// clang-format off // Generated file (from: roi_align.mod.py). Do not edit void CreateModel_nhwc(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {1, 4, 4, 1}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type3(Type::TENSOR_FLOAT32, {4, 2, 2, 1}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type1); auto roi = model->addOperand(&type2); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto param5 = model->addOperand(&type5); auto param6 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type3); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 4); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static int32_t param5_init[] = {4}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); static int32_t param6_init[] = {4}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roi, param, param1, param2, param3, param4, param5, param6, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_nhwc(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_relaxed(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {1, 4, 4, 1}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type3(Type::TENSOR_FLOAT32, {4, 2, 2, 1}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type1); auto roi = model->addOperand(&type2); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto param5 = model->addOperand(&type5); auto param6 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type3); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 4); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static int32_t param5_init[] = {4}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); static int32_t param6_init[] = {4}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roi, param, param1, param2, param3, param4, param5, param6, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nhwc_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_quant8(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type25(Type::TENSOR_QUANT8_ASYMM, {1, 4, 4, 1}, 0.25f, 128); OperandType type26(Type::TENSOR_QUANT8_ASYMM, {4, 2, 2, 1}, 0.0625f, 128); OperandType type27(Type::TENSOR_QUANT16_ASYMM, {4, 4}, 0.125f, 0); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type25); auto roi = model->addOperand(&type27); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto param5 = model->addOperand(&type5); auto param6 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type26); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 4); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static int32_t param5_init[] = {4}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); static int32_t param6_init[] = {4}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roi, param, param1, param2, param3, param4, param5, param6, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_nhwc_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_float16(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type28(Type::TENSOR_FLOAT16, {1, 4, 4, 1}); OperandType type29(Type::TENSOR_FLOAT16, {4, 2, 2, 1}); OperandType type30(Type::FLOAT16, {}); OperandType type31(Type::TENSOR_FLOAT16, {4, 4}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto in = model->addOperand(&type28); auto roi = model->addOperand(&type31); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type30); auto param4 = model->addOperand(&type30); auto param5 = model->addOperand(&type5); auto param6 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type29); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 4); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static _Float16 param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(_Float16) * 1); static _Float16 param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1); static int32_t param5_init[] = {4}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); static int32_t param6_init[] = {4}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roi, param, param1, param2, param3, param4, param5, param6, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_nhwc_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type32(Type::TENSOR_FLOAT32, {1, 1, 4, 4}); OperandType type33(Type::TENSOR_FLOAT32, {4, 1, 2, 2}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type32); auto roi = model->addOperand(&type2); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto param5 = model->addOperand(&type5); auto param6 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type33); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 4); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static int32_t param5_init[] = {4}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); static int32_t param6_init[] = {4}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roi, param, param1, param2, param3, param4, param5, param6, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_nchw(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_relaxed(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type32(Type::TENSOR_FLOAT32, {1, 1, 4, 4}); OperandType type33(Type::TENSOR_FLOAT32, {4, 1, 2, 2}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type32); auto roi = model->addOperand(&type2); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto param5 = model->addOperand(&type5); auto param6 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type33); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 4); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static int32_t param5_init[] = {4}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); static int32_t param6_init[] = {4}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roi, param, param1, param2, param3, param4, param5, param6, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nchw_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_quant8(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type27(Type::TENSOR_QUANT16_ASYMM, {4, 4}, 0.125f, 0); OperandType type34(Type::TENSOR_QUANT8_ASYMM, {1, 1, 4, 4}, 0.25f, 128); OperandType type35(Type::TENSOR_QUANT8_ASYMM, {4, 1, 2, 2}, 0.0625f, 128); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type34); auto roi = model->addOperand(&type27); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto param5 = model->addOperand(&type5); auto param6 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type35); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 4); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static int32_t param5_init[] = {4}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); static int32_t param6_init[] = {4}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roi, param, param1, param2, param3, param4, param5, param6, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_nchw_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_float16(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type30(Type::FLOAT16, {}); OperandType type31(Type::TENSOR_FLOAT16, {4, 4}); OperandType type36(Type::TENSOR_FLOAT16, {1, 1, 4, 4}); OperandType type37(Type::TENSOR_FLOAT16, {4, 1, 2, 2}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto in = model->addOperand(&type36); auto roi = model->addOperand(&type31); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type30); auto param4 = model->addOperand(&type30); auto param5 = model->addOperand(&type5); auto param6 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type37); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 4); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static _Float16 param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(_Float16) * 1); static _Float16 param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1); static int32_t param5_init[] = {4}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); static int32_t param6_init[] = {4}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roi, param, param1, param2, param3, param4, param5, param6, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_nchw_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {1, 4, 4, 1}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type1); auto roi = model->addOperand(&type2); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto param5 = model->addOperand(&type5); auto param6 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type38); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 4); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static int32_t param5_init[] = {4}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); static int32_t param6_init[] = {4}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roi, param, param1, param2, param3, param4, param5, param6, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_relaxed(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {1, 4, 4, 1}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type1); auto roi = model->addOperand(&type2); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto param5 = model->addOperand(&type5); auto param6 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type38); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 4); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static int32_t param5_init[] = {4}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); static int32_t param6_init[] = {4}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roi, param, param1, param2, param3, param4, param5, param6, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_quant8(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type25(Type::TENSOR_QUANT8_ASYMM, {1, 4, 4, 1}, 0.25f, 128); OperandType type27(Type::TENSOR_QUANT16_ASYMM, {4, 4}, 0.125f, 0); OperandType type39(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.0625f, 128); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type25); auto roi = model->addOperand(&type27); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto param5 = model->addOperand(&type5); auto param6 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type39); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 4); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static int32_t param5_init[] = {4}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); static int32_t param6_init[] = {4}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roi, param, param1, param2, param3, param4, param5, param6, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_float16(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type28(Type::TENSOR_FLOAT16, {1, 4, 4, 1}); OperandType type30(Type::FLOAT16, {}); OperandType type31(Type::TENSOR_FLOAT16, {4, 4}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type40(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto in = model->addOperand(&type28); auto roi = model->addOperand(&type31); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type30); auto param4 = model->addOperand(&type30); auto param5 = model->addOperand(&type5); auto param6 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type40); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 4); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static _Float16 param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(_Float16) * 1); static _Float16 param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1); static int32_t param5_init[] = {4}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); static int32_t param6_init[] = {4}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roi, param, param1, param2, param3, param4, param5, param6, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type32(Type::TENSOR_FLOAT32, {1, 1, 4, 4}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type32); auto roi = model->addOperand(&type2); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto param5 = model->addOperand(&type5); auto param6 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type38); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 4); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static int32_t param5_init[] = {4}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); static int32_t param6_init[] = {4}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roi, param, param1, param2, param3, param4, param5, param6, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_relaxed(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type32(Type::TENSOR_FLOAT32, {1, 1, 4, 4}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type32); auto roi = model->addOperand(&type2); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto param5 = model->addOperand(&type5); auto param6 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type38); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 4); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static int32_t param5_init[] = {4}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); static int32_t param6_init[] = {4}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roi, param, param1, param2, param3, param4, param5, param6, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_quant8(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type27(Type::TENSOR_QUANT16_ASYMM, {4, 4}, 0.125f, 0); OperandType type34(Type::TENSOR_QUANT8_ASYMM, {1, 1, 4, 4}, 0.25f, 128); OperandType type39(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.0625f, 128); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type34); auto roi = model->addOperand(&type27); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto param5 = model->addOperand(&type5); auto param6 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type39); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 4); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static int32_t param5_init[] = {4}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); static int32_t param6_init[] = {4}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roi, param, param1, param2, param3, param4, param5, param6, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_float16(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type30(Type::FLOAT16, {}); OperandType type31(Type::TENSOR_FLOAT16, {4, 4}); OperandType type36(Type::TENSOR_FLOAT16, {1, 1, 4, 4}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type40(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto in = model->addOperand(&type36); auto roi = model->addOperand(&type31); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type30); auto param4 = model->addOperand(&type30); auto param5 = model->addOperand(&type5); auto param6 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type40); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 4); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static _Float16 param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(_Float16) * 1); static _Float16 param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1); static int32_t param5_init[] = {4}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1); static int32_t param6_init[] = {4}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in, roi, param, param1, param2, param3, param4, param5, param6, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type7(Type::TENSOR_FLOAT32, {4, 4, 8, 2}); OperandType type8(Type::TENSOR_FLOAT32, {4, 2, 3, 2}); // Phase 1, operands auto in1 = model->addOperand(&type7); auto roi1 = model->addOperand(&type2); auto param7 = model->addOperand(&type4); auto param8 = model->addOperand(&type5); auto param9 = model->addOperand(&type5); auto param10 = model->addOperand(&type6); auto param11 = model->addOperand(&type6); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type8); // Phase 2, operations static int32_t param7_init[] = {0, 0, 3, 3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 4); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {3}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static float param10_init[] = {4.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static float param11_init[] = {4.0f}; model->setOperandValue(param11, param11_init, sizeof(float) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in1, roi1, param7, param8, param9, param10, param11, param12, param13, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_nhwc_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_relaxed_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type7(Type::TENSOR_FLOAT32, {4, 4, 8, 2}); OperandType type8(Type::TENSOR_FLOAT32, {4, 2, 3, 2}); // Phase 1, operands auto in1 = model->addOperand(&type7); auto roi1 = model->addOperand(&type2); auto param7 = model->addOperand(&type4); auto param8 = model->addOperand(&type5); auto param9 = model->addOperand(&type5); auto param10 = model->addOperand(&type6); auto param11 = model->addOperand(&type6); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type8); // Phase 2, operations static int32_t param7_init[] = {0, 0, 3, 3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 4); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {3}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static float param10_init[] = {4.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static float param11_init[] = {4.0f}; model->setOperandValue(param11, param11_init, sizeof(float) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in1, roi1, param7, param8, param9, param10, param11, param12, param13, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nhwc_relaxed_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_quant8_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type27(Type::TENSOR_QUANT16_ASYMM, {4, 4}, 0.125f, 0); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type41(Type::TENSOR_QUANT8_ASYMM, {4, 4, 8, 2}, 0.04f, 0); OperandType type42(Type::TENSOR_QUANT8_ASYMM, {4, 2, 3, 2}, 0.03125f, 10); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type41); auto roi1 = model->addOperand(&type27); auto param7 = model->addOperand(&type4); auto param8 = model->addOperand(&type5); auto param9 = model->addOperand(&type5); auto param10 = model->addOperand(&type6); auto param11 = model->addOperand(&type6); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type42); // Phase 2, operations static int32_t param7_init[] = {0, 0, 3, 3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 4); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {3}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static float param10_init[] = {4.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static float param11_init[] = {4.0f}; model->setOperandValue(param11, param11_init, sizeof(float) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in1, roi1, param7, param8, param9, param10, param11, param12, param13, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_nhwc_quant8_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_float16_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type30(Type::FLOAT16, {}); OperandType type31(Type::TENSOR_FLOAT16, {4, 4}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type43(Type::TENSOR_FLOAT16, {4, 4, 8, 2}); OperandType type44(Type::TENSOR_FLOAT16, {4, 2, 3, 2}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type43); auto roi1 = model->addOperand(&type31); auto param7 = model->addOperand(&type4); auto param8 = model->addOperand(&type5); auto param9 = model->addOperand(&type5); auto param10 = model->addOperand(&type30); auto param11 = model->addOperand(&type30); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type44); // Phase 2, operations static int32_t param7_init[] = {0, 0, 3, 3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 4); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {3}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static _Float16 param10_init[] = {4.0f}; model->setOperandValue(param10, param10_init, sizeof(_Float16) * 1); static _Float16 param11_init[] = {4.0f}; model->setOperandValue(param11, param11_init, sizeof(_Float16) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in1, roi1, param7, param8, param9, param10, param11, param12, param13, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_nhwc_float16_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type45(Type::TENSOR_FLOAT32, {4, 2, 4, 8}); OperandType type46(Type::TENSOR_FLOAT32, {4, 2, 2, 3}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type45); auto roi1 = model->addOperand(&type2); auto param7 = model->addOperand(&type4); auto param8 = model->addOperand(&type5); auto param9 = model->addOperand(&type5); auto param10 = model->addOperand(&type6); auto param11 = model->addOperand(&type6); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type46); // Phase 2, operations static int32_t param7_init[] = {0, 0, 3, 3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 4); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {3}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static float param10_init[] = {4.