// clang-format off // Generated file (from: concat_mixed_quant.mod.py). Do not edit void CreateModel_quant8(Model *model) { OperandType type2(Type::INT32, {}); OperandType type3(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.084f, 127); OperandType type4(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.05f, 0); OperandType type5(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.089f, 123); OperandType type6(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.029f, 0); OperandType type7(Type::TENSOR_QUANT8_ASYMM, {2, 1, 8}, 0.1f, 127); // Phase 1, operands auto input0 = model->addOperand(&type3); auto input1 = model->addOperand(&type4); auto input2 = model->addOperand(&type5); auto input3 = model->addOperand(&type6); auto param = model->addOperand(&type2); auto output0 = model->addOperand(&type7); // Phase 2, operations static int32_t param_init[] = {2}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_CONCATENATION, {input0, input1, input2, input3, param}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1, input2, input3}, {output0}); assert(model->isValid()); } inline bool is_ignored_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_quant8(Model *model) { OperandType type2(Type::INT32, {}); OperandType type3(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.084f, 127); OperandType type4(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.05f, 0); OperandType type5(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.089f, 123); OperandType type6(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.029f, 0); OperandType type8(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0}, 0.1f, 127); // Phase 1, operands auto input0 = model->addOperand(&type3); auto input1 = model->addOperand(&type4); auto input2 = model->addOperand(&type5); auto input3 = model->addOperand(&type6); auto param = model->addOperand(&type2); auto output0 = model->addOperand(&type8); // Phase 2, operations static int32_t param_init[] = {2}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_CONCATENATION, {input0, input1, input2, input3, param}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1, input2, input3}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_quant8_2(Model *model) { OperandType type2(Type::INT32, {}); OperandType type3(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.084f, 127); OperandType type4(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.05f, 0); OperandType type5(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.089f, 123); OperandType type6(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.029f, 0); OperandType type9(Type::TENSOR_QUANT8_ASYMM, {2, 1, 8}, 0.0078125f, 127); // Phase 1, operands auto input0 = model->addOperand(&type3); auto input1 = model->addOperand(&type4); auto input2 = model->addOperand(&type5); auto input3 = model->addOperand(&type6); auto param = model->addOperand(&type2); auto output0 = model->addOperand(&type9); // Phase 2, operations static int32_t param_init[] = {2}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_CONCATENATION, {input0, input1, input2, input3, param}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1, input2, input3}, {output0}); assert(model->isValid()); } inline bool is_ignored_quant8_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_quant8_2(Model *model) { OperandType type10(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0}, 0.0078125f, 127); OperandType type2(Type::INT32, {}); OperandType type3(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.084f, 127); OperandType type4(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.05f, 0); OperandType type5(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.089f, 123); OperandType type6(Type::TENSOR_QUANT8_ASYMM, {2, 1, 2}, 0.029f, 0); // Phase 1, operands auto input0 = model->addOperand(&type3); auto input1 = model->addOperand(&type4); auto input2 = model->addOperand(&type5); auto input3 = model->addOperand(&type6); auto param = model->addOperand(&type2); auto output0 = model->addOperand(&type10); // Phase 2, operations static int32_t param_init[] = {2}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_CONCATENATION, {input0, input1, input2, input3, param}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, input1, input2, input3}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_quant8_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); }