// clang-format off // Generated file (from: pad.mod.py). Do not edit void CreateModel(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 2, 1}); OperandType type1(Type::TENSOR_INT32, {4, 2}); OperandType type2(Type::TENSOR_FLOAT32, {1, 4, 4, 1}); // Phase 1, operands auto op1 = model->addOperand(&type0); auto op2 = model->addOperand(&type1); auto op3 = model->addOperand(&type2); // Phase 2, operations static int32_t op2_init[] = {0, 0, 1, 1, 1, 1, 0, 0}; model->setOperandValue(op2, op2_init, sizeof(int32_t) * 8); model->addOperation(ANEURALNETWORKS_PAD, {op1, op2}, {op3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {op1}, {op3}); assert(model->isValid()); } inline bool is_ignored(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 2, 1}); OperandType type1(Type::TENSOR_INT32, {4, 2}); OperandType type3(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); // Phase 1, operands auto op1 = model->addOperand(&type0); auto op2 = model->addOperand(&type1); auto op3 = model->addOperand(&type3); // Phase 2, operations static int32_t op2_init[] = {0, 0, 1, 1, 1, 1, 0, 0}; model->setOperandValue(op2, op2_init, sizeof(int32_t) * 8); model->addOperation(ANEURALNETWORKS_PAD, {op1, op2}, {op3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {op1}, {op3}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); }