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static float param11_init[] = {4.0f}; model->setOperandValue(param11, param11_init, sizeof(float) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in1, roi1, param7, param8, param9, param10, param11, param12, param13, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_nchw_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_relaxed_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type45(Type::TENSOR_FLOAT32, {4, 2, 4, 8}); OperandType type46(Type::TENSOR_FLOAT32, {4, 2, 2, 3}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type45); auto roi1 = model->addOperand(&type2); auto param7 = model->addOperand(&type4); auto param8 = model->addOperand(&type5); auto param9 = model->addOperand(&type5); auto param10 = model->addOperand(&type6); auto param11 = model->addOperand(&type6); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type46); // Phase 2, operations static int32_t param7_init[] = {0, 0, 3, 3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 4); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {3}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static float param10_init[] = {4.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static float param11_init[] = {4.0f}; model->setOperandValue(param11, param11_init, sizeof(float) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in1, roi1, param7, param8, param9, param10, param11, param12, param13, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nchw_relaxed_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_quant8_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type27(Type::TENSOR_QUANT16_ASYMM, {4, 4}, 0.125f, 0); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type47(Type::TENSOR_QUANT8_ASYMM, {4, 2, 4, 8}, 0.04f, 0); OperandType type48(Type::TENSOR_QUANT8_ASYMM, {4, 2, 2, 3}, 0.03125f, 10); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type47); auto roi1 = model->addOperand(&type27); auto param7 = model->addOperand(&type4); auto param8 = model->addOperand(&type5); auto param9 = model->addOperand(&type5); auto param10 = model->addOperand(&type6); auto param11 = model->addOperand(&type6); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type48); // Phase 2, operations static int32_t param7_init[] = {0, 0, 3, 3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 4); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {3}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static float param10_init[] = {4.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static float param11_init[] = {4.0f}; model->setOperandValue(param11, param11_init, sizeof(float) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in1, roi1, param7, param8, param9, param10, param11, param12, param13, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_nchw_quant8_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_float16_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type30(Type::FLOAT16, {}); OperandType type31(Type::TENSOR_FLOAT16, {4, 4}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type49(Type::TENSOR_FLOAT16, {4, 2, 4, 8}); OperandType type5(Type::INT32, {}); OperandType type50(Type::TENSOR_FLOAT16, {4, 2, 2, 3}); // Phase 1, operands auto in1 = model->addOperand(&type49); auto roi1 = model->addOperand(&type31); auto param7 = model->addOperand(&type4); auto param8 = model->addOperand(&type5); auto param9 = model->addOperand(&type5); auto param10 = model->addOperand(&type30); auto param11 = model->addOperand(&type30); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type50); // Phase 2, operations static int32_t param7_init[] = {0, 0, 3, 3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 4); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {3}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static _Float16 param10_init[] = {4.0f}; model->setOperandValue(param10, param10_init, sizeof(_Float16) * 1); static _Float16 param11_init[] = {4.0f}; model->setOperandValue(param11, param11_init, sizeof(_Float16) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in1, roi1, param7, param8, param9, param10, param11, param12, param13, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_nchw_float16_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type7(Type::TENSOR_FLOAT32, {4, 4, 8, 2}); // Phase 1, operands auto in1 = model->addOperand(&type7); auto roi1 = model->addOperand(&type2); auto param7 = model->addOperand(&type4); auto param8 = model->addOperand(&type5); auto param9 = model->addOperand(&type5); auto param10 = model->addOperand(&type6); auto param11 = model->addOperand(&type6); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type38); // Phase 2, operations static int32_t param7_init[] = {0, 0, 3, 3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 4); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {3}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static float param10_init[] = {4.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static float param11_init[] = {4.0f}; model->setOperandValue(param11, param11_init, sizeof(float) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in1, roi1, param7, param8, param9, param10, param11, param12, param13, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_relaxed_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type7(Type::TENSOR_FLOAT32, {4, 4, 8, 2}); // Phase 1, operands auto in1 = model->addOperand(&type7); auto roi1 = model->addOperand(&type2); auto param7 = model->addOperand(&type4); auto param8 = model->addOperand(&type5); auto param9 = model->addOperand(&type5); auto param10 = model->addOperand(&type6); auto param11 = model->addOperand(&type6); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type38); // Phase 2, operations static int32_t param7_init[] = {0, 0, 3, 3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 4); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {3}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static float param10_init[] = {4.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static float param11_init[] = {4.0f}; model->setOperandValue(param11, param11_init, sizeof(float) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in1, roi1, param7, param8, param9, param10, param11, param12, param13, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_relaxed_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_quant8_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type27(Type::TENSOR_QUANT16_ASYMM, {4, 4}, 0.125f, 0); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type41(Type::TENSOR_QUANT8_ASYMM, {4, 4, 8, 2}, 0.04f, 0); OperandType type5(Type::INT32, {}); OperandType type51(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.03125f, 10); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type41); auto roi1 = model->addOperand(&type27); auto param7 = model->addOperand(&type4); auto param8 = model->addOperand(&type5); auto param9 = model->addOperand(&type5); auto param10 = model->addOperand(&type6); auto param11 = model->addOperand(&type6); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type51); // Phase 2, operations static int32_t param7_init[] = {0, 0, 3, 3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 4); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {3}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static float param10_init[] = {4.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static float param11_init[] = {4.0f}; model->setOperandValue(param11, param11_init, sizeof(float) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in1, roi1, param7, param8, param9, param10, param11, param12, param13, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_quant8_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_float16_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type30(Type::FLOAT16, {}); OperandType type31(Type::TENSOR_FLOAT16, {4, 4}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type40(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type43(Type::TENSOR_FLOAT16, {4, 4, 8, 2}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type43); auto roi1 = model->addOperand(&type31); auto param7 = model->addOperand(&type4); auto param8 = model->addOperand(&type5); auto param9 = model->addOperand(&type5); auto param10 = model->addOperand(&type30); auto param11 = model->addOperand(&type30); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type40); // Phase 2, operations static int32_t param7_init[] = {0, 0, 3, 3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 4); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {3}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static _Float16 param10_init[] = {4.0f}; model->setOperandValue(param10, param10_init, sizeof(_Float16) * 1); static _Float16 param11_init[] = {4.0f}; model->setOperandValue(param11, param11_init, sizeof(_Float16) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in1, roi1, param7, param8, param9, param10, param11, param12, param13, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_float16_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type45(Type::TENSOR_FLOAT32, {4, 2, 4, 8}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type45); auto roi1 = model->addOperand(&type2); auto param7 = model->addOperand(&type4); auto param8 = model->addOperand(&type5); auto param9 = model->addOperand(&type5); auto param10 = model->addOperand(&type6); auto param11 = model->addOperand(&type6); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type38); // Phase 2, operations static int32_t param7_init[] = {0, 0, 3, 3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 4); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {3}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static float param10_init[] = {4.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static float param11_init[] = {4.0f}; model->setOperandValue(param11, param11_init, sizeof(float) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in1, roi1, param7, param8, param9, param10, param11, param12, param13, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_relaxed_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type45(Type::TENSOR_FLOAT32, {4, 2, 4, 8}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type45); auto roi1 = model->addOperand(&type2); auto param7 = model->addOperand(&type4); auto param8 = model->addOperand(&type5); auto param9 = model->addOperand(&type5); auto param10 = model->addOperand(&type6); auto param11 = model->addOperand(&type6); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type38); // Phase 2, operations static int32_t param7_init[] = {0, 0, 3, 3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 4); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {3}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static float param10_init[] = {4.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static float param11_init[] = {4.0f}; model->setOperandValue(param11, param11_init, sizeof(float) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in1, roi1, param7, param8, param9, param10, param11, param12, param13, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_relaxed_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_quant8_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type27(Type::TENSOR_QUANT16_ASYMM, {4, 4}, 0.125f, 0); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type47(Type::TENSOR_QUANT8_ASYMM, {4, 2, 4, 8}, 0.04f, 0); OperandType type5(Type::INT32, {}); OperandType type51(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.03125f, 10); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type47); auto roi1 = model->addOperand(&type27); auto param7 = model->addOperand(&type4); auto param8 = model->addOperand(&type5); auto param9 = model->addOperand(&type5); auto param10 = model->addOperand(&type6); auto param11 = model->addOperand(&type6); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type51); // Phase 2, operations static int32_t param7_init[] = {0, 0, 3, 3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 4); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {3}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static float param10_init[] = {4.0f}; model->setOperandValue(param10, param10_init, sizeof(float) * 1); static float param11_init[] = {4.0f}; model->setOperandValue(param11, param11_init, sizeof(float) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in1, roi1, param7, param8, param9, param10, param11, param12, param13, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_quant8_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_float16_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type30(Type::FLOAT16, {}); OperandType type31(Type::TENSOR_FLOAT16, {4, 4}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type40(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type49(Type::TENSOR_FLOAT16, {4, 2, 4, 8}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type49); auto roi1 = model->addOperand(&type31); auto param7 = model->addOperand(&type4); auto param8 = model->addOperand(&type5); auto param9 = model->addOperand(&type5); auto param10 = model->addOperand(&type30); auto param11 = model->addOperand(&type30); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type40); // Phase 2, operations static int32_t param7_init[] = {0, 0, 3, 3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 4); static int32_t param8_init[] = {2}; model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1); static int32_t param9_init[] = {3}; model->setOperandValue(param9, param9_init, sizeof(int32_t) * 1); static _Float16 param10_init[] = {4.0f}; model->setOperandValue(param10, param10_init, sizeof(_Float16) * 1); static _Float16 param11_init[] = {4.0f}; model->setOperandValue(param11, param11_init, sizeof(_Float16) * 1); static int32_t param12_init[] = {4}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static int32_t param13_init[] = {4}; model->setOperandValue(param13, param13_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in1, roi1, param7, param8, param9, param10, param11, param12, param13, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_float16_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type8(Type::TENSOR_FLOAT32, {4, 2, 3, 2}); OperandType type9(Type::TENSOR_FLOAT32, {2, 4, 8, 2}); // Phase 1, operands auto in2 = model->addOperand(&type9); auto roi2 = model->addOperand(&type2); auto param14 = model->addOperand(&type4); auto param15 = model->addOperand(&type5); auto param16 = model->addOperand(&type5); auto param17 = model->addOperand(&type6); auto param18 = model->addOperand(&type6); auto param19 = model->addOperand(&type5); auto param20 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type8); // Phase 2, operations static int32_t param14_init[] = {0, 0, 1, 1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 4); static int32_t param15_init[] = {2}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {3}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static float param17_init[] = {4.0f}; model->setOperandValue(param17, param17_init, sizeof(float) * 1); static float param18_init[] = {4.0f}; model->setOperandValue(param18, param18_init, sizeof(float) * 1); static int32_t param19_init[] = {0}; model->setOperandValue(param19, param19_init, sizeof(int32_t) * 1); static int32_t param20_init[] = {0}; model->setOperandValue(param20, param20_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in2, roi2, param14, param15, param16, param17, param18, param19, param20, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_nhwc_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_relaxed_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type8(Type::TENSOR_FLOAT32, {4, 2, 3, 2}); OperandType type9(Type::TENSOR_FLOAT32, {2, 4, 8, 2}); // Phase 1, operands auto in2 = model->addOperand(&type9); auto roi2 = model->addOperand(&type2); auto param14 = model->addOperand(&type4); auto param15 = model->addOperand(&type5); auto param16 = model->addOperand(&type5); auto param17 = model->addOperand(&type6); auto param18 = model->addOperand(&type6); auto param19 = model->addOperand(&type5); auto param20 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type8); // Phase 2, operations static int32_t param14_init[] = {0, 0, 1, 1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 4); static int32_t param15_init[] = {2}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {3}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static float param17_init[] = {4.0f}; model->setOperandValue(param17, param17_init, sizeof(float) * 1); static float param18_init[] = {4.0f}; model->setOperandValue(param18, param18_init, sizeof(float) * 1); static int32_t param19_init[] = {0}; model->setOperandValue(param19, param19_init, sizeof(int32_t) * 1); static int32_t param20_init[] = {0}; model->setOperandValue(param20, param20_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in2, roi2, param14, param15, param16, param17, param18, param19, param20, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nhwc_relaxed_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_quant8_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type27(Type::TENSOR_QUANT16_ASYMM, {4, 4}, 0.125f, 0); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type42(Type::TENSOR_QUANT8_ASYMM, {4, 2, 3, 2}, 0.03125f, 10); OperandType type5(Type::INT32, {}); OperandType type52(Type::TENSOR_QUANT8_ASYMM, {2, 4, 8, 2}, 0.04f, 0); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type52); auto roi2 = model->addOperand(&type27); auto param14 = model->addOperand(&type4); auto param15 = model->addOperand(&type5); auto param16 = model->addOperand(&type5); auto param17 = model->addOperand(&type6); auto param18 = model->addOperand(&type6); auto param19 = model->addOperand(&type5); auto param20 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type42); // Phase 2, operations static int32_t param14_init[] = {0, 0, 1, 1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 4); static int32_t param15_init[] = {2}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {3}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static float param17_init[] = {4.0f}; model->setOperandValue(param17, param17_init, sizeof(float) * 1); static float param18_init[] = {4.0f}; model->setOperandValue(param18, param18_init, sizeof(float) * 1); static int32_t param19_init[] = {0}; model->setOperandValue(param19, param19_init, sizeof(int32_t) * 1); static int32_t param20_init[] = {0}; model->setOperandValue(param20, param20_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in2, roi2, param14, param15, param16, param17, param18, param19, param20, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_nhwc_quant8_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_float16_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type30(Type::FLOAT16, {}); OperandType type31(Type::TENSOR_FLOAT16, {4, 4}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type44(Type::TENSOR_FLOAT16, {4, 2, 3, 2}); OperandType type5(Type::INT32, {}); OperandType type53(Type::TENSOR_FLOAT16, {2, 4, 8, 2}); // Phase 