// clang-format off // Generated file (from: bbox_graph.mod.py). Do not edit void CreateModel_zero_sized(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {1, 1, 1, 1}); OperandType type10(Type::TENSOR_FLOAT32, {0, 2, 2, 1}); OperandType type11(Type::TENSOR_FLOAT32, {8, 4}); OperandType type12(Type::TENSOR_FLOAT32, {8}); OperandType type13(Type::TENSOR_FLOAT32, {0, 8}); OperandType type14(Type::TENSOR_FLOAT32, {2, 4}); OperandType type15(Type::TENSOR_FLOAT32, {2}); OperandType type16(Type::TENSOR_FLOAT32, {0, 2}); OperandType type2(Type::TENSOR_FLOAT32, {1, 1, 1, 4}); OperandType type3(Type::TENSOR_FLOAT32, {1, 4}); OperandType type4(Type::TENSOR_FLOAT32, {1, 2}); OperandType type5(Type::TENSOR_FLOAT32, {0}); OperandType type6(Type::TENSOR_FLOAT32, {0, 4}); OperandType type7(Type::TENSOR_INT32, {0}); OperandType type8(Type::FLOAT32, {}); OperandType type9(Type::INT32, {}); // Phase 1, operands auto scores = model->addOperand(&type1); auto deltas = model->addOperand(&type2); auto anchors = model->addOperand(&type3); auto imageInfo = model->addOperand(&type4); auto param = model->addOperand(&type8); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type9); auto param4 = model->addOperand(&type8); auto param5 = model->addOperand(&type8); auto layout = model->addOperand(&type0); auto scores1 = model->addOperand(&type5); auto roi = model->addOperand(&type6); auto batches = model->addOperand(&type7); auto featureMap = model->addOperand(&type1); auto param6 = model->addOperand(&type9); auto param7 = model->addOperand(&type9); auto param8 = model->addOperand(&type8); auto param9 = model->addOperand(&type8); auto param10 = model->addOperand(&type9); auto param11 = model->addOperand(&type9); auto scores2 = model->addOperand(&type10); auto weights = model->addOperand(&type11); auto bias = model->addOperand(&type12); auto param12 = model->addOperand(&type9); auto delta = model->addOperand(&type13); auto weights1 = model->addOperand(&type14); auto bias1 = model->addOperand(&type15); auto param13 = model->addOperand(&type9); auto scores3 = model->addOperand(&type16); auto roi1 = model->addOperand(&type13); auto param14 = model->addOperand(&type8); auto param15 = model->addOperand(&type9); auto param16 = model->addOperand(&type9); auto param17 = model->addOperand(&type8); auto param18 = model->addOperand(&type8); auto param19 = model->addOperand(&type8); auto scores4 = model->addOperand(&type5); auto roi2 = model->addOperand(&type6); auto classes = model->addOperand(&type7); auto batches1 = model->addOperand(&type7); // Phase 2, operations static float param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(float) * 1); static float param1_init[] = {1.0f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static int32_t param2_init[] = {-1}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static float param4_init[] = {0.3f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {10.0f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {2}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static float param8_init[] = {1.0f}; model->setOperandValue(param8, param8_init, sizeof(float) * 1); static float param9_init[] = {1.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static int32_t param10_init[] = {4}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 1); static int32_t param11_init[] = {4}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static float weights_init[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; model->setOperandValue(weights, weights_init, sizeof(float) * 32); static float bias_init[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; model->setOperandValue(bias, bias_init, sizeof(float) * 8); static int32_t param12_init[] = {0}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static float weights1_init[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; model->setOperandValue(weights1, weights1_init, sizeof(float) * 8); static float bias1_init[] = {1.0f, 1.0f}; model->setOperandValue(bias1, bias1_init, sizeof(float) * 2); static int32_t param13_init[] = {0}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static float param14_init[] = {0.1f}; model->setOperandValue(param14, param14_init, sizeof(float) * 1); static int32_t param15_init[] = {-1}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {0}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static float param17_init[] = {0.3f}; model->setOperandValue(param17, param17_init, sizeof(float) * 1); static float param18_init[] = {1.0f}; model->setOperandValue(param18, param18_init, sizeof(float) * 1); static float param19_init[] = {0.1f}; model->setOperandValue(param19, param19_init, sizeof(float) * 1); model->addOperation(ANEURALNETWORKS_GENERATE_PROPOSALS, {scores, deltas, anchors, imageInfo, param, param1, param2, param3, param4, param5, layout}, {scores1, roi, batches}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {featureMap, roi, batches, param6, param7, param8, param9, param10, param11, layout}, {scores2}); model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {scores2, weights, bias, param12}, {delta}); model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {scores2, weights1, bias1, param13}, {scores3}); model->addOperation(ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM, {roi, delta, batches, imageInfo}, {roi1}); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores3, roi1, batches, param14, param15, param16, param17, param18, param19}, {scores4, roi2, classes, batches1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {scores, deltas, anchors, imageInfo, featureMap}, {scores1, scores4, roi2, classes, batches1}); assert(model->isValid()); } inline bool is_ignored_zero_sized(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_relaxed(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {1, 1, 