// clang-format off // Generated file (from: gather.mod.py). Do not edit void CreateModel(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {2, 2}); OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto param = model->addOperand(&type1); auto param1 = model->addOperand(&type2); auto output0 = model->addOperand(&type0); // Phase 2, operations static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static int32_t param1_init[] = {1, 0}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input0, param, param1}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); assert(model->isValid()); } inline bool is_ignored(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_relaxed(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {2, 2}); OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto param = model->addOperand(&type1); auto param1 = model->addOperand(&type2); auto output0 = model->addOperand(&type0); // Phase 2, operations static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static int32_t param1_init[] = {1, 0}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input0, param, param1}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_quant8(Model *model) { OperandType type1(Type::INT32, {}); OperandType type13(Type::TENSOR_QUANT8_ASYMM, {2, 2}, 0.5f, 127); OperandType type2(Type::TENSOR_INT32, {2}); // Phase 1, operands auto input0 = model->addOperand(&type13); auto param = model->addOperand(&type1); auto param1 = model->addOperand(&type2); auto output0 = model->addOperand(&type13); // Phase 2, operations static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static int32_t param1_init[] = {1, 0}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input0, param, param1}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); assert(model->isValid()); } inline bool is_ignored_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_int32(Model *model) { OperandType type1(Type::INT32, {}); OperandType type14(Type::TENSOR_INT32, {2, 2}); OperandType type2(Type::TENSOR_INT32, {2}); // Phase 1, operands auto input0 = model->addOperand(&type14); auto param = model->addOperand(&type1); auto param1 = model->addOperand(&type2); auto output0 = model->addOperand(&type14); // Phase 2, operations static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static int32_t param1_init[] = {1, 0}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input0, param, param1}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); assert(model->isValid()); } inline bool is_ignored_int32(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16(Model *model) { OperandType type1(Type::INT32, {}); OperandType type15(Type::TENSOR_FLOAT16, {2, 2}); OperandType type2(Type::TENSOR_INT32, {2}); // Phase 1, operands auto input0 = model->addOperand(&type15); auto param = model->addOperand(&type1); auto param1 = model->addOperand(&type2); auto output0 = model->addOperand(&type15); // Phase 2, operations static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static int32_t param1_init[] = {1, 0}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input0, param, param1}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); assert(model->isValid()); } inline bool is_ignored_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {2, 2}); OperandType type1(Type::INT32, {}); OperandType type16(Type::TENSOR_FLOAT32, {0, 0}); OperandType type2(Type::TENSOR_INT32, {2}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto param = model->addOperand(&type1); auto param1 = model->addOperand(&type2); auto output0 = model->addOperand(&type16); // Phase 2, operations static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static int32_t param1_init[] = {1, 0}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input0, param, param1}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_relaxed(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {2, 2}); OperandType type1(Type::INT32, {}); OperandType type16(Type::TENSOR_FLOAT32, {0, 0}); OperandType type2(Type::TENSOR_INT32, {2}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto param = model->addOperand(&type1); auto param1 = model->addOperand(&type2); auto output0 = model->addOperand(&type16); // Phase 2, operations static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static int32_t param1_init[] = {1, 0}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input0, param, param1}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_quant8(Model *model) { OperandType type1(Type::INT32, {}); OperandType type13(Type::TENSOR_QUANT8_ASYMM, {2, 2}, 0.5f, 127); OperandType type17(Type::TENSOR_QUANT8_ASYMM, {0, 0}, 0.5f, 127); OperandType type2(Type::TENSOR_INT32, {2}); // Phase 1, operands auto input0 = model->addOperand(&type13); auto param = model->addOperand(&type1); auto param1 = model->addOperand(&type2); auto output0 = model->addOperand(&type17); // Phase 2, operations static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static int32_t param1_init[] = {1, 0}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input0, param, param1}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_int32(Model *model) { OperandType type1(Type::INT32, {}); OperandType type14(Type::TENSOR_INT32, {2, 2}); OperandType type18(Type::TENSOR_INT32, {0, 0}); OperandType type2(Type::TENSOR_INT32, {2}); // Phase 1, operands auto input0 = model->addOperand(&type14); auto param = model->addOperand(&type1); auto param1 = model->addOperand(&type2); auto output0 = model->addOperand(&type18); // Phase 2, operations static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static int32_t param1_init[] = {1, 0}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input0, param, param1}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_int32(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16(Model *model) { OperandType type1(Type::INT32, {}); OperandType type15(Type::TENSOR_FLOAT16, {2, 2}); OperandType type19(Type::TENSOR_FLOAT16, {0, 0}); OperandType type2(Type::TENSOR_INT32, {2}); // Phase 1, operands auto input0 = model->addOperand(&type15); auto param = model->addOperand(&type1); auto param1 = model->addOperand(&type2); auto output0 = model->addOperand(&type19); // Phase 2, operations static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static int32_t param1_init[] = {1, 0}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input0, param, param1}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_2(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {2, 2}); OperandType type1(Type::INT32, {}); OperandType type3(Type::TENSOR_FLOAT32, {1, 2}); OperandType type4(Type::TENSOR_INT32, {1}); // Phase 1, operands auto input01 = model->addOperand(&type0); auto param2 = model->addOperand(&type1); auto param3 = model->addOperand(&type4); auto output01 = model->addOperand(&type3); // Phase 2, operations static int32_t param2_init[] = {0}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input01, param2, param3}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01}, {output01}); assert(model->isValid()); } inline bool is_ignored_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_relaxed_2(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {2, 2}); OperandType type1(Type::INT32, {}); OperandType type3(Type::TENSOR_FLOAT32, {1, 2}); OperandType type4(Type::TENSOR_INT32, {1}); // Phase 1, operands auto input01 = model->addOperand(&type0); auto