// clang-format off // Generated file (from: gather_higher_rank.mod.py). Do not edit void CreateModel(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 3, 2}); OperandType type1(Type::TENSOR_INT32, {3, 2}); OperandType type2(Type::TENSOR_FLOAT32, {1, 3, 2, 2}); OperandType type3(Type::INT32, {}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto param = model->addOperand(&type3); auto indices = model->addOperand(&type1); auto output0 = model->addOperand(&type2); // Phase 2, operations static int32_t param_init[] = {1}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input0, param, indices}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, indices}, {output0}); assert(model->isValid()); } inline bool is_ignored(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_relaxed(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 3, 2}); OperandType type1(Type::TENSOR_INT32, {3, 2}); OperandType type2(Type::TENSOR_FLOAT32, {1, 3, 2, 2}); OperandType type3(Type::INT32, {}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto param = model->addOperand(&type3); auto indices = model->addOperand(&type1); auto output0 = model->addOperand(&type2); // Phase 2, operations static int32_t param_init[] = {1}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input0, param, indices}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, indices}, {output0}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_quant8(Model *model) { OperandType type1(Type::TENSOR_INT32, {3, 2}); OperandType type3(Type::INT32, {}); OperandType type4(Type::TENSOR_QUANT8_ASYMM, {1, 3, 2}, 0.5f, 127); OperandType type5(Type::TENSOR_QUANT8_ASYMM, {1, 3, 2, 2}, 0.5f, 127); // Phase 1, operands auto input0 = model->addOperand(&type4); auto param = model->addOperand(&type3); auto indices = model->addOperand(&type1); auto output0 = model->addOperand(&type5); // Phase 2, operations static int32_t param_init[] = {1}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input0, param, indices}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, indices}, {output0}); assert(model->isValid()); } inline bool is_ignored_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_int32(Model *model) { OperandType type1(Type::TENSOR_INT32, {3, 2}); OperandType type3(Type::INT32, {}); OperandType type6(Type::TENSOR_INT32, {1, 3, 2}); OperandType type7(Type::TENSOR_INT32, {1, 3, 2, 2}); // Phase 1, operands auto input0 = model->addOperand(&type6); auto param = model->addOperand(&type3); auto indices = model->addOperand(&type1); auto output0 = model->addOperand(&type7); // Phase 2, operations static int32_t param_init[] = {1}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input0, param, indices}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, indices}, {output0}); assert(model->isValid()); } inline bool is_ignored_int32(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 3, 2}); OperandType type1(Type::TENSOR_INT32, {3, 2}); OperandType type3(Type::INT32, {}); OperandType type8(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto param = model->addOperand(&type3); auto indices = model->addOperand(&type1); auto output0 = model->addOperand(&type8); // Phase 2, operations static int32_t param_init[] = {1}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input0, param, indices}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, indices}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_relaxed(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 3, 2}); OperandType type1(Type::TENSOR_INT32, {3, 2}); OperandType type3(Type::INT32, {}); OperandType type8(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto param = model->addOperand(&type3); auto indices = model->addOperand(&type1); auto output0 = model->addOperand(&type8); // Phase 2, operations static int32_t param_init[] = {1}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input0, param, indices}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, indices}, {output0}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_quant8(Model *model) { OperandType type1(Type::TENSOR_INT32, {3, 2}); OperandType type3(Type::INT32, {}); OperandType type4(Type::TENSOR_QUANT8_ASYMM, {1, 3, 2}, 0.5f, 127); OperandType type9(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.5f, 127); // Phase 1, operands auto input0 = model->addOperand(&type4); auto param = model->addOperand(&type3); auto indices = model->addOperand(&type1); auto output0 = model->addOperand(&type9); // Phase 2, operations static int32_t param_init[] = {1}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input0, param, indices}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, indices}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_int32(Model *model) { OperandType type1(Type::TENSOR_INT32, {3, 2}); OperandType type10(Type::TENSOR_INT32, {0, 0, 0, 0}); OperandType type3(Type::INT32, {}); OperandType type6(Type::TENSOR_INT32, {1, 3, 2}); // Phase 1, operands auto input0 = model->addOperand(&type6); auto param = model->addOperand(&type3); auto indices = model->addOperand(&type1); auto output0 = model->addOperand(&type10); // Phase 2, operations static int32_t param_init[] = {1}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_GATHER, {input0, param, indices}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0, indices}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_int32(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); }