1, 1}); OperandType type10(Type::TENSOR_FLOAT32, {0, 2, 2, 1}); OperandType type11(Type::TENSOR_FLOAT32, {8, 4}); OperandType type12(Type::TENSOR_FLOAT32, {8}); OperandType type13(Type::TENSOR_FLOAT32, {0, 8}); OperandType type14(Type::TENSOR_FLOAT32, {2, 4}); OperandType type15(Type::TENSOR_FLOAT32, {2}); OperandType type16(Type::TENSOR_FLOAT32, {0, 2}); OperandType type2(Type::TENSOR_FLOAT32, {1, 1, 1, 4}); OperandType type3(Type::TENSOR_FLOAT32, {1, 4}); OperandType type4(Type::TENSOR_FLOAT32, {1, 2}); OperandType type5(Type::TENSOR_FLOAT32, {0}); OperandType type6(Type::TENSOR_FLOAT32, {0, 4}); OperandType type7(Type::TENSOR_INT32, {0}); OperandType type8(Type::FLOAT32, {}); OperandType type9(Type::INT32, {}); // Phase 1, operands auto scores = model->addOperand(&type1); auto deltas = model->addOperand(&type2); auto anchors = model->addOperand(&type3); auto imageInfo = model->addOperand(&type4); auto param = model->addOperand(&type8); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type9); auto param4 = model->addOperand(&type8); auto param5 = model->addOperand(&type8); auto layout = model->addOperand(&type0); auto scores1 = model->addOperand(&type5); auto roi = model->addOperand(&type6); auto batches = model->addOperand(&type7); auto featureMap = model->addOperand(&type1); auto param6 = model->addOperand(&type9); auto param7 = model->addOperand(&type9); auto param8 = model->addOperand(&type8); auto param9 = model->addOperand(&type8); auto param10 = model->addOperand(&type9); auto param11 = model->addOperand(&type9); auto scores2 = model->addOperand(&type10); auto weights = model->addOperand(&type11); auto bias = model->addOperand(&type12); auto param12 = model->addOperand(&type9); auto delta = model->addOperand(&type13); auto weights1 = model->addOperand(&type14); auto bias1 = model->addOperand(&type15); auto param13 = model->addOperand(&type9); auto scores3 = model->addOperand(&type16); auto roi1 = model->addOperand(&type13); auto param14 = model->addOperand(&type8); auto param15 = model->addOperand(&type9); auto param16 = model->addOperand(&type9); auto param17 = model->addOperand(&type8); auto param18 = model->addOperand(&type8); auto param19 = model->addOperand(&type8); auto scores4 = model->addOperand(&type5); auto roi2 = model->addOperand(&type6); auto classes = model->addOperand(&type7); auto batches1 = model->addOperand(&type7); // Phase 2, operations static float param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(float) * 1); static float param1_init[] = {1.0f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static int32_t param2_init[] = {-1}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static float param4_init[] = {0.3f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {10.0f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {2}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static float param8_init[] = {1.0f}; model->setOperandValue(param8, param8_init, sizeof(float) * 1); static float param9_init[] = {1.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static int32_t param10_init[] = {4}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 1); static int32_t param11_init[] = {4}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static float weights_init[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; model->setOperandValue(weights, weights_init, sizeof(float) * 32); static float bias_init[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; model->setOperandValue(bias, bias_init, sizeof(float) * 8); static int32_t param12_init[] = {0}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static float weights1_init[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; model->setOperandValue(weights1, weights1_init, sizeof(float) * 8); static float bias1_init[] = {1.0f, 1.0f}; model->setOperandValue(bias1, bias1_init, sizeof(float) * 2); static int32_t param13_init[] = {0}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static float param14_init[] = {0.1f}; model->setOperandValue(param14, param14_init, sizeof(float) * 1); static int32_t param15_init[] = {-1}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {0}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static float param17_init[] = {0.3f}; model->setOperandValue(param17, param17_init, sizeof(float) * 1); static float param18_init[] = {1.0f}; model->setOperandValue(param18, param18_init, sizeof(float) * 1); static float param19_init[] = {0.1f}; model->setOperandValue(param19, param19_init, sizeof(float) * 1); model->addOperation(ANEURALNETWORKS_GENERATE_PROPOSALS, {scores, deltas, anchors, imageInfo, param, param1, param2, param3, param4, param5, layout}, {scores1, roi, batches}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {featureMap, roi, batches, param6, param7, param8, param9, param10, param11, layout}, {scores2}); model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {scores2, weights, bias, param12}, {delta}); model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {scores2, weights1, bias1, param13}, {scores3}); model->addOperation(ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM, {roi, delta, batches, imageInfo}, {roi1}); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores3, roi1, batches, param14, param15, param16, param17, param18, param19}, {scores4, roi2, classes, batches1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {scores, deltas, anchors, imageInfo, featureMap}, {scores1, scores4, roi2, classes, batches1}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_zero_sized_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_float16(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type17(Type::TENSOR_FLOAT16, {1, 4}); OperandType type18(Type::TENSOR_FLOAT16, {8}); OperandType type19(Type::TENSOR_FLOAT16, {2}); OperandType type20(Type::TENSOR_FLOAT16, {0, 