param2 = model->addOperand(&type1); auto param3 = model->addOperand(&type4); auto output01 = model->addOperand(&type3); // Phase 2, operations static int32_t param2_init[] = {0}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input01, param2, param3}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01}, {output01}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_relaxed_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_quant8_2(Model *model) { OperandType type1(Type::INT32, {}); OperandType type13(Type::TENSOR_QUANT8_ASYMM, {2, 2}, 0.5f, 127); OperandType type20(Type::TENSOR_QUANT8_ASYMM, {1, 2}, 0.5f, 127); OperandType type4(Type::TENSOR_INT32, {1}); // Phase 1, operands auto input01 = model->addOperand(&type13); auto param2 = model->addOperand(&type1); auto param3 = model->addOperand(&type4); auto output01 = model->addOperand(&type20); // Phase 2, operations static int32_t param2_init[] = {0}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input01, param2, param3}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01}, {output01}); assert(model->isValid()); } inline bool is_ignored_quant8_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_int32_2(Model *model) { OperandType type1(Type::INT32, {}); OperandType type14(Type::TENSOR_INT32, {2, 2}); OperandType type21(Type::TENSOR_INT32, {1, 2}); OperandType type4(Type::TENSOR_INT32, {1}); // Phase 1, operands auto input01 = model->addOperand(&type14); auto param2 = model->addOperand(&type1); auto param3 = model->addOperand(&type4); auto output01 = model->addOperand(&type21); // Phase 2, operations static int32_t param2_init[] = {0}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input01, param2, param3}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01}, {output01}); assert(model->isValid()); } inline bool is_ignored_int32_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16_2(Model *model) { OperandType type1(Type::INT32, {}); OperandType type15(Type::TENSOR_FLOAT16, {2, 2}); OperandType type22(Type::TENSOR_FLOAT16, {1, 2}); OperandType type4(Type::TENSOR_INT32, {1}); // Phase 1, operands auto input01 = model->addOperand(&type15); auto param2 = model->addOperand(&type1); auto param3 = model->addOperand(&type4); auto output01 = model->addOperand(&type22); // Phase 2, operations static int32_t param2_init[] = {0}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input01, param2, param3}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01}, {output01}); assert(model->isValid()); } inline bool is_ignored_float16_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_2(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {2, 2}); OperandType type1(Type::INT32, {}); OperandType type16(Type::TENSOR_FLOAT32, {0, 0}); OperandType type4(Type::TENSOR_INT32, {1}); // Phase 1, operands auto input01 = model->addOperand(&type0); auto param2 = model->addOperand(&type1); auto param3 = model->addOperand(&type4); auto output01 = model->addOperand(&type16); // Phase 2, operations static int32_t param2_init[] = {0}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input01, param2, param3}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01}, {output01}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_relaxed_2(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {2, 2}); OperandType type1(Type::INT32, {}); OperandType type16(Type::TENSOR_FLOAT32, {0, 0}); OperandType type4(Type::TENSOR_INT32, {1}); // Phase 1, operands auto input01 = model->addOperand(&type0); auto param2 = model->addOperand(&type1); auto param3 = model->addOperand(&type4); auto output01 = model->addOperand(&type16); // Phase 2, operations static int32_t param2_init[] = {0}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input01, param2, param3}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01}, {output01}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_relaxed_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_quant8_2(Model *model) { OperandType type1(Type::INT32, {}); OperandType type13(Type::TENSOR_QUANT8_ASYMM, {2, 2}, 0.5f, 127); OperandType type17(Type::TENSOR_QUANT8_ASYMM, {0, 0}, 0.5f, 127); OperandType type4(Type::TENSOR_INT32, {1}); // Phase 1, operands auto input01 = model->addOperand(&type13); auto param2 = model->addOperand(&type1); auto param3 = model->addOperand(&type4); auto output01 = model->addOperand(&type17); // Phase 2, operations static int32_t param2_init[] = {0}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input01, param2, param3}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01}, {output01}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_quant8_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_int32_2(Model *model) { OperandType type1(Type::INT32, {}); OperandType type14(Type::TENSOR_INT32, {2, 2}); OperandType type18(Type::TENSOR_INT32, {0, 0}); OperandType type4(Type::TENSOR_INT32, {1}); // Phase 1, operands auto input01 = model->addOperand(&type14); auto param2 = model->addOperand(&type1); auto param3 = model->addOperand(&type4); auto output01 = model->addOperand(&type18); // Phase 2, operations static int32_t param2_init[] = {0}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input01, param2, param3}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01}, {output01}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_int32_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16_2(Model *model) { OperandType type1(Type::INT32, {}); OperandType type15(Type::TENSOR_FLOAT16, {2, 2}); OperandType type19(Type::TENSOR_FLOAT16, {0, 0}); OperandType type4(Type::TENSOR_INT32, {1}); // Phase 1, operands auto input01 = model->addOperand(&type15); auto param2 = model->addOperand(&type1); auto param3 = model->addOperand(&type4); auto output01 = model->addOperand(&type19); // Phase 2, operations static int32_t param2_init[] = {0}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input01, param2, param3}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01}, {output01}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_3(Model *model) { OperandType type1(Type::INT32, {}); OperandType type4(Type::TENSOR_INT32, {1}); OperandType type5(Type::TENSOR_FLOAT32, {3}); OperandType type6(Type::TENSOR_FLOAT32, {1}); // Phase 1, operands auto input02 = model->addOperand(&type5); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type4); auto output02 = model->addOperand(&type6); // Phase 2, operations static int32_t param4_init[] = {0}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1); static int32_t param5_init[] = {1}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input02, param4, param5}, {output02}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input02}, {output02}); assert(model->isValid()); } inline bool is_ignored_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_relaxed_3(Model *model) { OperandType type1(Type::INT32, {}); OperandType type4(Type::TENSOR_INT32, {1}); OperandType type5(Type::TENSOR_FLOAT32, {3}); OperandType type6(Type::TENSOR_FLOAT32, {1}); // Phase 1, operands auto input02 = model->addOperand(&type5); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type4); auto output02 = model->addOperand(&type6); // Phase 2, operations static int32_t param4_init[] = {0}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1); static int32_t