/* * Copyright (C) 2006 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.os; import android.annotation.NonNull; import android.annotation.Nullable; import android.annotation.TestApi; import android.annotation.UnsupportedAppUsage; import android.system.Os; import android.system.OsConstants; import android.webkit.WebViewZygote; import dalvik.system.VMRuntime; /** * Tools for managing OS processes. */ public class Process { private static final String LOG_TAG = "Process"; /** * An invalid UID value. */ public static final int INVALID_UID = -1; /** * Defines the root UID. */ public static final int ROOT_UID = 0; /** * Defines the UID/GID under which system code runs. */ public static final int SYSTEM_UID = 1000; /** * Defines the UID/GID under which the telephony code runs. */ public static final int PHONE_UID = 1001; /** * Defines the UID/GID for the user shell. */ public static final int SHELL_UID = 2000; /** * Defines the UID/GID for the log group. * @hide */ @UnsupportedAppUsage public static final int LOG_UID = 1007; /** * Defines the UID/GID for the WIFI supplicant process. * @hide */ @UnsupportedAppUsage public static final int WIFI_UID = 1010; /** * Defines the UID/GID for the mediaserver process. * @hide */ @UnsupportedAppUsage public static final int MEDIA_UID = 1013; /** * Defines the UID/GID for the DRM process. * @hide */ @UnsupportedAppUsage public static final int DRM_UID = 1019; /** * Defines the UID/GID for the group that controls VPN services. * @hide */ @UnsupportedAppUsage public static final int VPN_UID = 1016; /** * Defines the UID/GID for keystore. * @hide */ public static final int KEYSTORE_UID = 1017; /** * Defines the UID/GID for the NFC service process. * @hide */ @UnsupportedAppUsage public static final int NFC_UID = 1027; /** * Defines the UID/GID for the clatd process. * @hide * */ public static final int CLAT_UID = 1029; /** * Defines the UID/GID for the Bluetooth service process. */ public static final int BLUETOOTH_UID = 1002; /** * Defines the GID for the group that allows write access to the internal media storage. * @hide */ public static final int MEDIA_RW_GID = 1023; /** * Access to installed package details * @hide */ public static final int PACKAGE_INFO_GID = 1032; /** * Defines the UID/GID for the shared RELRO file updater process. * @hide */ public static final int SHARED_RELRO_UID = 1037; /** * Defines the UID/GID for the audioserver process. * @hide */ public static final int AUDIOSERVER_UID = 1041; /** * Defines the UID/GID for the cameraserver process * @hide */ public static final int CAMERASERVER_UID = 1047; /** * Defines the UID/GID for the tethering DNS resolver (currently dnsmasq). * @hide */ public static final int DNS_TETHER_UID = 1052; /** * Defines the UID/GID for the WebView zygote process. * @hide */ public static final int WEBVIEW_ZYGOTE_UID = 1053; /** * Defines the UID used for resource tracking for OTA updates. * @hide */ public static final int OTA_UPDATE_UID = 1061; /** * Defines the UID used for incidentd. * @hide */ public static final int INCIDENTD_UID = 1067; /** * Defines the UID/GID for the Secure Element service process. * @hide */ public static final int SE_UID = 1068; /** * Defines the UID/GID for the NetworkStack app. * @hide */ public static final int NETWORK_STACK_UID = 1073; /** {@hide} */ public static final int NOBODY_UID = 9999; /** * Defines the start of a range of UIDs (and GIDs), going from this * number to {@link #LAST_APPLICATION_UID} that are reserved for assigning * to applications. */ public static final int FIRST_APPLICATION_UID = 10000; /** * Last of application-specific UIDs starting at * {@link #FIRST_APPLICATION_UID}. */ public static final int LAST_APPLICATION_UID = 19999; /** * First uid used for fully isolated sandboxed processes spawned from an app zygote * @hide */ @TestApi public static final int FIRST_APP_ZYGOTE_ISOLATED_UID = 90000; /** * Number of UIDs we allocate per application zygote * @hide */ @TestApi public static final int NUM_UIDS_PER_APP_ZYGOTE = 100; /** * Last uid used for fully isolated sandboxed processes spawned from an app zygote * @hide */ @TestApi public static final int LAST_APP_ZYGOTE_ISOLATED_UID = 98999; /** * First