8}); OperandType type21(Type::TENSOR_FLOAT16, {1, 1, 1, 4}); OperandType type22(Type::TENSOR_FLOAT16, {1, 1, 1, 1}); OperandType type23(Type::TENSOR_FLOAT16, {1, 2}); OperandType type24(Type::FLOAT16, {}); OperandType type25(Type::TENSOR_FLOAT16, {0, 4}); OperandType type26(Type::TENSOR_FLOAT16, {0}); OperandType type27(Type::TENSOR_FLOAT16, {0, 2, 2, 1}); OperandType type28(Type::TENSOR_FLOAT16, {0, 2}); OperandType type29(Type::TENSOR_FLOAT16, {8, 4}); OperandType type30(Type::TENSOR_FLOAT16, {2, 4}); OperandType type7(Type::TENSOR_INT32, {0}); OperandType type9(Type::INT32, {}); // Phase 1, operands auto scores = model->addOperand(&type22); auto deltas = model->addOperand(&type21); auto anchors = model->addOperand(&type17); auto imageInfo = model->addOperand(&type23); auto param = model->addOperand(&type24); auto param1 = model->addOperand(&type24); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type9); auto param4 = model->addOperand(&type24); auto param5 = model->addOperand(&type24); auto layout = model->addOperand(&type0); auto scores1 = model->addOperand(&type26); auto roi = model->addOperand(&type25); auto batches = model->addOperand(&type7); auto featureMap = model->addOperand(&type22); auto param6 = model->addOperand(&type9); auto param7 = model->addOperand(&type9); auto param8 = model->addOperand(&type24); auto param9 = model->addOperand(&type24); auto param10 = model->addOperand(&type9); auto param11 = model->addOperand(&type9); auto scores2 = model->addOperand(&type27); auto weights = model->addOperand(&type29); auto bias = model->addOperand(&type18); auto param12 = model->addOperand(&type9); auto delta = model->addOperand(&type20); auto weights1 = model->addOperand(&type30); auto bias1 = model->addOperand(&type19); auto param13 = model->addOperand(&type9); auto scores3 = model->addOperand(&type28); auto roi1 = model->addOperand(&type20); auto param14 = model->addOperand(&type24); auto param15 = model->addOperand(&type9); auto param16 = model->addOperand(&type9); auto param17 = model->addOperand(&type24); auto param18 = model->addOperand(&type24); auto param19 = model->addOperand(&type24); auto scores4 = model->addOperand(&type26); auto roi2 = model->addOperand(&type25); auto classes = model->addOperand(&type7); auto batches1 = model->addOperand(&type7); // Phase 2, operations static _Float16 param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(_Float16) * 1); static _Float16 param1_init[] = {1.0f}; model->setOperandValue(param1, param1_init, sizeof(_Float16) * 1); static int32_t param2_init[] = {-1}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static _Float16 param4_init[] = {0.30000001192092896f}; model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1); static _Float16 param5_init[] = {10.0f}; model->setOperandValue(param5, param5_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {2}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static _Float16 param8_init[] = {1.0f}; model->setOperandValue(param8, param8_init, sizeof(_Float16) * 1); static _Float16 param9_init[] = {1.0f}; model->setOperandValue(param9, param9_init, sizeof(_Float16) * 1); static int32_t param10_init[] = {4}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 1); static int32_t param11_init[] = {4}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static _Float16 weights_init[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; model->setOperandValue(weights, weights_init, sizeof(_Float16) * 32); static _Float16 bias_init[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; model->setOperandValue(bias, bias_init, sizeof(_Float16) * 8); static int32_t param12_init[] = {0}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static _Float16 weights1_init[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; model->setOperandValue(weights1, weights1_init, sizeof(_Float16) * 8); static _Float16 bias1_init[] = {1.0f, 1.0f}; model->setOperandValue(bias1, bias1_init, sizeof(_Float16) * 2); static int32_t param13_init[] = {0}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static _Float16 param14_init[] = {0.10000000149011612f}; model->setOperandValue(param14, param14_init, sizeof(_Float16) * 1); static int32_t param15_init[] = {-1}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {0}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static _Float16 param17_init[] = {0.30000001192092896f}; model->setOperandValue(param17, param17_init, sizeof(_Float16) * 1); static _Float16 param18_init[] = {1.0f}; model->setOperandValue(param18, param18_init, sizeof(_Float16) * 1); static _Float16 param19_init[] = {0.10000000149011612f}; model->setOperandValue(param19, param19_init, sizeof(_Float16) * 1); model->addOperation(ANEURALNETWORKS_GENERATE_PROPOSALS, {scores, deltas, anchors, imageInfo, param, param1, param2, param3, param4, param5, layout}, {scores1, roi, batches}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {featureMap, roi, batches, param6, param7, param8, param9, param10, param11, layout}, {scores2}); model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {scores2, weights, bias, param12}, {delta}); model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {scores2, weights1, bias1, param13}, {scores3}); model->addOperation(ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM, {roi, delta, batches, imageInfo}, {roi1}); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores3, roi1, batches, param14, param15, param16, param17, param18, param19}, {scores4, roi2, classes, batches1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {scores, deltas, anchors, imageInfo, featureMap}, {scores1, scores4, roi2, classes, batches1}); assert(model->isValid()); } inline bool is_ignored_zero_sized_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_quant8(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type31(Type::TENSOR_QUANT16_SYMM, {1, 