param5_init[] = {1}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input02, param4, param5}, {output02}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input02}, {output02}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_relaxed_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_quant8_3(Model *model) { OperandType type1(Type::INT32, {}); OperandType type23(Type::TENSOR_QUANT8_ASYMM, {3}, 0.5f, 127); OperandType type24(Type::TENSOR_QUANT8_ASYMM, {1}, 0.5f, 127); OperandType type4(Type::TENSOR_INT32, {1}); // Phase 1, operands auto input02 = model->addOperand(&type23); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type4); auto output02 = model->addOperand(&type24); // Phase 2, operations static int32_t param4_init[] = {0}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1); static int32_t param5_init[] = {1}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input02, param4, param5}, {output02}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input02}, {output02}); assert(model->isValid()); } inline bool is_ignored_quant8_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_int32_3(Model *model) { OperandType type1(Type::INT32, {}); OperandType type25(Type::TENSOR_INT32, {3}); OperandType type4(Type::TENSOR_INT32, {1}); // Phase 1, operands auto input02 = model->addOperand(&type25); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type4); auto output02 = model->addOperand(&type4); // Phase 2, operations static int32_t param4_init[] = {0}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1); static int32_t param5_init[] = {1}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input02, param4, param5}, {output02}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input02}, {output02}); assert(model->isValid()); } inline bool is_ignored_int32_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16_3(Model *model) { OperandType type1(Type::INT32, {}); OperandType type26(Type::TENSOR_FLOAT16, {3}); OperandType type27(Type::TENSOR_FLOAT16, {1}); OperandType type4(Type::TENSOR_INT32, {1}); // Phase 1, operands auto input02 = model->addOperand(&type26); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type4); auto output02 = model->addOperand(&type27); // Phase 2, operations static int32_t param4_init[] = {0}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1); static int32_t param5_init[] = {1}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input02, param4, param5}, {output02}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input02}, {output02}); assert(model->isValid()); } inline bool is_ignored_float16_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_3(Model *model) { OperandType type1(Type::INT32, {}); OperandType type28(Type::TENSOR_FLOAT32, {0}); OperandType type4(Type::TENSOR_INT32, {1}); OperandType type5(Type::TENSOR_FLOAT32, {3}); // Phase 1, operands auto input02 = model->addOperand(&type5); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type4); auto output02 = model->addOperand(&type28); // Phase 2, operations static int32_t param4_init[] = {0}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1); static int32_t param5_init[] = {1}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input02, param4, param5}, {output02}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input02}, {output02}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_relaxed_3(Model *model) { OperandType type1(Type::INT32, {}); OperandType type28(Type::TENSOR_FLOAT32, {0}); OperandType type4(Type::TENSOR_INT32, {1}); OperandType type5(Type::TENSOR_FLOAT32, {3}); // Phase 1, operands auto input02 = model->addOperand(&type5); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type4); auto output02 = model->addOperand(&type28); // Phase 2, operations static int32_t param4_init[] = {0}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1); static int32_t param5_init[] = {1}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input02, param4, param5}, {output02}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input02}, {output02}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_relaxed_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_quant8_3(Model *model) { OperandType type1(Type::INT32, {}); OperandType type23(Type::TENSOR_QUANT8_ASYMM, {3}, 0.5f, 127); OperandType type29(Type::TENSOR_QUANT8_ASYMM, {0}, 0.5f, 127); OperandType type4(Type::TENSOR_INT32, {1}); // Phase 1, operands auto input02 = model->addOperand(&type23); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type4); auto output02 = model->addOperand(&type29); // Phase 2, operations static int32_t param4_init[] = {0}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1); static int32_t param5_init[] = {1}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input02, param4, param5}, {output02}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input02}, {output02}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_quant8_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_int32_3(Model *model) { OperandType type1(Type::INT32, {}); OperandType type25(Type::TENSOR_INT32, {3}); OperandType type30(Type::TENSOR_INT32, {0}); OperandType type4(Type::TENSOR_INT32, {1}); // Phase 1, operands auto input02 = model->addOperand(&type25); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type4); auto output02 = model->addOperand(&type30); // Phase 2, operations static int32_t param4_init[] = {0}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1); static int32_t param5_init[] = {1}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input02, param4, param5}, {output02}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input02}, {output02}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_int32_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16_3(Model *model) { OperandType type1(Type::INT32, {}); OperandType type26(Type::TENSOR_FLOAT16, {3}); OperandType type31(Type::TENSOR_FLOAT16, {0}); OperandType type4(Type::TENSOR_INT32, {1}); // Phase 1, operands auto input02 = model->addOperand(&type26); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type4); auto output02 = model->addOperand(&type31); // Phase 2, operations static int32_t param4_init[] = {0}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1); static int32_t param5_init[] = {1}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input02, param4, param5}, {output02}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input02}, {output02}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_4(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type5(Type::TENSOR_FLOAT32, {3}); OperandType type7(Type::TENSOR_FLOAT32, {2}); // Phase 1, operands auto input03 = model->addOperand(&type5); auto param6 = model->addOperand(&type1); auto param7 = model->addOperand(&type2); auto output03 = model->addOperand(&type7); // Phase 2, operations static int32_t param6_init[] = {0}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {1, 0}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input03, param6, param7}, {output03}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input03}, {output03}); assert(model->isValid()); } inline bool is_ignored_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_relaxed_4(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type5(Type::TENSOR_FLOAT32, {3}); OperandType type7(Type::TENSOR_FLOAT32, {2}); // Phase 1, operands auto input03 = model->addOperand(&type5); auto param6 = model->addOperand(&type1); auto param7 = model->addOperand(&type2); auto output03 = model->addOperand(&type7); // Phase 2, operations static int32_t param6_init[] = {0}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {1, 0}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input03, param6, param7}, {output03}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input03}, {output03}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_relaxed_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_quant8_4(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type23(Type::TENSOR_QUANT8_ASYMM, {3}, 0.5f, 127); OperandType type32(Type::TENSOR_QUANT8_ASYMM, {2}, 0.5f, 127); // Phase 1, operands auto input03 = model->addOperand(&type23); auto param6 = model->addOperand(&type1); auto param7 = model->addOperand(&type2); auto output03 = model->addOperand(&type32); // Phase 2, operations static int32_t param6_init[] = {0}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {1, 0}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input03, param6, param7}, {output03}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input03}, {output03}); assert(model->isValid()); } inline bool is_ignored_quant8_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_int32_4(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type25(Type::TENSOR_INT32, {3}); // Phase 1, operands auto input03 = model->addOperand(&type25); auto param6 = model->addOperand(&type1); auto param7 = model->addOperand(&type2); auto output03 = model->addOperand(&type2); // Phase 2, operations static int32_t param6_init[] = {0}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {1, 0}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input03, param6, param7}, {output03}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input03}, {output03}); assert(model->isValid()); } inline bool is_ignored_int32_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16_4(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type26(Type::TENSOR_FLOAT16, {3}); OperandType type33(Type::TENSOR_FLOAT16, {2}); // Phase 1, operands auto input03 = model->addOperand(&type26); auto param6 = model->addOperand(&type1); auto param7 = model->addOperand(&type2); auto output03 = model->addOperand(&type33); // Phase 2, operations static int32_t param6_init[] = {0}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {1, 0}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input03, param6, param7}, {output03}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input03}, {output03}); assert(model->isValid()); } inline bool is_ignored_float16_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_4(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type28(Type::TENSOR_FLOAT32, {0}); OperandType type5(Type::TENSOR_FLOAT32, {3}); // Phase 1, operands auto input03 = model->addOperand(&type5); auto param6 = model->addOperand(&type1); auto param7 = model->addOperand(&type2); auto output03 = model->addOperand(&type28); // Phase 2, operations static int32_t param6_init[] = {0}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {1, 0}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input03, param6, param7}, {output03}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input03}, {output03}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_relaxed_4(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type28(Type::TENSOR_FLOAT32, {0}); OperandType type5(Type::TENSOR_FLOAT32, {3}); // Phase 1, operands auto input03 = model->addOperand(&type5); auto param6 = model->addOperand(&type1); auto param7 = model->addOperand(&type2); auto output03 = model->addOperand(&type28); // Phase 2, operations static int32_t param6_init[] = {0}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {1, 0}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input03, param6, param7}, {output03}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input03}, {output03}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_relaxed_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_quant8_4(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type23(Type::TENSOR_QUANT8_ASYMM, {3}, 0.5f, 127); OperandType type29(Type::TENSOR_QUANT8_ASYMM, {0}, 0.5f, 127); // Phase 1, operands auto input03 = model->addOperand(&type23); auto param6 = model->addOperand(&type1); auto param7 = model->addOperand(&type2); auto output03 = model->addOperand(&type29); // Phase 2, operations static int32_t param6_init[] = {0}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {1, 0}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input03, param6, param7}, {output03}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input03}, {output03}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_quant8_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_int32_4(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type25(Type::TENSOR_INT32, {3}); OperandType type30(Type::TENSOR_INT32, {0}); // Phase 1, operands auto input03 = model->addOperand(&type25); auto param6 = model->addOperand(&type1); auto param7 = model->addOperand(&type2); auto output03 = model->addOperand(&type30); // Phase 2, operations static int32_t param6_init[] = {0}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {1, 0}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input03, param6, param7}, {output03}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input03}, {output03}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_int32_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16_4(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type26(Type::TENSOR_FLOAT16, {3}); OperandType type31(Type::TENSOR_FLOAT16, {0}); // Phase 1, operands auto input03 = model->addOperand(&type26); auto param6 = model->addOperand(&type1); auto param7 = model->addOperand(&type2); auto output03 = model->addOperand(&type31); // Phase 2, operations static int32_t param6_init[] = {0}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {1, 0}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input03, param6, param7}, {output03}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input03}, {output03}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_5(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type8(Type::TENSOR_FLOAT32, {1, 2, 2}); OperandType type9(Type::TENSOR_FLOAT32, {2, 2, 2}); // Phase 1, operands auto input04 = model->addOperand(&type8); auto param8 = model->addOperand(&type1); auto param9 = model->addOperand(&type2); auto output04 = model->addOperand(&type9); // Phase 2, operations static int32_t param8_init[] = {0}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {0, 0}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input04, param8, param9}, {output04}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input04}, {output04}); assert(model->isValid()); } inline bool is_ignored_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_relaxed_5(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type8(Type::TENSOR_FLOAT32, {1, 2, 2}); OperandType type9(Type::TENSOR_FLOAT32, {2, 2, 2}); // Phase 1, operands auto input04 = model->addOperand(&type8); auto param8 = model->addOperand(&type1); auto param9 = model->addOperand(&type2); auto output04 = model->addOperand(&type9); // Phase 2, operations static int32_t param8_init[] = {0}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {0, 