1, operands auto in2 = model->addOperand(&type53); auto roi2 = model->addOperand(&type31); auto param14 = model->addOperand(&type4); auto param15 = model->addOperand(&type5); auto param16 = model->addOperand(&type5); auto param17 = model->addOperand(&type30); auto param18 = model->addOperand(&type30); auto param19 = model->addOperand(&type5); auto param20 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type44); // Phase 2, operations static int32_t param14_init[] = {0, 0, 1, 1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 4); static int32_t param15_init[] = {2}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {3}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static _Float16 param17_init[] = {4.0f}; model->setOperandValue(param17, param17_init, sizeof(_Float16) * 1); static _Float16 param18_init[] = {4.0f}; model->setOperandValue(param18, param18_init, sizeof(_Float16) * 1); static int32_t param19_init[] = {0}; model->setOperandValue(param19, param19_init, sizeof(int32_t) * 1); static int32_t param20_init[] = {0}; model->setOperandValue(param20, param20_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in2, roi2, param14, param15, param16, param17, param18, param19, param20, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_nhwc_float16_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type46(Type::TENSOR_FLOAT32, {4, 2, 2, 3}); OperandType type5(Type::INT32, {}); OperandType type54(Type::TENSOR_FLOAT32, {2, 2, 4, 8}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type54); auto roi2 = model->addOperand(&type2); auto param14 = model->addOperand(&type4); auto param15 = model->addOperand(&type5); auto param16 = model->addOperand(&type5); auto param17 = model->addOperand(&type6); auto param18 = model->addOperand(&type6); auto param19 = model->addOperand(&type5); auto param20 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type46); // Phase 2, operations static int32_t param14_init[] = {0, 0, 1, 1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 4); static int32_t param15_init[] = {2}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {3}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static float param17_init[] = {4.0f}; model->setOperandValue(param17, param17_init, sizeof(float) * 1); static float param18_init[] = {4.0f}; model->setOperandValue(param18, param18_init, sizeof(float) * 1); static int32_t param19_init[] = {0}; model->setOperandValue(param19, param19_init, sizeof(int32_t) * 1); static int32_t param20_init[] = {0}; model->setOperandValue(param20, param20_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in2, roi2, param14, param15, param16, param17, param18, param19, param20, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_nchw_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_relaxed_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type46(Type::TENSOR_FLOAT32, {4, 2, 2, 3}); OperandType type5(Type::INT32, {}); OperandType type54(Type::TENSOR_FLOAT32, {2, 2, 4, 8}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type54); auto roi2 = model->addOperand(&type2); auto param14 = model->addOperand(&type4); auto param15 = model->addOperand(&type5); auto param16 = model->addOperand(&type5); auto param17 = model->addOperand(&type6); auto param18 = model->addOperand(&type6); auto param19 = model->addOperand(&type5); auto param20 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type46); // Phase 2, operations static int32_t param14_init[] = {0, 0, 1, 1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 4); static int32_t param15_init[] = {2}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {3}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static float param17_init[] = {4.0f}; model->setOperandValue(param17, param17_init, sizeof(float) * 1); static float param18_init[] = {4.0f}; model->setOperandValue(param18, param18_init, sizeof(float) * 1); static int32_t param19_init[] = {0}; model->setOperandValue(param19, param19_init, sizeof(int32_t) * 1); static int32_t param20_init[] = {0}; model->setOperandValue(param20, param20_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in2, roi2, param14, param15, param16, param17, param18, param19, param20, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nchw_relaxed_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_quant8_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type27(Type::TENSOR_QUANT16_ASYMM, {4, 4}, 0.125f, 0); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type48(Type::TENSOR_QUANT8_ASYMM, {4, 2, 2, 3}, 0.03125f, 10); OperandType type5(Type::INT32, {}); OperandType type55(Type::TENSOR_QUANT8_ASYMM, {2, 2, 4, 8}, 0.04f, 0); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type55); auto roi2 = model->addOperand(&type27); auto param14 = model->addOperand(&type4); auto param15 = model->addOperand(&type5); auto param16 = model->addOperand(&type5); auto param17 = model->addOperand(&type6); auto param18 = model->addOperand(&type6); auto param19 = model->addOperand(&type5); auto param20 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type48); // Phase 2, operations static int32_t param14_init[] = {0, 0, 1, 1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 4); static int32_t param15_init[] = {2}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {3}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static float param17_init[] = {4.0f}; model->setOperandValue(param17, param17_init, sizeof(float) * 1); static float param18_init[] = {4.0f}; model->setOperandValue(param18, param18_init, sizeof(float) * 1); static int32_t param19_init[] = {0}; model->setOperandValue(param19, param19_init, sizeof(int32_t) * 1); static int32_t param20_init[] = {0}; model->setOperandValue(param20, param20_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in2, roi2, param14, param15, param16, param17, param18, param19, param20, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_nchw_quant8_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_float16_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type30(Type::FLOAT16, {}); OperandType type31(Type::TENSOR_FLOAT16, {4, 4}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type50(Type::TENSOR_FLOAT16, {4, 2, 2, 3}); OperandType type56(Type::TENSOR_FLOAT16, {2, 2, 4, 8}); // Phase 1, operands auto in2 = model->addOperand(&type56); auto roi2 = model->addOperand(&type31); auto param14 = model->addOperand(&type4); auto param15 = model->addOperand(&type5); auto param16 = model->addOperand(&type5); auto param17 = model->addOperand(&type30); auto param18 = model->addOperand(&type30); auto param19 = model->addOperand(&type5); auto param20 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type50); // Phase 2, operations static int32_t param14_init[] = {0, 0, 1, 1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 4); static int32_t param15_init[] = {2}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {3}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static _Float16 param17_init[] = {4.0f}; model->setOperandValue(param17, param17_init, sizeof(_Float16) * 1); static _Float16 param18_init[] = {4.0f}; model->setOperandValue(param18, param18_init, sizeof(_Float16) * 1); static int32_t param19_init[] = {0}; model->setOperandValue(param19, param19_init, sizeof(int32_t) * 1); static int32_t param20_init[] = {0}; model->setOperandValue(param20, param20_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in2, roi2, param14, param15, param16, param17, param18, param19, param20, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_nchw_float16_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type9(Type::TENSOR_FLOAT32, {2, 4, 8, 2}); // Phase 1, operands auto in2 = model->addOperand(&type9); auto roi2 = model->addOperand(&type2); auto param14 = model->addOperand(&type4); auto param15 = model->addOperand(&type5); auto param16 = model->addOperand(&type5); auto param17 = model->addOperand(&type6); auto param18 = model->addOperand(&type6); auto param19 = model->addOperand(&type5); auto param20 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type38); // Phase 2, operations static int32_t param14_init[] = {0, 0, 1, 1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 4); static int32_t param15_init[] = {2}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {3}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static float param17_init[] = {4.0f}; model->setOperandValue(param17, param17_init, sizeof(float) * 1); static float param18_init[] = {4.0f}; model->setOperandValue(param18, param18_init, sizeof(float) * 1); static int32_t param19_init[] = {0}; model->setOperandValue(param19, param19_init, sizeof(int32_t) * 1); static int32_t param20_init[] = {0}; model->setOperandValue(param20, param20_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in2, roi2, param14, param15, param16, param17, param18, param19, param20, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_relaxed_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type9(Type::TENSOR_FLOAT32, {2, 4, 8, 2}); // Phase 1, operands auto in2 = model->addOperand(&type9); auto roi2 = model->addOperand(&type2); auto param14 = model->addOperand(&type4); auto param15 = model->addOperand(&type5); auto param16 = model->addOperand(&type5); auto param17 = model->addOperand(&type6); auto param18 = model->addOperand(&type6); auto param19 = model->addOperand(&type5); auto param20 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type38); // Phase 2, operations static int32_t param14_init[] = {0, 0, 1, 1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 4); static int32_t param15_init[] = {2}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {3}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static float param17_init[] = {4.0f}; model->setOperandValue(param17, param17_init, sizeof(float) * 1); static float param18_init[] = {4.0f}; model->setOperandValue(param18, param18_init, sizeof(float) * 1); static int32_t param19_init[] = {0}; model->setOperandValue(param19, param19_init, sizeof(int32_t) * 1); static int32_t param20_init[] = {0}; model->setOperandValue(param20, param20_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in2, roi2, param14, param15, param16, param17, param18, param19, param20, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_relaxed_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_quant8_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type27(Type::TENSOR_QUANT16_ASYMM, {4, 4}, 0.125f, 0); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type51(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.03125f, 10); OperandType type52(Type::TENSOR_QUANT8_ASYMM, {2, 4, 8, 2}, 0.04f, 0); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type52); auto roi2 = model->addOperand(&type27); auto param14 = model->addOperand(&type4); auto param15 = model->addOperand(&type5); auto param16 = model->addOperand(&type5); auto param17 = model->addOperand(&type6); auto param18 = model->addOperand(&type6); auto param19 = model->addOperand(&type5); auto param20 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type51); // Phase 2, operations static int32_t param14_init[] = {0, 0, 1, 1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 4); static int32_t param15_init[] = {2}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {3}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static float param17_init[] = {4.0f}; model->setOperandValue(param17, param17_init, sizeof(float) * 1); static float param18_init[] = {4.0f}; model->setOperandValue(param18, param18_init, sizeof(float) * 1); static int32_t param19_init[] = {0}; model->setOperandValue(param19, param19_init, sizeof(int32_t) * 1); static int32_t param20_init[] = {0}; model->setOperandValue(param20, param20_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in2, roi2, param14, param15, param16, param17, param18, param19, param20, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_quant8_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_float16_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type30(Type::FLOAT16, {}); OperandType type31(Type::TENSOR_FLOAT16, {4, 4}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type40(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type53(Type::TENSOR_FLOAT16, {2, 4, 8, 2}); // Phase 1, operands auto in2 = model->addOperand(&type53); auto roi2 = model->addOperand(&type31); auto param14 = model->addOperand(&type4); auto param15 = model->addOperand(&type5); auto param16 = model->addOperand(&type5); auto param17 = model->addOperand(&type30); auto param18 = model->addOperand(&type30); auto param19 = model->addOperand(&type5); auto param20 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type40); // Phase 2, operations static int32_t param14_init[] = {0, 0, 1, 1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 4); static int32_t param15_init[] = {2}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {3}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static _Float16 param17_init[] = {4.0f}; model->setOperandValue(param17, param17_init, sizeof(_Float16) * 1); static _Float16 param18_init[] = {4.0f}; model->setOperandValue(param18, param18_init, sizeof(_Float16) * 1); static int32_t param19_init[] = {0}; model->setOperandValue(param19, param19_init, sizeof(int32_t) * 1); static int32_t param20_init[] = {0}; model->setOperandValue(param20, param20_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in2, roi2, param14, param15, param16, param17, param18, param19, param20, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_float16_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type54(Type::TENSOR_FLOAT32, {2, 2, 4, 8}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type54); auto roi2 = model->addOperand(&type2); auto param14 = model->addOperand(&type4); auto param15 = model->addOperand(&type5); auto param16 = model->addOperand(&type5); auto param17 = model->addOperand(&type6); auto param18 = model->addOperand(&type6); auto param19 = model->addOperand(&type5); auto param20 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type38); // Phase 2, operations static int32_t param14_init[] = {0, 0, 1, 1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 4); static int32_t param15_init[] = {2}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {3}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static float param17_init[] = {4.0f}; model->setOperandValue(param17, param17_init, sizeof(float) * 1); static float param18_init[] = {4.0f}; model->setOperandValue(param18, param18_init, sizeof(float) * 1); static int32_t param19_init[] = {0}; model->setOperandValue(param19, param19_init, sizeof(int32_t) * 1); static int32_t param20_init[] = {0}; model->setOperandValue(param20, param20_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in2, roi2, param14, param15, param16, param17, param18, param19, param20, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_relaxed_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {4, 4}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type54(Type::TENSOR_FLOAT32, {2, 2, 4, 8}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type54); auto roi2 = model->addOperand(&type2); auto param14 = model->addOperand(&type4); auto param15 = model->addOperand(&type5); auto param16 = model->addOperand(&type5); auto param17 = model->addOperand(&type6); auto param18 = model->addOperand(&type6); auto param19 = model->addOperand(&type5); auto param20 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type38); // Phase 2, operations static int32_t param14_init[] = {0, 0, 1, 1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 4); static int32_t param15_init[] = {2}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {3}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static float param17_init[] = {4.0f}; model->setOperandValue(param17, param17_init, sizeof(float) * 1); static float param18_init[] = {4.0f}; model->setOperandValue(param18, param18_init, sizeof(float) * 1); static int32_t param19_init[] = {0}; model->setOperandValue(param19, param19_init, sizeof(int32_t) * 1); static int32_t param20_init[] = {0}; model->setOperandValue(param20, param20_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in2, roi2, param14, param15, param16, param17, param18, param19, param20, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_relaxed_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_quant8_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type27(Type::TENSOR_QUANT16_ASYMM, {4, 4}, 0.125f, 0); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type51(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.03125f, 10); OperandType type55(Type::TENSOR_QUANT8_ASYMM, {2, 2, 4, 8}, 0.04f, 0); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type55); auto roi2 = model->addOperand(&type27); auto param14 = model->addOperand(&type4); auto param15 = model->addOperand(&type5); auto param16 = model->addOperand(&type5); auto param17 = model->addOperand(&type6); auto param18 = model->addOperand(&type6); auto param19 = model->addOperand(&type5); auto param20 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type51); // Phase 2, operations static int32_t param14_init[] = {0, 0, 1, 1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 4); static int32_t param15_init[] = {2}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {3}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static float param17_init[] = {4.0f}; model->setOperandValue(param17, param17_init, sizeof(float) * 1); static float param18_init[] = {4.0f}; model->setOperandValue(param18, param18_init, sizeof(float) * 1); static int32_t param19_init[] = {0}; model->setOperandValue(param19, param19_init, sizeof(int32_t) * 1); static int32_t param20_init[] = {0}; model->setOperandValue(param20, param20_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in2, roi2, param14, param15, param16, param17, param18, param19, param20, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_quant8_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_float16_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type30(Type::FLOAT16, {}); OperandType type31(Type::TENSOR_FLOAT16, {4, 4}); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type40(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type56(Type::TENSOR_FLOAT16, {2, 2, 4, 8}); // Phase 1, operands auto in2 = model->addOperand(&type56); auto roi2 = model->addOperand(&type31); auto param14 = model->addOperand(&type4); auto param15 = model->addOperand(&type5); auto param16 = model->addOperand(&type5); auto param17 = model->addOperand(&type30); auto param18 = model->addOperand(&type30); auto param19 = model->addOperand(&type5); auto param20 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type40); // Phase 2, operations static int32_t param14_init[] = {0, 0, 1, 1}; model->setOperandValue(param14, param14_init, sizeof(int32_t) * 4); static int32_t param15_init[] = {2}; model->setOperandValue(param15, param15_init, sizeof(int32_t) * 1); static int32_t param16_init[] = {3}; model->setOperandValue(param16, param16_init, sizeof(int32_t) * 1); static _Float16 param17_init[] = {4.0f}; model->setOperandValue(param17, param17_init, sizeof(_Float16) * 1); static _Float16 param18_init[] = {4.0f}; model->setOperandValue(param18, param18_init, sizeof(_Float16) * 1); static int32_t param19_init[] = {0}; model->setOperandValue(param19, param19_init, sizeof(int32_t) * 1); static int32_t param20_init[] = {0}; model->setOperandValue(param20, param20_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in2, roi2, param14, param15, param16, param17, param18, param19, param20, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_float16_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_4(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_FLOAT32, {4, 4, 4, 1}); OperandType type11(Type::TENSOR_FLOAT32, {5, 4}); OperandType type12(Type::TENSOR_FLOAT32, {5, 