4}, 0.125f, 0); OperandType type32(Type::TENSOR_INT32, {8}, 0.01f, 0); OperandType type33(Type::TENSOR_INT32, {2}, 0.01f, 0); OperandType type34(Type::TENSOR_QUANT8_ASYMM, {0, 8}, 0.1f, 128); OperandType type35(Type::TENSOR_QUANT8_ASYMM, {1, 1, 1, 4}, 0.1f, 128); OperandType type36(Type::TENSOR_QUANT8_ASYMM, {1, 1, 1, 1}, 0.1f, 128); OperandType type37(Type::TENSOR_QUANT16_ASYMM, {1, 2}, 0.125f, 0); OperandType type38(Type::TENSOR_QUANT16_ASYMM, {0, 4}, 0.125f, 0); OperandType type39(Type::TENSOR_QUANT16_ASYMM, {0, 8}, 0.125f, 0); OperandType type40(Type::TENSOR_QUANT8_ASYMM, {0}, 0.1f, 128); OperandType type41(Type::TENSOR_QUANT8_ASYMM, {0, 2, 2, 1}, 0.1f, 128); OperandType type42(Type::TENSOR_QUANT8_ASYMM, {0, 2}, 0.1f, 128); OperandType type43(Type::TENSOR_QUANT8_ASYMM, {8, 4}, 0.1f, 128); OperandType type44(Type::TENSOR_QUANT8_ASYMM, {2, 4}, 0.1f, 128); OperandType type7(Type::TENSOR_INT32, {0}); OperandType type8(Type::FLOAT32, {}); OperandType type9(Type::INT32, {}); // Phase 1, operands auto scores = model->addOperand(&type36); auto deltas = model->addOperand(&type35); auto anchors = model->addOperand(&type31); auto imageInfo = model->addOperand(&type37); auto param = model->addOperand(&type8); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type9); auto param4 = model->addOperand(&type8); auto param5 = model->addOperand(&type8); auto layout = model->addOperand(&type0); auto scores1 = model->addOperand(&type40); auto roi = model->addOperand(&type38); auto batches = model->addOperand(&type7); auto featureMap = model->addOperand(&type36); auto param6 = model->addOperand(&type9); auto param7 = model->addOperand(&type9); auto param8 = model->addOperand(&type8); auto param9 = model->addOperand(&type8); auto param10 = model->addOperand(&type9); auto param11 = model->addOperand(&type9); auto scores2 = model->addOperand(&type41); auto weights = model->addOperand(&type43); auto bias = model->addOperand(&type32); auto param12 = model->addOperand(&type9); auto delta = model->addOperand(&type34); auto weights1 = model->addOperand(&type44); auto bias1 = model->addOperand(&type33); auto param13 = model->addOperand(&type9); auto scores3 = model->addOperand(&type42); auto roi1 = model->addOperand(&type39); auto param14 = model->addOperand(&type8); auto param15 = model->addOperand(&type9); auto param16 = model->addOperand(&type9); auto param17 = model->addOperand(&type8); auto param18 = model->addOperand(&type8); auto param19 = model->addOperand(&type8); auto scores4 = model->addOperand(&type40); auto roi2 = model->addOperand(&type38); auto classes = model->addOperand(&type7); auto batches1 = model->addOperand(&type7); // Phase 2, operations static float param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(float) * 1); static float param1_init[] = {1.0f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static int32_t param2_init[] = {-1}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static float param4_init[] = {0.3f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {10.0f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {2}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static float param8_init[] = {1.0f}; model->setOperandValue(param8, param8_init, sizeof(float) * 1); static float param9_init[] = {1.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static int32_t param10_init[] = {4}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 1); static int32_t param11_init[] = {4}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static uint8_t weights_init[] = {138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138}; model->setOperandValue(weights, weights_init, sizeof(uint8_t) * 32); static int32_t bias_init[] = {100, 100, 100, 100, 100, 100, 100, 100}; model->setOperandValue(bias, bias_init, sizeof(int32_t) * 8); static int32_t param12_init[] = {0}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static uint8_t weights1_init[] = {138, 138, 138, 138, 138, 138, 138, 138}; model->setOperandValue(weights1, weights1_init, sizeof(uint8_t) * 8); static int32_t bias1_init[] = {100, 100}; model->setOperandValue(bias1, bias1_init, sizeof(int32_t) * 2); static int32_t param13_init[] = {0}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static float param14_init[] = {0.1f}; model->setOperandValue(param14, param14_init, sizeof(float) * 1); static int32_t param15_init[] = {-1}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {0}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static float param17_init[] = {0.3f}; model->setOperandValue(param17, param17_init, sizeof(float) * 1); static float param18_init[] = {1.0f}; model->setOperandValue(param18, param18_init, sizeof(float) * 1); static float param19_init[] = {0.1f}; model->setOperandValue(param19, param19_init, sizeof(float) * 1); model->addOperation(ANEURALNETWORKS_GENERATE_PROPOSALS, {scores, deltas, anchors, imageInfo, param, param1, param2, param3, param4, param5, layout}, {scores1, roi, batches}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {featureMap, roi, batches, param6, param7, param8, param9, param10, param11, layout}, {scores2}); model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {scores2, weights, bias, param12}, {delta}); model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {scores2, weights1, bias1, param13}, {scores3}); model->addOperation(ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM, {roi, delta, batches, imageInfo}, {roi1}); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores3, roi1, batches, param14, param15, param16, param17, param18, param19}, {scores4, roi2, classes, batches1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {scores, deltas, anchors, imageInfo, featureMap}, {scores1, scores4, roi2, classes, batches1}); assert(model->isValid()); } inline