// clang-format off // Generated file (from: instance_normalization.mod.py). Do not edit void CreateModel_nhwc(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {2, 2, 2, 2}); OperandType type2(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type1); auto param = model->addOperand(&type2); auto param1 = model->addOperand(&type2); auto param2 = model->addOperand(&type2); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type1); // Phase 2, operations static float param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(float) * 1); static float param1_init[] = {0.0f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static float param2_init[] = {0.0001f}; model->setOperandValue(param2, param2_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in, param, param1, param2, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {out}); assert(model->isValid()); } inline bool is_ignored_nhwc(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_relaxed(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {2, 2, 2, 2}); OperandType type2(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type1); auto param = model->addOperand(&type2); auto param1 = model->addOperand(&type2); auto param2 = model->addOperand(&type2); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type1); // Phase 2, operations static float param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(float) * 1); static float param1_init[] = {0.0f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static float param2_init[] = {0.0001f}; model->setOperandValue(param2, param2_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in, param, param1, param2, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {out}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nhwc_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_float16(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type3(Type::TENSOR_FLOAT16, {2, 2, 2, 2}); OperandType type4(Type::FLOAT16, {}); // Phase 1, operands auto in = model->addOperand(&type3); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type4); auto param2 = model->addOperand(&type4); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type3); // Phase 2, operations static _Float16 param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(_Float16) * 1); static _Float16 param1_init[] = {0.0f}; model->setOperandValue(param1, param1_init, sizeof(_Float16) * 1); static _Float16 param2_init[] = {9.999999747378752e-05f}; model->setOperandValue(param2, param2_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in, param, param1, param2, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {out}); assert(model->isValid()); } inline bool is_ignored_nhwc_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {2, 2, 2, 2}); OperandType type2(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type1); auto param = model->addOperand(&type2); auto param1 = model->addOperand(&type2); auto param2 = model->addOperand(&type2); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type1); // Phase 2, operations static float param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(float) * 1); static float param1_init[] = {0.0f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static float param2_init[] = {0.0001f}; model->setOperandValue(param2, param2_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in, param, param1, param2, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {out}); assert(model->isValid()); } inline bool is_ignored_nchw(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_relaxed(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {2, 2, 2, 2}); OperandType type2(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type1); auto param = model->addOperand(&type2); auto param1 = model->addOperand(&type2); auto param2 = model->addOperand(&type2); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type1); // Phase 2, operations static float param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(float) * 1); static float param1_init[] = {0.0f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static float param2_init[] = {0.0001f}; model->setOperandValue(param2, param2_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in, param, param1, param2, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {out}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nchw_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_float16(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type3(Type::TENSOR_FLOAT16, {2, 2, 2, 2}); OperandType type4(Type::FLOAT16, {}); // Phase 1, operands auto in = model->addOperand(&type3); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type4); auto param2 = model->addOperand(&type4); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type3); // Phase 2, operations static _Float16 param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(_Float16) * 1); static _Float16 param1_init[] = {0.0f}; model->setOperandValue(param1, param1_init, sizeof(_Float16) * 1); static _Float16 param2_init[] = {9.999999747378752e-05f}; model->setOperandValue(param2, param2_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in, param, param1, param2, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {out}); assert(model->isValid()); } inline bool is_ignored_nchw_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {2, 2, 2, 2}); OperandType type2(Type::FLOAT32, {}); OperandType type5(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); // Phase 1, operands auto in = model->addOperand(&type1); auto param = model->addOperand(&type2); auto param1 = model->addOperand(&type2); auto param2 = model->addOperand(&type2); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type5); // Phase 2, operations static float param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(float) * 1); static float param1_init[] = {0.0f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static float param2_init[] = {0.0001f}; model->setOperandValue(param2, param2_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in, param, param1, param2, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {out}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_relaxed(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {2, 2, 2, 2}); OperandType type2(Type::FLOAT32, {}); OperandType type5(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); // Phase 1, operands auto in = model->addOperand(&type1); auto param = model->addOperand(&type2); auto param1 = model->addOperand(&type2); auto param2 = model->addOperand(&type2); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type5); // Phase 2, operations static float param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(float) * 1); static float param1_init[] = {0.0f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static float