2, 2, 1}); OperandType type13(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in3 = model->addOperand(&type10); auto roi3 = model->addOperand(&type11); auto param21 = model->addOperand(&type13); auto param22 = model->addOperand(&type5); auto param23 = model->addOperand(&type5); auto param24 = model->addOperand(&type6); auto param25 = model->addOperand(&type6); auto param26 = model->addOperand(&type5); auto param27 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out3 = model->addOperand(&type12); // Phase 2, operations static int32_t param21_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param21, param21_init, sizeof(int32_t) * 5); static int32_t param22_init[] = {2}; model->setOperandValue(param22, param22_init, sizeof(int32_t) * 1); static int32_t param23_init[] = {2}; model->setOperandValue(param23, param23_init, sizeof(int32_t) * 1); static float param24_init[] = {2.0f}; model->setOperandValue(param24, param24_init, sizeof(float) * 1); static float param25_init[] = {1.0f}; model->setOperandValue(param25, param25_init, sizeof(float) * 1); static int32_t param26_init[] = {0}; model->setOperandValue(param26, param26_init, sizeof(int32_t) * 1); static int32_t param27_init[] = {4}; model->setOperandValue(param27, param27_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in3, roi3, param21, param22, param23, param24, param25, param26, param27, layout}, {out3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in3, roi3}, {out3}); assert(model->isValid()); } inline bool is_ignored_nhwc_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_relaxed_4(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_FLOAT32, {4, 4, 4, 1}); OperandType type11(Type::TENSOR_FLOAT32, {5, 4}); OperandType type12(Type::TENSOR_FLOAT32, {5, 2, 2, 1}); OperandType type13(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in3 = model->addOperand(&type10); auto roi3 = model->addOperand(&type11); auto param21 = model->addOperand(&type13); auto param22 = model->addOperand(&type5); auto param23 = model->addOperand(&type5); auto param24 = model->addOperand(&type6); auto param25 = model->addOperand(&type6); auto param26 = model->addOperand(&type5); auto param27 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out3 = model->addOperand(&type12); // Phase 2, operations static int32_t param21_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param21, param21_init, sizeof(int32_t) * 5); static int32_t param22_init[] = {2}; model->setOperandValue(param22, param22_init, sizeof(int32_t) * 1); static int32_t param23_init[] = {2}; model->setOperandValue(param23, param23_init, sizeof(int32_t) * 1); static float param24_init[] = {2.0f}; model->setOperandValue(param24, param24_init, sizeof(float) * 1); static float param25_init[] = {1.0f}; model->setOperandValue(param25, param25_init, sizeof(float) * 1); static int32_t param26_init[] = {0}; model->setOperandValue(param26, param26_init, sizeof(int32_t) * 1); static int32_t param27_init[] = {4}; model->setOperandValue(param27, param27_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in3, roi3, param21, param22, param23, param24, param25, param26, param27, layout}, {out3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in3, roi3}, {out3}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nhwc_relaxed_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_quant8_4(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type13(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type57(Type::TENSOR_QUANT8_ASYMM, {4, 4, 4, 1}, 0.25f, 128); OperandType type58(Type::TENSOR_QUANT8_ASYMM, {5, 2, 2, 1}, 0.0625f, 128); OperandType type59(Type::TENSOR_QUANT16_ASYMM, {5, 4}, 0.125f, 0); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in3 = model->addOperand(&type57); auto roi3 = model->addOperand(&type59); auto param21 = model->addOperand(&type13); auto param22 = model->addOperand(&type5); auto param23 = model->addOperand(&type5); auto param24 = model->addOperand(&type6); auto param25 = model->addOperand(&type6); auto param26 = model->addOperand(&type5); auto param27 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out3 = model->addOperand(&type58); // Phase 2, operations static int32_t param21_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param21, param21_init, sizeof(int32_t) * 5); static int32_t param22_init[] = {2}; model->setOperandValue(param22, param22_init, sizeof(int32_t) * 1); static int32_t param23_init[] = {2}; model->setOperandValue(param23, param23_init, sizeof(int32_t) * 1); static float param24_init[] = {2.0f}; model->setOperandValue(param24, param24_init, sizeof(float) * 1); static float param25_init[] = {1.0f}; model->setOperandValue(param25, param25_init, sizeof(float) * 1); static int32_t param26_init[] = {0}; model->setOperandValue(param26, param26_init, sizeof(int32_t) * 1); static int32_t param27_init[] = {4}; model->setOperandValue(param27, param27_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in3, roi3, param21, param22, param23, param24, param25, param26, param27, layout}, {out3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in3, roi3}, {out3}); assert(model->isValid()); } inline bool is_ignored_nhwc_quant8_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_float16_4(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type13(Type::TENSOR_INT32, {5}); OperandType type30(Type::FLOAT16, {}); OperandType type5(Type::INT32, {}); OperandType type60(Type::TENSOR_FLOAT16, {4, 4, 4, 1}); OperandType type61(Type::TENSOR_FLOAT16, {5, 2, 2, 1}); OperandType type62(Type::TENSOR_FLOAT16, {5, 4}); // Phase 1, operands auto in3 = model->addOperand(&type60); auto roi3 = model->addOperand(&type62); auto param21 = model->addOperand(&type13); auto param22 = model->addOperand(&type5); auto param23 = model->addOperand(&type5); auto param24 = model->addOperand(&type30); auto param25 = model->addOperand(&type30); auto param26 = model->addOperand(&type5); auto param27 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out3 = model->addOperand(&type61); // Phase 2, operations static int32_t param21_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param21, param21_init, sizeof(int32_t) * 5); static int32_t param22_init[] = {2}; model->setOperandValue(param22, param22_init, sizeof(int32_t) * 1); static int32_t param23_init[] = {2}; model->setOperandValue(param23, param23_init, sizeof(int32_t) * 1); static _Float16 param24_init[] = {2.0f}; model->setOperandValue(param24, param24_init, sizeof(_Float16) * 1); static _Float16 param25_init[] = {1.0f}; model->setOperandValue(param25, param25_init, sizeof(_Float16) * 1); static int32_t param26_init[] = {0}; model->setOperandValue(param26, param26_init, sizeof(int32_t) * 1); static int32_t param27_init[] = {4}; model->setOperandValue(param27, param27_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in3, roi3, param21, param22, param23, param24, param25, param26, param27, layout}, {out3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in3, roi3}, {out3}); assert(model->isValid()); } inline bool is_ignored_nhwc_float16_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_4(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type11(Type::TENSOR_FLOAT32, {5, 4}); OperandType type13(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type63(Type::TENSOR_FLOAT32, {4, 1, 4, 4}); OperandType type64(Type::TENSOR_FLOAT32, {5, 1, 2, 2}); // Phase 1, operands auto in3 = model->addOperand(&type63); auto roi3 = model->addOperand(&type11); auto param21 = model->addOperand(&type13); auto param22 = model->addOperand(&type5); auto param23 = model->addOperand(&type5); auto param24 = model->addOperand(&type6); auto param25 = model->addOperand(&type6); auto param26 = model->addOperand(&type5); auto param27 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out3 = model->addOperand(&type64); // Phase 2, operations static int32_t param21_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param21, param21_init, sizeof(int32_t) * 5); static int32_t param22_init[] = {2}; model->setOperandValue(param22, param22_init, sizeof(int32_t) * 1); static int32_t param23_init[] = {2}; model->setOperandValue(param23, param23_init, sizeof(int32_t) * 1); static float param24_init[] = {2.0f}; model->setOperandValue(param24, param24_init, sizeof(float) * 1); static float param25_init[] = {1.0f}; model->setOperandValue(param25, param25_init, sizeof(float) * 1); static int32_t param26_init[] = {0}; model->setOperandValue(param26, param26_init, sizeof(int32_t) * 1); static int32_t param27_init[] = {4}; model->setOperandValue(param27, param27_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in3, roi3, param21, param22, param23, param24, param25, param26, param27, layout}, {out3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in3, roi3}, {out3}); assert(model->isValid()); } inline bool is_ignored_nchw_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_relaxed_4(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type11(Type::TENSOR_FLOAT32, {5, 4}); OperandType type13(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type63(Type::TENSOR_FLOAT32, {4, 1, 4, 4}); OperandType type64(Type::TENSOR_FLOAT32, {5, 1, 2, 2}); // Phase 1, operands auto in3 = model->addOperand(&type63); auto roi3 = model->addOperand(&type11); auto param21 = model->addOperand(&type13); auto param22 = model->addOperand(&type5); auto param23 = model->addOperand(&type5); auto param24 = model->addOperand(&type6); auto param25 = model->addOperand(&type6); auto param26 = model->addOperand(&type5); auto param27 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out3 = model->addOperand(&type64); // Phase 2, operations static int32_t param21_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param21, param21_init, sizeof(int32_t) * 5); static int32_t param22_init[] = {2}; model->setOperandValue(param22, param22_init, sizeof(int32_t) * 1); static int32_t param23_init[] = {2}; model->setOperandValue(param23, param23_init, sizeof(int32_t) * 1); static float param24_init[] = {2.0f}; model->setOperandValue(param24, param24_init, sizeof(float) * 1); static float param25_init[] = {1.0f}; model->setOperandValue(param25, param25_init, sizeof(float) * 1); static int32_t param26_init[] = {0}; model->setOperandValue(param26, param26_init, sizeof(int32_t) * 1); static int32_t param27_init[] = {4}; model->setOperandValue(param27, param27_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in3, roi3, param21, param22, param23, param24, param25, param26, param27, layout}, {out3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in3, roi3}, {out3}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nchw_relaxed_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_quant8_4(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type13(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type59(Type::TENSOR_QUANT16_ASYMM, {5, 4}, 0.125f, 0); OperandType type6(Type::FLOAT32, {}); OperandType type65(Type::TENSOR_QUANT8_ASYMM, {4, 1, 4, 4}, 0.25f, 128); OperandType type66(Type::TENSOR_QUANT8_ASYMM, {5, 1, 2, 2}, 0.0625f, 128); // Phase 1, operands auto in3 = model->addOperand(&type65); auto roi3 = model->addOperand(&type59); auto param21 = model->addOperand(&type13); auto param22 = model->addOperand(&type5); auto param23 = model->addOperand(&type5); auto param24 = model->addOperand(&type6); auto param25 = model->addOperand(&type6); auto param26 = model->addOperand(&type5); auto param27 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out3 = model->addOperand(&type66); // Phase 2, operations static int32_t param21_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param21, param21_init, sizeof(int32_t) * 5); static int32_t param22_init[] = {2}; model->setOperandValue(param22, param22_init, sizeof(int32_t) * 1); static int32_t param23_init[] = {2}; model->setOperandValue(param23, param23_init, sizeof(int32_t) * 1); static float param24_init[] = {2.0f}; model->setOperandValue(param24, param24_init, sizeof(float) * 1); static float param25_init[] = {1.0f}; model->setOperandValue(param25, param25_init, sizeof(float) * 1); static int32_t param26_init[] = {0}; model->setOperandValue(param26, param26_init, sizeof(int32_t) * 1); static int32_t param27_init[] = {4}; model->setOperandValue(param27, param27_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in3, roi3, param21, param22, param23, param24, param25, param26, param27, layout}, {out3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in3, roi3}, {out3}); assert(model->isValid()); } inline bool is_ignored_nchw_quant8_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_float16_4(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type13(Type::TENSOR_INT32, {5}); OperandType type30(Type::FLOAT16, {}); OperandType type5(Type::INT32, {}); OperandType type62(Type::TENSOR_FLOAT16, {5, 4}); OperandType type67(Type::TENSOR_FLOAT16, {4, 1, 4, 4}); OperandType type68(Type::TENSOR_FLOAT16, {5, 1, 2, 2}); // Phase 1, operands auto in3 = model->addOperand(&type67); auto roi3 = model->addOperand(&type62); auto param21 = model->addOperand(&type13); auto param22 = model->addOperand(&type5); auto param23 = model->addOperand(&type5); auto param24 = model->addOperand(&type30); auto param25 = model->addOperand(&type30); auto param26 = model->addOperand(&type5); auto param27 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out3 = model->addOperand(&type68); // Phase 2, operations static int32_t param21_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param21, param21_init, sizeof(int32_t) * 5); static int32_t param22_init[] = {2}; model->setOperandValue(param22, param22_init, sizeof(int32_t) * 1); static int32_t param23_init[] = {2}; model->setOperandValue(param23, param23_init, sizeof(int32_t) * 1); static _Float16 param24_init[] = {2.0f}; model->setOperandValue(param24, param24_init, sizeof(_Float16) * 1); static _Float16 param25_init[] = {1.0f}; model->setOperandValue(param25, param25_init, sizeof(_Float16) * 1); static int32_t param26_init[] = {0}; model->setOperandValue(param26, param26_init, sizeof(int32_t) * 1); static int32_t param27_init[] = {4}; model->setOperandValue(param27, param27_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in3, roi3, param21, param22, param23, param24, param25, param26, param27, layout}, {out3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in3, roi3}, {out3}); assert(model->isValid()); } inline bool is_ignored_nchw_float16_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_4(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_FLOAT32, {4, 4, 4, 1}); OperandType type11(Type::TENSOR_FLOAT32, {5, 4}); OperandType type13(Type::TENSOR_INT32, {5}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in3 = model->addOperand(&type10); auto roi3 = model->addOperand(&type11); auto param21 = model->addOperand(&type13); auto param22 = model->addOperand(&type5); auto param23 = model->addOperand(&type5); auto param24 = model->addOperand(&type6); auto param25 = model->addOperand(&type6); auto param26 = model->addOperand(&type5); auto param27 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out3 = model->addOperand(&type38); // Phase 2, operations static int32_t param21_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param21, param21_init, sizeof(int32_t) * 5); static int32_t param22_init[] = {2}; model->setOperandValue(param22, param22_init, sizeof(int32_t) * 1); static int32_t param23_init[] = {2}; model->setOperandValue(param23, param23_init, sizeof(int32_t) * 1); static float param24_init[] = {2.0f}; model->setOperandValue(param24, param24_init, sizeof(float) * 1); static float param25_init[] = {1.0f}; model->setOperandValue(param25, param25_init, sizeof(float) * 1); static int32_t param26_init[] = {0}; model->setOperandValue(param26, param26_init, sizeof(int32_t) * 1); static int32_t param27_init[] = {4}; model->setOperandValue(param27, param27_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in3, roi3, param21, param22, param23, param24, param25, param26, param27, layout}, {out3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in3, roi3}, {out3}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_relaxed_4(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_FLOAT32, {4, 4, 4, 1}); OperandType type11(Type::TENSOR_FLOAT32, {5, 4}); OperandType type13(Type::TENSOR_INT32, {5}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in3 = model->addOperand(&type10); auto roi3 = model->addOperand(&type11); auto param21 = model->addOperand(&type13); auto param22 = model->addOperand(&type5); auto param23 = model->addOperand(&type5); auto param24 = model->addOperand(&type6); auto param25 = model->addOperand(&type6); auto param26 = model->addOperand(&type5); auto param27 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out3 = model->addOperand(&type38); // Phase 2, operations static int32_t param21_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param21, param21_init, sizeof(int32_t) * 5); static int32_t param22_init[] = {2}; model->setOperandValue(param22, param22_init, sizeof(int32_t) * 1); static int32_t param23_init[] = {2}; model->setOperandValue(param23, param23_init, sizeof(int32_t) * 1); static float param24_init[] = {2.0f}; model->setOperandValue(param24, param24_init, sizeof(float) * 1); static float param25_init[] = {1.0f}; model->setOperandValue(param25, param25_init, sizeof(float) * 1); static int32_t param26_init[] = {0}; model->setOperandValue(param26, param26_init, sizeof(int32_t) * 1); static int32_t param27_init[] = {4}; model->setOperandValue(param27, param27_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in3, roi3, param21, param22, param23, param24, param25, param26, param27, layout}, {out3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in3, roi3}, {out3}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_relaxed_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_quant8_4(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type13(Type::TENSOR_INT32, {5}); OperandType type39(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.0625f, 128); OperandType type5(Type::INT32, {}); OperandType type57(Type::TENSOR_QUANT8_ASYMM, {4, 4, 4, 1}, 0.25f, 128); OperandType type59(Type::TENSOR_QUANT16_ASYMM, {5, 4}, 0.125f, 0); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in3 = model->addOperand(&type57); auto roi3 = model->addOperand(&type59); auto param21 = model->addOperand(&type13); auto param22 = model->addOperand(&type5); auto param23 = model->addOperand(&type5); auto param24 = model->addOperand(&type6); auto param25 = model->addOperand(&type6); auto param26 = model->addOperand(&type5); auto param27 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out3 = model->addOperand(&type39); // Phase 2, operations static int32_t param21_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param21, param21_init, sizeof(int32_t) * 5); static int32_t param22_init[] = {2}; model->setOperandValue(param22, param22_init, sizeof(int32_t) * 1); static int32_t param23_init[] = {2}; model->setOperandValue(param23, param23_init, sizeof(int32_t) * 1); static float param24_init[] = {2.0f}; model->setOperandValue(param24, param24_init, sizeof(float) * 1); static float param25_init[] = {1.0f}; model->setOperandValue(param25, param25_init, sizeof(float) * 1); static int32_t param26_init[] = {0}; model->setOperandValue(param26, param26_init, sizeof(int32_t) * 1); static int32_t param27_init[] = {4}; model->setOperandValue(param27, param27_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in3, roi3, param21, param22, param23, param24, param25, param26, param27, layout}, {out3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in3, roi3}, {out3}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_quant8_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_float16_4(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type13(Type::TENSOR_INT32, {5}); OperandType type30(Type::FLOAT16, {}); OperandType