bool is_ignored_zero_sized_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {1, 1, 1, 1}); OperandType type10(Type::TENSOR_FLOAT32, {0, 2, 2, 1}); OperandType type11(Type::TENSOR_FLOAT32, {8, 4}); OperandType type12(Type::TENSOR_FLOAT32, {8}); OperandType type13(Type::TENSOR_FLOAT32, {0, 8}); OperandType type14(Type::TENSOR_FLOAT32, {2, 4}); OperandType type15(Type::TENSOR_FLOAT32, {2}); OperandType type16(Type::TENSOR_FLOAT32, {0, 2}); OperandType type2(Type::TENSOR_FLOAT32, {1, 1, 1, 4}); OperandType type3(Type::TENSOR_FLOAT32, {1, 4}); OperandType type4(Type::TENSOR_FLOAT32, {1, 2}); OperandType type45(Type::TENSOR_FLOAT32, {0, 0}); OperandType type5(Type::TENSOR_FLOAT32, {0}); OperandType type6(Type::TENSOR_FLOAT32, {0, 4}); OperandType type7(Type::TENSOR_INT32, {0}); OperandType type8(Type::FLOAT32, {}); OperandType type9(Type::INT32, {}); // Phase 1, operands auto scores = model->addOperand(&type1); auto deltas = model->addOperand(&type2); auto anchors = model->addOperand(&type3); auto imageInfo = model->addOperand(&type4); auto param = model->addOperand(&type8); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type9); auto param4 = model->addOperand(&type8); auto param5 = model->addOperand(&type8); auto layout = model->addOperand(&type0); auto scores1 = model->addOperand(&type5); auto roi = model->addOperand(&type6); auto batches = model->addOperand(&type7); auto featureMap = model->addOperand(&type1); auto param6 = model->addOperand(&type9); auto param7 = model->addOperand(&type9); auto param8 = model->addOperand(&type8); auto param9 = model->addOperand(&type8); auto param10 = model->addOperand(&type9); auto param11 = model->addOperand(&type9); auto scores2 = model->addOperand(&type10); auto weights = model->addOperand(&type11); auto bias = model->addOperand(&type12); auto param12 = model->addOperand(&type9); auto delta = model->addOperand(&type13); auto weights1 = model->addOperand(&type14); auto bias1 = model->addOperand(&type15); auto param13 = model->addOperand(&type9); auto scores3 = model->addOperand(&type16); auto roi1 = model->addOperand(&type13); auto param14 = model->addOperand(&type8); auto param15 = model->addOperand(&type9); auto param16 = model->addOperand(&type9); auto param17 = model->addOperand(&type8); auto param18 = model->addOperand(&type8); auto param19 = model->addOperand(&type8); auto scores4 = model->addOperand(&type5); auto roi2 = model->addOperand(&type45); auto classes = model->addOperand(&type7); auto batches1 = model->addOperand(&type7); // Phase 2, operations static float param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(float) * 1); static float param1_init[] = {1.0f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static int32_t param2_init[] = {-1}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static float param4_init[] = {0.3f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {10.0f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {2}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static float param8_init[] = {1.0f}; model->setOperandValue(param8, param8_init, sizeof(float) * 1); static float param9_init[] = {1.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static int32_t param10_init[] = {4}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 1); static int32_t param11_init[] = {4}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static float weights_init[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; model->setOperandValue(weights, weights_init, sizeof(float) * 32); static float bias_init[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; model->setOperandValue(bias, bias_init, sizeof(float) * 8); static int32_t param12_init[] = {0}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static float weights1_init[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; model->setOperandValue(weights1, weights1_init, sizeof(float) * 8); static float bias1_init[] = {1.0f, 1.0f}; model->setOperandValue(bias1, bias1_init, sizeof(float) * 2); static int32_t param13_init[] = {0}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static float param14_init[] = {0.1f}; model->setOperandValue(param14, param14_init, sizeof(float) * 1); static int32_t param15_init[] = {-1}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {0}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static float param17_init[] = {0.3f}; model->setOperandValue(param17, param17_init, sizeof(float) * 1); static float param18_init[] = {1.0f}; model->setOperandValue(param18, param18_init, sizeof(float) * 1); static float param19_init[] = {0.1f}; model->setOperandValue(param19, param19_init, sizeof(float) * 1); model->addOperation(ANEURALNETWORKS_GENERATE_PROPOSALS, {scores, deltas, anchors, imageInfo, param, param1, param2, param3, param4, param5, layout}, {scores1, roi, batches}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {featureMap, roi, batches, param6, param7, param8, param9, param10, param11, layout}, {scores2}); model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {scores2, weights, bias, param12}, {delta}); model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {scores2, weights1, bias1, param13}, {scores3}); model->addOperation(ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM, {roi, delta, batches, imageInfo}, {roi1}); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores3, roi1, batches, param14, param15, param16, param17, param18, param19}, {scores4, roi2, classes, batches1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {scores, deltas, anchors, imageInfo, featureMap}, {scores1, scores4, roi2, classes, batches1}); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape_relaxed(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {1, 1, 1, 1}); OperandType type10(Type::TENSOR_FLOAT32, {0, 2, 2, 1}); OperandType