param2_init[] = {0.0001f}; model->setOperandValue(param2, param2_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in, param, param1, param2, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {out}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_float16(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type3(Type::TENSOR_FLOAT16, {2, 2, 2, 2}); OperandType type4(Type::FLOAT16, {}); OperandType type6(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); // Phase 1, operands auto in = model->addOperand(&type3); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type4); auto param2 = model->addOperand(&type4); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type6); // Phase 2, operations static _Float16 param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(_Float16) * 1); static _Float16 param1_init[] = {0.0f}; model->setOperandValue(param1, param1_init, sizeof(_Float16) * 1); static _Float16 param2_init[] = {9.999999747378752e-05f}; model->setOperandValue(param2, param2_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in, param, param1, param2, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {out}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {2, 2, 2, 2}); OperandType type2(Type::FLOAT32, {}); OperandType type5(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); // Phase 1, operands auto in = model->addOperand(&type1); auto param = model->addOperand(&type2); auto param1 = model->addOperand(&type2); auto param2 = model->addOperand(&type2); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type5); // Phase 2, operations static float param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(float) * 1); static float param1_init[] = {0.0f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static float param2_init[] = {0.0001f}; model->setOperandValue(param2, param2_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in, param, param1, param2, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {out}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_relaxed(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {2, 2, 2, 2}); OperandType type2(Type::FLOAT32, {}); OperandType type5(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); // Phase 1, operands auto in = model->addOperand(&type1); auto param = model->addOperand(&type2); auto param1 = model->addOperand(&type2); auto param2 = model->addOperand(&type2); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type5); // Phase 2, operations static float param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(float) * 1); static float param1_init[] = {0.0f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static float param2_init[] = {0.0001f}; model->setOperandValue(param2, param2_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in, param, param1, param2, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {out}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_float16(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type3(Type::TENSOR_FLOAT16, {2, 2, 2, 2}); OperandType type4(Type::FLOAT16, {}); OperandType type6(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); // Phase 1, operands auto in = model->addOperand(&type3); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type4); auto param2 = model->addOperand(&type4); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type6); // Phase 2, operations static _Float16 param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(_Float16) * 1); static _Float16 param1_init[] = {0.0f}; model->setOperandValue(param1, param1_init, sizeof(_Float16) * 1); static _Float16 param2_init[] = {9.999999747378752e-05f}; model->setOperandValue(param2, param2_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in, param, param1, param2, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {out}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {2, 2, 2, 2}); OperandType type2(Type::FLOAT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type1); auto param3 = model->addOperand(&type2); auto param4 = model->addOperand(&type2); auto param5 = model->addOperand(&type2); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type1); // Phase 2, operations static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {10.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {0.0001f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in1, param3, param4, param5, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1}, {out1}); assert(model->isValid()); } inline bool is_ignored_nhwc_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_relaxed_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {2, 2, 2, 2}); OperandType type2(Type::FLOAT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type1); auto param3 = model->addOperand(&type2); auto param4 = model->addOperand(&type2); auto param5 = model->addOperand(&type2); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type1); // Phase 2, operations static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {10.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {0.0001f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in1, param3, param4, param5, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1}, {out1}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nhwc_relaxed_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_float16_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type3(Type::TENSOR_FLOAT16, {2, 2, 2, 2}); OperandType type4(Type::FLOAT16, {}); // Phase 1, operands auto in1 = model->addOperand(&type3); auto param3 = model->addOperand(&type4); auto param4 = model->addOperand(&type4); auto param5 = model->addOperand(&type4); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type3); // Phase 2, operations static _Float16 param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(_Float16) * 1); static _Float16 param4_init[] = {10.0f}; model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1); static _Float16 param5_init[] = {9.999999747378752e-05f}; model->setOperandValue(param5, param5_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in1, param3, param4, param5, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1}, {out1}); assert(model->isValid()); } inline bool is_ignored_nhwc_float16_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {2, 2, 2, 2}); OperandType type2(Type::FLOAT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type1); auto param3 = model->addOperand(&type2); auto param4 = model->addOperand(&type2); auto param5 = model->addOperand(&type2); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type1); // Phase 2, operations static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {10.