// clang-format off // Generated file (from: relu1_v1_2.mod.py). Do not edit void CreateModel(Model *model) { OperandType type0(Type::TENSOR_FLOAT16, {1, 2, 2, 1}); // Phase 1, operands auto op1 = model->addOperand(&type0); auto op2 = model->addOperand(&type0); // Phase 2, operations model->addOperation(ANEURALNETWORKS_RELU1, {op1}, {op2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {op1}, {op2}); assert(model->isValid()); } inline bool is_ignored(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape(Model *model) { OperandType type0(Type::TENSOR_FLOAT16, {1, 2, 2, 1}); OperandType type13(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); // Phase 1, operands auto op1 = model->addOperand(&type0); auto op2 = model->addOperand(&type13); // Phase 2, operations model->addOperation(ANEURALNETWORKS_RELU1, {op1}, {op2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {op1}, {op2}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_2(Model *model) { OperandType type1(Type::TENSOR_FLOAT16, {2, 30, 24, 2}); // Phase 1, operands auto input = model->addOperand(&type1); auto output = model->addOperand(&type1); // Phase 2, operations model->addOperation(ANEURALNETWORKS_RELU1, {input}, {output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input}, {output}); assert(model->isValid()); } inline bool is_ignored_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_2(Model *model) { OperandType type1(Type::TENSOR_FLOAT16, {2, 30, 24, 2}); OperandType type13(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); // Phase 1, operands auto input = model->addOperand(&type1); auto output = model->addOperand(&type13); // Phase 2, operations model->addOperation(ANEURALNETWORKS_RELU1, {input}, {output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input}, {output}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized(Model *model) { OperandType type10(Type::BOOL, {}); OperandType type11(Type::TENSOR_FLOAT32, {1, 1, 1, 1}); OperandType type12(Type::TENSOR_FLOAT32, {0, 2, 2, 1}); OperandType type2(Type::TENSOR_FLOAT32, {1, 2}); OperandType type3(Type::TENSOR_FLOAT32, {1, 8}); OperandType type4(Type::TENSOR_FLOAT32, {0}); OperandType type5(Type::TENSOR_INT32, {0}); OperandType type6(Type::TENSOR_FLOAT32, {0, 4}); OperandType type7(Type::TENSOR_INT32, {1}); OperandType type8(Type::FLOAT32, {}); OperandType type9(Type::INT32, {}); // Phase 1, operands auto scores = model->addOperand(&type2); auto roi = model->addOperand(&type3); auto param = model->addOperand(&type7); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type9); auto param4 = model->addOperand(&type8); auto param5 = model->addOperand(&type8); auto param6 = model->addOperand(&type8); auto scoresOut = model->addOperand(&type4); auto roiOut = model->addOperand(&type6); auto classesOut = model->addOperand(&type5); auto batchSplitOut = model->addOperand(&type5); auto in = model->addOperand(&type11); auto param7 = model->addOperand(&type9); auto param8 = model->addOperand(&type9); auto param9 = model->addOperand(&type8); auto param10 = model->addOperand(&type8); auto param11 = model->addOperand(&type9); auto param12 = model->addOperand(&type9); auto layout = model->addOperand(&type10); auto featureMap = model->addOperand(&type12); auto out = model->addOperand(&type12); // Phase 2, operations static float scores_init[] = {0.9f, 0.1f}; model->setOperandValue(scores, scores_init, sizeof(float) * 2); static float roi_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi, roi_init, sizeof(float) * 8); static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static float param1_init[] = {0.3f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static int32_t param2_init[] = {-1}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {0}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static float param4_init[] = {0.4f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {1.0f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static float param6_init[] = {0.3f}; model->setOperandValue(param6, param6_init, sizeof(float) * 1); static int32_t param7_init[] = {2}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static float param9_init[] = {2.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static float param10_init[] = {2.