// clang-format off // Generated file (from: log_softmax.mod.py). Do not edit void CreateModel(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 1, 1, 2, 4}); OperandType type1(Type::FLOAT32, {}); OperandType type2(Type::INT32, {}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto param = model->addOperand(&type1); auto param1 = model->addOperand(&type2); auto output0 = model->addOperand(&type0); // Phase 2, operations static float param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(float) * 1); static int32_t param1_init[] = {4}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input0, param, param1}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); assert(model->isValid()); } inline bool is_ignored(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_relaxed(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 1, 1, 2, 4}); OperandType type1(Type::FLOAT32, {}); OperandType type2(Type::INT32, {}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto param = model->addOperand(&type1); auto param1 = model->addOperand(&type2); auto output0 = model->addOperand(&type0); // Phase 2, operations static float param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(float) * 1); static int32_t param1_init[] = {4}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input0, param, param1}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16(Model *model) { OperandType type2(Type::INT32, {}); OperandType type5(Type::TENSOR_FLOAT16, {1, 1, 1, 2, 4}); OperandType type6(Type::FLOAT16, {}); // Phase 1, operands auto input0 = model->addOperand(&type5); auto param = model->addOperand(&type6); auto param1 = model->addOperand(&type2); auto output0 = model->addOperand(&type5); // Phase 2, operations static _Float16 param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(_Float16) * 1); static int32_t param1_init[] = {4}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input0, param, param1}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); assert(model->isValid()); } inline bool is_ignored_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 1, 1, 2, 4}); OperandType type1(Type::FLOAT32, {}); OperandType type2(Type::INT32, {}); OperandType type7(Type::TENSOR_FLOAT32, {0, 0, 0, 0, 0}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto param = model->addOperand(&type1); auto param1 = model->addOperand(&type2); auto output0 = model->addOperand(&type7); // Phase 2, operations static float param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(float) * 1); static int32_t param1_init[] = {4}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input0, param, param1}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_relaxed(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 1, 1, 2, 4}); OperandType type1(Type::FLOAT32, {}); OperandType type2(Type::INT32, {}); OperandType type7(Type::TENSOR_FLOAT32, {0, 0, 0, 0, 0}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto param = model->addOperand(&type1); auto param1 = model->addOperand(&type2); auto output0 = model->addOperand(&type7); // Phase 2, operations static float param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(float) * 1); static int32_t param1_init[] = {4}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input0, param, param1}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16(Model *model) { OperandType type2(Type::INT32, {}); OperandType type5(Type::TENSOR_FLOAT16, {1, 1, 1, 2, 4}); OperandType type6(Type::FLOAT16, {}); OperandType type8(Type::TENSOR_FLOAT16, {0, 0, 0, 0, 0}); // Phase 1, operands auto input0 = model->addOperand(&type5); auto param = model->addOperand(&type6); auto param1 = model->addOperand(&type2); auto output0 = model->addOperand(&type8); // Phase 2, operations static _Float16 param_init[] = {1.0f}; model->setOperandValue(param, param_init, sizeof(_Float16) * 1); static int32_t param1_init[] = {4}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input0, param, param1}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_2(Model *model) { OperandType type1(Type::FLOAT32, {}); OperandType type2(Type::INT32, {}); OperandType type3(Type::TENSOR_FLOAT32, {1, 1, 1, 4, 2}); // Phase 1, operands auto input01 = model->addOperand(&type3); auto param2 = model->addOperand(&type1); auto param3 = model->addOperand(&type2); auto output01 = model->addOperand(&type3); // Phase 2, operations static float param2_init[] = {1.0f}; model->setOperandValue(param2, param2_init, sizeof(float) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input01, param2, param3}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01}, {output01}); assert(model->isValid()); } inline bool is_ignored_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_relaxed_2(Model *model) { OperandType type1(Type::FLOAT32, {}); OperandType type2(Type::INT32, {}); OperandType type3(Type::TENSOR_FLOAT32, {1, 1, 1, 4, 2}); // Phase 1, operands auto input01 = model->addOperand(&type3); auto param2 = model->addOperand(&type1); auto param3 = model->addOperand(&type2); auto output01 = model->addOperand(&type3); // Phase 2, operations static float param2_init[] = {1.0f}; model->setOperandValue(param2, param2_init, sizeof(float) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input01, param2, param3}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01}, {output01}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_relaxed_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16_2(Model *model) { OperandType type2(Type::INT32, {}); OperandType type6(Type::FLOAT16, {}); OperandType type9(Type::TENSOR_FLOAT16, {1, 1, 1, 4, 2}); // Phase 1, operands auto input01 = model->addOperand(&type9); auto param2 = model->addOperand(&type6); auto param3 = model->addOperand(&type2); auto output01 = model->addOperand(&type9); // Phase 2, operations static _Float16 