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {0.0001f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in1, param3, param4, param5, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1}, {out1}); assert(model->isValid()); } inline bool is_ignored_nchw_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_relaxed_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {2, 2, 2, 2}); OperandType type2(Type::FLOAT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type1); auto param3 = model->addOperand(&type2); auto param4 = model->addOperand(&type2); auto param5 = model->addOperand(&type2); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type1); // Phase 2, operations static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {10.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {0.0001f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in1, param3, param4, param5, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1}, {out1}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nchw_relaxed_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_float16_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type3(Type::TENSOR_FLOAT16, {2, 2, 2, 2}); OperandType type4(Type::FLOAT16, {}); // Phase 1, operands auto in1 = model->addOperand(&type3); auto param3 = model->addOperand(&type4); auto param4 = model->addOperand(&type4); auto param5 = model->addOperand(&type4); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type3); // Phase 2, operations static _Float16 param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(_Float16) * 1); static _Float16 param4_init[] = {10.0f}; model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1); static _Float16 param5_init[] = {9.999999747378752e-05f}; model->setOperandValue(param5, param5_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in1, param3, param4, param5, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1}, {out1}); assert(model->isValid()); } inline bool is_ignored_nchw_float16_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {2, 2, 2, 2}); OperandType type2(Type::FLOAT32, {}); OperandType type5(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); // Phase 1, operands auto in1 = model->addOperand(&type1); auto param3 = model->addOperand(&type2); auto param4 = model->addOperand(&type2); auto param5 = model->addOperand(&type2); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type5); // Phase 2, operations static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {10.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {0.0001f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in1, param3, param4, param5, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1}, {out1}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_relaxed_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {2, 2, 2, 2}); OperandType type2(Type::FLOAT32, {}); OperandType type5(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); // Phase 1, operands auto in1 = model->addOperand(&type1); auto param3 = model->addOperand(&type2); auto param4 = model->addOperand(&type2); auto param5 = model->addOperand(&type2); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type5); // Phase 2, operations static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {10.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {0.0001f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in1, param3, param4, param5, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1}, {out1}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_relaxed_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_float16_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type3(Type::TENSOR_FLOAT16, {2, 2, 2, 2}); OperandType type4(Type::FLOAT16, {}); OperandType type6(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); // Phase 1, operands auto in1 = model->addOperand(&type3); auto param3 = model->addOperand(&type4); auto param4 = model->addOperand(&type4); auto param5 = model->addOperand(&type4); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type6); // Phase 2, operations static _Float16 param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(_Float16) * 1); static _Float16 param4_init[] = {10.0f}; model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1); static _Float16 param5_init[] = {9.999999747378752e-05f}; model->setOperandValue(param5, param5_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in1, param3, param4, param5, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1}, {out1}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_float16_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {2, 2, 2, 2}); OperandType type2(Type::FLOAT32, {}); OperandType type5(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); // Phase 1, operands auto in1 = model->addOperand(&type1); auto param3 = model->addOperand(&type2); auto param4 = model->addOperand(&type2); auto param5 = model->addOperand(&type2); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type5); // Phase 2, operations static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {10.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {0.0001f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in1, param3, param4, param5, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1}, {out1}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_relaxed_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {2, 2, 2, 2}); OperandType type2(Type::FLOAT32, {}); OperandType type5(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); // Phase 1, operands auto in1 = model->addOperand(&type1); auto param3 = model->addOperand(&type2); auto param4 = model->addOperand(&type2); auto param5 = model->addOperand(&type2); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type5); // Phase 2, operations static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {10.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {0.0001f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in1, param3, param4, param5, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1}, {out1}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_relaxed_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_float16_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type3(Type::TENSOR_FLOAT16, {2, 2, 2, 2}); OperandType type4(Type::FLOAT16, {}); OperandType type6(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); // Phase 1, operands auto in1 = model->addOperand(&type3); auto param3 = model->addOperand(&type4); auto param4 = model->addOperand(&type4); auto param5 = model->addOperand(&type4); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type6); // Phase 2, operations static _Float16 param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(_Float16) * 1); static _Float16 param4_init[] = {10.0f}; model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1); static _Float16 param5_init[] = {9.999999747378752e-05f}; model->setOperandValue(param5, param5_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_INSTANCE_NORMALIZATION, {in1, param3, param4, param5, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1}, {out1}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_float16_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); }