0}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input04, param8, param9}, {output04}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input04}, {output04}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_relaxed_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_quant8_5(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type34(Type::TENSOR_QUANT8_ASYMM, {1, 2, 2}, 0.5f, 127); OperandType type35(Type::TENSOR_QUANT8_ASYMM, {2, 2, 2}, 0.5f, 127); // Phase 1, operands auto input04 = model->addOperand(&type34); auto param8 = model->addOperand(&type1); auto param9 = model->addOperand(&type2); auto output04 = model->addOperand(&type35); // Phase 2, operations static int32_t param8_init[] = {0}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {0, 0}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input04, param8, param9}, {output04}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input04}, {output04}); assert(model->isValid()); } inline bool is_ignored_quant8_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_int32_5(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type36(Type::TENSOR_INT32, {1, 2, 2}); OperandType type37(Type::TENSOR_INT32, {2, 2, 2}); // Phase 1, operands auto input04 = model->addOperand(&type36); auto param8 = model->addOperand(&type1); auto param9 = model->addOperand(&type2); auto output04 = model->addOperand(&type37); // Phase 2, operations static int32_t param8_init[] = {0}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {0, 0}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input04, param8, param9}, {output04}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input04}, {output04}); assert(model->isValid()); } inline bool is_ignored_int32_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16_5(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type38(Type::TENSOR_FLOAT16, {1, 2, 2}); OperandType type39(Type::TENSOR_FLOAT16, {2, 2, 2}); // Phase 1, operands auto input04 = model->addOperand(&type38); auto param8 = model->addOperand(&type1); auto param9 = model->addOperand(&type2); auto output04 = model->addOperand(&type39); // Phase 2, operations static int32_t param8_init[] = {0}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {0, 0}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input04, param8, param9}, {output04}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input04}, {output04}); assert(model->isValid()); } inline bool is_ignored_float16_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_5(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type40(Type::TENSOR_FLOAT32, {0, 0, 0}); OperandType type8(Type::TENSOR_FLOAT32, {1, 2, 2}); // Phase 1, operands auto input04 = model->addOperand(&type8); auto param8 = model->addOperand(&type1); auto param9 = model->addOperand(&type2); auto output04 = model->addOperand(&type40); // Phase 2, operations static int32_t param8_init[] = {0}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {0, 0}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input04, param8, param9}, {output04}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input04}, {output04}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_relaxed_5(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type40(Type::TENSOR_FLOAT32, {0, 0, 0}); OperandType type8(Type::TENSOR_FLOAT32, {1, 2, 2}); // Phase 1, operands auto input04 = model->addOperand(&type8); auto param8 = model->addOperand(&type1); auto param9 = model->addOperand(&type2); auto output04 = model->addOperand(&type40); // Phase 2, operations static int32_t param8_init[] = {0}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {0, 0}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input04, param8, param9}, {output04}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input04}, {output04}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_relaxed_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_quant8_5(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type34(Type::TENSOR_QUANT8_ASYMM, {1, 2, 2}, 0.5f, 127); OperandType type41(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0}, 0.5f, 127); // Phase 1, operands auto input04 = model->addOperand(&type34); auto param8 = model->addOperand(&type1); auto param9 = model->addOperand(&type2); auto output04 = model->addOperand(&type41); // Phase 2, operations static int32_t param8_init[] = {0}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {0, 0}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input04, param8, param9}, {output04}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input04}, {output04}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_quant8_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_int32_5(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type36(Type::TENSOR_INT32, {1, 2, 2}); OperandType type42(Type::TENSOR_INT32, {0, 0, 0}); // Phase 1, operands auto input04 = model->addOperand(&type36); auto param8 = model->addOperand(&type1); auto param9 = model->addOperand(&type2); auto output04 = model->addOperand(&type42); // Phase 2, operations static int32_t param8_init[] = {0}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {0, 0}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input04, param8, param9}, {output04}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input04}, {output04}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_int32_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16_5(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type38(Type::TENSOR_FLOAT16, {1, 2, 2}); OperandType type43(Type::TENSOR_FLOAT16, {0, 0, 0}); // Phase 1, operands auto input04 = model->addOperand(&type38); auto param8 = model->addOperand(&type1); auto param9 = model->addOperand(&type2); auto output04 = model->addOperand(&type43); // Phase 2, operations static int32_t param8_init[] = {0}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {0, 0}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input04, param8, param9}, {output04}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input04}, {output04}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_6(Model *model) { OperandType type1(Type::INT32, {}); OperandType type10(Type::TENSOR_FLOAT32, {4, 1}); OperandType type11(Type::TENSOR_FLOAT32, {2, 1}); OperandType type2(Type::TENSOR_INT32, {2}); // Phase 1, operands auto input05 = model->addOperand(&type10); auto param10 = model->addOperand(&type1); auto param11 = model->addOperand(&type2); auto output05 = model->addOperand(&type11); // Phase 2, operations static int32_t param10_init[] = {0}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 1); static int32_t param11_init[] = {1, 3}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input05, param10, param11}, {output05}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input05}, {output05}); assert(model->isValid()); } inline bool is_ignored_6(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_relaxed_6(Model *model) { OperandType type1(Type::INT32, {}); OperandType type10(Type::TENSOR_FLOAT32, {4, 1}); OperandType type11(Type::TENSOR_FLOAT32, {2, 1}); OperandType type2(Type::TENSOR_INT32, {2}); // Phase 1, operands auto input05 = model->addOperand(&type10); auto param10 = model->addOperand(&type1); auto param11 = model->addOperand(&type2); auto output05 = model->addOperand(&type11); // Phase 2, operations static int32_t param10_init[] = {0}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 1); static int32_t param11_init[] = {1, 