param2_init[] = {1.0f}; model->setOperandValue(param2, param2_init, sizeof(_Float16) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input01, param2, param3}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01}, {output01}); assert(model->isValid()); } inline bool is_ignored_float16_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_2(Model *model) { OperandType type1(Type::FLOAT32, {}); OperandType type2(Type::INT32, {}); OperandType type3(Type::TENSOR_FLOAT32, {1, 1, 1, 4, 2}); OperandType type7(Type::TENSOR_FLOAT32, {0, 0, 0, 0, 0}); // Phase 1, operands auto input01 = model->addOperand(&type3); auto param2 = model->addOperand(&type1); auto param3 = model->addOperand(&type2); auto output01 = model->addOperand(&type7); // Phase 2, operations static float param2_init[] = {1.0f}; model->setOperandValue(param2, param2_init, sizeof(float) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input01, param2, param3}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01}, {output01}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_relaxed_2(Model *model) { OperandType type1(Type::FLOAT32, {}); OperandType type2(Type::INT32, {}); OperandType type3(Type::TENSOR_FLOAT32, {1, 1, 1, 4, 2}); OperandType type7(Type::TENSOR_FLOAT32, {0, 0, 0, 0, 0}); // Phase 1, operands auto input01 = model->addOperand(&type3); auto param2 = model->addOperand(&type1); auto param3 = model->addOperand(&type2); auto output01 = model->addOperand(&type7); // Phase 2, operations static float param2_init[] = {1.0f}; model->setOperandValue(param2, param2_init, sizeof(float) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input01, param2, param3}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01}, {output01}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_relaxed_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16_2(Model *model) { OperandType type2(Type::INT32, {}); OperandType type6(Type::FLOAT16, {}); OperandType type8(Type::TENSOR_FLOAT16, {0, 0, 0, 0, 0}); OperandType type9(Type::TENSOR_FLOAT16, {1, 1, 1, 4, 2}); // Phase 1, operands auto input01 = model->addOperand(&type9); auto param2 = model->addOperand(&type6); auto param3 = model->addOperand(&type2); auto output01 = model->addOperand(&type8); // Phase 2, operations static _Float16 param2_init[] = {1.0f}; model->setOperandValue(param2, param2_init, sizeof(_Float16) * 1); static int32_t param3_init[] = {-1}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input01, param2, param3}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01}, {output01}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_3(Model *model) { OperandType type1(Type::FLOAT32, {}); OperandType type2(Type::INT32, {}); OperandType type4(Type::TENSOR_FLOAT32, {1, 1, 2, 4, 1}); // Phase 1, operands auto input02 = model->addOperand(&type4); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type2); auto output02 = model->addOperand(&type4); // Phase 2, operations static float param4_init[] = {1.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static int32_t param5_init[] = {-3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input02, param4, param5}, {output02}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input02}, {output02}); assert(model->isValid()); } inline bool is_ignored_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_relaxed_3(Model *model) { OperandType type1(Type::FLOAT32, {}); OperandType type2(Type::INT32, {}); OperandType type4(Type::TENSOR_FLOAT32, {1, 1, 2, 4, 1}); // Phase 1, operands auto input02 = model->addOperand(&type4); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type2); auto output02 = model->addOperand(&type4); // Phase 2, operations static float param4_init[] = {1.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static int32_t param5_init[] = {-3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input02, param4, param5}, {output02}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input02}, {output02}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_relaxed_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16_3(Model *model) { OperandType type10(Type::TENSOR_FLOAT16, {1, 1, 2, 4, 1}); OperandType type2(Type::INT32, {}); OperandType type6(Type::FLOAT16, {}); // Phase 1, operands auto input02 = model->addOperand(&type10); auto param4 = model->addOperand(&type6); auto param5 = model->addOperand(&type2); auto output02 = model->addOperand(&type10); // Phase 2, operations static _Float16 param4_init[] = {1.0f}; model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1); static int32_t param5_init[] = {-3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input02, param4, param5}, {output02}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input02}, {output02}); assert(model->isValid()); } inline bool is_ignored_float16_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_3(Model *model) { OperandType type1(Type::FLOAT32, {}); OperandType type2(Type::INT32, {}); OperandType type4(Type::TENSOR_FLOAT32, {1, 1, 2, 4, 1}); OperandType type7(Type::TENSOR_FLOAT32, {0, 0, 0, 0, 0}); // Phase 1, operands auto input02 = model->addOperand(&type4); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type2); auto output02 = model->addOperand(&type7); // Phase 2, operations static float param4_init[] = {1.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static int32_t param5_init[] = {-3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input02, param4, param5}, {output02}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input02}, {output02}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_relaxed_3(Model *model) { OperandType type1(Type::FLOAT32, {}); OperandType type2(Type::INT32, {}); OperandType type4(Type::TENSOR_FLOAT32, {1, 1, 2, 4, 1}); OperandType type7(Type::TENSOR_FLOAT32, {0, 0, 0, 0, 0}); // Phase 1, operands auto input02 = model->addOperand(&type4); auto param4 = model->addOperand(&type1); auto param5 = model->addOperand(&type2); auto output02 = model->addOperand(&type7); // Phase 2, operations static float param4_init[] = {1.