uid used for fully isolated sandboxed processes (with no permissions of their own) * @hide */ @TestApi public static final int FIRST_ISOLATED_UID = 99000; /** * Last uid used for fully isolated sandboxed processes (with no permissions of their own) * @hide */ @TestApi public static final int LAST_ISOLATED_UID = 99999; /** * Defines the gid shared by all applications running under the same profile. * @hide */ public static final int SHARED_USER_GID = 9997; /** * First gid for applications to share resources. Used when forward-locking * is enabled but all UserHandles need to be able to read the resources. * @hide */ public static final int FIRST_SHARED_APPLICATION_GID = 50000; /** * Last gid for applications to share resources. Used when forward-locking * is enabled but all UserHandles need to be able to read the resources. * @hide */ public static final int LAST_SHARED_APPLICATION_GID = 59999; /** {@hide} */ public static final int FIRST_APPLICATION_CACHE_GID = 20000; /** {@hide} */ public static final int LAST_APPLICATION_CACHE_GID = 29999; /** * Standard priority of application threads. * Use with {@link #setThreadPriority(int)} and * {@link #setThreadPriority(int, int)}, not with the normal * {@link java.lang.Thread} class. */ public static final int THREAD_PRIORITY_DEFAULT = 0; /* * *************************************** * ** Keep in sync with utils/threads.h ** * *************************************** */ /** * Lowest available thread priority. Only for those who really, really * don't want to run if anything else is happening. * Use with {@link #setThreadPriority(int)} and * {@link #setThreadPriority(int, int)}, not with the normal * {@link java.lang.Thread} class. */ public static final int THREAD_PRIORITY_LOWEST = 19; /** * Standard priority background threads. This gives your thread a slightly * lower than normal priority, so that it will have less chance of impacting * the responsiveness of the user interface. * Use with {@link #setThreadPriority(int)} and * {@link #setThreadPriority(int, int)}, not with the normal * {@link java.lang.Thread} class. */ public static final int THREAD_PRIORITY_BACKGROUND = 10; /** * Standard priority of threads that are currently running a user interface * that the user is interacting with. Applications can not normally * change to this priority; the system will automatically adjust your * application threads as the user moves through the UI. * Use with {@link #setThreadPriority(int)} and * {@link #setThreadPriority(int, int)}, not with the normal * {@link java.lang.Thread} class. */ public static final int THREAD_PRIORITY_FOREGROUND = -2; /** * Standard priority of system display threads, involved in updating * the user interface. Applications can not * normally change to this priority. * Use with {@link #setThreadPriority(int)} and * {@link #setThreadPriority(int, int)}, not with the normal * {@link java.lang.Thread} class. */ public static final int THREAD_PRIORITY_DISPLAY = -4; /** * Standard priority of the most important display threads, for compositing * the screen and retrieving input events. Applications can not normally * change to this priority. * Use with {@link #setThreadPriority(int)} and * {@link #setThreadPriority(int, int)}, not with the normal * {@link java.lang.Thread} class. */ public static final int THREAD_PRIORITY_URGENT_DISPLAY = -8; /** * Standard priority of video threads. Applications can not normally * change to this priority. * Use with {@link #setThreadPriority(int)} and * {@link #setThreadPriority(int, int)}, not with the normal * {@link java.lang.Thread} class. */ public static final int THREAD_PRIORITY_VIDEO = -10; /** * Standard priority of audio threads. Applications can not normally * change to this priority. * Use with {@link #setThreadPriority(int)} and * {@link #setThreadPriority(int, int)}, not with the normal * {@link java.lang.Thread} class. */ public static final int THREAD_PRIORITY_AUDIO = -16; /** * Standard priority of the most important audio threads. * Applications can not normally change to this priority. * Use with {@link #setThreadPriority(int)} and * {@link #setThreadPriority(int, int)}, not with the normal * {@link java.lang.Thread} class. */ public static final int THREAD_PRIORITY_URGENT_AUDIO = -19; /** * Minimum increment to make a priority more favorable. */ public static final int THREAD_PRIORITY_MORE_FAVORABLE = -1; /** * Minimum increment to make a priority less favorable. */ public static final int THREAD_PRIORITY_LESS_FAVORABLE = +1; /** * Default scheduling policy * @hide */ public static final int SCHED_OTHER = 0; /** * First-In First-Out scheduling policy * @hide */ public static final int SCHED_FIFO = 1; /** * Round-Robin scheduling policy * @hide */ public static final int SCHED_RR = 2; /** * Batch scheduling policy * @hide */ public static final int SCHED_BATCH = 3; /** * Idle scheduling policy * @hide */ public static final int SCHED_IDLE = 5; /** * Reset scheduler choice on fork. * @hide */ public static final int SCHED_RESET_ON_FORK = 0x40000000; // Keep in sync with SP_* constants of enum type SchedPolicy // declared in system/core/include/cutils/sched_policy.h, // except THREAD_GROUP_DEFAULT does not correspond to any SP_* value. /** * Default thread group - * has meaning with setProcessGroup() only, cannot be used with setThreadGroup(). * When used with setProcessGroup(), the group of each thread in the process * is conditionally changed based on that thread's current priority, as follows: * threads with priority numerically less than THREAD_PRIORITY_BACKGROUND * are moved to foreground thread group. All other threads are left unchanged. * @hide */ public static final int THREAD_GROUP_DEFAULT = -1; /** * Background thread group - All threads in * this group are scheduled with a reduced share of the CPU. * Value is same as constant SP_BACKGROUND of enum SchedPolicy. * FIXME rename to THREAD_GROUP_BACKGROUND. * @hide */ public static final int THREAD_GROUP_BG_NONINTERACTIVE = 0; /** * Foreground thread group - All threads in * this group are scheduled with a normal share of the CPU. * Value is same as constant SP_FOREGROUND of enum SchedPolicy. * Not used at this level. * @hide **/ private static final int THREAD_GROUP_FOREGROUND = 1; /** * System thread group. * @hide **/ public static final int THREAD_GROUP_SYSTEM = 2; /** * Application audio thread group. * @hide **/ public static final int THREAD_GROUP_AUDIO_APP = 3; /** * System audio thread group. * @hide **/ public static final int THREAD_GROUP_AUDIO_SYS = 4; /** * Thread group for top foreground app. * @hide **/ public static final int THREAD_GROUP_TOP_APP = 5; /** * Thread group for RT app. * @hide **/ public static final int THREAD_GROUP_RT_APP = 6; /** * Thread group for bound foreground services that should * have additional CPU restrictions during screen off * @hide **/ public static final int THREAD_GROUP_RESTRICTED = 7; public static final int SIGNAL_QUIT = 3; public static final int SIGNAL_KILL = 9; public static final int SIGNAL_USR1 = 10; private static long sStartElapsedRealtime; private static long sStartUptimeMillis; /** * State associated with the zygote process. * @hide */ public static final ZygoteProcess ZYGOTE_PROCESS = new ZygoteProcess(); /** * Start a new process. * *

If processes are enabled, a new process is created and the * static main() function of a processClass is executed there. * The process will continue running after this function returns. * *

If processes are not enabled, a new thread in the caller's * process is created and main() of processClass called there. * *

The niceName parameter, if not an empty string, is a custom name to * give to the process instead of using processClass. This allows you to * make easily identifyable processes even if you are using the same base * processClass to start them. * * When invokeWith is not null, the process will be started as a fresh app * and not a zygote fork. Note that this is only allowed for uid 0 or when * runtimeFlags contains DEBUG_ENABLE_DEBUGGER. * * @param processClass The class to use as the process's main entry * point. * @param niceName A more readable name to use for the process. * @param uid The user-id under which the process will run. * @param gid The group-id under which the process will run. * @param gids Additional group-ids associated with the process. * @param runtimeFlags Additional flags for the