/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Operations" #include "MaximumMinimum.h" #include "IndexedShapeWrapper.h" #include "OperationsUtils.h" #include "Tracing.h" namespace android { namespace nn { namespace maximum_minimum { namespace { template bool evalGeneric(const T* aData, const Shape& aShape, const T* bData, const Shape& bShape, bool isMinimum, T* outputData, const Shape& outputShape) { IndexedShapeWrapper aShapeIndexed(aShape); IndexedShapeWrapper bShapeIndexed(bShape); IndexedShapeWrapper outputShapeIndexed(outputShape); std::vector curIndex(outputShape.dimensions.size(), 0); bool lastIndex = false; do { uint32_t outputFlatIndex; NN_CHECK(outputShapeIndexed.indexToFlatIndex(curIndex, &outputFlatIndex)); uint32_t aFlatIndex; NN_CHECK(aShapeIndexed.broadcastedIndexToFlatIndex(curIndex, &aFlatIndex)); uint32_t bFlatIndex; NN_CHECK(bShapeIndexed.broadcastedIndexToFlatIndex(curIndex, &bFlatIndex)); outputData[outputFlatIndex] = isMinimum ? std::min(aData[aFlatIndex], bData[bFlatIndex]) : std::max(aData[aFlatIndex], bData[bFlatIndex]); NN_CHECK(outputShapeIndexed.nextIndexInplace(&curIndex, &lastIndex)); } while (!lastIndex); return true; } bool evalQuant8(const uint8_t* aData, const Shape& aShape, const uint8_t* bData, const Shape& bShape, bool isMinimum, uint8_t* outputData, const Shape& outputShape) { IndexedShapeWrapper aShapeIndexed(aShape); IndexedShapeWrapper bShapeIndexed(bShape); IndexedShapeWrapper outputShapeIndexed(outputShape); std::vector curIndex(outputShape.dimensions.size(), 0); bool lastIndex = false; do { uint32_t outputFlatIndex; NN_CHECK(outputShapeIndexed.indexToFlatIndex(curIndex, &outputFlatIndex)); uint32_t aFlatIndex; NN_CHECK(aShapeIndexed.broadcastedIndexToFlatIndex(curIndex, &aFlatIndex)); uint32_t bFlatIndex; NN_CHECK(bShapeIndexed.broadcastedIndexToFlatIndex(curIndex, &bFlatIndex)); uint8_t aValue = requantize(aData[aFlatIndex], aShape, outputShape); uint8_t bValue = requantize(bData[bFlatIndex], bShape, outputShape); outputData[outputFlatIndex] = isMinimum ? std::min(aValue, bValue) : std::max(aValue, bValue); NN_CHECK(outputShapeIndexed.nextIndexInplace(&curIndex, &lastIndex)); } while (!lastIndex); return true; } } // namespace bool prepare(const Shape& in1, const Shape& in2, Shape* out) { NN_CHECK(in1.type == in2.type); return calculateBroadcastedShape(in1, in2, out); } bool eval(const void* in1, const Shape& shape1, const void* in2, const Shape& shape2, bool isMinimum, void* output, const Shape& outputShape) { NNTRACE_COMP("maximum_minimum::eval"); switch (shape1.type) { case OperandType::TENSOR_FLOAT16: { return evalGeneric(reinterpret_cast(in1), shape1, reinterpret_cast(in2), shape2, isMinimum, reinterpret_cast<_Float16*>(output), outputShape); } case OperandType::TENSOR_FLOAT32: { return evalGeneric(reinterpret_cast(in1), shape1, reinterpret_cast(in2), shape2, isMinimum, reinterpret_cast(output), outputShape); } case OperandType::TENSOR_INT32: { return evalGeneric(reinterpret_cast(in1), shape1, reinterpret_cast(in2), shape2, isMinimum, reinterpret_cast(output), outputShape); } case OperandType::TENSOR_QUANT8_ASYMM: { return evalQuant8(reinterpret_cast(in1), shape1, reinterpret_cast(in2), shape2, isMinimum, reinterpret_cast(output), outputShape); } default: { LOG(ERROR) << "Unsupported data type: " << toString(shape1.type); return false; } } } } // namespace maximum_minimum } // namespace nn } // namespace android