3}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input05, param10, param11}, {output05}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input05}, {output05}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_relaxed_6(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_quant8_6(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type44(Type::TENSOR_QUANT8_ASYMM, {4, 1}, 0.5f, 127); OperandType type45(Type::TENSOR_QUANT8_ASYMM, {2, 1}, 0.5f, 127); // Phase 1, operands auto input05 = model->addOperand(&type44); auto param10 = model->addOperand(&type1); auto param11 = model->addOperand(&type2); auto output05 = model->addOperand(&type45); // Phase 2, operations static int32_t param10_init[] = {0}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 1); static int32_t param11_init[] = {1, 3}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input05, param10, param11}, {output05}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input05}, {output05}); assert(model->isValid()); } inline bool is_ignored_quant8_6(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_int32_6(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type46(Type::TENSOR_INT32, {4, 1}); OperandType type47(Type::TENSOR_INT32, {2, 1}); // Phase 1, operands auto input05 = model->addOperand(&type46); auto param10 = model->addOperand(&type1); auto param11 = model->addOperand(&type2); auto output05 = model->addOperand(&type47); // Phase 2, operations static int32_t param10_init[] = {0}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 1); static int32_t param11_init[] = {1, 3}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input05, param10, param11}, {output05}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input05}, {output05}); assert(model->isValid()); } inline bool is_ignored_int32_6(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16_6(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type48(Type::TENSOR_FLOAT16, {4, 1}); OperandType type49(Type::TENSOR_FLOAT16, {2, 1}); // Phase 1, operands auto input05 = model->addOperand(&type48); auto param10 = model->addOperand(&type1); auto param11 = model->addOperand(&type2); auto output05 = model->addOperand(&type49); // Phase 2, operations static int32_t param10_init[] = {0}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 1); static int32_t param11_init[] = {1, 3}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input05, param10, param11}, {output05}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input05}, {output05}); assert(model->isValid()); } inline bool is_ignored_float16_6(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_6(Model *model) { OperandType type1(Type::INT32, {}); OperandType type10(Type::TENSOR_FLOAT32, {4, 1}); OperandType type16(Type::TENSOR_FLOAT32, {0, 0}); OperandType type2(Type::TENSOR_INT32, {2}); // Phase 1, operands auto input05 = model->addOperand(&type10); auto param10 = model->addOperand(&type1); auto param11 = model->addOperand(&type2); auto output05 = model->addOperand(&type16); // Phase 2, operations static int32_t param10_init[] = {0}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 1); static int32_t param11_init[] = {1, 3}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input05, param10, param11}, {output05}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input05}, {output05}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_6(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_relaxed_6(Model *model) { OperandType type1(Type::INT32, {}); OperandType type10(Type::TENSOR_FLOAT32, {4, 1}); OperandType type16(Type::TENSOR_FLOAT32, {0, 0}); OperandType type2(Type::TENSOR_INT32, {2}); // Phase 1, operands auto input05 = model->addOperand(&type10); auto param10 = model->addOperand(&type1); auto param11 = model->addOperand(&type2); auto output05 = model->addOperand(&type16); // Phase 2, operations static int32_t param10_init[] = {0}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 1); static int32_t param11_init[] = {1, 3}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input05, param10, param11}, {output05}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input05}, {output05}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_relaxed_6(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_quant8_6(Model *model) { OperandType type1(Type::INT32, {}); OperandType type17(Type::TENSOR_QUANT8_ASYMM, {0, 0}, 0.5f, 127); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type44(Type::TENSOR_QUANT8_ASYMM, {4, 1}, 0.5f, 127); // Phase 1, operands auto input05 = model->addOperand(&type44); auto param10 = model->addOperand(&type1); auto param11 = model->addOperand(&type2); auto output05 = model->addOperand(&type17); // Phase 2, operations static int32_t param10_init[] = {0}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 1); static int32_t param11_init[] = {1, 3}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input05, param10, param11}, {output05}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input05}, {output05}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_quant8_6(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_int32_6(Model *model) { OperandType type1(Type::INT32, {}); OperandType type18(Type::TENSOR_INT32, {0, 0}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type46(Type::TENSOR_INT32, {4, 1}); // Phase 1, operands auto input05 = model->addOperand(&type46); auto param10 = model->addOperand(&type1); auto param11 = model->addOperand(&type2); auto output05 = model->addOperand(&type18); // Phase 2, operations static int32_t param10_init[] = {0}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 1); static int32_t param11_init[] = {1, 3}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input05, param10, param11}, {output05}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input05}, {output05}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_int32_6(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16_6(Model *model) { OperandType type1(Type::INT32, {}); OperandType type19(Type::TENSOR_FLOAT16, {0, 0}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type48(Type::TENSOR_FLOAT16, {4, 1}); // Phase 1, operands auto input05 = model->addOperand(&type48); auto param10 = model->addOperand(&type1); auto param11 = model->addOperand(&type2); auto output05 = model->addOperand(&type19); // Phase 2, operations static int32_t param10_init[] = {0}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 1); static int32_t param11_init[] = {1, 3}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input05, param10, param11}, {output05}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input05}, {output05}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16_6(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_7(Model *model) { OperandType type1(Type::INT32, {}); OperandType type12(Type::TENSOR_FLOAT32, {1, 2, 3}); OperandType type2(Type::TENSOR_INT32, {2}); // Phase 1, operands auto input06 = model->addOperand(&type12); auto param12 = model->addOperand(&type1); auto param13 = model->addOperand(&type2); auto output06 = model->addOperand(&type12); // Phase 2, operations static int32_t param12_init[] = {1}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {1, 0}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input06, param12, param13}, {output06}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input06}, {output06}); assert(model->isValid()); } inline bool