//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the ValueEnumerator class. // //===----------------------------------------------------------------------===// #include "ValueEnumerator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/ValueSymbolTable.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; namespace llvm_2_9_func { static bool isIntOrIntVectorValue(const std::pair &V) { return V.first->getType()->isIntOrIntVectorTy(); } /// ValueEnumerator - Enumerate module-level information. ValueEnumerator::ValueEnumerator(const llvm::Module &M) : HasMDString(false), HasDILocation(false) { // Enumerate the global variables. for (llvm::Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) EnumerateValue(&*I); // Enumerate the functions. for (llvm::Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { EnumerateValue(&*I); EnumerateAttributes(cast(I)->getAttributes()); } // Enumerate the aliases. for (llvm::Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); I != E; ++I) EnumerateValue(&*I); // Remember what is the cutoff between globalvalue's and other constants. unsigned FirstConstant = Values.size(); // Enumerate the global variable initializers. for (llvm::Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) if (I->hasInitializer()) EnumerateValue(I->getInitializer()); // Enumerate the aliasees. for (llvm::Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); I != E; ++I) EnumerateValue(I->getAliasee()); // Enumerate the metadata type. // // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode // only encodes the metadata type when it's used as a value. EnumerateType(Type::getMetadataTy(M.getContext())); // Insert constants and metadata that are named at module level into the slot // pool so that the module symbol table can refer to them... EnumerateValueSymbolTable(M.getValueSymbolTable()); EnumerateNamedMetadata(M); SmallVector, 8> MDs; // Enumerate types used by function bodies and argument lists. for (const Function &F : M) { for (const Argument &A : F.args()) EnumerateType(A.getType()); for (const BasicBlock &BB : F) for (const Instruction &I : BB) { for (const Use &Op : I.operands()) { auto *MD = dyn_cast(&Op); if (!MD) { EnumerateOperandType(Op); continue; } // Local metadata is enumerated during function-incorporation. if (isa(MD->getMetadata())) continue; EnumerateMetadata(MD->getMetadata()); } EnumerateType(I.getType()); if (const CallInst *CI = dyn_cast(&I)) EnumerateAttributes(CI->getAttributes()); else if (const InvokeInst *II = dyn_cast(&I)) EnumerateAttributes(II->getAttributes()); // Enumerate metadata attached with this instruction. MDs.clear(); I.getAllMetadataOtherThanDebugLoc(MDs); for (unsigned i = 0, e = MDs.size(); i != e; ++i) EnumerateMetadata(MDs[i].second); // Don't enumerate the location directly -- it has a special record // type -- but enumerate its operands. if (DILocation *L = I.getDebugLoc()) EnumerateMDNodeOperands(L); } } // Optimize constant ordering. OptimizeConstants(FirstConstant, Values.size()); } unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { InstructionMapType::const_iterator I = InstructionMap.find(Inst); assert(I != InstructionMap.end() && "Instruction is not mapped!"); return I->second; } void ValueEnumerator::setInstructionID(const Instruction *I) { InstructionMap[I] = InstructionCount++; } unsigned ValueEnumerator::getValueID(const Value *V) const { if (auto *MD = dyn_cast(V)) return getMetadataID(MD->getMetadata()); ValueMapType::const_iterator I = ValueMap.find(V); assert(I != ValueMap.end() && "Value not in slotcalculator!"); return I->second-1; } void ValueEnumerator::dump() const { print(dbgs(), ValueMap, "Default"); dbgs() << '\n'; print(dbgs(), MDValueMap, "MetaData"); dbgs() << '\n'; } void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, const char *Name) const { OS << "Map Name: " << Name << "\n"; OS << "Size: " << Map.size() << "\n"; for (ValueMapType::const_iterator I = Map.begin(), E = Map.end(); I != E; ++I) { const Value *V = I->first; if (V->hasName()) OS << "Value: " << V->getName(); else OS << "Value: [null]\n"; V->dump(); OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):"; for (const Use &U : V->uses()) { if (&U != &*V->use_begin()) OS << ","; if(U->hasName()) OS << " " << U->getName(); else OS << " [null]"; } OS << "\n\n"; } } void ValueEnumerator::print(llvm::raw_ostream &OS, const MetadataMapType &Map, const char *Name) const { OS << "Map Name: " << Name << "\n"; OS << "Size: " << Map.size() << "\n"; for (auto I = Map.begin(), E = Map.end(); I != E; ++I) { const llvm::Metadata *MD = I->first; OS << "Metadata: slot = " << I->second << "\n"; MD->print(OS); } } // Optimize constant ordering. namespace { struct CstSortPredicate { ValueEnumerator &VE; explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {} bool operator()(const std::pair &LHS, const std::pair &RHS) { // Sort by plane. if (LHS.first->getType() != RHS.first->getType()) return VE.getTypeID(LHS.first->getType()) < VE.getTypeID(RHS.first->getType()); // Then by frequency. return LHS.second > RHS.second; } }; } /// OptimizeConstants - Reorder constant pool for denser encoding. void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { if (CstStart == CstEnd || CstStart+1 == CstEnd) return; CstSortPredicate P(*this); std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P); // Ensure that integer and vector of integer constants are at the start of the // constant pool. This is important so that GEP structure indices come before // gep constant exprs. std::partition(Values.begin()+CstStart, Values.begin()+CstEnd, isIntOrIntVectorValue); // Rebuild the modified portion of ValueMap. for (; CstStart != CstEnd; ++CstStart) ValueMap[Values[CstStart].first] = CstStart+1; } /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol /// table into the values table. void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); VI != VE; ++VI) EnumerateValue(VI->getValue()); } /// EnumerateNamedMetadata - Insert all of the values referenced by /// named metadata in the specified module. void ValueEnumerator::EnumerateNamedMetadata(const llvm::Module &M) { for (llvm::Module::const_named_metadata_iterator I = M.named_metadata_begin(), E = M.named_metadata_end(); I != E; ++I) EnumerateNamedMDNode(&*I); } void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) EnumerateMetadata(MD->getOperand(i)); } /// EnumerateMDNodeOperands - Enumerate all non-function-local values /// and types referenced by the given MDNode. void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { Metadata *MD = N->getOperand(i); if (!MD) continue; assert(!isa(MD) && "MDNodes cannot be function-local"); EnumerateMetadata(MD); } } void ValueEnumerator::EnumerateMetadata(const llvm::Metadata *MD) { assert( (isa(MD) || isa(MD) || isa(MD)) && "Invalid metadata kind"); // Insert a dummy ID to block the co-recursive call to // EnumerateMDNodeOperands() from re-visiting MD in a cyclic graph. // // Return early if there's already an ID. if (!MDValueMap.insert(std::make_pair(MD, 0)).second) return; // Visit operands first to minimize RAUW. if (auto *N = dyn_cast(MD)) EnumerateMDNodeOperands(N); else if (auto *C = dyn_cast(MD)) EnumerateValue(C->getValue()); HasMDString |= isa(MD); HasDILocation |= isa(MD); // Replace the dummy ID inserted above with the correct one. MDValueMap may // have changed by inserting operands, so we need a fresh lookup here. MDs.push_back(MD); MDValueMap[MD] = MDs.size(); } /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata /// information reachable from the metadata. void ValueEnumerator::EnumerateFunctionLocalMetadata( const llvm::LocalAsMetadata *Local) { // Check to see if it's already in! unsigned &MDValueID = MDValueMap[Local]; if (MDValueID) return; MDs.push_back(Local); MDValueID = MDs.size(); EnumerateValue(Local->getValue()); // Also, collect all function-local metadata for easy access. FunctionLocalMDs.push_back(Local); } void ValueEnumerator::EnumerateValue(const Value *V) { assert(!V->getType()->isVoidTy() && "Can't insert void values!"); assert(!isa(V) && "EnumerateValue doesn't handle Metadata!"); // Check to see if it's already in! unsigned &ValueID = ValueMap[V]; if (ValueID) { // Increment use count. Values[ValueID-1].second++; return; } // Enumerate the type of this value. EnumerateType(V->getType()); if (const Constant *C = dyn_cast(V)) { if (isa(C)) { // Initializers for globals are handled explicitly elsewhere. } else if (C->getNumOperands()) { // If a constant has operands, enumerate them. This makes sure that if a // constant has uses (for example an array of const ints), that they are // inserted also. // We prefer to enumerate them with values before we enumerate the user // itself. This makes it more likely that we can avoid forward references // in the reader. We know that there can be no cycles in the constants // graph that don't go through a global variable. for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); I != E; ++I) if (!isa(*I)) // Don't enumerate BB operand to BlockAddress. EnumerateValue(*I); // Finally, add the value. Doing this could make the ValueID reference be // dangling, don't reuse it. Values.push_back(std::make_pair(V, 1U)); ValueMap[V] = Values.size(); return; } else if (const ConstantDataSequential *CDS = dyn_cast(C)) { // For our legacy handling of the new ConstantDataSequential type, we // need to enumerate the individual elements, as well as mark the // outer constant as used. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) EnumerateValue(CDS->getElementAsConstant(i)); Values.push_back(std::make_pair(V, 1U)); ValueMap[V] = Values.size(); return; } } // Add the value. Values.push_back(std::make_pair(V, 1U)); ValueID = Values.size(); } void ValueEnumerator::EnumerateType(Type *Ty) { unsigned *TypeID = &TypeMap[Ty]; // We've already seen this type. if (*TypeID) return; // If it is a non-anonymous struct, mark the type as being visited so that we // don't recursively visit it. This is safe because we allow forward // references of these in the bitcode reader. if (StructType *STy = dyn_cast(Ty)) if (!STy->isLiteral()) *TypeID = ~0U; // Enumerate all of the subtypes before we enumerate this type. This ensures // that the type will be enumerated in an order that can be directly built. for (Type *SubTy : Ty->subtypes()) EnumerateType(SubTy); // Refresh the TypeID pointer in case the table rehashed. TypeID = &TypeMap[Ty]; // Check to see if we got the pointer another way. This can happen when // enumerating recursive types that hit the base case deeper than they start. // // If this is actually a struct that we are treating as forward ref'able, // then emit the definition now that all of its contents are available. if (*TypeID && *TypeID != ~0U) return; // Add this type now that its contents are all happily enumerated. Types.push_back(Ty); *TypeID = Types.size(); } // Enumerate the types for the specified value. If the value is a constant, // walk through it, enumerating the types of the constant. void ValueEnumerator::EnumerateOperandType(const Value *V) { EnumerateType(V->getType()); if (auto *MD = dyn_cast(V)) { assert(!isa(MD->getMetadata()) && "Function-local metadata should be left for later"); EnumerateMetadata(MD->getMetadata()); return; } const Constant *C = dyn_cast(V); if (!C) return; // If this constant is already enumerated, ignore it, we know its type must // be enumerated. if (ValueMap.count(C)) return; // This constant may have operands, make sure to enumerate the types in // them. for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { const Value *Op = C->getOperand(i); // Don't enumerate basic blocks here, this happens as operands to // blockaddress. if (isa(Op)) continue; EnumerateOperandType(Op); } } void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) { if (PAL.isEmpty()) return; // null is always 0. // Do a lookup. unsigned &Entry = AttributeMap[PAL]; if (Entry == 0) { // Never saw this before, add it. Attribute.push_back(PAL); Entry = Attribute.size(); } // Do lookups for all attribute groups. for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) { AttributeSet AS = PAL.getSlotAttributes(i); unsigned &Entry = AttributeGroupMap[AS]; if (Entry == 0) { AttributeGroups.push_back(AS); Entry = AttributeGroups.size(); } } } void ValueEnumerator::incorporateFunction(const Function &F) { InstructionCount = 0; NumModuleValues = Values.size(); NumModuleMDs = MDs.size(); // Adding function arguments to the value table. for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) EnumerateValue(&*I); FirstFuncConstantID = Values.size(); // Add all function-level constants to the value table. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { if ((isa(*OI) && !isa(*OI)) || isa(*OI)) EnumerateValue(*OI); } BasicBlocks.push_back(&*BB); ValueMap[&*BB] = BasicBlocks.size(); } // Optimize the constant layout. OptimizeConstants(FirstFuncConstantID, Values.size()); // Add the function's parameter attributes so they are available for use in // the function's instruction. EnumerateAttributes(F.getAttributes()); FirstInstID = Values.size(); SmallVector FnLocalMDVector; // Add all of the instructions. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { if (auto *MD = dyn_cast(&*OI)) if (auto *Local = dyn_cast(MD->getMetadata())) // Enumerate metadata after the instructions they might refer to. FnLocalMDVector.push_back(Local); } if (!I->getType()->isVoidTy()) EnumerateValue(&*I); } } // Add all of the function-local metadata. for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) EnumerateFunctionLocalMetadata(FnLocalMDVector[i]); } void ValueEnumerator::purgeFunction() { /// Remove purged values from the ValueMap. for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) ValueMap.erase(Values[i].first); for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) MDValueMap.erase(MDs[i]); for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) ValueMap.erase(BasicBlocks[i]); Values.resize(NumModuleValues); MDs.resize(NumModuleMDs); BasicBlocks.clear(); FunctionLocalMDs.clear(); } static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, DenseMap &IDMap) { unsigned Counter = 0; for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) IDMap[&*BB] = ++Counter; } /// getGlobalBasicBlockID - This returns the function-specific ID for the /// specified basic block. This is relatively expensive information, so it /// should only be used by rare constructs such as address-of-label. unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { unsigned &Idx = GlobalBasicBlockIDs[BB]; if (Idx != 0) return Idx-1; IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); return getGlobalBasicBlockID(BB); } } // end llvm_2_9_func namespace