// clang-format off // Generated file (from: mul_relu.mod.py). Do not edit void CreateModel(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 2, 1}); OperandType type1(Type::INT32, {}); // Phase 1, operands auto op1 = model->addOperand(&type0); auto op2 = model->addOperand(&type0); auto act = model->addOperand(&type1); auto op3 = model->addOperand(&type0); // Phase 2, operations static int32_t act_init[] = {1}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_MUL, {op1, op2, act}, {op3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {op1, op2}, {op3}); assert(model->isValid()); } inline bool is_ignored(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 2, 1}); OperandType type1(Type::INT32, {}); OperandType type2(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); // Phase 1, operands auto op1 = model->addOperand(&type0); auto op2 = model->addOperand(&type0); auto act = model->addOperand(&type1); auto op3 = model->addOperand(&type2); // Phase 2, operations static int32_t act_init[] = {1}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_MUL, {op1, op2, act}, {op3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {op1, op2}, {op3}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); }