is_ignored_7(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_relaxed_7(Model *model) { OperandType type1(Type::INT32, {}); OperandType type12(Type::TENSOR_FLOAT32, {1, 2, 3}); OperandType type2(Type::TENSOR_INT32, {2}); // Phase 1, operands auto input06 = model->addOperand(&type12); auto param12 = model->addOperand(&type1); auto param13 = model->addOperand(&type2); auto output06 = model->addOperand(&type12); // Phase 2, operations static int32_t param12_init[] = {1}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {1, 0}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input06, param12, param13}, {output06}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input06}, {output06}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_relaxed_7(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_quant8_7(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type50(Type::TENSOR_QUANT8_ASYMM, {1, 2, 3}, 0.5f, 127); // Phase 1, operands auto input06 = model->addOperand(&type50); auto param12 = model->addOperand(&type1); auto param13 = model->addOperand(&type2); auto output06 = model->addOperand(&type50); // Phase 2, operations static int32_t param12_init[] = {1}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {1, 0}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input06, param12, param13}, {output06}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input06}, {output06}); assert(model->isValid()); } inline bool is_ignored_quant8_7(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_int32_7(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type51(Type::TENSOR_INT32, {1, 2, 3}); // Phase 1, operands auto input06 = model->addOperand(&type51); auto param12 = model->addOperand(&type1); auto param13 = model->addOperand(&type2); auto output06 = model->addOperand(&type51); // Phase 2, operations static int32_t param12_init[] = {1}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {1, 0}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input06, param12, param13}, {output06}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input06}, {output06}); assert(model->isValid()); } inline bool is_ignored_int32_7(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16_7(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type52(Type::TENSOR_FLOAT16, {1, 2, 3}); // Phase 1, operands auto input06 = model->addOperand(&type52); auto param12 = model->addOperand(&type1); auto param13 = model->addOperand(&type2); auto output06 = model->addOperand(&type52); // Phase 2, operations static int32_t param12_init[] = {1}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {1, 0}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input06, param12, param13}, {output06}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input06}, {output06}); assert(model->isValid()); } inline bool is_ignored_float16_7(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_7(Model *model) { OperandType type1(Type::INT32, {}); OperandType type12(Type::TENSOR_FLOAT32, {1, 2, 3}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type40(Type::TENSOR_FLOAT32, {0, 0, 0}); // Phase 1, operands auto input06 = model->addOperand(&type12); auto param12 = model->addOperand(&type1); auto param13 = model->addOperand(&type2); auto output06 = model->addOperand(&type40); // Phase 2, operations static int32_t param12_init[] = {1}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {1, 0}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input06, param12, param13}, {output06}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input06}, {output06}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_7(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_relaxed_7(Model *model) { OperandType type1(Type::INT32, {}); OperandType type12(Type::TENSOR_FLOAT32, {1, 2, 3}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type40(Type::TENSOR_FLOAT32, {0, 0, 0}); // Phase 1, operands auto input06 = model->addOperand(&type12); auto param12 = model->addOperand(&type1); auto param13 = model->addOperand(&type2); auto output06 = model->addOperand(&type40); // Phase 2, operations static int32_t param12_init[] = {1}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {1, 0}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input06, param12, param13}, {output06}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input06}, {output06}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_relaxed_7(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_quant8_7(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type41(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0}, 0.5f, 127); OperandType type50(Type::TENSOR_QUANT8_ASYMM, {1, 2, 3}, 0.5f, 127); // Phase 1, operands auto input06 = model->addOperand(&type50); auto param12 = model->addOperand(&type1); auto param13 = model->addOperand(&type2); auto output06 = model->addOperand(&type41); // Phase 2, operations static int32_t param12_init[] = {1}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {1, 0}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input06, param12, param13}, {output06}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input06}, {output06}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_quant8_7(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_int32_7(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type42(Type::TENSOR_INT32, {0, 0, 0}); OperandType type51(Type::TENSOR_INT32, {1, 2, 3}); // Phase 1, operands auto input06 = model->addOperand(&type51); auto param12 = model->addOperand(&type1); auto param13 = model->addOperand(&type2); auto output06 = model->addOperand(&type42); // Phase 2, operations static int32_t param12_init[] = {1}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {1, 0}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input06, param12, param13}, {output06}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input06}, {output06}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_int32_7(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16_7(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type43(Type::TENSOR_FLOAT16, {0, 0, 0}); OperandType type52(Type::TENSOR_FLOAT16, {1, 2, 3}); // Phase 1, operands auto input06 = model->addOperand(&type52); auto param12 = model->addOperand(&type1); auto param13 = model->addOperand(&type2); auto output06 = model->addOperand(&type43); // Phase 2, operations static int32_t param12_init[] = {1}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {1, 0}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input06, param12, param13}, {output06}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input06}, {output06}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16_7(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_8(Model *model) { OperandType type1(Type::INT32, {}); OperandType type12(Type::TENSOR_FLOAT32, {1, 2, 3}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type8(Type::TENSOR_FLOAT32, {1, 2, 2}); // Phase 1, operands auto input07 = model->addOperand(&type12); auto param14 = model->addOperand(&type1); auto param15 = model->addOperand(&type2); auto output07 = model->addOperand(&type8); // Phase 2, operations static int32_t param14_init[] = {-1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 1); static int32_t param15_init[] = {2, 0}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input07, param14, param15}, {output07}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input07}, {output07}); assert(model->isValid()); } inline