type11(Type::TENSOR_FLOAT32, {8, 4}); OperandType type12(Type::TENSOR_FLOAT32, {8}); OperandType type13(Type::TENSOR_FLOAT32, {0, 8}); OperandType type14(Type::TENSOR_FLOAT32, {2, 4}); OperandType type15(Type::TENSOR_FLOAT32, {2}); OperandType type16(Type::TENSOR_FLOAT32, {0, 2}); OperandType type2(Type::TENSOR_FLOAT32, {1, 1, 1, 4}); OperandType type3(Type::TENSOR_FLOAT32, {1, 4}); OperandType type4(Type::TENSOR_FLOAT32, {1, 2}); OperandType type45(Type::TENSOR_FLOAT32, {0, 0}); OperandType type5(Type::TENSOR_FLOAT32, {0}); OperandType type6(Type::TENSOR_FLOAT32, {0, 4}); OperandType type7(Type::TENSOR_INT32, {0}); OperandType type8(Type::FLOAT32, {}); OperandType type9(Type::INT32, {}); // Phase 1, operands auto scores = model->addOperand(&type1); auto deltas = model->addOperand(&type2); auto anchors = model->addOperand(&type3); auto imageInfo = model->addOperand(&type4); auto param = model->addOperand(&type8); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type9); auto param4 = model->addOperand(&type8); auto param5 = model->addOperand(&type8); auto layout = model->addOperand(&type0); auto scores1 = model->addOperand(&type5); auto roi = model->addOperand(&type6); auto batches = model->addOperand(&type7); auto featureMap = model->addOperand(&type1); auto param6 = model->addOperand(&type9); auto param7 = model->addOperand(&type9); auto param8 = model->addOperand(&type8); auto param9 = model->addOperand(&type8); auto param10 = model->addOperand(&type9); auto param11 = model->addOperand(&type9); auto scores2 = model->addOperand(&type10); auto weights = model->addOperand(&type11); auto bias = model->addOperand(&type12); auto param12 = model->addOperand(&type9); auto delta = model->addOperand(&type13); auto weights1 = model->addOperand(&type14); auto bias1 = model->addOperand(&type15); auto param13 = model->addOperand(&type9); auto scores3 = model->addOperand(&type16); auto roi1 = model->addOperand(&type13); auto param14 = model->addOperand(&type8); auto param15 = model->addOperand(&type9); auto param16 = model->addOperand(&type9); auto param17 = model->addOperand(&type8); auto param18 = model->addOperand(&type8); auto param19 = model->addOperand(&type8); auto scores4 = model->addOperand(&type5); auto roi2 = model->addOperand(&type45); auto classes = model->addOperand(&type7); auto batches1 = model->addOperand(&type7); // Phase 2, operations static float param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(float) * 1); static float param1_init[] = {1.0f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static int32_t param2_init[] = {-1}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static float param4_init[] = {0.3f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {10.0f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {2}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static float param8_init[] = {1.0f}; model->setOperandValue(param8, param8_init, sizeof(float) * 1); static float param9_init[] = {1.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static int32_t param10_init[] = {4}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 1); static int32_t param11_init[] = {4}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static float weights_init[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; model->setOperandValue(weights, weights_init, sizeof(float) * 32); static float bias_init[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; model->setOperandValue(bias, bias_init, sizeof(float) * 8); static int32_t param12_init[] = {0}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static float weights1_init[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; model->setOperandValue(weights1, weights1_init, sizeof(float) * 8); static float bias1_init[] = {1.0f, 1.0f}; model->setOperandValue(bias1, bias1_init, sizeof(float) * 2); static int32_t param13_init[] = {0}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static float param14_init[] = {0.1f}; model->setOperandValue(param14, param14_init, sizeof(float) * 1); static int32_t param15_init[] = {-1}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {0}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static float param17_init[] = {0.3f}; model->setOperandValue(param17, param17_init, sizeof(float) * 1); static float param18_init[] = {1.0f}; model->setOperandValue(param18, param18_init, sizeof(float) * 1); static float param19_init[] = {0.1f}; model->setOperandValue(param19, param19_init, sizeof(float) * 1); model->addOperation(ANEURALNETWORKS_GENERATE_PROPOSALS, {scores, deltas, anchors, imageInfo, param, param1, param2, param3, param4, param5, layout}, {scores1, roi, batches}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {featureMap, roi, batches, param6, param7, param8, param9, param10, param11, layout}, {scores2}); model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {scores2, weights, bias, param12}, {delta}); model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {scores2, weights1, bias1, param13}, {scores3}); model->addOperation(ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM, {roi, delta, batches, imageInfo}, {roi1}); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores3, roi1, batches, param14, param15, param16, param17, param18, param19}, {scores4, roi2, classes, batches1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {scores, deltas, anchors, imageInfo, featureMap}, {scores1, scores4, roi2, classes, batches1}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape_float16(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type17(Type::TENSOR_FLOAT16, {1, 4}); OperandType type18(Type::TENSOR_FLOAT16, {8}); OperandType type19(Type::TENSOR_FLOAT16, {2}); OperandType type20(Type::TENSOR_FLOAT16, {0, 8}); OperandType type21(Type::TENSOR_FLOAT16, {1, 1, 1, 4}); OperandType