runtime. * @param targetSdkVersion The target SDK version for the app. * @param seInfo null-ok SELinux information for the new process. * @param abi non-null the ABI this app should be started with. * @param instructionSet null-ok the instruction set to use. * @param appDataDir null-ok the data directory of the app. * @param invokeWith null-ok the command to invoke with. * @param packageName null-ok the name of the package this process belongs to. * * @param zygoteArgs Additional arguments to supply to the zygote process. * @return An object that describes the result of the attempt to start the process. * @throws RuntimeException on fatal start failure * * {@hide} */ public static ProcessStartResult start(@NonNull final String processClass, @Nullable final String niceName, int uid, int gid, @Nullable int[] gids, int runtimeFlags, int mountExternal, int targetSdkVersion, @Nullable String seInfo, @NonNull String abi, @Nullable String instructionSet, @Nullable String appDataDir, @Nullable String invokeWith, @Nullable String packageName, @Nullable String[] zygoteArgs) { return ZYGOTE_PROCESS.start(processClass, niceName, uid, gid, gids, runtimeFlags, mountExternal, targetSdkVersion, seInfo, abi, instructionSet, appDataDir, invokeWith, packageName, /*useUsapPool=*/ true, zygoteArgs); } /** @hide */ public static ProcessStartResult startWebView(@NonNull final String processClass, @Nullable final String niceName, int uid, int gid, @Nullable int[] gids, int runtimeFlags, int mountExternal, int targetSdkVersion, @Nullable String seInfo, @NonNull String abi, @Nullable String instructionSet, @Nullable String appDataDir, @Nullable String invokeWith, @Nullable String packageName, @Nullable String[] zygoteArgs) { return WebViewZygote.getProcess().start(processClass, niceName, uid, gid, gids, runtimeFlags, mountExternal, targetSdkVersion, seInfo, abi, instructionSet, appDataDir, invokeWith, packageName, /*useUsapPool=*/ false, zygoteArgs); } /** * Returns elapsed milliseconds of the time this process has run. * @return Returns the number of milliseconds this process has return. */ public static final native long getElapsedCpuTime(); /** * Return the {@link SystemClock#elapsedRealtime()} at which this process was started. */ public static final long getStartElapsedRealtime() { return sStartElapsedRealtime; } /** * Return the {@link SystemClock#uptimeMillis()} at which this process was started. */ public static final long getStartUptimeMillis() { return sStartUptimeMillis; } /** @hide */ public static final void setStartTimes(long elapsedRealtime, long uptimeMillis) { sStartElapsedRealtime = elapsedRealtime; sStartUptimeMillis = uptimeMillis; } /** * Returns true if the current process is a 64-bit runtime. */ public static final boolean is64Bit() { return VMRuntime.getRuntime().is64Bit(); } /** * Returns the identifier of this process, which can be used with * {@link #killProcess} and {@link #sendSignal}. */ public static final int myPid() { return Os.getpid(); } /** * Returns the identifier of this process' parent. * @hide */ @UnsupportedAppUsage public static final int myPpid() { return Os.getppid(); } /** * Returns the identifier of the calling thread, which be used with * {@link #setThreadPriority(int, int)}. */ public static final int myTid() { return Os.gettid(); } /** * Returns the identifier of this process's uid. This is the kernel uid * that the process is running under, which is the identity of its * app-specific sandbox. It is different from {@link #myUserHandle} in that * a uid identifies a specific app sandbox in a specific user. */ public static final int myUid() { return Os.getuid(); } /** * Returns this process's user handle. This is the * user the process is running under. It is distinct from * {@link #myUid()} in that a particular user will have multiple * distinct apps running under it each with their own uid. */ public static UserHandle myUserHandle() { return UserHandle.of(UserHandle.getUserId(myUid())); } /** * Returns whether the given uid belongs to a system core component or not. * @hide */ public static boolean isCoreUid(int uid) { return UserHandle.isCore(uid); } /** * Returns whether the given uid belongs to an application. * @param