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static int32_t param5_init[] = {-3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input02, param4, param5}, {output02}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input02}, {output02}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_relaxed_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16_3(Model *model) { OperandType type10(Type::TENSOR_FLOAT16, {1, 1, 2, 4, 1}); OperandType type2(Type::INT32, {}); OperandType type6(Type::FLOAT16, {}); OperandType type8(Type::TENSOR_FLOAT16, {0, 0, 0, 0, 0}); // Phase 1, operands auto input02 = model->addOperand(&type10); auto param4 = model->addOperand(&type6); auto param5 = model->addOperand(&type2); auto output02 = model->addOperand(&type8); // Phase 2, operations static _Float16 param4_init[] = {1.0f}; model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1); static int32_t param5_init[] = {-3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input02, param4, param5}, {output02}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input02}, {output02}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_4(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 1, 1, 2, 4}); OperandType type1(Type::FLOAT32, {}); OperandType type2(Type::INT32, {}); // Phase 1, operands auto input03 = model->addOperand(&type0); auto param6 = model->addOperand(&type1); auto param7 = model->addOperand(&type2); auto output03 = model->addOperand(&type0); // Phase 2, operations static float param6_init[] = {10.0f}; model->setOperandValue(param6, param6_init, sizeof(float) * 1); static int32_t param7_init[] = {4}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input03, param6, param7}, {output03}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input03}, {output03}); assert(model->isValid()); } inline bool is_ignored_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_relaxed_4(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 1, 1, 2, 4}); OperandType type1(Type::FLOAT32, {}); OperandType type2(Type::INT32, {}); // Phase 1, operands auto input03 = model->addOperand(&type0); auto param6 = model->addOperand(&type1); auto param7 = model->addOperand(&type2); auto output03 = model->addOperand(&type0); // Phase 2, operations static float param6_init[] = {10.0f}; model->setOperandValue(param6, param6_init, sizeof(float) * 1); static int32_t param7_init[] = {4}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input03, param6, param7}, {output03}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input03}, {output03}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_relaxed_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16_4(Model *model) { OperandType type2(Type::INT32, {}); OperandType type5(Type::TENSOR_FLOAT16, {1, 1, 1, 2, 4}); OperandType type6(Type::FLOAT16, {}); // Phase 1, operands auto input03 = model->addOperand(&type5); auto param6 = model->addOperand(&type6); auto param7 = model->addOperand(&type2); auto output03 = model->addOperand(&type5); // Phase 2, operations static _Float16 param6_init[] = {10.0f}; model->setOperandValue(param6, param6_init, sizeof(_Float16) * 1); static int32_t param7_init[] = {4}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input03, param6, param7}, {output03}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input03}, {output03}); assert(model->isValid()); } inline bool is_ignored_float16_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_4(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 1, 1, 2, 4}); OperandType type1(Type::FLOAT32, {}); OperandType type2(Type::INT32, {}); OperandType type7(Type::TENSOR_FLOAT32, {0, 0, 0, 0, 0}); // Phase 1, operands auto input03 = model->addOperand(&type0); auto param6 = model->addOperand(&type1); auto param7 = model->addOperand(&type2); auto output03 = model->addOperand(&type7); // Phase 2, operations static float param6_init[] = {10.0f}; model->setOperandValue(param6, param6_init, sizeof(float) * 1); static int32_t param7_init[] = {4}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input03, param6, param7}, {output03}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input03}, {output03}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_relaxed_4(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 1, 1, 2, 4}); OperandType type1(Type::FLOAT32, {}); OperandType type2(Type::INT32, {}); OperandType type7(Type::TENSOR_FLOAT32, {0, 0, 0, 0, 0}); // Phase 1, operands auto input03 = model->addOperand(&type0); auto param6 = model->addOperand(&type1); auto param7 = model->addOperand(&type2); auto output03 = model->addOperand(&type7); // Phase 2, operations static float param6_init[] = {10.0f}; model->setOperandValue(param6, param6_init, sizeof(float) * 1); static int32_t param7_init[] = {4}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input03, param6, param7}, {output03}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input03}, {output03}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_relaxed_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16_4(Model *model) { OperandType type2(Type::INT32, {}); OperandType type5(Type::TENSOR_FLOAT16, {1, 1, 1, 2, 4}); OperandType type6(Type::FLOAT16, {}); OperandType type8(Type::TENSOR_FLOAT16, {0, 0, 0, 0, 0}); // Phase 1, operands auto input03 = model->addOperand(&type5); auto param6 = model->addOperand(&type6); auto param7 = model->addOperand(&type2); auto output03 = model->addOperand(&type8); // Phase 2, operations static _Float16 param6_init[] = {10.0f}; model->setOperandValue(param6, param6_init, sizeof(_Float16) * 1); static int32_t param7_init[] = {4}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_LOG_SOFTMAX, {input03, param6, param7}, {output03}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input03}, {output03}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); }