type40(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type60(Type::TENSOR_FLOAT16, {4, 4, 4, 1}); OperandType type62(Type::TENSOR_FLOAT16, {5, 4}); // Phase 1, operands auto in3 = model->addOperand(&type60); auto roi3 = model->addOperand(&type62); auto param21 = model->addOperand(&type13); auto param22 = model->addOperand(&type5); auto param23 = model->addOperand(&type5); auto param24 = model->addOperand(&type30); auto param25 = model->addOperand(&type30); auto param26 = model->addOperand(&type5); auto param27 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out3 = model->addOperand(&type40); // Phase 2, operations static int32_t param21_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param21, param21_init, sizeof(int32_t) * 5); static int32_t param22_init[] = {2}; model->setOperandValue(param22, param22_init, sizeof(int32_t) * 1); static int32_t param23_init[] = {2}; model->setOperandValue(param23, param23_init, sizeof(int32_t) * 1); static _Float16 param24_init[] = {2.0f}; model->setOperandValue(param24, param24_init, sizeof(_Float16) * 1); static _Float16 param25_init[] = {1.0f}; model->setOperandValue(param25, param25_init, sizeof(_Float16) * 1); static int32_t param26_init[] = {0}; model->setOperandValue(param26, param26_init, sizeof(int32_t) * 1); static int32_t param27_init[] = {4}; model->setOperandValue(param27, param27_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in3, roi3, param21, param22, param23, param24, param25, param26, param27, layout}, {out3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in3, roi3}, {out3}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_float16_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_4(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type11(Type::TENSOR_FLOAT32, {5, 4}); OperandType type13(Type::TENSOR_INT32, {5}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type63(Type::TENSOR_FLOAT32, {4, 1, 4, 4}); // Phase 1, operands auto in3 = model->addOperand(&type63); auto roi3 = model->addOperand(&type11); auto param21 = model->addOperand(&type13); auto param22 = model->addOperand(&type5); auto param23 = model->addOperand(&type5); auto param24 = model->addOperand(&type6); auto param25 = model->addOperand(&type6); auto param26 = model->addOperand(&type5); auto param27 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out3 = model->addOperand(&type38); // Phase 2, operations static int32_t param21_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param21, param21_init, sizeof(int32_t) * 5); static int32_t param22_init[] = {2}; model->setOperandValue(param22, param22_init, sizeof(int32_t) * 1); static int32_t param23_init[] = {2}; model->setOperandValue(param23, param23_init, sizeof(int32_t) * 1); static float param24_init[] = {2.0f}; model->setOperandValue(param24, param24_init, sizeof(float) * 1); static float param25_init[] = {1.0f}; model->setOperandValue(param25, param25_init, sizeof(float) * 1); static int32_t param26_init[] = {0}; model->setOperandValue(param26, param26_init, sizeof(int32_t) * 1); static int32_t param27_init[] = {4}; model->setOperandValue(param27, param27_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in3, roi3, param21, param22, param23, param24, param25, param26, param27, layout}, {out3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in3, roi3}, {out3}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_relaxed_4(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type11(Type::TENSOR_FLOAT32, {5, 4}); OperandType type13(Type::TENSOR_INT32, {5}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type63(Type::TENSOR_FLOAT32, {4, 1, 4, 4}); // Phase 1, operands auto in3 = model->addOperand(&type63); auto roi3 = model->addOperand(&type11); auto param21 = model->addOperand(&type13); auto param22 = model->addOperand(&type5); auto param23 = model->addOperand(&type5); auto param24 = model->addOperand(&type6); auto param25 = model->addOperand(&type6); auto param26 = model->addOperand(&type5); auto param27 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out3 = model->addOperand(&type38); // Phase 2, operations static int32_t param21_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param21, param21_init, sizeof(int32_t) * 5); static int32_t param22_init[] = {2}; model->setOperandValue(param22, param22_init, sizeof(int32_t) * 1); static int32_t param23_init[] = {2}; model->setOperandValue(param23, param23_init, sizeof(int32_t) * 1); static float param24_init[] = {2.0f}; model->setOperandValue(param24, param24_init, sizeof(float) * 1); static float param25_init[] = {1.0f}; model->setOperandValue(param25, param25_init, sizeof(float) * 1); static int32_t param26_init[] = {0}; model->setOperandValue(param26, param26_init, sizeof(int32_t) * 1); static int32_t param27_init[] = {4}; model->setOperandValue(param27, param27_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in3, roi3, param21, param22, param23, param24, param25, param26, param27, layout}, {out3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in3, roi3}, {out3}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_relaxed_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_quant8_4(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type13(Type::TENSOR_INT32, {5}); OperandType type39(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.0625f, 128); OperandType type5(Type::INT32, {}); OperandType type59(Type::TENSOR_QUANT16_ASYMM, {5, 4}, 0.125f, 0); OperandType type6(Type::FLOAT32, {}); OperandType type65(Type::TENSOR_QUANT8_ASYMM, {4, 1, 4, 4}, 0.25f, 128); // Phase 1, operands auto in3 = model->addOperand(&type65); auto roi3 = model->addOperand(&type59); auto param21 = model->addOperand(&type13); auto param22 = model->addOperand(&type5); auto param23 = model->addOperand(&type5); auto param24 = model->addOperand(&type6); auto param25 = model->addOperand(&type6); auto param26 = model->addOperand(&type5); auto param27 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out3 = model->addOperand(&type39); // Phase 2, operations static int32_t param21_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param21, param21_init, sizeof(int32_t) * 5); static int32_t param22_init[] = {2}; model->setOperandValue(param22, param22_init, sizeof(int32_t) * 1); static int32_t param23_init[] = {2}; model->setOperandValue(param23, param23_init, sizeof(int32_t) * 1); static float param24_init[] = {2.0f}; model->setOperandValue(param24, param24_init, sizeof(float) * 1); static float param25_init[] = {1.0f}; model->setOperandValue(param25, param25_init, sizeof(float) * 1); static int32_t param26_init[] = {0}; model->setOperandValue(param26, param26_init, sizeof(int32_t) * 1); static int32_t param27_init[] = {4}; model->setOperandValue(param27, param27_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in3, roi3, param21, param22, param23, param24, param25, param26, param27, layout}, {out3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in3, roi3}, {out3}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_quant8_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_float16_4(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type13(Type::TENSOR_INT32, {5}); OperandType type30(Type::FLOAT16, {}); OperandType type40(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type62(Type::TENSOR_FLOAT16, {5, 4}); OperandType type67(Type::TENSOR_FLOAT16, {4, 1, 4, 4}); // Phase 1, operands auto in3 = model->addOperand(&type67); auto roi3 = model->addOperand(&type62); auto param21 = model->addOperand(&type13); auto param22 = model->addOperand(&type5); auto param23 = model->addOperand(&type5); auto param24 = model->addOperand(&type30); auto param25 = model->addOperand(&type30); auto param26 = model->addOperand(&type5); auto param27 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out3 = model->addOperand(&type40); // Phase 2, operations static int32_t param21_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param21, param21_init, sizeof(int32_t) * 5); static int32_t param22_init[] = {2}; model->setOperandValue(param22, param22_init, sizeof(int32_t) * 1); static int32_t param23_init[] = {2}; model->setOperandValue(param23, param23_init, sizeof(int32_t) * 1); static _Float16 param24_init[] = {2.0f}; model->setOperandValue(param24, param24_init, sizeof(_Float16) * 1); static _Float16 param25_init[] = {1.0f}; model->setOperandValue(param25, param25_init, sizeof(_Float16) * 1); static int32_t param26_init[] = {0}; model->setOperandValue(param26, param26_init, sizeof(int32_t) * 1); static int32_t param27_init[] = {4}; model->setOperandValue(param27, param27_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in3, roi3, param21, param22, param23, param24, param25, param26, param27, layout}, {out3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in3, roi3}, {out3}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_float16_4(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_nhwc(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type14(Type::TENSOR_FLOAT32, {1, 2}); OperandType type15(Type::TENSOR_FLOAT32, {1, 8}); OperandType type16(Type::TENSOR_FLOAT32, {0}); OperandType type17(Type::TENSOR_INT32, {0}); OperandType type18(Type::TENSOR_FLOAT32, {0, 4}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type20(Type::TENSOR_FLOAT32, {1, 1, 1, 1}); OperandType type21(Type::TENSOR_FLOAT32, {0, 2, 2, 1}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto scores = model->addOperand(&type14); auto roi4 = model->addOperand(&type15); auto param28 = model->addOperand(&type19); auto param29 = model->addOperand(&type6); auto param30 = model->addOperand(&type5); auto param31 = model->addOperand(&type5); auto param32 = model->addOperand(&type6); auto param33 = model->addOperand(&type6); auto param34 = model->addOperand(&type6); auto scoresOut = model->addOperand(&type16); auto roiOut = model->addOperand(&type18); auto classesOut = model->addOperand(&type17); auto batchSplitOut = model->addOperand(&type17); auto in4 = model->addOperand(&type20); auto param35 = model->addOperand(&type5); auto param36 = model->addOperand(&type5); auto param37 = model->addOperand(&type6); auto param38 = model->addOperand(&type6); auto param39 = model->addOperand(&type5); auto param40 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto featureMap = model->addOperand(&type21); // Phase 2, operations static float scores_init[] = {0.9f, 0.1f}; model->setOperandValue(scores, scores_init, sizeof(float) * 2); static float roi4_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi4, roi4_init, sizeof(float) * 8); static int32_t param28_init[] = {0}; model->setOperandValue(param28, param28_init, sizeof(int32_t) * 1); static float param29_init[] = {0.3f}; model->setOperandValue(param29, param29_init, sizeof(float) * 1); static int32_t param30_init[] = {-1}; model->setOperandValue(param30, param30_init, sizeof(int32_t) * 1); static int32_t param31_init[] = {0}; model->setOperandValue(param31, param31_init, sizeof(int32_t) * 1); static float param32_init[] = {0.4f}; model->setOperandValue(param32, param32_init, sizeof(float) * 1); static float param33_init[] = {1.0f}; model->setOperandValue(param33, param33_init, sizeof(float) * 1); static float param34_init[] = {0.3f}; model->setOperandValue(param34, param34_init, sizeof(float) * 1); static int32_t param35_init[] = {2}; model->setOperandValue(param35, param35_init, sizeof(int32_t) * 1); static int32_t param36_init[] = {2}; model->setOperandValue(param36, param36_init, sizeof(int32_t) * 1); static float param37_init[] = {2.0f}; model->setOperandValue(param37, param37_init, sizeof(float) * 1); static float param38_init[] = {2.0f}; model->setOperandValue(param38, param38_init, sizeof(float) * 1); static int32_t param39_init[] = {4}; model->setOperandValue(param39, param39_init, sizeof(int32_t) * 1); static int32_t param40_init[] = {4}; model->setOperandValue(param40, param40_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi4, param28, param29, param30, param31, param32, param33, param34}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in4, roiOut, batchSplitOut, param35, param36, param37, param38, param39, param40, layout}, {featureMap}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in4}, {scoresOut, classesOut, featureMap}); assert(model->isValid()); } inline bool is_ignored_zero_sized_nhwc(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_nhwc_relaxed(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type14(Type::TENSOR_FLOAT32, {1, 2}); OperandType type15(Type::TENSOR_FLOAT32, {1, 8}); OperandType type16(Type::TENSOR_FLOAT32, {0}); OperandType type17(Type::TENSOR_INT32, {0}); OperandType type18(Type::TENSOR_FLOAT32, {0, 4}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type20(Type::TENSOR_FLOAT32, {1, 1, 1, 1}); OperandType type21(Type::TENSOR_FLOAT32, {0, 2, 2, 1}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto scores = model->addOperand(&type14); auto roi4 = model->addOperand(&type15); auto param28 = model->addOperand(&type19); auto param29 = model->addOperand(&type6); auto param30 = model->addOperand(&type5); auto param31 = model->addOperand(&type5); auto param32 = model->addOperand(&type6); auto param33 = model->addOperand(&type6); auto param34 = model->addOperand(&type6); auto scoresOut = model->addOperand(&type16); auto roiOut = model->addOperand(&type18); auto classesOut = model->addOperand(&type17); auto batchSplitOut = model->addOperand(&type17); auto in4 = model->addOperand(&type20); auto param35 = model->addOperand(&type5); auto param36 = model->addOperand(&type5); auto param37 = model->addOperand(&type6); auto param38 = model->addOperand(&type6); auto param39 = model->addOperand(&type5); auto param40 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto featureMap = model->addOperand(&type21); // Phase 2, operations static float scores_init[] = {0.9f, 0.1f}; model->setOperandValue(scores, scores_init, sizeof(float) * 2); static float roi4_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi4, roi4_init, sizeof(float) * 8); static int32_t param28_init[] = {0}; model->setOperandValue(param28, param28_init, sizeof(int32_t) * 1); static float param29_init[] = {0.3f}; model->setOperandValue(param29, param29_init, sizeof(float) * 1); static int32_t param30_init[] = {-1}; model->setOperandValue(param30, param30_init, sizeof(int32_t) * 1); static int32_t param31_init[] = {0}; model->setOperandValue(param31, param31_init, sizeof(int32_t) * 1); static float param32_init[] = {0.4f}; model->setOperandValue(param32, param32_init, sizeof(float) * 1); static float param33_init[] = {1.0f}; model->setOperandValue(param33, param33_init, sizeof(float) * 1); static float param34_init[] = {0.3f}; model->setOperandValue(param34, param34_init, sizeof(float) * 1); static int32_t param35_init[] = {2}; model->setOperandValue(param35, param35_init, sizeof(int32_t) * 1); static int32_t param36_init[] = {2}; model->setOperandValue(param36, param36_init, sizeof(int32_t) * 1); static float param37_init[] = {2.0f}; model->setOperandValue(param37, param37_init, sizeof(float) * 1); static float param38_init[] = {2.0f}; model->setOperandValue(param38, param38_init, sizeof(float) * 1); static int32_t param39_init[] = {4}; model->setOperandValue(param39, param39_init, sizeof(int32_t) * 1); static int32_t param40_init[] = {4}; model->setOperandValue(param40, param40_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi4, param28, param29, param30, param31, param32, param33, param34}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in4, roiOut, batchSplitOut, param35, param36, param37, param38, param39, param40, layout}, {featureMap}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in4}, {scoresOut, classesOut, featureMap}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_zero_sized_nhwc_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_nhwc_quant8(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type17(Type::TENSOR_INT32, {0}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type69(Type::TENSOR_QUANT8_ASYMM, {0, 2, 2, 1}, 0.1f, 128); OperandType type70(Type::TENSOR_QUANT8_ASYMM, {1, 1, 1, 1}, 0.1f, 128); OperandType type71(Type::TENSOR_QUANT16_ASYMM, {1, 8}, 0.125f, 0); OperandType type72(Type::TENSOR_QUANT16_ASYMM, {0, 4}, 0.125f, 0); OperandType type73(Type::TENSOR_QUANT8_ASYMM, {1, 2}, 0.1f, 128); OperandType type74(Type::TENSOR_QUANT8_ASYMM, {0}, 0.1f, 128); // Phase 1, operands auto scores = model->addOperand(&type73); auto roi4 = model->addOperand(&type71); auto param28 = model->addOperand(&type19); auto param29 = model->addOperand(&type6); auto param30 = model->addOperand(&type5); auto param31 = model->addOperand(&type5); auto param32 = model->addOperand(&type6); auto param33 = model->addOperand(&type6); auto param34 = model->addOperand(&type6); auto scoresOut = model->addOperand(&type74); auto roiOut = model->addOperand(&type72); auto classesOut = model->addOperand(&type17); auto batchSplitOut = model->addOperand(&type17); auto in4 = model->addOperand(&type70); auto param35 = model->addOperand(&type5); auto param36 = model->addOperand(&type5); auto param37 = model->addOperand(&type6); auto param38 = model->addOperand(&type6); auto param39 = model->addOperand(&type5); auto param40 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto featureMap = model->addOperand(&type69); // Phase 2, operations static uint8_t scores_init[] = {137, 129}; model->setOperandValue(scores, scores_init, sizeof(uint8_t) * 2); static uint16_t roi4_init[] = {8, 8, 80, 80, 0, 0, 80, 80}; model->setOperandValue(roi4, roi4_init, sizeof(uint16_t) * 8); static int32_t param28_init[] = {0}; model->setOperandValue(param28, param28_init, sizeof(int32_t) * 1); static float param29_init[] = {0.3f}; model->setOperandValue(param29, param29_init, sizeof(float) * 1); static int32_t param30_init[] = {-1}; model->setOperandValue(param30, param30_init, sizeof(int32_t) * 1); static int32_t param31_init[] = {0}; model->setOperandValue(param31, param31_init, sizeof(int32_t) * 1); static float param32_init[] = {0.4f}; model->setOperandValue(param32, param32_init, sizeof(float) * 1); static float param33_init[] = {1.0f}; model->setOperandValue(param33, param33_init, sizeof(float) * 1); static float param34_init[] = {0.3f}; model->setOperandValue(param34, param34_init, sizeof(float) * 1); static int32_t param35_init[] = {2}; model->setOperandValue(param35, param35_init, sizeof(int32_t) * 1); static int32_t param36_init[] = {2}; model->setOperandValue(param36, param36_init, sizeof(int32_t) * 1); static float param37_init[] = {2.0f}; model->setOperandValue(param37, param37_init, sizeof(float) * 1); static float param38_init[] = {2.0f}; model->setOperandValue(param38, param38_init, sizeof(float) * 1); static int32_t param39_init[] = {4}; model->setOperandValue(param39, param39_init, sizeof(int32_t) * 1); static int32_t param40_init[] = {4}; model->setOperandValue(param40, param40_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi4, param28, param29, param30, param31, param32, param33, param34}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in4, roiOut, batchSplitOut, param35, param36, param37, param38, param39, param40, layout}, {featureMap}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in4}, {scoresOut, classesOut, featureMap}); assert(model->isValid()); } inline bool is_ignored_zero_sized_nhwc_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_nhwc_float16(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type17(Type::TENSOR_INT32, {0}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type30(Type::FLOAT16, {}); OperandType type5(Type::INT32, {}); OperandType type75(Type::TENSOR_FLOAT16, {0, 2, 2, 1}); OperandType type76(Type::TENSOR_FLOAT16, {1, 1, 1, 1}); OperandType type77(Type::TENSOR_FLOAT16, {1, 8}); OperandType type78(Type::TENSOR_FLOAT16, {0, 4}); OperandType type79(Type::TENSOR_FLOAT16, {1, 2}); OperandType type80(Type::TENSOR_FLOAT16, {0}); // Phase 1, operands auto