/* * Copyright 2010, The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef _FRAMEWORKS_COMPILE_SLANG_SLANG_RS_OBJECT_REF_COUNT_H_ // NOLINT #define _FRAMEWORKS_COMPILE_SLANG_SLANG_RS_OBJECT_REF_COUNT_H_ #include #include #include #include "clang/AST/StmtVisitor.h" #include "slang_assert.h" #include "slang_rs_export_type.h" namespace clang { class Expr; class Stmt; } namespace slang { // Recursive check bool HasRSObjectType(const clang::Type *T); // This class provides the overall reference counting mechanism for handling // local variables of RS object types (rs_font, rs_allocation, ...). This // class ensures that appropriate functions (rsSetObject, rsClearObject) are // called at proper points in the object's lifetime. // 1) Each local object of appropriate type must be zero-initialized to // prevent corruption during subsequent rsSetObject()/rsClearObject() calls. // 2) Assignments using these types must also be converted into the // appropriate (possibly a series of) rsSetObject() calls. // 3) Finally, rsClearObject() must be called for each local object when it goes // out of scope. class RSObjectRefCount : public clang::StmtVisitor { private: class Scope { private: clang::CompoundStmt *mCS; // Associated compound statement ({ ... }) clang::Stmt *mCurrent; // The statement currently being analyzed std::list mRSO; // Declared RS objects in this scope (but // not any scopes nested) public: explicit Scope(clang::CompoundStmt *CS) : mCS(CS) { } bool hasRSObject() const { return !mRSO.empty(); } inline void addRSObject(clang::VarDecl* VD) { mRSO.push_back(VD); } void ReplaceRSObjectAssignment(clang::BinaryOperator *AS); void AppendRSObjectInit(clang::VarDecl *VD, clang::DeclStmt *DS, DataType DT, clang::Expr *InitExpr); // Inserts rsClearObject() calls at the end and at all exiting points of the // current scope. At each statement that exits the current scope -- e.g., // a return, break, or continue statement in the current or a nested scope // -- rsClearObject() calls are inserted for local variables defined in the // current scope before that point. // Note goto statements are not handled. (See the DestructorVisitor class in // the .cpp file.) // Also note this function is called for every nested scope. As a result, for a // return statement, each rsObject declared in all its (nested) enclosing // scopes would have a rsClearObject() call properly inserted before // the return statement. void InsertLocalVarDestructors(); // Sets the current statement being analyzed void setCurrentStmt(clang::Stmt *S) { mCurrent = S; } // Inserts a statement before the current statement void InsertStmt(const clang::ASTContext &C, clang::Stmt *NewStmt); // Replaces the current statement with NewStmt; void ReplaceStmt(const clang::ASTContext &C, clang::Stmt *NewStmt); // Replaces OldExpr with NewExpr in the current statement void ReplaceExpr(const clang::ASTContext& C, clang::Expr* OldExpr, clang::Expr* NewExpr); static clang::Stmt *ClearRSObject(clang::VarDecl *VD, clang::DeclContext *DC); }; clang::ASTContext &mCtx; std::deque mScopeStack; // A deque used as a stack to store scopes, but also // accessed through its iterator in read-only mode. clang::DeclContext* mCurrentDC; bool RSInitFD; // TODO: this should be static, since this flag affects all instances. unsigned mTempID; // A unique id that can be used to distinguish temporary variables // RSSetObjectFD and RSClearObjectFD holds FunctionDecl of rsSetObject() // and rsClearObject() in the current ASTContext. static clang::FunctionDecl *RSSetObjectFD[]; static clang::FunctionDecl *RSClearObjectFD[]; inline bool emptyScope() const { return mScopeStack.empty(); } inline Scope *getCurrentScope() { return mScopeStack.back(); } // Returns the next available unique id for temporary variables unsigned getNextID() { return mTempID++; } // Initialize RSSetObjectFD and RSClearObjectFD. static void GetRSRefCountingFunctions(clang::ASTContext &C); // Return false if the type of variable declared in VD does not contain // an RS object type. static bool InitializeRSObject(clang::VarDecl *VD, DataType *DT, clang::Expr **InitExpr); // Return an empty list initializer expression at the appropriate location. // This construct can then be used to cheaply construct a zero-initializer // for any RenderScript objects (like rs_allocation) or rs_matrix* types // (possibly even embedded within other types). These types are expected to // be zero-initialized always, and so we can use this helper to ensure that // they at least have an empty initializer. static clang::Expr *CreateEmptyInitListExpr( clang::ASTContext &C, const clang::SourceLocation &Loc); // Given a return statement RS that returns an rsObject, creates a temporary // variable, and sets it to the original return expression using rsSetObject(). // Creates a new return statement that returns the temporary variable. // Returns a new compound statement that contains the new variable declaration, // the rsSetOjbect() call, and the new return statement. static clang::CompoundStmt* CreateRetStmtWithTempVar( clang::ASTContext& C, clang::DeclContext* DC, clang::ReturnStmt* RS, const unsigned id); public: explicit RSObjectRefCount(clang::ASTContext &C) : mCtx(C), RSInitFD(false), mTempID(0) { } void Init() { if (!RSInitFD) { GetRSRefCountingFunctions(mCtx); RSInitFD = true; } } // For function parameters and