type22(Type::TENSOR_FLOAT16, {1, 1, 1, 1}); OperandType type23(Type::TENSOR_FLOAT16, {1, 2}); OperandType type24(Type::FLOAT16, {}); OperandType type25(Type::TENSOR_FLOAT16, {0, 4}); OperandType type27(Type::TENSOR_FLOAT16, {0, 2, 2, 1}); OperandType type28(Type::TENSOR_FLOAT16, {0, 2}); OperandType type29(Type::TENSOR_FLOAT16, {8, 4}); OperandType type30(Type::TENSOR_FLOAT16, {2, 4}); OperandType type46(Type::TENSOR_FLOAT16, {0}); OperandType type47(Type::TENSOR_FLOAT16, {0, 0}); OperandType type7(Type::TENSOR_INT32, {0}); OperandType type9(Type::INT32, {}); // Phase 1, operands auto scores = model->addOperand(&type22); auto deltas = model->addOperand(&type21); auto anchors = model->addOperand(&type17); auto imageInfo = model->addOperand(&type23); auto param = model->addOperand(&type24); auto param1 = model->addOperand(&type24); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type9); auto param4 = model->addOperand(&type24); auto param5 = model->addOperand(&type24); auto layout = model->addOperand(&type0); auto scores1 = model->addOperand(&type46); auto roi = model->addOperand(&type25); auto batches = model->addOperand(&type7); auto featureMap = model->addOperand(&type22); auto param6 = model->addOperand(&type9); auto param7 = model->addOperand(&type9); auto param8 = model->addOperand(&type24); auto param9 = model->addOperand(&type24); auto param10 = model->addOperand(&type9); auto param11 = model->addOperand(&type9); auto scores2 = model->addOperand(&type27); auto weights = model->addOperand(&type29); auto bias = model->addOperand(&type18); auto param12 = model->addOperand(&type9); auto delta = model->addOperand(&type20); auto weights1 = model->addOperand(&type30); auto bias1 = model->addOperand(&type19); auto param13 = model->addOperand(&type9); auto scores3 = model->addOperand(&type28); auto roi1 = model->addOperand(&type20); auto param14 = model->addOperand(&type24); auto param15 = model->addOperand(&type9); auto param16 = model->addOperand(&type9); auto param17 = model->addOperand(&type24); auto param18 = model->addOperand(&type24); auto param19 = model->addOperand(&type24); auto scores4 = model->addOperand(&type46); auto roi2 = model->addOperand(&type47); auto classes = model->addOperand(&type7); auto batches1 = model->addOperand(&type7); // Phase 2, operations static _Float16 param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(_Float16) * 1); static _Float16 param1_init[] = {1.0f}; model->setOperandValue(param1, param1_init, sizeof(_Float16) * 1); static int32_t param2_init[] = {-1}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static _Float16 param4_init[] = {0.30000001192092896f}; model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1); static _Float16 param5_init[] = {10.0f}; model->setOperandValue(param5, param5_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {2}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static _Float16 param8_init[] = {1.0f}; model->setOperandValue(param8, param8_init, sizeof(_Float16) * 1); static _Float16 param9_init[] = {1.0f}; model->setOperandValue(param9, param9_init, sizeof(_Float16) * 1); static int32_t param10_init[] = {4}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 1); static int32_t param11_init[] = {4}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static _Float16 weights_init[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; model->setOperandValue(weights, weights_init, sizeof(_Float16) * 32); static _Float16 bias_init[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; model->setOperandValue(bias, bias_init, sizeof(_Float16) * 8); static int32_t param12_init[] = {0}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static _Float16 weights1_init[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; model->setOperandValue(weights1, weights1_init, sizeof(_Float16) * 8); static _Float16 bias1_init[] = {1.0f, 1.0f}; model->setOperandValue(bias1, bias1_init, sizeof(_Float16) * 2); static int32_t param13_init[] = {0}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static _Float16 param14_init[] = {0.10000000149011612f}; model->setOperandValue(param14, param14_init, sizeof(_Float16) * 1); static int32_t param15_init[] = {-1}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {0}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static _Float16 param17_init[] = {0.30000001192092896f}; model->setOperandValue(param17, param17_init, sizeof(_Float16) * 1); static _Float16 param18_init[] = {1.0f}; model->setOperandValue(param18, param18_init, sizeof(_Float16) * 1); static _Float16 param19_init[] = {0.10000000149011612f}; model->setOperandValue(param19, param19_init, sizeof(_Float16) * 1); model->addOperation(ANEURALNETWORKS_GENERATE_PROPOSALS, {scores, deltas, anchors, imageInfo, param, param1, param2, param3, param4, param5, layout}, {scores1, roi, batches}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {featureMap, roi, batches, param6, param7, param8, param9, param10, param11, layout}, {scores2}); model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {scores2, weights, bias, param12}, {delta}); model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {scores2, weights1, bias1, param13}, {scores3}); model->addOperation(ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM, {roi, delta, batches, imageInfo}, {roi1}); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores3, roi1, batches, param14, param15, param16, param17, param18, param19}, {scores4, roi2, classes, batches1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {scores, deltas, anchors, imageInfo, featureMap}, {scores1, scores4, roi2, classes, batches1}); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape_quant8(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type31(Type::TENSOR_QUANT16_SYMM, {1, 4}, 0.125f, 0); OperandType type32(Type::TENSOR_INT32, {8}, 