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static int32_t param11_init[] = {4}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param, param1, param2, param3, param4, param5, param6}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param7, param8, param9, param10, param11, param12, layout}, {featureMap}); model->addOperation(ANEURALNETWORKS_RELU1, {featureMap}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {scoresOut, classesOut, out}); assert(model->isValid()); } inline bool is_ignored_zero_sized(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_relaxed(Model *model) { OperandType type10(Type::BOOL, {}); OperandType type11(Type::TENSOR_FLOAT32, {1, 1, 1, 1}); OperandType type12(Type::TENSOR_FLOAT32, {0, 2, 2, 1}); OperandType type2(Type::TENSOR_FLOAT32, {1, 2}); OperandType type3(Type::TENSOR_FLOAT32, {1, 8}); OperandType type4(Type::TENSOR_FLOAT32, {0}); OperandType type5(Type::TENSOR_INT32, {0}); OperandType type6(Type::TENSOR_FLOAT32, {0, 4}); OperandType type7(Type::TENSOR_INT32, {1}); OperandType type8(Type::FLOAT32, {}); OperandType type9(Type::INT32, {}); // Phase 1, operands auto scores = model->addOperand(&type2); auto roi = model->addOperand(&type3); auto param = model->addOperand(&type7); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type9); auto param4 = model->addOperand(&type8); auto param5 = model->addOperand(&type8); auto param6 = model->addOperand(&type8); auto scoresOut = model->addOperand(&type4); auto roiOut = model->addOperand(&type6); auto classesOut = model->addOperand(&type5); auto batchSplitOut = model->addOperand(&type5); auto in = model->addOperand(&type11); auto param7 = model->addOperand(&type9); auto param8 = model->addOperand(&type9); auto param9 = model->addOperand(&type8); auto param10 = model->addOperand(&type8); auto param11 = model->addOperand(&type9); auto param12 = model->addOperand(&type9); auto layout = model->addOperand(&type10); auto featureMap = model->addOperand(&type12); auto out = model->addOperand(&type12); // Phase 2, operations static float scores_init[] = {0.9f, 0.1f}; model->setOperandValue(scores, scores_init, sizeof(float) * 2); static float roi_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi, roi_init, sizeof(float) * 8); static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static float param1_init[] = {0.3f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static int32_t param2_init[] = {-1}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {0}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static float param4_init[] = {0.4f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {1.0f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static float param6_init[] = {0.3f}; model->setOperandValue(param6, param6_init, sizeof(float) * 1); static int32_t param7_init[] = {2}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static float param9_init[] = {2.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static float param10_init[] = {2.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static int32_t param11_init[] = {4}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param, param1, param2, param3, param4, param5, param6}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param7, param8, param9, param10, param11, param12, layout}, {featureMap}); model->addOperation(ANEURALNETWORKS_RELU1, {featureMap}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {scoresOut, classesOut, out}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_zero_sized_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_quant8(Model *model) { OperandType type10(Type::BOOL, {}); OperandType type14(Type::TENSOR_QUANT8_ASYMM, {0, 2, 2, 1}, 0.1f, 128); OperandType type15(Type::TENSOR_QUANT8_ASYMM, {1, 1, 1, 1}, 0.1f, 128); OperandType type16(Type::TENSOR_QUANT16_ASYMM, {1, 8}, 0.125f, 0); OperandType type17(Type::TENSOR_QUANT16_ASYMM, {0, 4}, 0.125f, 0); OperandType type18(Type::TENSOR_QUANT8_ASYMM, {1, 2}, 0.1f, 128); OperandType type19(Type::TENSOR_QUANT8_ASYMM, {0}, 0.1f, 128); OperandType type5(Type::TENSOR_INT32, {0}); OperandType type7(Type::TENSOR_INT32, {1}); OperandType type8(Type::FLOAT32, {}); OperandType type9(Type::INT32, {}); // Phase 1, operands auto scores = model->addOperand(&type18); auto roi = model->addOperand(&type16); auto param = model->addOperand(&type7); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type9); auto param4 = model->addOperand(&type8); auto param5 = model->addOperand(&type8); auto param6 = model->addOperand(&type8); auto scoresOut = model->addOperand(&type19); auto roiOut = model->addOperand(&type17); auto classesOut = model->addOperand(&type5); auto batchSplitOut = model->addOperand(&type5); auto in = model->addOperand(&type15); auto param7 = model->addOperand(&type9); auto param8 = model->addOperand(&type9); auto param9 = model->addOperand(&type8); auto param10 = model->addOperand(&type8); auto param11 = model->addOperand(&type9); auto param12 = model->addOperand(&type9); auto layout = model->addOperand(&type10); auto featureMap = model->addOperand(&type14); auto out = model->addOperand(&type14); // Phase 2, operations static uint8_t scores_init[] = {137, 129}; model->setOperandValue(scores, scores_init, sizeof(uint8_t) * 2); static uint16_t roi_init[] = {8, 8, 80, 80, 0, 0, 80, 80}; model->setOperandValue(roi, roi_init, sizeof(uint16_t) * 8); static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static float param1_init[] = {0.3f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static int32_t param2_init[] = {-1}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {0}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static float param4_init[] = {0.4f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {1.0f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static float param6_init[] = {0.3f}; model->setOperandValue(param6, param6_init, sizeof(float) * 1); static int32_t param7_init[] = {2}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static float param9_init[] = {2.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static float param10_init[] = {2.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static int32_t param11_init[] = {4}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param, param1, param2, param3, param4, param5, param6}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param7, param8, param9, param10, param11, param12, layout}, {featureMap}); model->addOperation(ANEURALNETWORKS_RELU1, {featureMap}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {scoresOut, classesOut, out}); assert(model->isValid()); } inline bool is_ignored_zero_sized_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_float16(Model *model) { OperandType type10(Type::BOOL, {}); OperandType type20(Type::TENSOR_FLOAT16, {0, 2, 2, 1}); OperandType type21(Type::TENSOR_FLOAT16, {1, 1, 1, 1}); OperandType type22(Type::FLOAT16, {}); OperandType type23(Type::TENSOR_FLOAT16, {1, 8}); OperandType type24(Type::TENSOR_FLOAT16, {0, 4}); OperandType type25(Type::TENSOR_FLOAT16, {1, 2}); OperandType type26(Type::TENSOR_FLOAT16, {0}); OperandType type5(Type::TENSOR_INT32, {0}); OperandType type7(Type::TENSOR_INT32, {1}); OperandType type9(Type::INT32, {}); // Phase 1, operands auto scores = model->addOperand(&type25); auto roi = model->addOperand(&type23); auto param = model->addOperand(&type7); auto param1 = model->addOperand(&type22); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type9); auto param4 = model->addOperand(&type22); auto param5 = model->addOperand(&type22); auto param6 = model->addOperand(&type22); auto scoresOut = model->addOperand(&type26); auto roiOut = model->addOperand(&type24); auto classesOut = model->addOperand(&type5); auto batchSplitOut = model->addOperand(&type5); auto in = model->addOperand(&type21); auto param7 = model->addOperand(&type9); auto param8 = model->addOperand(&type9); auto param9 = model->addOperand(&type22); auto param10 = model->addOperand(&type22); auto param11 = model->addOperand(&type9); auto param12 = model->addOperand(&type9); auto layout = model->addOperand(&type10); auto featureMap = model->addOperand(&type20); auto out = model->addOperand(&type20); // Phase 2, operations static _Float16 scores_init[] = {0.8999999761581421f, 0.10000000149011612f}; model->setOperandValue(scores, scores_init, sizeof(_Float16) * 2); static _Float16 roi_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi, roi_init, sizeof(_Float16) * 8); static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static _Float16 param1_init[] = {0.30000001192092896f}; model->setOperandValue(param1, param1_init, sizeof(_Float16) * 1); static int32_t param2_init[] = {-1}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {0}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static _Float16 param4_init[] = {0.4000000059604645f}; model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1); static _Float16 param5_init[] = {1.0f}; model->setOperandValue(param5, param5_init, sizeof(_Float16) * 1); static _Float16 param6_init[] = {0.30000001192092896f}; model->setOperandValue(param6, param6_init, sizeof(_Float16) * 1); static int32_t