uid A kernel uid. * @return Whether the uid corresponds to an application sandbox running in * a specific user. */ public static boolean isApplicationUid(int uid) { return UserHandle.isApp(uid); } /** * Returns whether the current process is in an isolated sandbox. */ public static final boolean isIsolated() { return isIsolated(myUid()); } /** {@hide} */ @UnsupportedAppUsage public static final boolean isIsolated(int uid) { uid = UserHandle.getAppId(uid); return (uid >= FIRST_ISOLATED_UID && uid <= LAST_ISOLATED_UID) || (uid >= FIRST_APP_ZYGOTE_ISOLATED_UID && uid <= LAST_APP_ZYGOTE_ISOLATED_UID); } /** * Returns the UID assigned to a particular user name, or -1 if there is * none. If the given string consists of only numbers, it is converted * directly to a uid. */ public static final native int getUidForName(String name); /** * Returns the GID assigned to a particular user name, or -1 if there is * none. If the given string consists of only numbers, it is converted * directly to a gid. */ public static final native int getGidForName(String name); /** * Returns a uid for a currently running process. * @param pid the process id * @return the uid of the process, or -1 if the process is not running. * @hide pending API council review */ @UnsupportedAppUsage public static final int getUidForPid(int pid) { String[] procStatusLabels = { "Uid:" }; long[] procStatusValues = new long[1]; procStatusValues[0] = -1; Process.readProcLines("/proc/" + pid + "/status", procStatusLabels, procStatusValues); return (int) procStatusValues[0]; } /** * Returns the parent process id for a currently running process. * @param pid the process id * @return the parent process id of the process, or -1 if the process is not running. * @hide */ @UnsupportedAppUsage public static final int getParentPid(int pid) { String[] procStatusLabels = { "PPid:" }; long[] procStatusValues = new long[1]; procStatusValues[0] = -1; Process.readProcLines("/proc/" + pid + "/status", procStatusLabels, procStatusValues); return (int) procStatusValues[0]; } /** * Returns the thread group leader id for a currently running thread. * @param tid the thread id * @return the thread group leader id of the thread, or -1 if the thread is not running. * This is same as what getpid(2) would return if called by tid. * @hide */ public static final int getThreadGroupLeader(int tid) { String[] procStatusLabels = { "Tgid:" }; long[] procStatusValues = new long[1]; procStatusValues[0] = -1; Process.readProcLines("/proc/" + tid + "/status", procStatusLabels, procStatusValues); return (int) procStatusValues[0]; } /** * Set the priority of a thread, based on Linux priorities. * * @param tid The identifier of the thread/process to change. * @param priority A Linux priority level, from -20 for highest scheduling * priority to 19 for lowest scheduling priority. * * @throws IllegalArgumentException Throws IllegalArgumentException if * tid does not exist. * @throws SecurityException Throws SecurityException if your process does * not have permission to modify the given thread, or to use the given * priority. */ public static final native void setThreadPriority(int tid, int priority) throws IllegalArgumentException, SecurityException; /** * Call with 'false' to cause future calls to {@link #setThreadPriority(int)} to * throw an exception if passed a background-level thread priority. This is only * effective if the JNI layer is built with GUARD_THREAD_PRIORITY defined to 1. * * @hide */ public static final native void setCanSelfBackground(boolean backgroundOk); /** * Sets the scheduling group for a thread. * @hide * @param tid The identifier of the thread to change. * @param group The target group for this thread from THREAD_GROUP_*. * * @throws IllegalArgumentException Throws IllegalArgumentException if * tid does not exist. * @throws SecurityException Throws SecurityException if your process does * not have permission to modify the given thread, or to use the given * priority. * If the thread is a thread group leader, that is it's gettid() == getpid(), * then the other threads in the same thread group are _not_ affected. * * Does not set cpuset for some historical reason, just calls * libcutils::set_sched_policy(). */ public static final native void setThreadGroup(int tid, int group) throws IllegalArgumentException, SecurityException; /** * Sets the scheduling group and the corresponding cpuset group * @hide * @param tid The identifier of the thread to change. * @param group The target group for this thread from THREAD_GROUP_*. * * @throws IllegalArgumentException Throws IllegalArgumentException if * tid does not exist. * @throws SecurityException Throws SecurityException if your process does * not have permission to modify the given thread, or to use the given * priority. */ public static final native void setThreadGroupAndCpuset(int tid, int group) throws IllegalArgumentException, SecurityException; /** * Sets the scheduling group for a process and all child threads * @hide * @param pid The identifier of the process to change. * @param group The target group for this process from THREAD_GROUP_*. * * @throws IllegalArgumentException Throws IllegalArgumentException if * tid does not exist. * @throws SecurityException Throws SecurityException if your process does * not have permission to modify the given thread, or to use the given * priority. * * group == THREAD_GROUP_DEFAULT means to move all non-background priority * threads to the foreground scheduling group, but to leave background * priority threads alone. group == THREAD_GROUP_BG_NONINTERACTIVE moves all * threads, regardless of priority, to the background scheduling group. * group == THREAD_GROUP_FOREGROUND is not allowed. * * Always sets cpusets. */ @UnsupportedAppUsage public static final native void setProcessGroup(int pid, int group) throws IllegalArgumentException, SecurityException; /** * Return the scheduling group of requested process. * * @hide */ public static final native int getProcessGroup(int pid) throws IllegalArgumentException, SecurityException; /** * On some devices, the foreground process may have one or more CPU * cores exclusively reserved for it. This method can be used to * retrieve which cores that are (if any), so the calling process * can then use sched_setaffinity() to lock a thread to these cores. * Note that the calling process must currently be running in the * foreground for this method to return any cores. * * The CPU core(s) exclusively reserved for the foreground process will * stay reserved for as long as the process stays in the foreground. * * As soon as a process leaves the foreground, those CPU cores will * no longer be reserved for it, and will most likely be reserved for * the new foreground process. It's not necessary to change the affinity * of your process when it leaves the foreground (if you had previously * set it to use a reserved core); the OS will automatically take care * of resetting the affinity at that point. * * @return an array of integers, indicating the CPU cores exclusively * reserved for this process. The array will have length zero if no * CPU cores are exclusively reserved for this process at this point * in time. */ public static final native int[] getExclusiveCores(); /** * Set the priority of the calling thread, based on Linux priorities. See * {@link #setThreadPriority(int, int)} for more information. * * @param priority A Linux priority level, from -20 for highest scheduling * priority to 19 for lowest scheduling priority. * * @throws IllegalArgumentException Throws IllegalArgumentException if * tid does not exist. * @throws SecurityException Throws SecurityException if your process does * not have permission to modify the given thread, or to use the given * priority. * * @see #setThreadPriority(int, int) */ public static final native void setThreadPriority(int priority) throws IllegalArgumentException, SecurityException; /** * Return the current priority of a thread, based on Linux priorities. * * @param tid The identifier of the thread/process. If tid equals zero, the priority of the * calling process/thread will be returned. * * @return Returns the current priority, as a Linux priority level, * from -20 for highest scheduling priority to 19 for lowest scheduling * priority. * * @throws IllegalArgumentException Throws IllegalArgumentException if * tid does not exist. */ public static final native int getThreadPriority(int