// clang-format off // Generated file (from: reduce_any.mod.py). Do not edit void CreateModel(Model *model) { OperandType type0(Type::TENSOR_BOOL8, {1}); OperandType type1(Type::TENSOR_INT32, {1}); OperandType type2(Type::BOOL, {}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto param = model->addOperand(&type1); auto param1 = model->addOperand(&type2); auto output0 = model->addOperand(&type0); // Phase 2, operations static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static bool8 param1_init[] = {true}; model->setOperandValue(param1, param1_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_REDUCE_ANY, {input0, param, param1}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); assert(model->isValid()); } inline bool is_ignored(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape(Model *model) { OperandType type0(Type::TENSOR_BOOL8, {1}); OperandType type1(Type::TENSOR_INT32, {1}); OperandType type2(Type::BOOL, {}); OperandType type8(Type::TENSOR_BOOL8, {0}); // Phase 1, operands auto input0 = model->addOperand(&type0); auto param = model->addOperand(&type1); auto param1 = model->addOperand(&type2); auto output0 = model->addOperand(&type8); // Phase 2, operations static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static bool8 param1_init[] = {true}; model->setOperandValue(param1, param1_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_REDUCE_ANY, {input0, param, param1}, {output0}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input0}, {output0}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_2(Model *model) { OperandType type2(Type::BOOL, {}); OperandType type3(Type::TENSOR_BOOL8, {2, 3, 2}); OperandType type4(Type::TENSOR_BOOL8, {2}); OperandType type5(Type::TENSOR_INT32, {4}); // Phase 1, operands auto input01 = model->addOperand(&type3); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type2); auto output01 = model->addOperand(&type4); // Phase 2, operations static int32_t param2_init[] = {1, 0, -3, -3}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 4); static bool8 param3_init[] = {false}; model->setOperandValue(param3, param3_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_REDUCE_ANY, {input01, param2, param3}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01}, {output01}); assert(model->isValid()); } inline bool is_ignored_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_2(Model *model) { OperandType type2(Type::BOOL, {}); OperandType type3(Type::TENSOR_BOOL8, {2, 3, 2}); OperandType type5(Type::TENSOR_INT32, {4}); OperandType type8(Type::TENSOR_BOOL8, {0}); // Phase 1, operands auto input01 = model->addOperand(&type3); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type2); auto output01 = model->addOperand(&type8); // Phase 2, operations static int32_t param2_init[] = {1, 0, -3, -3}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 4); static bool8 param3_init[] = {false}; model->setOperandValue(param3, param3_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_REDUCE_ANY, {input01, param2, param3}, {output01}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input01}, {output01}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_3(Model *model) { OperandType type2(Type::BOOL, {}); OperandType type3(Type::TENSOR_BOOL8, {2, 3, 2}); OperandType type6(Type::TENSOR_BOOL8, {1, 3, 1}); OperandType type7(Type::TENSOR_INT32, {2}); // Phase 1, operands auto input02 = model->addOperand(&type3); auto param4 = model->addOperand(&type7); auto param5 = model->addOperand(&type2); auto output02 = model->addOperand(&type6); // Phase 2, operations static int32_t param4_init[] = {0, 2}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 2); static bool8 param5_init[] = {true}; model->setOperandValue(param5, param5_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_REDUCE_ANY, {input02, param4, param5}, {output02}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input02}, {output02}); assert(model->isValid()); } inline bool is_ignored_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_3(Model *model) { OperandType type2(Type::BOOL, {}); OperandType type3(Type::TENSOR_BOOL8, {2, 3, 2}); OperandType type7(Type::TENSOR_INT32, {2}); OperandType type9(Type::TENSOR_BOOL8, {0, 0, 0}); // Phase 1, operands auto input02 = model->addOperand(&type3); auto param4 = model->addOperand(&type7); auto param5 = model->addOperand(&type2); auto output02 = model->addOperand(&type9); // Phase 2, operations static int32_t param4_init[] = {0, 2}; model->setOperandValue(param4, param4_init, sizeof(int32_t) * 2); static bool8 param5_init[] = {true}; model->setOperandValue(param5, param5_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_REDUCE_ANY, {input02, param4, param5}, {output02}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input02}, {output02}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); }