0.01f, 0); OperandType type33(Type::TENSOR_INT32, {2}, 0.01f, 0); OperandType type34(Type::TENSOR_QUANT8_ASYMM, {0, 8}, 0.1f, 128); OperandType type35(Type::TENSOR_QUANT8_ASYMM, {1, 1, 1, 4}, 0.1f, 128); OperandType type36(Type::TENSOR_QUANT8_ASYMM, {1, 1, 1, 1}, 0.1f, 128); OperandType type37(Type::TENSOR_QUANT16_ASYMM, {1, 2}, 0.125f, 0); OperandType type38(Type::TENSOR_QUANT16_ASYMM, {0, 4}, 0.125f, 0); OperandType type39(Type::TENSOR_QUANT16_ASYMM, {0, 8}, 0.125f, 0); OperandType type40(Type::TENSOR_QUANT8_ASYMM, {0}, 0.1f, 128); OperandType type41(Type::TENSOR_QUANT8_ASYMM, {0, 2, 2, 1}, 0.1f, 128); OperandType type42(Type::TENSOR_QUANT8_ASYMM, {0, 2}, 0.1f, 128); OperandType type43(Type::TENSOR_QUANT8_ASYMM, {8, 4}, 0.1f, 128); OperandType type44(Type::TENSOR_QUANT8_ASYMM, {2, 4}, 0.1f, 128); OperandType type48(Type::TENSOR_QUANT16_ASYMM, {0, 0}, 0.125f, 0); OperandType type7(Type::TENSOR_INT32, {0}); OperandType type8(Type::FLOAT32, {}); OperandType type9(Type::INT32, {}); // Phase 1, operands auto scores = model->addOperand(&type36); auto deltas = model->addOperand(&type35); auto anchors = model->addOperand(&type31); auto imageInfo = model->addOperand(&type37); auto param = model->addOperand(&type8); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type9); auto param4 = model->addOperand(&type8); auto param5 = model->addOperand(&type8); auto layout = model->addOperand(&type0); auto scores1 = model->addOperand(&type40); auto roi = model->addOperand(&type38); auto batches = model->addOperand(&type7); auto featureMap = model->addOperand(&type36); auto param6 = model->addOperand(&type9); auto param7 = model->addOperand(&type9); auto param8 = model->addOperand(&type8); auto param9 = model->addOperand(&type8); auto param10 = model->addOperand(&type9); auto param11 = model->addOperand(&type9); auto scores2 = model->addOperand(&type41); auto weights = model->addOperand(&type43); auto bias = model->addOperand(&type32); auto param12 = model->addOperand(&type9); auto delta = model->addOperand(&type34); auto weights1 = model->addOperand(&type44); auto bias1 = model->addOperand(&type33); auto param13 = model->addOperand(&type9); auto scores3 = model->addOperand(&type42); auto roi1 = model->addOperand(&type39); auto param14 = model->addOperand(&type8); auto param15 = model->addOperand(&type9); auto param16 = model->addOperand(&type9); auto param17 = model->addOperand(&type8); auto param18 = model->addOperand(&type8); auto param19 = model->addOperand(&type8); auto scores4 = model->addOperand(&type40); auto roi2 = model->addOperand(&type48); auto classes = model->addOperand(&type7); auto batches1 = model->addOperand(&type7); // Phase 2, operations static float param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(float) * 1); static float param1_init[] = {1.0f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static int32_t param2_init[] = {-1}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static float param4_init[] = {0.3f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {10.0f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {2}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static float param8_init[] = {1.0f}; model->setOperandValue(param8, param8_init, sizeof(float) * 1); static float param9_init[] = {1.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static int32_t param10_init[] = {4}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 1); static int32_t param11_init[] = {4}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static uint8_t weights_init[] = {138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138}; model->setOperandValue(weights, weights_init, sizeof(uint8_t) * 32); static int32_t bias_init[] = {100, 100, 100, 100, 100, 100, 100, 100}; model->setOperandValue(bias, bias_init, sizeof(int32_t) * 8); static int32_t param12_init[] = {0}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static uint8_t weights1_init[] = {138, 138, 138, 138, 138, 138, 138, 138}; model->setOperandValue(weights1, weights1_init, sizeof(uint8_t) * 8); static int32_t bias1_init[] = {100, 100}; model->setOperandValue(bias1, bias1_init, sizeof(int32_t) * 2); static int32_t param13_init[] = {0}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static float param14_init[] = {0.1f}; model->setOperandValue(param14, param14_init, sizeof(float) * 1); static int32_t param15_init[] = {-1}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {0}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static float param17_init[] = {0.3f}; model->setOperandValue(param17, param17_init, sizeof(float) * 1); static float param18_init[] = {1.0f}; model->setOperandValue(param18, param18_init, sizeof(float) * 1); static float param19_init[] = {0.1f}; model->setOperandValue(param19, param19_init, sizeof(float) * 1); model->addOperation(ANEURALNETWORKS_GENERATE_PROPOSALS, {scores, deltas, anchors, imageInfo, param, param1, param2, param3, param4, param5, layout}, {scores1, roi, batches}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {featureMap, roi, batches, param6, param7, param8, param9, param10, param11, layout}, {scores2}); model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {scores2, weights, bias, param12}, {delta}); model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {scores2, weights1, bias1, param13}, {scores3}); model->addOperation(ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM, {roi, delta, batches, imageInfo}, {roi1}); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores3, roi1, batches, param14, param15, param16, param17, param18, param19}, {scores4, roi2, classes, batches1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {scores, deltas, anchors, imageInfo, featureMap}, {scores1, scores4, roi2, classes, batches1}); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); }