tid) throws IllegalArgumentException; /** * Return the current scheduling policy of a thread, based on Linux. * * @param tid The identifier of the thread/process to get the scheduling policy. * * @throws IllegalArgumentException Throws IllegalArgumentException if * tid does not exist, or if priority is out of range for the policy. * @throws SecurityException Throws SecurityException if your process does * not have permission to modify the given thread, or to use the given * scheduling policy or priority. * * {@hide} */ @TestApi public static final native int getThreadScheduler(int tid) throws IllegalArgumentException; /** * Set the scheduling policy and priority of a thread, based on Linux. * * @param tid The identifier of the thread/process to change. * @param policy A Linux scheduling policy such as SCHED_OTHER etc. * @param priority A Linux priority level in a range appropriate for the given policy. * * @throws IllegalArgumentException Throws IllegalArgumentException if * tid does not exist, or if priority is out of range for the policy. * @throws SecurityException Throws SecurityException if your process does * not have permission to modify the given thread, or to use the given * scheduling policy or priority. * * {@hide} */ public static final native void setThreadScheduler(int tid, int policy, int priority) throws IllegalArgumentException; /** * Determine whether the current environment supports multiple processes. * * @return Returns true if the system can run in multiple processes, else * false if everything is running in a single process. * * @deprecated This method always returns true. Do not use. */ @Deprecated public static final boolean supportsProcesses() { return true; } /** * Adjust the swappiness level for a process. * * @param pid The process identifier to set. * @param is_increased Whether swappiness should be increased or default. * * @return Returns true if the underlying system supports this * feature, else false. * * {@hide} */ public static final native boolean setSwappiness(int pid, boolean is_increased); /** * Change this process's argv[0] parameter. This can be useful to show * more descriptive information in things like the 'ps' command. * * @param text The new name of this process. * * {@hide} */ @UnsupportedAppUsage public static final native void setArgV0(String text); /** * Kill the process with the given PID. * Note that, though this API allows us to request to * kill any process based on its PID, the kernel will * still impose standard restrictions on which PIDs you * are actually able to kill. Typically this means only * the process running the caller's packages/application * and any additional processes created by that app; packages * sharing a common UID will also be able to kill each * other's processes. */ public static final void killProcess(int pid) { sendSignal(pid, SIGNAL_KILL); } /** @hide */ public static final native int setUid(int uid); /** @hide */ public static final native int setGid(int uid); /** * Send a signal to the given process. * * @param pid The pid of the target process. * @param signal The signal to send. */ public static final native void sendSignal(int pid, int signal); /** * @hide * Private impl for avoiding a log message... DO NOT USE without doing * your own log, or the Android Illuminati will find you some night and * beat you up. */ public static final void killProcessQuiet(int pid) { sendSignalQuiet(pid, SIGNAL_KILL); } /** * @hide * Private impl for avoiding a log message... DO NOT USE without doing * your own log, or the Android Illuminati will find you some night and * beat you up. */ public static final native void sendSignalQuiet(int pid, int signal); /** @hide */ @UnsupportedAppUsage public static final native long getFreeMemory(); /** @hide */ @UnsupportedAppUsage public static final native long getTotalMemory(); /** @hide */ @UnsupportedAppUsage public static final native void readProcLines(String path, String[] reqFields, long[] outSizes); /** @hide */ @UnsupportedAppUsage public static final native int[] getPids(String path, int[] lastArray); /** @hide */ @UnsupportedAppUsage public static final int PROC_TERM_MASK = 0xff; /** @hide */ @UnsupportedAppUsage