local variables that are or contain RS objects, // e.g., rs_allocation, this method transforms the function body to correctly // adjust reference counts of those objects. void HandleParamsAndLocals(clang::FunctionDecl *FD); static clang::FunctionDecl *GetRSSetObjectFD(DataType DT) { slangAssert(RSExportPrimitiveType::IsRSObjectType(DT)); if (DT >= 0 && DT < DataTypeMax) { return RSSetObjectFD[DT]; } else { slangAssert(false && "incorrect type"); return nullptr; } } static clang::FunctionDecl *GetRSSetObjectFD(const clang::Type *T) { return GetRSSetObjectFD(RSExportPrimitiveType::GetRSSpecificType(T)); } static clang::FunctionDecl *GetRSClearObjectFD(DataType DT) { slangAssert(RSExportPrimitiveType::IsRSObjectType(DT)); if (DT >= 0 && DT < DataTypeMax) { return RSClearObjectFD[DT]; } else { slangAssert(false && "incorrect type"); return nullptr; } } static clang::FunctionDecl *GetRSClearObjectFD(const clang::Type *T) { return GetRSClearObjectFD(RSExportPrimitiveType::GetRSSpecificType(T)); } // This method creates a "guard" variable for the expression E that is object- // typed or object-containing, e.g., a struct with object-type fields. // It creates one or more rsSetObject() calls to set the value of the guard to E. // This effectively increases the sysRef count of the objects referenced by E // by 1, therefore "guarding" the objects, which might otherwise lose a // reference and get deleted. Statements that declare the new variable and set // the value of the new variable are added to the vector NewStmts. // // Parameters: // C: The clang AST Context. // DC: The DeclContext for any new Decl to add // E: The expression with reference to the objects for which we want to // increase the sysRef count // VarName: The name to use for the new guard variable // NewStmts: The vector for all statements added to create and set the guard. // // Returns: // An expression consisting of the guard variable // static clang::DeclRefExpr *CreateGuard(clang::ASTContext &C, clang::DeclContext *DC, clang::Expr *E, const llvm::Twine &VarName, std::vector &NewStmts); // For any function parameter that is object-typed or object-containing, if it // is overwritten inside the function, a system reference (sysRef) count // would decrement and may reach 0, leading the object to be deleted. This may // create a dangling pointer reference after a call to the function. // For example, the object in parameter a in the function below may be deleted // before the function returns. // void foo(rs_allocation a) { // assuming a references obj with sysRef of 1 // rs_allocation b = {}; // a = b; // decrements sysRef of obj and deletes it // } // // To avoid this problem, the sysRef counts of objects contained in parameters // --directly for object-typed parameters or indirectly as fields for struct- // typed parameters--are incremented at the beginning of the function, and // decremented at the end and any exiting point of the function. To achieve // these effects, the compiler creates a temporary local variable, and calls // rsSetObject() to set its value to that of the parameter. At the end of the // function and at any exiting point, the compiler adds calls to // rsClearObject() on the parameter. Each rsClearObject() call would decrement // the sysRef count of an incoming object if the parameter is never overwritten // in the function, or it would properly decrement the sysRef count of the new // object that the parameter is updated to in the function, since now the // parameter is going out of scope. For example, the compiler would transform // the previous code example into the following. // void foo(rs_allocation a) { // assuming a references obj with sysRef of 1 // rs_allocation .rs.param.a; // rsSetObject(&.rs.param.a, a); // sysRef of obj becomes 2 // rs_allocation b = {}; // a = b; // sysRef of obj becomes 1 // rsClearObject(&a); // sysRef of obj stays 1. obj stays undeleted. // } // // This method creates the guard variable for a object-type parameter, // named with the prefix ".rs.param." added to the parameter name. It calls // CreateGuard() to do this. The rsClearObject() call for the parameter as // described above is not added by this function, but by the caller of this // function, i.e., HandleParametersAndLocals(). // // Parameters: // C: The clang AST Context. // DC: The DeclContext for any new Decl to add. It should be the FunctionnDecl // of the function being transformed. // PD: The ParmDecl for the parameter. // NewStmts: The vector for all statements added to create and set the guard. // static void CreateParameterGuard( clang::ASTContext &C, clang::DeclContext *DC, clang::ParmVarDecl *PD, std::vector &NewStmts); void SetDeclContext(clang::DeclContext* DC) { mCurrentDC = DC; } clang::DeclContext* GetDeclContext() const { return mCurrentDC; } void VisitStmt(clang::Stmt *S); void VisitCallExpr(clang::CallExpr *CE); void VisitDeclStmt(clang::DeclStmt *DS); void VisitCompoundStmt(clang::CompoundStmt *CS); void VisitBinAssign(clang::BinaryOperator *AS); void VisitReturnStmt(clang::ReturnStmt *RS); // We believe that RS objects are never involved in CompoundAssignOperator. // I.e., rs_allocation foo; foo += bar; // Emit a global destructor to clean up RS objects. clang::FunctionDecl *CreateStaticGlobalDtor(); }; } // namespace slang #endif // _FRAMEWORKS_COMPILE_SLANG_SLANG_RS_OBJECT_REF_COUNT_H_ NOLINT