bool is_ignored_8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_relaxed_8(Model *model) { OperandType type1(Type::INT32, {}); OperandType type12(Type::TENSOR_FLOAT32, {1, 2, 3}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type8(Type::TENSOR_FLOAT32, {1, 2, 2}); // Phase 1, operands auto input07 = model->addOperand(&type12); auto param14 = model->addOperand(&type1); auto param15 = model->addOperand(&type2); auto output07 = model->addOperand(&type8); // Phase 2, operations static int32_t param14_init[] = {-1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 1); static int32_t param15_init[] = {2, 0}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input07, param14, param15}, {output07}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input07}, {output07}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_relaxed_8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_quant8_8(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type34(Type::TENSOR_QUANT8_ASYMM, {1, 2, 2}, 0.5f, 127); OperandType type50(Type::TENSOR_QUANT8_ASYMM, {1, 2, 3}, 0.5f, 127); // Phase 1, operands auto input07 = model->addOperand(&type50); auto param14 = model->addOperand(&type1); auto param15 = model->addOperand(&type2); auto output07 = model->addOperand(&type34); // Phase 2, operations static int32_t param14_init[] = {-1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 1); static int32_t param15_init[] = {2, 0}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input07, param14, param15}, {output07}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input07}, {output07}); assert(model->isValid()); } inline bool is_ignored_quant8_8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_int32_8(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type36(Type::TENSOR_INT32, {1, 2, 2}); OperandType type51(Type::TENSOR_INT32, {1, 2, 3}); // Phase 1, operands auto input07 = model->addOperand(&type51); auto param14 = model->addOperand(&type1); auto param15 = model->addOperand(&type2); auto output07 = model->addOperand(&type36); // Phase 2, operations static int32_t param14_init[] = {-1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 1); static int32_t param15_init[] = {2, 0}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input07, param14, param15}, {output07}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input07}, {output07}); assert(model->isValid()); } inline bool is_ignored_int32_8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16_8(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type38(Type::TENSOR_FLOAT16, {1, 2, 2}); OperandType type52(Type::TENSOR_FLOAT16, {1, 2, 3}); // Phase 1, operands auto input07 = model->addOperand(&type52); auto param14 = model->addOperand(&type1); auto param15 = model->addOperand(&type2); auto output07 = model->addOperand(&type38); // Phase 2, operations static int32_t param14_init[] = {-1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 1); static int32_t param15_init[] = {2, 0}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input07, param14, param15}, {output07}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input07}, {output07}); assert(model->isValid()); } inline bool is_ignored_float16_8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_8(Model *model) { OperandType type1(Type::INT32, {}); OperandType type12(Type::TENSOR_FLOAT32, {1, 2, 3}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type40(Type::TENSOR_FLOAT32, {0, 0, 0}); // Phase 1, operands auto input07 = model->addOperand(&type12); auto param14 = model->addOperand(&type1); auto param15 = model->addOperand(&type2); auto output07 = model->addOperand(&type40); // Phase 2, operations static int32_t param14_init[] = {-1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 1); static int32_t param15_init[] = {2, 0}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input07, param14, param15}, {output07}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input07}, {output07}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_relaxed_8(Model *model) { OperandType type1(Type::INT32, {}); OperandType type12(Type::TENSOR_FLOAT32, {1, 2, 3}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type40(Type::TENSOR_FLOAT32, {0, 0, 0}); // Phase 1, operands auto input07 = model->addOperand(&type12); auto param14 = model->addOperand(&type1); auto param15 = model->addOperand(&type2); auto output07 = model->addOperand(&type40); // Phase 2, operations static int32_t param14_init[] = {-1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 1); static int32_t param15_init[] = {2, 0}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input07, param14, param15}, {output07}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input07}, {output07}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_relaxed_8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_quant8_8(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type41(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0}, 0.5f, 127); OperandType type50(Type::TENSOR_QUANT8_ASYMM, {1, 2, 3}, 0.5f, 127); // Phase 1, operands auto input07 = model->addOperand(&type50); auto param14 = model->addOperand(&type1); auto param15 = model->addOperand(&type2); auto output07 = model->addOperand(&type41); // Phase 2, operations static int32_t param14_init[] = {-1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 1); static int32_t param15_init[] = {2, 0}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input07, param14, param15}, {output07}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input07}, {output07}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_quant8_8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_int32_8(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type42(Type::TENSOR_INT32, {0, 0, 0}); OperandType type51(Type::TENSOR_INT32, {1, 2, 3}); // Phase 1, operands auto input07 = model->addOperand(&type51); auto param14 = model->addOperand(&type1); auto param15 = model->addOperand(&type2); auto output07 = model->addOperand(&type42); // Phase 2, operations static int32_t param14_init[] = {-1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 1); static int32_t param15_init[] = {2, 0}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input07, param14, param15}, {output07}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input07}, {output07}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_int32_8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16_8(Model *model) { OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_INT32, {2}); OperandType type43(Type::TENSOR_FLOAT16, {0, 0, 0}); OperandType type52(Type::TENSOR_FLOAT16, {1, 2, 3}); // Phase 1, operands auto input07 = model->addOperand(&type52); auto param14 = model->addOperand(&type1); auto param15 = model->addOperand(&type2); auto output07 = model->addOperand(&type43); // Phase 2, operations static int32_t param14_init[] = {-1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 1); static int32_t param15_init[] = {2, 0}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 2); model->addOperation(ANEURALNETWORKS_GATHER, {input07, param14, param15}, {output07}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input07}, {output07}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16_8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); }