public static final int PROC_ZERO_TERM = 0; /** @hide */ @UnsupportedAppUsage public static final int PROC_SPACE_TERM = (int)' '; /** @hide */ @UnsupportedAppUsage public static final int PROC_TAB_TERM = (int)'\t'; /** @hide */ public static final int PROC_NEWLINE_TERM = (int) '\n'; /** @hide */ @UnsupportedAppUsage public static final int PROC_COMBINE = 0x100; /** @hide */ @UnsupportedAppUsage public static final int PROC_PARENS = 0x200; /** @hide */ @UnsupportedAppUsage public static final int PROC_QUOTES = 0x400; /** @hide */ public static final int PROC_CHAR = 0x800; /** @hide */ @UnsupportedAppUsage public static final int PROC_OUT_STRING = 0x1000; /** @hide */ @UnsupportedAppUsage public static final int PROC_OUT_LONG = 0x2000; /** @hide */ @UnsupportedAppUsage public static final int PROC_OUT_FLOAT = 0x4000; /** * Read and parse a {@code proc} file in the given format. * *

The format is a list of integers, where every integer describes a variable in the file. It * specifies how the variable is syntactically terminated (e.g. {@link Process#PROC_SPACE_TERM}, * {@link Process#PROC_TAB_TERM}, {@link Process#PROC_ZERO_TERM}, {@link * Process#PROC_NEWLINE_TERM}). * *

If the variable should be parsed and returned to the caller, the termination type should * be binary OR'd with the type of output (e.g. {@link Process#PROC_OUT_STRING}, {@link * Process#PROC_OUT_LONG}, {@link Process#PROC_OUT_FLOAT}. * *

If the variable is wrapped in quotation marks it should be binary OR'd with {@link * Process#PROC_QUOTES}. If the variable is wrapped in parentheses it should be binary OR'd with * {@link Process#PROC_PARENS}. * *

If the variable is not formatted as a string and should be cast directly from characters * to a long, the {@link Process#PROC_CHAR} integer should be binary OR'd. * *

If the terminating character can be repeated, the {@link Process#PROC_COMBINE} integer * should be binary OR'd. * * @param file the path of the {@code proc} file to read * @param format the format of the file * @param outStrings the parsed {@code String}s from the file * @param outLongs the parsed {@code long}s from the file * @param outFloats the parsed {@code float}s from the file * @hide */ @UnsupportedAppUsage public static final native boolean readProcFile(String file, int[] format, String[] outStrings, long[] outLongs, float[] outFloats); /** @hide */ @UnsupportedAppUsage public static final native boolean parseProcLine(byte[] buffer, int startIndex, int endIndex, int[] format, String[] outStrings, long[] outLongs, float[] outFloats); /** @hide */ @UnsupportedAppUsage public static final native int[] getPidsForCommands(String[] cmds); /** * Gets the total Pss value for a given process, in bytes. * * @param pid the process to the Pss for * @return the total Pss value for the given process in bytes, * or -1 if the value cannot be determined * @hide */ @UnsupportedAppUsage public static final native long getPss(int pid); /** @hide */ public static final native long[] getRss(int pid); /** * Specifies the outcome of having started a process. * @hide */ public static final class ProcessStartResult { /** * The PID of the newly started process. * Always >= 0. (If the start failed, an exception will have been thrown instead.) */ public int pid; /** * True if the process was started with a wrapper attached. */ public boolean usingWrapper; } /** * Kill all processes in a process group started for the given * pid. * @hide */ public static final native int killProcessGroup(int uid, int pid); /** * Remove all process groups. Expected to be called when ActivityManager * is restarted. * @hide */ public static final native void removeAllProcessGroups(); /** * Check to see if a thread belongs to a given process. This may require * more permissions than apps generally have. * @return true if this thread belongs to a process * @hide */ public static final boolean isThreadInProcess(int tid, int pid) { StrictMode.ThreadPolicy oldPolicy = StrictMode.allowThreadDiskReads(); try { if (Os.access("/proc/" + tid + "/task/" + pid, OsConstants.F_OK)) { return true; } else { return false; } } catch (Exception e) { return false; } finally { StrictMode.setThreadPolicy(oldPolicy); } } }