scores = model->addOperand(&type79); auto roi4 = model->addOperand(&type77); auto param28 = model->addOperand(&type19); auto param29 = model->addOperand(&type30); auto param30 = model->addOperand(&type5); auto param31 = model->addOperand(&type5); auto param32 = model->addOperand(&type30); auto param33 = model->addOperand(&type30); auto param34 = model->addOperand(&type30); auto scoresOut = model->addOperand(&type80); auto roiOut = model->addOperand(&type78); auto classesOut = model->addOperand(&type17); auto batchSplitOut = model->addOperand(&type17); auto in4 = model->addOperand(&type76); auto param35 = model->addOperand(&type5); auto param36 = model->addOperand(&type5); auto param37 = model->addOperand(&type30); auto param38 = model->addOperand(&type30); auto param39 = model->addOperand(&type5); auto param40 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto featureMap = model->addOperand(&type75); // Phase 2, operations static _Float16 scores_init[] = {0.8999999761581421f, 0.10000000149011612f}; model->setOperandValue(scores, scores_init, sizeof(_Float16) * 2); static _Float16 roi4_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi4, roi4_init, sizeof(_Float16) * 8); static int32_t param28_init[] = {0}; model->setOperandValue(param28, param28_init, sizeof(int32_t) * 1); static _Float16 param29_init[] = {0.30000001192092896f}; model->setOperandValue(param29, param29_init, sizeof(_Float16) * 1); static int32_t param30_init[] = {-1}; model->setOperandValue(param30, param30_init, sizeof(int32_t) * 1); static int32_t param31_init[] = {0}; model->setOperandValue(param31, param31_init, sizeof(int32_t) * 1); static _Float16 param32_init[] = {0.4000000059604645f}; model->setOperandValue(param32, param32_init, sizeof(_Float16) * 1); static _Float16 param33_init[] = {1.0f}; model->setOperandValue(param33, param33_init, sizeof(_Float16) * 1); static _Float16 param34_init[] = {0.30000001192092896f}; model->setOperandValue(param34, param34_init, sizeof(_Float16) * 1); static int32_t param35_init[] = {2}; model->setOperandValue(param35, param35_init, sizeof(int32_t) * 1); static int32_t param36_init[] = {2}; model->setOperandValue(param36, param36_init, sizeof(int32_t) * 1); static _Float16 param37_init[] = {2.0f}; model->setOperandValue(param37, param37_init, sizeof(_Float16) * 1); static _Float16 param38_init[] = {2.0f}; model->setOperandValue(param38, param38_init, sizeof(_Float16) * 1); static int32_t param39_init[] = {4}; model->setOperandValue(param39, param39_init, sizeof(int32_t) * 1); static int32_t param40_init[] = {4}; model->setOperandValue(param40, param40_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi4, param28, param29, param30, param31, param32, param33, param34}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in4, roiOut, batchSplitOut, param35, param36, param37, param38, param39, param40, layout}, {featureMap}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in4}, {scoresOut, classesOut, featureMap}); assert(model->isValid()); } inline bool is_ignored_zero_sized_nhwc_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_nchw(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type14(Type::TENSOR_FLOAT32, {1, 2}); OperandType type15(Type::TENSOR_FLOAT32, {1, 8}); OperandType type16(Type::TENSOR_FLOAT32, {0}); OperandType type17(Type::TENSOR_INT32, {0}); OperandType type18(Type::TENSOR_FLOAT32, {0, 4}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type20(Type::TENSOR_FLOAT32, {1, 1, 1, 1}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type81(Type::TENSOR_FLOAT32, {0, 1, 2, 2}); // Phase 1, operands auto scores = model->addOperand(&type14); auto roi4 = model->addOperand(&type15); auto param28 = model->addOperand(&type19); auto param29 = model->addOperand(&type6); auto param30 = model->addOperand(&type5); auto param31 = model->addOperand(&type5); auto param32 = model->addOperand(&type6); auto param33 = model->addOperand(&type6); auto param34 = model->addOperand(&type6); auto scoresOut = model->addOperand(&type16); auto roiOut = model->addOperand(&type18); auto classesOut = model->addOperand(&type17); auto batchSplitOut = model->addOperand(&type17); auto in4 = model->addOperand(&type20); auto param35 = model->addOperand(&type5); auto param36 = model->addOperand(&type5); auto param37 = model->addOperand(&type6); auto param38 = model->addOperand(&type6); auto param39 = model->addOperand(&type5); auto param40 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto featureMap = model->addOperand(&type81); // Phase 2, operations static float scores_init[] = {0.9f, 0.1f}; model->setOperandValue(scores, scores_init, sizeof(float) * 2); static float roi4_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi4, roi4_init, sizeof(float) * 8); static int32_t param28_init[] = {0}; model->setOperandValue(param28, param28_init, sizeof(int32_t) * 1); static float param29_init[] = {0.3f}; model->setOperandValue(param29, param29_init, sizeof(float) * 1); static int32_t param30_init[] = {-1}; model->setOperandValue(param30, param30_init, sizeof(int32_t) * 1); static int32_t param31_init[] = {0}; model->setOperandValue(param31, param31_init, sizeof(int32_t) * 1); static float param32_init[] = {0.4f}; model->setOperandValue(param32, param32_init, sizeof(float) * 1); static float param33_init[] = {1.0f}; model->setOperandValue(param33, param33_init, sizeof(float) * 1); static float param34_init[] = {0.3f}; model->setOperandValue(param34, param34_init, sizeof(float) * 1); static int32_t param35_init[] = {2}; model->setOperandValue(param35, param35_init, sizeof(int32_t) * 1); static int32_t param36_init[] = {2}; model->setOperandValue(param36, param36_init, sizeof(int32_t) * 1); static float param37_init[] = {2.0f}; model->setOperandValue(param37, param37_init, sizeof(float) * 1); static float param38_init[] = {2.0f}; model->setOperandValue(param38, param38_init, sizeof(float) * 1); static int32_t param39_init[] = {4}; model->setOperandValue(param39, param39_init, sizeof(int32_t) * 1); static int32_t param40_init[] = {4}; model->setOperandValue(param40, param40_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi4, param28, param29, param30, param31, param32, param33, param34}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in4, roiOut, batchSplitOut, param35, param36, param37, param38, param39, param40, layout}, {featureMap}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in4}, {scoresOut, classesOut, featureMap}); assert(model->isValid()); } inline bool is_ignored_zero_sized_nchw(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_nchw_relaxed(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type14(Type::TENSOR_FLOAT32, {1, 2}); OperandType type15(Type::TENSOR_FLOAT32, {1, 8}); OperandType type16(Type::TENSOR_FLOAT32, {0}); OperandType type17(Type::TENSOR_INT32, {0}); OperandType type18(Type::TENSOR_FLOAT32, {0, 4}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type20(Type::TENSOR_FLOAT32, {1, 1, 1, 1}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type81(Type::TENSOR_FLOAT32, {0, 1, 2, 2}); // Phase 1, operands auto scores = model->addOperand(&type14); auto roi4 = model->addOperand(&type15); auto param28 = model->addOperand(&type19); auto param29 = model->addOperand(&type6); auto param30 = model->addOperand(&type5); auto param31 = model->addOperand(&type5); auto param32 = model->addOperand(&type6); auto param33 = model->addOperand(&type6); auto param34 = model->addOperand(&type6); auto scoresOut = model->addOperand(&type16); auto roiOut = model->addOperand(&type18); auto classesOut = model->addOperand(&type17); auto batchSplitOut = model->addOperand(&type17); auto in4 = model->addOperand(&type20); auto param35 = model->addOperand(&type5); auto param36 = model->addOperand(&type5); auto param37 = model->addOperand(&type6); auto param38 = model->addOperand(&type6); auto param39 = model->addOperand(&type5); auto param40 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto featureMap = model->addOperand(&type81); // Phase 2, operations static float scores_init[] = {0.9f, 0.1f}; model->setOperandValue(scores, scores_init, sizeof(float) * 2); static float roi4_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi4, roi4_init, sizeof(float) * 8); static int32_t param28_init[] = {0}; model->setOperandValue(param28, param28_init, sizeof(int32_t) * 1); static float param29_init[] = {0.3f}; model->setOperandValue(param29, param29_init, sizeof(float) * 1); static int32_t param30_init[] = {-1}; model->setOperandValue(param30, param30_init, sizeof(int32_t) * 1); static int32_t param31_init[] = {0}; model->setOperandValue(param31, param31_init, sizeof(int32_t) * 1); static float param32_init[] = {0.4f}; model->setOperandValue(param32, param32_init, sizeof(float) * 1); static float param33_init[] = {1.0f}; model->setOperandValue(param33, param33_init, sizeof(float) * 1); static float param34_init[] = {0.3f}; model->setOperandValue(param34, param34_init, sizeof(float) * 1); static int32_t param35_init[] = {2}; model->setOperandValue(param35, param35_init, sizeof(int32_t) * 1); static int32_t param36_init[] = {2}; model->setOperandValue(param36, param36_init, sizeof(int32_t) * 1); static float param37_init[] = {2.0f}; model->setOperandValue(param37, param37_init, sizeof(float) * 1); static float param38_init[] = {2.0f}; model->setOperandValue(param38, param38_init, sizeof(float) * 1); static int32_t param39_init[] = {4}; model->setOperandValue(param39, param39_init, sizeof(int32_t) * 1); static int32_t param40_init[] = {4}; model->setOperandValue(param40, param40_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi4, param28, param29, param30, param31, param32, param33, param34}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in4, roiOut, batchSplitOut, param35, param36, param37, param38, param39, param40, layout}, {featureMap}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in4}, {scoresOut, classesOut, featureMap}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_zero_sized_nchw_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_nchw_quant8(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type17(Type::TENSOR_INT32, {0}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type70(Type::TENSOR_QUANT8_ASYMM, {1, 1, 1, 1}, 0.1f, 128); OperandType type71(Type::TENSOR_QUANT16_ASYMM, {1, 8}, 0.125f, 0); OperandType type72(Type::TENSOR_QUANT16_ASYMM, {0, 4}, 0.125f, 0); OperandType type73(Type::TENSOR_QUANT8_ASYMM, {1, 2}, 0.1f, 128); OperandType type74(Type::TENSOR_QUANT8_ASYMM, {0}, 0.1f, 128); OperandType type82(Type::TENSOR_QUANT8_ASYMM, {0, 1, 2, 2}, 0.1f, 128); // Phase 1, operands auto scores = model->addOperand(&type73); auto roi4 = model->addOperand(&type71); auto param28 = model->addOperand(&type19); auto param29 = model->addOperand(&type6); auto param30 = model->addOperand(&type5); auto param31 = model->addOperand(&type5); auto param32 = model->addOperand(&type6); auto param33 = model->addOperand(&type6); auto param34 = model->addOperand(&type6); auto scoresOut = model->addOperand(&type74); auto roiOut = model->addOperand(&type72); auto classesOut = model->addOperand(&type17); auto batchSplitOut = model->addOperand(&type17); auto in4 = model->addOperand(&type70); auto param35 = model->addOperand(&type5); auto param36 = model->addOperand(&type5); auto param37 = model->addOperand(&type6); auto param38 = model->addOperand(&type6); auto param39 = model->addOperand(&type5); auto param40 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto featureMap = model->addOperand(&type82); // Phase 2, operations static uint8_t scores_init[] = {137, 129}; model->setOperandValue(scores, scores_init, sizeof(uint8_t) * 2); static uint16_t roi4_init[] = {8, 8, 80, 80, 0, 0, 80, 80}; model->setOperandValue(roi4, roi4_init, sizeof(uint16_t) * 8); static int32_t param28_init[] = {0}; model->setOperandValue(param28, param28_init, sizeof(int32_t) * 1); static float param29_init[] = {0.3f}; model->setOperandValue(param29, param29_init, sizeof(float) * 1); static int32_t param30_init[] = {-1}; model->setOperandValue(param30, param30_init, sizeof(int32_t) * 1); static int32_t param31_init[] = {0}; model->setOperandValue(param31, param31_init, sizeof(int32_t) * 1); static float param32_init[] = {0.4f}; model->setOperandValue(param32, param32_init, sizeof(float) * 1); static float param33_init[] = {1.0f}; model->setOperandValue(param33, param33_init, sizeof(float) * 1); static float param34_init[] = {0.3f}; model->setOperandValue(param34, param34_init, sizeof(float) * 1); static int32_t param35_init[] = {2}; model->setOperandValue(param35, param35_init, sizeof(int32_t) * 1); static int32_t param36_init[] = {2}; model->setOperandValue(param36, param36_init, sizeof(int32_t) * 1); static float param37_init[] = {2.0f}; model->setOperandValue(param37, param37_init, sizeof(float) * 1); static float param38_init[] = {2.0f}; model->setOperandValue(param38, param38_init, sizeof(float) * 1); static int32_t param39_init[] = {4}; model->setOperandValue(param39, param39_init, sizeof(int32_t) * 1); static int32_t param40_init[] = {4}; model->setOperandValue(param40, param40_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi4, param28, param29, param30, param31, param32, param33, param34}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in4, roiOut, batchSplitOut, param35, param36, param37, param38, param39, param40, layout}, {featureMap}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in4}, {scoresOut, classesOut, featureMap}); assert(model->isValid()); } inline bool is_ignored_zero_sized_nchw_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_nchw_float16(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type17(Type::TENSOR_INT32, {0}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type30(Type::FLOAT16, {}); OperandType type5(Type::INT32, {}); OperandType type76(Type::TENSOR_FLOAT16, {1, 1, 1, 1}); OperandType type77(Type::TENSOR_FLOAT16, {1, 8}); OperandType type78(Type::TENSOR_FLOAT16, {0, 4}); OperandType type79(Type::TENSOR_FLOAT16, {1, 2}); OperandType type80(Type::TENSOR_FLOAT16, {0}); OperandType type83(Type::TENSOR_FLOAT16, {0, 1, 2, 2}); // Phase 1, operands auto scores = model->addOperand(&type79); auto roi4 = model->addOperand(&type77); auto param28 = model->addOperand(&type19); auto param29 = model->addOperand(&type30); auto param30 = model->addOperand(&type5); auto param31 = model->addOperand(&type5); auto param32 = model->addOperand(&type30); auto param33 = model->addOperand(&type30); auto param34 = model->addOperand(&type30); auto scoresOut = model->addOperand(&type80); auto roiOut = model->addOperand(&type78); auto classesOut = model->addOperand(&type17); auto batchSplitOut = model->addOperand(&type17); auto in4 = model->addOperand(&type76); auto param35 = model->addOperand(&type5); auto param36 = model->addOperand(&type5); auto param37 = model->addOperand(&type30); auto param38 = model->addOperand(&type30); auto param39 = model->addOperand(&type5); auto param40 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto featureMap = model->addOperand(&type83); // Phase 2, operations static _Float16 scores_init[] = {0.8999999761581421f, 0.10000000149011612f}; model->setOperandValue(scores, scores_init, sizeof(_Float16) * 2); static _Float16 roi4_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi4, roi4_init, sizeof(_Float16) * 8); static int32_t param28_init[] = {0}; model->setOperandValue(param28, param28_init, sizeof(int32_t) * 1); static _Float16 param29_init[] = {0.30000001192092896f}; model->setOperandValue(param29, param29_init, sizeof(_Float16) * 1); static int32_t param30_init[] = {-1}; model->setOperandValue(param30, param30_init, sizeof(int32_t) * 1); static int32_t param31_init[] = {0}; model->setOperandValue(param31, param31_init, sizeof(int32_t) * 1); static _Float16 param32_init[] = {0.4000000059604645f}; model->setOperandValue(param32, param32_init, sizeof(_Float16) * 1); static _Float16 param33_init[] = {1.0f}; model->setOperandValue(param33, param33_init, sizeof(_Float16) * 1); static _Float16 param34_init[] = {0.30000001192092896f}; model->setOperandValue(param34, param34_init, sizeof(_Float16) * 1); static int32_t param35_init[] = {2}; model->setOperandValue(param35, param35_init, sizeof(int32_t) * 1); static int32_t param36_init[] = {2}; model->setOperandValue(param36, param36_init, sizeof(int32_t) * 1); static _Float16 param37_init[] = {2.0f}; model->setOperandValue(param37, param37_init, sizeof(_Float16) * 1); static _Float16 param38_init[] = {2.0f}; model->setOperandValue(param38, param38_init, sizeof(_Float16) * 1); static int32_t param39_init[] = {4}; model->setOperandValue(param39, param39_init, sizeof(int32_t) * 1); static int32_t param40_init[] = {4}; model->setOperandValue(param40, param40_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi4, param28, param29, param30, param31, param32, param33, param34}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in4, roiOut, batchSplitOut, param35, param36, param37, param38, param39, param40, layout}, {featureMap}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in4}, {scoresOut, classesOut, featureMap}); assert(model->isValid()); } inline bool is_ignored_zero_sized_nchw_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape_nhwc(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type14(Type::TENSOR_FLOAT32, {1, 2}); OperandType type15(Type::TENSOR_FLOAT32, {1, 8}); OperandType type16(Type::TENSOR_FLOAT32, {0}); OperandType type17(Type::TENSOR_INT32, {0}); OperandType type18(Type::TENSOR_FLOAT32, {0, 4}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type20(Type::TENSOR_FLOAT32, {1, 1, 1, 1}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto scores = model->addOperand(&type14); auto roi4 = model->addOperand(&type15); auto param28 = model->addOperand(&type19); auto param29 = model->addOperand(&type6); auto param30 = model->addOperand(&type5); auto param31 = model->addOperand(&type5); auto param32 = model->addOperand(&type6); auto param33 = model->addOperand(&type6); auto param34 = model->addOperand(&type6); auto scoresOut = model->addOperand(&type16); auto roiOut = model->addOperand(&type18); auto classesOut = model->addOperand(&type17); auto batchSplitOut = model->addOperand(&type17); auto in4 = model->addOperand(&type20); auto param35 = model->addOperand(&type5); auto param36 = model->addOperand(&type5); auto param37 = model->addOperand(&type6); auto param38 = model->addOperand(&type6); auto param39 = model->addOperand(&type5); auto param40 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto featureMap = model->addOperand(&type38); // Phase 2, operations static float scores_init[] = {0.9f, 0.1f}; model->setOperandValue(scores, scores_init, sizeof(float) * 2); static float roi4_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi4, roi4_init, sizeof(float) * 8); static int32_t param28_init[] = {0}; model->setOperandValue(param28, param28_init, sizeof(int32_t) * 1); static float param29_init[] = {0.3f}; model->setOperandValue(param29, param29_init, sizeof(float) * 1); static int32_t param30_init[] = {-1}; model->setOperandValue(param30, param30_init, sizeof(int32_t) * 1); static int32_t param31_init[] = {0}; model->setOperandValue(param31, param31_init, sizeof(int32_t) * 1); static float param32_init[] = {0.4f}; model->setOperandValue(param32, param32_init, sizeof(float) * 1); static float param33_init[] = {1.0f}; model->setOperandValue(param33, param33_init, sizeof(float) * 1); static float param34_init[] = {0.3f}; model->setOperandValue(param34, param34_init, sizeof(float) * 1); static int32_t param35_init[] = {2}; model->setOperandValue(param35, param35_init, sizeof(int32_t) * 1); static int32_t param36_init[] = {2}; model->setOperandValue(param36, param36_init, sizeof(int32_t) * 1); static float param37_init[] = {2.0f}; model->setOperandValue(param37, param37_init, sizeof(float) * 1); static float