloat sinkFloat{2}; sourceFloat.setData(input, 3); sourceFloat.output.connect(&monoToStereo.input); monoToStereo.output.connect(&sinkFloat.input); int32_t numRead = sinkFloat.read(output, 8); ASSERT_EQ(3, numRead); EXPECT_EQ(input[0], output[0]); EXPECT_EQ(input[0], output[1]); EXPECT_EQ(input[1], output[2]); EXPECT_EQ(input[1], output[3]); } TEST(test_flowgraph, module_ramp_linear) { constexpr int rampSize = 5; constexpr int numOutput = 100; constexpr float value = 1.0f; constexpr float target = 100.0f; float output[numOutput] = {}; RampLinear rampLinear{1}; SinkFloat sinkFloat{1}; rampLinear.input.setValue(value); rampLinear.setLengthInFrames(rampSize); rampLinear.setTarget(target); rampLinear.forceCurrent(0.0f); rampLinear.output.connect(&sinkFloat.input); int32_t numRead = sinkFloat.read(output, numOutput); ASSERT_EQ(numOutput, numRead); constexpr float tolerance = 0.0001f; // arbitrary int i = 0; for (; i < rampSize; i++) { float expected = i * value * target / rampSize; EXPECT_NEAR(expected, output[i], tolerance); } for (; i < numOutput; i++) { float expected = value * target; EXPECT_NEAR(expected, output[i], tolerance); } } // It is easiest to represent packed 24-bit data as a byte array. // This test will read from input, convert to float, then write // back to output as bytes. TEST(test_flowgraph, module_packed_24) { static const uint8_t input[] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0x5A}; uint8_t output[99] = {}; SourceI24 sourceI24{1}; SinkI24 sinkI24{1}; int numInputFrames = sizeof(input) / kBytesPerI24Packed; sourceI24.setData(input, numInputFrames); sourceI24.output.connect(&sinkI24.input); int32_t numRead = sinkI24.read(output, sizeof(output) / kBytesPerI24Packed); ASSERT_EQ(numInputFrames, numRead); for (size_t i = 0; i < sizeof(input); i++) { EXPECT_EQ(input[i], output[i]); } } TEST(test_flowgraph, module_clip_to_range) { constexpr float myMin = -2.0f; constexpr float myMax = 1.5f; static const float input[] = {-9.7, 0.5f, -0.25, 1.0f, 12.3}; static const float expected[] = {myMin, 0.5f, -0.25, 1.0f, myMax}; float output[100]; SourceFloat sourceFloat{1}; ClipToRange clipper{1}; SinkFloat sinkFloat{1}; int numInputFrames = sizeof(input) / sizeof(input[0]); sourceFloat.setData(input, numInputFrames); clipper.setMinimum(myMin); clipper.setMaximum(myMax); sourceFloat.output.connect(&clipper.input); clipper.output.connect(&sinkFloat.input); int numOutputFrames = sizeof(output) / sizeof(output[0]); int32_t numRead = sinkFloat.read(output, numOutputFrames); ASSERT_EQ(numInputFrames, numRead); constexpr float tolerance = 0.000001f; // arbitrary for (int i = 0; i < numRead; i++) { EXPECT_NEAR(expected[i], output[i], tolerance); } }