param7_init[] = {2}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static _Float16 param9_init[] = {2.0f}; model->setOperandValue(param9, param9_init, sizeof(_Float16) * 1); static _Float16 param10_init[] = {2.0f}; model->setOperandValue(param10, param10_init, sizeof(_Float16) * 1); static int32_t param11_init[] = {4}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param, param1, param2, param3, param4, param5, param6}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param7, param8, param9, param10, param11, param12, layout}, {featureMap}); model->addOperation(ANEURALNETWORKS_RELU1, {featureMap}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {scoresOut, classesOut, out}); assert(model->isValid()); } inline bool is_ignored_zero_sized_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape(Model *model) { OperandType type10(Type::BOOL, {}); OperandType type11(Type::TENSOR_FLOAT32, {1, 1, 1, 1}); OperandType type12(Type::TENSOR_FLOAT32, {0, 2, 2, 1}); OperandType type2(Type::TENSOR_FLOAT32, {1, 2}); OperandType type27(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type3(Type::TENSOR_FLOAT32, {1, 8}); OperandType type4(Type::TENSOR_FLOAT32, {0}); OperandType type5(Type::TENSOR_INT32, {0}); OperandType type6(Type::TENSOR_FLOAT32, {0, 4}); OperandType type7(Type::TENSOR_INT32, {1}); OperandType type8(Type::FLOAT32, {}); OperandType type9(Type::INT32, {}); // Phase 1, operands auto scores = model->addOperand(&type2); auto roi = model->addOperand(&type3); auto param = model->addOperand(&type7); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type9); auto param4 = model->addOperand(&type8); auto param5 = model->addOperand(&type8); auto param6 = model->addOperand(&type8); auto scoresOut = model->addOperand(&type4); auto roiOut = model->addOperand(&type6); auto classesOut = model->addOperand(&type5); auto batchSplitOut = model->addOperand(&type5); auto in = model->addOperand(&type11); auto param7 = model->addOperand(&type9); auto param8 = model->addOperand(&type9); auto param9 = model->addOperand(&type8); auto param10 = model->addOperand(&type8); auto param11 = model->addOperand(&type9); auto param12 = model->addOperand(&type9); auto layout = model->addOperand(&type10); auto featureMap = model->addOperand(&type12); auto out = model->addOperand(&type27); // Phase 2, operations static float scores_init[] = {0.9f, 0.1f}; model->setOperandValue(scores, scores_init, sizeof(float) * 2); static float roi_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi, roi_init, sizeof(float) * 8); static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static float param1_init[] = {0.3f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static int32_t param2_init[] = {-1}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {0}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static float param4_init[] = {0.4f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {1.0f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static float param6_init[] = {0.3f}; model->setOperandValue(param6, param6_init, sizeof(float) * 1); static int32_t param7_init[] = {2}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static float param9_init[] = {2.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static float param10_init[] = {2.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static int32_t param11_init[] = {4}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param, param1, param2, param3, param4, param5, param6}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param7, param8, param9, param10, param11, param12, layout}, {featureMap}); model->addOperation(ANEURALNETWORKS_RELU1, {featureMap}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {scoresOut, classesOut, out}); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape_relaxed(Model *model) { OperandType type10(Type::BOOL, {}); OperandType type11(Type::TENSOR_FLOAT32, {1, 1, 1, 1}); OperandType type12(Type::TENSOR_FLOAT32, {0, 2, 2, 1}); OperandType type2(Type::TENSOR_FLOAT32, {1, 2}); OperandType type27(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type3(Type::TENSOR_FLOAT32, {1, 8}); OperandType type4(Type::TENSOR_FLOAT32, {0}); OperandType type5(Type::TENSOR_INT32, {0}); OperandType type6(Type::TENSOR_FLOAT32, {0, 4}); OperandType type7(Type::TENSOR_INT32, {1}); OperandType type8(Type::FLOAT32, {}); OperandType type9(Type::INT32, {}); // Phase 1, operands auto scores = model->addOperand(&type2); auto roi = model->addOperand(&type3); auto param = model->addOperand(&type7); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type9); auto param4 = model->addOperand(&type8); auto param5 = model->addOperand(&type8); auto param6 = model->addOperand(&type8); auto scoresOut = model->addOperand(&type4); auto roiOut = model->addOperand(&type6); auto classesOut = model->addOperand(&type5); auto batchSplitOut = model->addOperand(&type5); auto in = model->addOperand(&type11); auto param7 = model->addOperand(&type9); auto param8 = model->addOperand(&type9); auto param9 = model->addOperand(&type8); auto param10 = model->addOperand(&type8); auto param11 = model->addOperand(&type9); auto param12 = model->addOperand(&type9); auto layout = model->addOperand(&type10); auto featureMap = model->addOperand(&type12); auto out = model->addOperand(&type27); // Phase 2, operations static float scores_init[] = {0.9f, 0.1f}; model->setOperandValue(scores, scores_init, sizeof(float) * 2); static float roi_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi, roi_init, sizeof(float) * 8); static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static float param1_init[] = {0.3f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static int32_t param2_init[] = {-1}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {0}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static float param4_init[] = {0.4f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {1.0f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static float param6_init[] = {0.3f}; model->setOperandValue(param6, param6_init, sizeof(float) * 1); static int32_t param7_init[] = {2}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static float param9_init[] = {2.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static float param10_init[] = {2.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static int32_t param11_init[] = {4}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param, param1, param2, param3, param4, param5, param6}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param7, param8, param9, param10, param11, param12, layout}, {featureMap}); model->addOperation(ANEURALNETWORKS_RELU1, {featureMap}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {scoresOut, classesOut, out}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape_quant8(Model *model) { OperandType type10(Type::BOOL, {}); OperandType type14(Type::TENSOR_QUANT8_ASYMM, {0, 2, 2, 1}, 0.1f, 128); OperandType type15(Type::TENSOR_QUANT8_ASYMM, {1, 1, 1, 1}, 0.1f, 128); OperandType type16(Type::TENSOR_QUANT16_ASYMM, {1, 8}, 0.125f, 0); OperandType type17(Type::TENSOR_QUANT16_ASYMM, {0, 4}, 0.125f, 0); OperandType type18(Type::TENSOR_QUANT8_ASYMM, {1, 2}, 0.1f, 128); OperandType type19(Type::TENSOR_QUANT8_ASYMM, {0}, 0.1f, 128); OperandType type28(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.1f, 128); OperandType type5(Type::TENSOR_INT32, {0}); OperandType type7(Type::TENSOR_INT32, {1}); OperandType type8(Type::FLOAT32, {}); OperandType type9(Type::INT32, {}); // Phase 1, operands auto scores = model->addOperand(&type18); auto roi = model->addOperand(&type16); auto param = model->addOperand(&type7); auto param1 = model->addOperand(&type8); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type9); auto param4 = model->addOperand(&type8); auto param5 = model->addOperand(&type8); auto param6 = model->addOperand(&type8); auto scoresOut = model->addOperand(&type19); auto roiOut = model->addOperand(&type17); auto classesOut = model->addOperand(&type5); auto batchSplitOut = model->addOperand(&type5); auto in = model->addOperand(&type15); auto param7 = model->addOperand(&type9); auto param8 = model->addOperand(&type9); auto param9 = model->addOperand(&type8); auto param10 = model->addOperand(&type8); auto param11 = model->addOperand(&type9); auto param12 = model->addOperand(&type9); auto layout = model->addOperand(&type10); auto featureMap = model->addOperand(&type14); auto out = model->addOperand(&type28); // Phase 2, operations static uint8_t scores_init[] = {137, 129}; model->setOperandValue(scores, scores_init, sizeof(uint8_t) * 2); static uint16_t roi_init[] = {8, 8, 80, 80, 0, 0, 80, 80}; model->setOperandValue(roi, roi_init, sizeof(uint16_t) * 8); static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static float param1_init[] = {0.3f}; model->setOperandValue(param1, param1_init, sizeof(float) * 1); static int32_t param2_init[] = {-1}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {0}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static float param4_init[] = {0.4f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static float param5_init[] = {1.0f}; model->setOperandValue(param5, param5_init, sizeof(float) * 1); static float param6_init[] = {0.3f}; model->setOperandValue(param6, param6_init, sizeof(float) * 1); static int32_t param7_init[] = {2}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static float param9_init[] = {2.