param38_init[] = {2.0f}; model->setOperandValue(param38, param38_init, sizeof(float) * 1); static int32_t param39_init[] = {4}; model->setOperandValue(param39, param39_init, sizeof(int32_t) * 1); static int32_t param40_init[] = {4}; model->setOperandValue(param40, param40_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi4, param28, param29, param30, param31, param32, param33, param34}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in4, roiOut, batchSplitOut, param35, param36, param37, param38, param39, param40, layout}, {featureMap}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in4}, {scoresOut, classesOut, featureMap}); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape_nhwc(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape_nhwc_relaxed(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type14(Type::TENSOR_FLOAT32, {1, 2}); OperandType type15(Type::TENSOR_FLOAT32, {1, 8}); OperandType type16(Type::TENSOR_FLOAT32, {0}); OperandType type17(Type::TENSOR_INT32, {0}); OperandType type18(Type::TENSOR_FLOAT32, {0, 4}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type20(Type::TENSOR_FLOAT32, {1, 1, 1, 1}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto scores = model->addOperand(&type14); auto roi4 = model->addOperand(&type15); auto param28 = model->addOperand(&type19); auto param29 = model->addOperand(&type6); auto param30 = model->addOperand(&type5); auto param31 = model->addOperand(&type5); auto param32 = model->addOperand(&type6); auto param33 = model->addOperand(&type6); auto param34 = model->addOperand(&type6); auto scoresOut = model->addOperand(&type16); auto roiOut = model->addOperand(&type18); auto classesOut = model->addOperand(&type17); auto batchSplitOut = model->addOperand(&type17); auto in4 = model->addOperand(&type20); auto param35 = model->addOperand(&type5); auto param36 = model->addOperand(&type5); auto param37 = model->addOperand(&type6); auto param38 = model->addOperand(&type6); auto param39 = model->addOperand(&type5); auto param40 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto featureMap = model->addOperand(&type38); // Phase 2, operations static float scores_init[] = {0.9f, 0.1f}; model->setOperandValue(scores, scores_init, sizeof(float) * 2); static float roi4_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi4, roi4_init, sizeof(float) * 8); static int32_t param28_init[] = {0}; model->setOperandValue(param28, param28_init, sizeof(int32_t) * 1); static float param29_init[] = {0.3f}; model->setOperandValue(param29, param29_init, sizeof(float) * 1); static int32_t param30_init[] = {-1}; model->setOperandValue(param30, param30_init, sizeof(int32_t) * 1); static int32_t param31_init[] = {0}; model->setOperandValue(param31, param31_init, sizeof(int32_t) * 1); static float param32_init[] = {0.4f}; model->setOperandValue(param32, param32_init, sizeof(float) * 1); static float param33_init[] = {1.0f}; model->setOperandValue(param33, param33_init, sizeof(float) * 1); static float param34_init[] = {0.3f}; model->setOperandValue(param34, param34_init, sizeof(float) * 1); static int32_t param35_init[] = {2}; model->setOperandValue(param35, param35_init, sizeof(int32_t) * 1); static int32_t param36_init[] = {2}; model->setOperandValue(param36, param36_init, sizeof(int32_t) * 1); static float param37_init[] = {2.0f}; model->setOperandValue(param37, param37_init, sizeof(float) * 1); static float param38_init[] = {2.0f}; model->setOperandValue(param38, param38_init, sizeof(float) * 1); static int32_t param39_init[] = {4}; model->setOperandValue(param39, param39_init, sizeof(int32_t) * 1); static int32_t param40_init[] = {4}; model->setOperandValue(param40, param40_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi4, param28, param29, param30, param31, param32, param33, param34}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in4, roiOut, batchSplitOut, param35, param36, param37, param38, param39, param40, layout}, {featureMap}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in4}, {scoresOut, classesOut, featureMap}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape_nhwc_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape_nhwc_quant8(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type17(Type::TENSOR_INT32, {0}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type70(Type::TENSOR_QUANT8_ASYMM, {1, 1, 1, 1}, 0.1f, 128); OperandType type71(Type::TENSOR_QUANT16_ASYMM, {1, 8}, 0.125f, 0); OperandType type72(Type::TENSOR_QUANT16_ASYMM, {0, 4}, 0.125f, 0); OperandType type73(Type::TENSOR_QUANT8_ASYMM, {1, 2}, 0.1f, 128); OperandType type74(Type::TENSOR_QUANT8_ASYMM, {0}, 0.1f, 128); OperandType type84(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.1f, 128); // Phase 1, operands auto scores = model->addOperand(&type73); auto roi4 = model->addOperand(&type71); auto param28 = model->addOperand(&type19); auto param29 = model->addOperand(&type6); auto param30 = model->addOperand(&type5); auto param31 = model->addOperand(&type5); auto param32 = model->addOperand(&type6); auto param33 = model->addOperand(&type6); auto param34 = model->addOperand(&type6); auto scoresOut = model->addOperand(&type74); auto roiOut = model->addOperand(&type72); auto classesOut = model->addOperand(&type17); auto batchSplitOut = model->addOperand(&type17); auto in4 = model->addOperand(&type70); auto param35 = model->addOperand(&type5); auto param36 = model->addOperand(&type5); auto param37 = model->addOperand(&type6); auto param38 = model->addOperand(&type6); auto param39 = model->addOperand(&type5); auto param40 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto featureMap = model->addOperand(&type84); // Phase 2, operations static uint8_t scores_init[] = {137, 129}; model->setOperandValue(scores, scores_init, sizeof(uint8_t) * 2); static uint16_t roi4_init[] = {8, 8, 80, 80, 0, 0, 80, 80}; model->setOperandValue(roi4, roi4_init, sizeof(uint16_t) * 8); static int32_t param28_init[] = {0}; model->setOperandValue(param28, param28_init, sizeof(int32_t) * 1); static float param29_init[] = {0.3f}; model->setOperandValue(param29, param29_init, sizeof(float) * 1); static int32_t param30_init[] = {-1}; model->setOperandValue(param30, param30_init, sizeof(int32_t) * 1); static int32_t param31_init[] = {0}; model->setOperandValue(param31, param31_init, sizeof(int32_t) * 1); static float param32_init[] = {0.4f}; model->setOperandValue(param32, param32_init, sizeof(float) * 1); static float param33_init[] = {1.0f}; model->setOperandValue(param33, param33_init, sizeof(float) * 1); static float param34_init[] = {0.3f}; model->setOperandValue(param34, param34_init, sizeof(float) * 1); static int32_t param35_init[] = {2}; model->setOperandValue(param35, param35_init, sizeof(int32_t) * 1); static int32_t param36_init[] = {2}; model->setOperandValue(param36, param36_init, sizeof(int32_t) * 1); static float param37_init[] = {2.0f}; model->setOperandValue(param37, param37_init, sizeof(float) * 1); static float param38_init[] = {2.0f}; model->setOperandValue(param38, param38_init, sizeof(float) * 1); static int32_t param39_init[] = {4}; model->setOperandValue(param39, param39_init, sizeof(int32_t) * 1); static int32_t param40_init[] = {4}; model->setOperandValue(param40, param40_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi4, param28, param29, param30, param31, param32, param33, param34}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in4, roiOut, batchSplitOut, param35, param36, param37, param38, param39, param40, layout}, {featureMap}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in4}, {scoresOut, classesOut, featureMap}); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape_nhwc_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape_nhwc_float16(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type17(Type::TENSOR_INT32, {0}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type30(Type::FLOAT16, {}); OperandType type40(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type76(Type::TENSOR_FLOAT16, {1, 1, 1, 1}); OperandType type77(Type::TENSOR_FLOAT16, {1, 8}); OperandType type78(Type::TENSOR_FLOAT16, {0, 4}); OperandType type79(Type::TENSOR_FLOAT16, {1, 2}); OperandType type85(Type::TENSOR_FLOAT16, {0}); // Phase 1, operands auto scores = model->addOperand(&type79); auto roi4 = model->addOperand(&type77); auto param28 = model->addOperand(&type19); auto param29 = model->addOperand(&type30); auto param30 = model->addOperand(&type5); auto param31 = model->addOperand(&type5); auto param32 = model->addOperand(&type30); auto param33 = model->addOperand(&type30); auto param34 = model->addOperand(&type30); auto scoresOut = model->addOperand(&type85); auto roiOut = model->addOperand(&type78); auto classesOut = model->addOperand(&type17); auto batchSplitOut = model->addOperand(&type17); auto in4 = model->addOperand(&type76); auto param35 = model->addOperand(&type5); auto param36 = model->addOperand(&type5); auto param37 = model->addOperand(&type30); auto param38 = model->addOperand(&type30); auto param39 = model->addOperand(&type5); auto param40 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto featureMap = model->addOperand(&type40); // Phase 2, operations static _Float16 scores_init[] = {0.8999999761581421f, 0.10000000149011612f}; model->setOperandValue(scores, scores_init, sizeof(_Float16) * 2); static _Float16 roi4_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi4, roi4_init, sizeof(_Float16) * 8); static int32_t param28_init[] = {0}; model->setOperandValue(param28, param28_init, sizeof(int32_t) * 1); static _Float16 param29_init[] = {0.30000001192092896f}; model->setOperandValue(param29, param29_init, sizeof(_Float16) * 1); static int32_t param30_init[] = {-1}; model->setOperandValue(param30, param30_init, sizeof(int32_t) * 1); static int32_t param31_init[] = {0}; model->setOperandValue(param31, param31_init, sizeof(int32_t) * 1); static _Float16 param32_init[] = {0.4000000059604645f}; model->setOperandValue(param32, param32_init, sizeof(_Float16) * 1); static _Float16 param33_init[] = {1.0f}; model->setOperandValue(param33, param33_init, sizeof(_Float16) * 1); static _Float16 param34_init[] = {0.30000001192092896f}; model->setOperandValue(param34, param34_init, sizeof(_Float16) * 1); static int32_t param35_init[] = {2}; model->setOperandValue(param35, param35_init, sizeof(int32_t) * 1); static int32_t param36_init[] = {2}; model->setOperandValue(param36, param36_init, sizeof(int32_t) * 1); static _Float16 param37_init[] = {2.0f}; model->setOperandValue(param37, param37_init, sizeof(_Float16) * 1); static _Float16 param38_init[] = {2.0f}; model->setOperandValue(param38, param38_init, sizeof(_Float16) * 1); static int32_t param39_init[] = {4}; model->setOperandValue(param39, param39_init, sizeof(int32_t) * 1); static int32_t param40_init[] = {4}; model->setOperandValue(param40, param40_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi4, param28, param29, param30, param31, param32, param33, param34}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in4, roiOut, batchSplitOut, param35, param36, param37, param38, param39, param40, layout}, {featureMap}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in4}, {scoresOut, classesOut, featureMap}); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape_nhwc_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape_nchw(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type14(Type::TENSOR_FLOAT32, {1, 2}); OperandType type15(Type::TENSOR_FLOAT32, {1, 8}); OperandType type16(Type::TENSOR_FLOAT32, {0}); OperandType type17(Type::TENSOR_INT32, {0}); OperandType type18(Type::TENSOR_FLOAT32, {0, 4}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type20(Type::TENSOR_FLOAT32, {1, 1, 1, 1}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto scores = model->addOperand(&type14); auto roi4 = model->addOperand(&type15); auto param28 = model->addOperand(&type19); auto param29 = model->addOperand(&type6); auto param30 = model->addOperand(&type5); auto param31 = model->addOperand(&type5); auto param32 = model->addOperand(&type6); auto param33 = model->addOperand(&type6); auto param34 = model->addOperand(&type6); auto scoresOut = model->addOperand(&type16); auto roiOut = model->addOperand(&type18); auto classesOut = model->addOperand(&type17); auto batchSplitOut = model->addOperand(&type17); auto in4 = model->addOperand(&type20); auto param35 = model->addOperand(&type5); auto param36 = model->addOperand(&type5); auto param37 = model->addOperand(&type6); auto param38 = model->addOperand(&type6); auto param39 = model->addOperand(&type5); auto param40 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto featureMap = model->addOperand(&type38); // Phase 2, operations static float scores_init[] = {0.9f, 0.1f}; model->setOperandValue(scores, scores_init, sizeof(float) * 2); static float roi4_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi4, roi4_init, sizeof(float) * 8); static int32_t param28_init[] = {0}; model->setOperandValue(param28, param28_init, sizeof(int32_t) * 1); static float param29_init[] = {0.3f}; model->setOperandValue(param29, param29_init, sizeof(float) * 1); static int32_t param30_init[] = {-1}; model->setOperandValue(param30, param30_init, sizeof(int32_t) * 1); static int32_t param31_init[] = {0}; model->setOperandValue(param31, param31_init, sizeof(int32_t) * 1); static float param32_init[] = {0.4f}; model->setOperandValue(param32, param32_init, sizeof(float) * 1); static float param33_init[] = {1.0f}; model->setOperandValue(param33, param33_init, sizeof(float) * 1); static float param34_init[] = {0.3f}; model->setOperandValue(param34, param34_init, sizeof(float) * 1); static int32_t param35_init[] = {2}; model->setOperandValue(param35, param35_init, sizeof(int32_t) * 1); static int32_t param36_init[] = {2}; model->setOperandValue(param36, param36_init, sizeof(int32_t) * 1); static float param37_init[] = {2.0f}; model->setOperandValue(param37, param37_init, sizeof(float) * 1); static float param38_init[] = {2.0f}; model->setOperandValue(param38, param38_init, sizeof(float) * 1); static int32_t param39_init[] = {4}; model->setOperandValue(param39, param39_init, sizeof(int32_t) * 1); static int32_t param40_init[] = {4}; model->setOperandValue(param40, param40_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi4, param28, param29, param30, param31, param32, param33, param34}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in4, roiOut, batchSplitOut, param35, param36, param37, param38, param39, param40, layout}, {featureMap}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in4}, {scoresOut, classesOut, featureMap}); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape_nchw(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape_nchw_relaxed(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type14(Type::TENSOR_FLOAT32, {1, 2}); OperandType type15(Type::TENSOR_FLOAT32, {1, 8}); OperandType type16(Type::TENSOR_FLOAT32, {0}); OperandType type17(Type::TENSOR_INT32, {0}); OperandType type18(Type::TENSOR_FLOAT32, {0, 4}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type20(Type::TENSOR_FLOAT32, {1, 1, 1, 1}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto scores = model->addOperand(&type14); auto roi4 = model->addOperand(&type15); auto param28 = model->addOperand(&type19); auto param29 = model->addOperand(&type6); auto param30 = model->addOperand(&type5); auto param31 = model->addOperand(&type5); auto param32 = model->addOperand(&type6); auto param33 = model->addOperand(&type6); auto param34 = model->addOperand(&type6); auto scoresOut = model->addOperand(&type16); auto roiOut = model->addOperand(&type18); auto classesOut = model->addOperand(&type17); auto batchSplitOut = model->addOperand(&type17); auto in4 = model->addOperand(&type20); auto param35 = model->addOperand(&type5); auto param36 = model->addOperand(&type5); auto param37 = model->addOperand(&type6); auto param38 = model->addOperand(&type6); auto param39 = model->addOperand(&type5); auto param40 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto featureMap = model->addOperand(&type38); // Phase 2, operations static float scores_init[] = {0.9f, 0.1f}; model->setOperandValue(scores, scores_init, sizeof(float) * 2); static float roi4_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi4, roi4_init, sizeof(float) * 8); static int32_t param28_init[] = {0}; model->setOperandValue(param28, param28_init, sizeof(int32_t) * 1); static float param29_init[] = {0.3f}; model->setOperandValue(param29, param29_init, sizeof(float) * 1); static int32_t param30_init[] = {-1}; model->setOperandValue(param30, param30_init, sizeof(int32_t) * 1); static int32_t param31_init[] = {0}; model->setOperandValue(param31, param31_init, sizeof(int32_t) * 1); static float param32_init[] = {0.4f}; model->setOperandValue(param32, param32_init, sizeof(float) * 1); static float param33_init[] = {1.0f}; model->setOperandValue(param33, param33_init, sizeof(float) * 1); static float param34_init[] = {0.3f}; model->setOperandValue(param34, param34_init, sizeof(float) * 1); static int32_t param35_init[] = {2}; model->setOperandValue(param35, param35_init, sizeof(int32_t) * 1); static int32_t param36_init[] = {2}; model->setOperandValue(param36, param36_init, sizeof(int32_t) * 1); static float param37_init[] = {2.0f}; model->setOperandValue(param37, param37_init, sizeof(float) * 1); static float param38_init[] = {2.0f}; model->setOperandValue(param38, param38_init, sizeof(float) * 1); static int32_t param39_init[] = {4}; model->setOperandValue(param39, param39_init, sizeof(int32_t) * 1); static int32_t param40_init[] = {4}; model->setOperandValue(param40, param40_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi4, param28, param29, param30, param31, param32, param33, param34}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in4, roiOut, batchSplitOut, param35, param36, param37, param38, param39, param40, layout}, {featureMap}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in4}, {scoresOut, classesOut, featureMap}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape_nchw_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape_nchw_quant8(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type17(Type::TENSOR_INT32, {0}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type70(Type::TENSOR_QUANT8_ASYMM, {1, 1, 1, 1}, 0.1f, 128); OperandType type71(Type::TENSOR_QUANT16_ASYMM, {1, 8}, 0.125f, 0); OperandType type72(Type::TENSOR_QUANT16_ASYMM, {0, 4}, 0.125f, 0); OperandType type73(Type::TENSOR_QUANT8_ASYMM, {1, 2}, 0.1f, 128); OperandType type74(Type::TENSOR_QUANT8_ASYMM, {0}, 0.1f, 128); OperandType type84(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.1f, 128); // Phase 1, operands auto scores = model->addOperand(&type73); auto roi4 = model->addOperand(&type71); auto param28 = model->addOperand(&type19); auto param29 = model->addOperand(&type6); auto param30 = model->addOperand(&type5); auto param31 = model->addOperand(&type5); auto param32 = model->addOperand(&type6); auto param33 = model->addOperand(&type6); auto param34 = model->addOperand(&type6); auto scoresOut = model->addOperand(&type74); auto roiOut = model->addOperand(&type72); auto classesOut = model->addOperand(&type17); auto batchSplitOut = model->addOperand(&type17); auto in4 = model->addOperand(&type70); auto param35 = model->addOperand(&type5); auto param36 = model->addOperand(&type5); auto param37 = model->addOperand(&type6); auto param38 = model->addOperand(&type6); auto param39 = model->addOperand(&type5); auto param40 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto featureMap = model->addOperand(&type84); // Phase 2, operations static uint8_t scores_init[] = {137, 129}; model->setOperandValue(scores, scores_init, sizeof(uint8_t) * 2); static uint16_t roi4_init[] = {8, 8, 80, 80, 0, 0, 80, 80}; model->setOperandValue(roi4, roi4_init, sizeof(uint16_t) * 8); static int32_t