// clang-format off // Generated file (from: argmin_2.mod.py). Do not edit void CreateModel(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {2, 2}); OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto axis = model->addOperand(&type1); auto output = model->addOperand(&type2); // Phase 2, operations static int32_t axis_init[] = {0}; model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_ARGMIN, {input0, axis}, {output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output}); assert(model->isValid()); } inline bool is_ignored(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_relaxed(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {2, 2}); OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto axis = model->addOperand(&type1); auto output = model->addOperand(&type2); // Phase 2, operations static int32_t axis_init[] = {0}; model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_ARGMIN, {input0, axis}, {output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type3(Type::TENSOR_FLOAT16, {2, 2}); // Phase 1, operands auto input0 = model->addOperand(&type3); auto axis = model->addOperand(&type1); auto output = model->addOperand(&type2); // Phase 2, operations static int32_t axis_init[] = {0}; model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_ARGMIN, {input0, axis}, {output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output}); assert(model->isValid()); } inline bool is_ignored_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_int32(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type4(Type::TENSOR_INT32, {2, 2}); // Phase 1, operands auto input0 = model->addOperand(&type4); auto axis = model->addOperand(&type1); auto output = model->addOperand(&type2); // Phase 2, operations static int32_t axis_init[] = {0}; model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_ARGMIN, {input0, axis}, {output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output}); assert(model->isValid()); } inline bool is_ignored_int32(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_quant8(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type5(Type::TENSOR_QUANT8_ASYMM, {2, 2}, 1.0f, 0); // Phase 1, operands auto input0 = model->addOperand(&type5); auto axis = model->addOperand(&type1); auto output = model->addOperand(&type2); // Phase 2, operations static int32_t axis_init[] = {0}; model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_ARGMIN, {input0, axis}, {output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output}); assert(model->isValid()); } inline bool is_ignored_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {2, 2}); OperandType type1(Type::INT32, {}); OperandType type6(Type::TENSOR_INT32, {0}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto axis = model->addOperand(&type1); auto output = model->addOperand(&type6); // Phase 2, operations static int32_t axis_init[] = {0}; model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_ARGMIN, {input0, axis}, {output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_relaxed(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {2, 2}); OperandType type1(Type::INT32, {}); OperandType type6(Type::TENSOR_INT32, {0}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto axis = model->addOperand(&type1); auto output = model->addOperand(&type6); // Phase 2, operations static int32_t axis_init[] = {0}; model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_ARGMIN, {input0, axis}, {output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16(Model *model) { OperandType type1(Type::INT32, {}); OperandType type3(Type::TENSOR_FLOAT16, {2, 2}); OperandType type6(Type::TENSOR_INT32, {0}); // Phase 1, operands auto input0 = model->addOperand(&type3); auto axis = model->addOperand(&type1); auto output = model->addOperand(&type6); // Phase 2, operations static int32_t axis_init[] = {0}; model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_ARGMIN, {input0, axis}, {output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_int32(Model *model) { OperandType type1(Type::INT32, {}); OperandType type4(Type::TENSOR_INT32, {2, 2}); OperandType type6(Type::TENSOR_INT32, {0}); // Phase 1, operands auto input0 = model->addOperand(&type4); auto axis = model->addOperand(&type1); auto output = model->addOperand(&type6); // Phase 2, operations static int32_t axis_init[] = {0}; model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_ARGMIN, {input0, axis}, {output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_int32(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_quant8(Model *model) { OperandType type1(Type::INT32, {}); OperandType type5(Type::TENSOR_QUANT8_ASYMM, {2, 2}, 1.0f, 0); OperandType type6(Type::TENSOR_INT32, {0}); // Phase 1, operands auto input0 = model->addOperand(&type5); auto axis = model->addOperand(&type1); auto output = model->addOperand(&type6); // Phase 2, operations static int32_t axis_init[] = {0}; model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_ARGMIN, {input0, axis}, {output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); }