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static float param10_init[] = {2.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static int32_t param11_init[] = {4}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param, param1, param2, param3, param4, param5, param6}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param7, param8, param9, param10, param11, param12, layout}, {featureMap}); model->addOperation(ANEURALNETWORKS_RELU1, {featureMap}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {scoresOut, classesOut, out}); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape_float16(Model *model) { OperandType type10(Type::BOOL, {}); OperandType type13(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type20(Type::TENSOR_FLOAT16, {0, 2, 2, 1}); OperandType type21(Type::TENSOR_FLOAT16, {1, 1, 1, 1}); OperandType type22(Type::FLOAT16, {}); OperandType type23(Type::TENSOR_FLOAT16, {1, 8}); OperandType type24(Type::TENSOR_FLOAT16, {0, 4}); OperandType type25(Type::TENSOR_FLOAT16, {1, 2}); OperandType type29(Type::TENSOR_FLOAT16, {0}); OperandType type5(Type::TENSOR_INT32, {0}); OperandType type7(Type::TENSOR_INT32, {1}); OperandType type9(Type::INT32, {}); // Phase 1, operands auto scores = model->addOperand(&type25); auto roi = model->addOperand(&type23); auto param = model->addOperand(&type7); auto param1 = model->addOperand(&type22); auto param2 = model->addOperand(&type9); auto param3 = model->addOperand(&type9); auto param4 = model->addOperand(&type22); auto param5 = model->addOperand(&type22); auto param6 = model->addOperand(&type22); auto scoresOut = model->addOperand(&type29); auto roiOut = model->addOperand(&type24); auto classesOut = model->addOperand(&type5); auto batchSplitOut = model->addOperand(&type5); auto in = model->addOperand(&type21); auto param7 = model->addOperand(&type9); auto param8 = model->addOperand(&type9); auto param9 = model->addOperand(&type22); auto param10 = model->addOperand(&type22); auto param11 = model->addOperand(&type9); auto param12 = model->addOperand(&type9); auto layout = model->addOperand(&type10); auto featureMap = model->addOperand(&type20); auto out = model->addOperand(&type13); // Phase 2, operations static _Float16 scores_init[] = {0.8999999761581421f, 0.10000000149011612f}; model->setOperandValue(scores, scores_init, sizeof(_Float16) * 2); static _Float16 roi_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi, roi_init, sizeof(_Float16) * 8); static int32_t param_init[] = {0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static _Float16 param1_init[] = {0.30000001192092896f}; model->setOperandValue(param1, param1_init, sizeof(_Float16) * 1); static int32_t param2_init[] = {-1}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t param3_init[] = {0}; model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1); static _Float16 param4_init[] = {0.4000000059604645f}; model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1); static _Float16 param5_init[] = {1.0f}; model->setOperandValue(param5, param5_init, sizeof(_Float16) * 1); static _Float16 param6_init[] = {0.30000001192092896f}; model->setOperandValue(param6, param6_init, sizeof(_Float16) * 1); static int32_t param7_init[] = {2}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static _Float16 param9_init[] = {2.0f}; model->setOperandValue(param9, param9_init, sizeof(_Float16) * 1); static _Float16 param10_init[] = {2.0f}; model->setOperandValue(param10, param10_init, sizeof(_Float16) * 1); static int32_t param11_init[] = {4}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi, param, param1, param2, param3, param4, param5, param6}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roiOut, batchSplitOut, param7, param8, param9, param10, param11, param12, layout}, {featureMap}); model->addOperation(ANEURALNETWORKS_RELU1, {featureMap}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in}, {scoresOut, classesOut, out}); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); }