param28_init[] = {0}; model->setOperandValue(param28, param28_init, sizeof(int32_t) * 1); static float param29_init[] = {0.3f}; model->setOperandValue(param29, param29_init, sizeof(float) * 1); static int32_t param30_init[] = {-1}; model->setOperandValue(param30, param30_init, sizeof(int32_t) * 1); static int32_t param31_init[] = {0}; model->setOperandValue(param31, param31_init, sizeof(int32_t) * 1); static float param32_init[] = {0.4f}; model->setOperandValue(param32, param32_init, sizeof(float) * 1); static float param33_init[] = {1.0f}; model->setOperandValue(param33, param33_init, sizeof(float) * 1); static float param34_init[] = {0.3f}; model->setOperandValue(param34, param34_init, sizeof(float) * 1); static int32_t param35_init[] = {2}; model->setOperandValue(param35, param35_init, sizeof(int32_t) * 1); static int32_t param36_init[] = {2}; model->setOperandValue(param36, param36_init, sizeof(int32_t) * 1); static float param37_init[] = {2.0f}; model->setOperandValue(param37, param37_init, sizeof(float) * 1); static float param38_init[] = {2.0f}; model->setOperandValue(param38, param38_init, sizeof(float) * 1); static int32_t param39_init[] = {4}; model->setOperandValue(param39, param39_init, sizeof(int32_t) * 1); static int32_t param40_init[] = {4}; model->setOperandValue(param40, param40_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi4, param28, param29, param30, param31, param32, param33, param34}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in4, roiOut, batchSplitOut, param35, param36, param37, param38, param39, param40, layout}, {featureMap}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in4}, {scoresOut, classesOut, featureMap}); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape_nchw_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_zero_sized_dynamic_output_shape_nchw_float16(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type17(Type::TENSOR_INT32, {0}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type30(Type::FLOAT16, {}); OperandType type40(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type76(Type::TENSOR_FLOAT16, {1, 1, 1, 1}); OperandType type77(Type::TENSOR_FLOAT16, {1, 8}); OperandType type78(Type::TENSOR_FLOAT16, {0, 4}); OperandType type79(Type::TENSOR_FLOAT16, {1, 2}); OperandType type85(Type::TENSOR_FLOAT16, {0}); // Phase 1, operands auto scores = model->addOperand(&type79); auto roi4 = model->addOperand(&type77); auto param28 = model->addOperand(&type19); auto param29 = model->addOperand(&type30); auto param30 = model->addOperand(&type5); auto param31 = model->addOperand(&type5); auto param32 = model->addOperand(&type30); auto param33 = model->addOperand(&type30); auto param34 = model->addOperand(&type30); auto scoresOut = model->addOperand(&type85); auto roiOut = model->addOperand(&type78); auto classesOut = model->addOperand(&type17); auto batchSplitOut = model->addOperand(&type17); auto in4 = model->addOperand(&type76); auto param35 = model->addOperand(&type5); auto param36 = model->addOperand(&type5); auto param37 = model->addOperand(&type30); auto param38 = model->addOperand(&type30); auto param39 = model->addOperand(&type5); auto param40 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto featureMap = model->addOperand(&type40); // Phase 2, operations static _Float16 scores_init[] = {0.8999999761581421f, 0.10000000149011612f}; model->setOperandValue(scores, scores_init, sizeof(_Float16) * 2); static _Float16 roi4_init[] = {1.0f, 1.0f, 10.0f, 10.0f, 0.0f, 0.0f, 10.0f, 10.0f}; model->setOperandValue(roi4, roi4_init, sizeof(_Float16) * 8); static int32_t param28_init[] = {0}; model->setOperandValue(param28, param28_init, sizeof(int32_t) * 1); static _Float16 param29_init[] = {0.30000001192092896f}; model->setOperandValue(param29, param29_init, sizeof(_Float16) * 1); static int32_t param30_init[] = {-1}; model->setOperandValue(param30, param30_init, sizeof(int32_t) * 1); static int32_t param31_init[] = {0}; model->setOperandValue(param31, param31_init, sizeof(int32_t) * 1); static _Float16 param32_init[] = {0.4000000059604645f}; model->setOperandValue(param32, param32_init, sizeof(_Float16) * 1); static _Float16 param33_init[] = {1.0f}; model->setOperandValue(param33, param33_init, sizeof(_Float16) * 1); static _Float16 param34_init[] = {0.30000001192092896f}; model->setOperandValue(param34, param34_init, sizeof(_Float16) * 1); static int32_t param35_init[] = {2}; model->setOperandValue(param35, param35_init, sizeof(int32_t) * 1); static int32_t param36_init[] = {2}; model->setOperandValue(param36, param36_init, sizeof(int32_t) * 1); static _Float16 param37_init[] = {2.0f}; model->setOperandValue(param37, param37_init, sizeof(_Float16) * 1); static _Float16 param38_init[] = {2.0f}; model->setOperandValue(param38, param38_init, sizeof(_Float16) * 1); static int32_t param39_init[] = {4}; model->setOperandValue(param39, param39_init, sizeof(int32_t) * 1); static int32_t param40_init[] = {4}; model->setOperandValue(param40, param40_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, {scores, roi4, param28, param29, param30, param31, param32, param33, param34}, {scoresOut, roiOut, classesOut, batchSplitOut}); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in4, roiOut, batchSplitOut, param35, param36, param37, param38, param39, param40, layout}, {featureMap}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in4}, {scoresOut, classesOut, featureMap}); assert(model->isValid()); } inline bool is_ignored_zero_sized_dynamic_output_shape_nchw_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_5(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type22(Type::TENSOR_FLOAT32, {1, 512, 8, 1}); OperandType type23(Type::TENSOR_FLOAT32, {1, 4}); OperandType type24(Type::TENSOR_FLOAT32, {1, 128, 4, 1}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in5 = model->addOperand(&type22); auto roi5 = model->addOperand(&type23); auto param41 = model->addOperand(&type19); auto param42 = model->addOperand(&type5); auto param43 = model->addOperand(&type5); auto param44 = model->addOperand(&type6); auto param45 = model->addOperand(&type6); auto param46 = model->addOperand(&type5); auto param47 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out4 = model->addOperand(&type24); // Phase 2, operations static int32_t param41_init[] = {0}; model->setOperandValue(param41, param41_init, sizeof(int32_t) * 1); static int32_t param42_init[] = {128}; model->setOperandValue(param42, param42_init, sizeof(int32_t) * 1); static int32_t param43_init[] = {4}; model->setOperandValue(param43, param43_init, sizeof(int32_t) * 1); static float param44_init[] = {1.0f}; model->setOperandValue(param44, param44_init, sizeof(float) * 1); static float param45_init[] = {64.0f}; model->setOperandValue(param45, param45_init, sizeof(float) * 1); static int32_t param46_init[] = {10}; model->setOperandValue(param46, param46_init, sizeof(int32_t) * 1); static int32_t param47_init[] = {10}; model->setOperandValue(param47, param47_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in5, roi5, param41, param42, param43, param44, param45, param46, param47, layout}, {out4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in5, roi5}, {out4}); assert(model->isValid()); } inline bool is_ignored_nhwc_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_relaxed_5(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type22(Type::TENSOR_FLOAT32, {1, 512, 8, 1}); OperandType type23(Type::TENSOR_FLOAT32, {1, 4}); OperandType type24(Type::TENSOR_FLOAT32, {1, 128, 4, 1}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in5 = model->addOperand(&type22); auto roi5 = model->addOperand(&type23); auto param41 = model->addOperand(&type19); auto param42 = model->addOperand(&type5); auto param43 = model->addOperand(&type5); auto param44 = model->addOperand(&type6); auto param45 = model->addOperand(&type6); auto param46 = model->addOperand(&type5); auto param47 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out4 = model->addOperand(&type24); // Phase 2, operations static int32_t param41_init[] = {0}; model->setOperandValue(param41, param41_init, sizeof(int32_t) * 1); static int32_t param42_init[] = {128}; model->setOperandValue(param42, param42_init, sizeof(int32_t) * 1); static int32_t param43_init[] = {4}; model->setOperandValue(param43, param43_init, sizeof(int32_t) * 1); static float param44_init[] = {1.0f}; model->setOperandValue(param44, param44_init, sizeof(float) * 1); static float param45_init[] = {64.0f}; model->setOperandValue(param45, param45_init, sizeof(float) * 1); static int32_t param46_init[] = {10}; model->setOperandValue(param46, param46_init, sizeof(int32_t) * 1); static int32_t param47_init[] = {10}; model->setOperandValue(param47, param47_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in5, roi5, param41, param42, param43, param44, param45, param46, param47, layout}, {out4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in5, roi5}, {out4}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nhwc_relaxed_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_quant8_5(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type86(Type::TENSOR_QUANT8_ASYMM, {1, 512, 8, 1}, 0.25f, 128); OperandType type87(Type::TENSOR_QUANT8_ASYMM, {1, 128, 4, 1}, 0.0625f, 128); OperandType type88(Type::TENSOR_QUANT16_ASYMM, {1, 4}, 0.125f, 0); // Phase 1, operands auto in5 = model->addOperand(&type86); auto roi5 = model->addOperand(&type88); auto param41 = model->addOperand(&type19); auto param42 = model->addOperand(&type5); auto param43 = model->addOperand(&type5); auto param44 = model->addOperand(&type6); auto param45 = model->addOperand(&type6); auto param46 = model->addOperand(&type5); auto param47 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out4 = model->addOperand(&type87); // Phase 2, operations static int32_t param41_init[] = {0}; model->setOperandValue(param41, param41_init, sizeof(int32_t) * 1); static int32_t param42_init[] = {128}; model->setOperandValue(param42, param42_init, sizeof(int32_t) * 1); static int32_t param43_init[] = {4}; model->setOperandValue(param43, param43_init, sizeof(int32_t) * 1); static float param44_init[] = {1.0f}; model->setOperandValue(param44, param44_init, sizeof(float) * 1); static float param45_init[] = {64.0f}; model->setOperandValue(param45, param45_init, sizeof(float) * 1); static int32_t param46_init[] = {10}; model->setOperandValue(param46, param46_init, sizeof(int32_t) * 1); static int32_t param47_init[] = {10}; model->setOperandValue(param47, param47_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in5, roi5, param41, param42, param43, param44, param45, param46, param47, layout}, {out4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in5, roi5}, {out4}); assert(model->isValid()); } inline bool is_ignored_nhwc_quant8_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_float16_5(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type30(Type::FLOAT16, {}); OperandType type5(Type::INT32, {}); OperandType type89(Type::TENSOR_FLOAT16, {1, 512, 8, 1}); OperandType type90(Type::TENSOR_FLOAT16, {1, 128, 4, 1}); OperandType type91(Type::TENSOR_FLOAT16, {1, 4}); // Phase 1, operands auto in5 = model->addOperand(&type89); auto roi5 = model->addOperand(&type91); auto param41 = model->addOperand(&type19); auto param42 = model->addOperand(&type5); auto param43 = model->addOperand(&type5); auto param44 = model->addOperand(&type30); auto param45 = model->addOperand(&type30); auto param46 = model->addOperand(&type5); auto param47 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out4 = model->addOperand(&type90); // Phase 2, operations static int32_t param41_init[] = {0}; model->setOperandValue(param41, param41_init, sizeof(int32_t) * 1); static int32_t param42_init[] = {128}; model->setOperandValue(param42, param42_init, sizeof(int32_t) * 1); static int32_t param43_init[] = {4}; model->setOperandValue(param43, param43_init, sizeof(int32_t) * 1); static _Float16 param44_init[] = {1.0f}; model->setOperandValue(param44, param44_init, sizeof(_Float16) * 1); static _Float16 param45_init[] = {64.0f}; model->setOperandValue(param45, param45_init, sizeof(_Float16) * 1); static int32_t param46_init[] = {10}; model->setOperandValue(param46, param46_init, sizeof(int32_t) * 1); static int32_t param47_init[] = {10}; model->setOperandValue(param47, param47_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in5, roi5, param41, param42, param43, param44, param45, param46, param47, layout}, {out4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in5, roi5}, {out4}); assert(model->isValid()); } inline bool is_ignored_nhwc_float16_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_5(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type23(Type::TENSOR_FLOAT32, {1, 4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type92(Type::TENSOR_FLOAT32, {1, 1, 512, 8}); OperandType type93(Type::TENSOR_FLOAT32, {1, 1, 128, 4}); // Phase 1, operands auto in5 = model->addOperand(&type92); auto roi5 = model->addOperand(&type23); auto param41 = model->addOperand(&type19); auto param42 = model->addOperand(&type5); auto param43 = model->addOperand(&type5); auto param44 = model->addOperand(&type6); auto param45 = model->addOperand(&type6); auto param46 = model->addOperand(&type5); auto param47 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out4 = model->addOperand(&type93); // Phase 2, operations static int32_t param41_init[] = {0}; model->setOperandValue(param41, param41_init, sizeof(int32_t) * 1); static int32_t param42_init[] = {128}; model->setOperandValue(param42, param42_init, sizeof(int32_t) * 1); static int32_t param43_init[] = {4}; model->setOperandValue(param43, param43_init, sizeof(int32_t) * 1); static float param44_init[] = {1.0f}; model->setOperandValue(param44, param44_init, sizeof(float) * 1); static float param45_init[] = {64.0f}; model->setOperandValue(param45, param45_init, sizeof(float) * 1); static int32_t param46_init[] = {10}; model->setOperandValue(param46, param46_init, sizeof(int32_t) * 1); static int32_t param47_init[] = {10}; model->setOperandValue(param47, param47_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in5, roi5, param41, param42, param43, param44, param45, param46, param47, layout}, {out4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in5, roi5}, {out4}); assert(model->isValid()); } inline bool is_ignored_nchw_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_relaxed_5(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type23(Type::TENSOR_FLOAT32, {1, 4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type92(Type::TENSOR_FLOAT32, {1, 1, 512, 8}); OperandType type93(Type::TENSOR_FLOAT32, {1, 1, 128, 4}); // Phase 1, operands auto in5 = model->addOperand(&type92); auto roi5 = model->addOperand(&type23); auto param41 = model->addOperand(&type19); auto param42 = model->addOperand(&type5); auto param43 = model->addOperand(&type5); auto param44 = model->addOperand(&type6); auto param45 = model->addOperand(&type6); auto param46 = model->addOperand(&type5); auto param47 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out4 = model->addOperand(&type93); // Phase 2, operations static int32_t param41_init[] = {0}; model->setOperandValue(param41, param41_init, sizeof(int32_t) * 1); static int32_t param42_init[] = {128}; model->setOperandValue(param42, param42_init, sizeof(int32_t) * 1); static int32_t param43_init[] = {4}; model->setOperandValue(param43, param43_init, sizeof(int32_t) * 1); static float param44_init[] = {1.0f}; model->setOperandValue(param44, param44_init, sizeof(float) * 1); static float param45_init[] = {64.0f}; model->setOperandValue(param45, param45_init, sizeof(float) * 1); static int32_t param46_init[] = {10}; model->setOperandValue(param46, param46_init, sizeof(int32_t) * 1); static int32_t param47_init[] = {10}; model->setOperandValue(param47, param47_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in5, roi5, param41, param42, param43, param44, param45, param46, param47, layout}, {out4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in5, roi5}, {out4}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nchw_relaxed_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_quant8_5(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type88(Type::TENSOR_QUANT16_ASYMM, {1, 4}, 0.125f, 0); OperandType type94(Type::TENSOR_QUANT8_ASYMM, {1, 1, 512, 8}, 0.25f, 128); OperandType type95(Type::TENSOR_QUANT8_ASYMM, {1, 1, 128, 4}, 0.0625f, 128); // Phase 1, operands auto in5 = model->addOperand(&type94); auto roi5 = model->addOperand(&type88); auto param41 = model->addOperand(&type19); auto param42 = model->addOperand(&type5); auto param43 = model->addOperand(&type5); auto param44 = model->addOperand(&type6); auto param45 = model->addOperand(&type6); auto param46 = model->addOperand(&type5); auto param47 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out4 = model->addOperand(&type95); // Phase 2, operations static int32_t param41_init[] = {0}; model->setOperandValue(param41, param41_init, sizeof(int32_t) * 1); static int32_t param42_init[] = {128}; model->setOperandValue(param42, param42_init, sizeof(int32_t) * 1); static int32_t param43_init[] = {4}; model->setOperandValue(param43, param43_init, sizeof(int32_t) * 1); static float param44_init[] = {1.0f}; model->setOperandValue(param44, param44_init, sizeof(float) * 1); static float param45_init[] = {64.0f}; model->setOperandValue(param45, param45_init, sizeof(float) * 1); static int32_t param46_init[] = {10}; model->setOperandValue(param46, param46_init, sizeof(int32_t) * 1); static int32_t param47_init[] = {10}; model->setOperandValue(param47, param47_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in5, roi5, param41, param42, param43, param44, param45, param46, param47, layout}, {out4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in5, roi5}, {out4}); assert(model->isValid()); } inline bool is_ignored_nchw_quant8_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_float16_5(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type30(Type::FLOAT16, {}); OperandType type5(Type::INT32, {}); OperandType type91(Type::TENSOR_FLOAT16, {1, 4}); OperandType type96(Type::TENSOR_FLOAT16, {1, 1, 512, 8}); OperandType type97(Type::TENSOR_FLOAT16, {1, 1, 128, 4}); // Phase 1, operands auto in5 = model->addOperand(&type96); auto roi5 = model->addOperand(&type91); auto param41 = model->addOperand(&type19); auto param42 = model->addOperand(&type5); auto param43 = model->addOperand(&type5); auto param44 = model->addOperand(&type30); auto param45 = model->addOperand(&type30); auto param46 = model->addOperand(&type5); auto param47 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out4 = model->addOperand(&type97); // Phase 2, operations static int32_t param41_init[] = {0}; model->setOperandValue(param41, param41_init, sizeof(int32_t) * 1); static int32_t param42_init[] = {128}; model->setOperandValue(param42, param42_init, sizeof(int32_t) * 1); static int32_t param43_init[] = {4}; model->setOperandValue(param43, param43_init, sizeof(int32_t) * 1); static _Float16 param44_init[] = {1.0f}; model->setOperandValue(param44, param44_init, sizeof(_Float16) * 1); static _Float16 param45_init[] = {64.0f}; model->setOperandValue(param45, param45_init, sizeof(_Float16) * 1); static int32_t param46_init[] = {10}; model->setOperandValue(param46, param46_init, sizeof(int32_t) * 1); static int32_t param47_init[] = {10}; model->setOperandValue(param47, param47_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in5, roi5, param41, param42, param43, param44, param45, param46, param47, layout}, {out4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in5, roi5}, {out4}); assert(model->isValid()); } inline bool is_ignored_nchw_float16_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_5(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type22(Type::TENSOR_FLOAT32, {1, 512, 8, 1}); OperandType type23(Type::TENSOR_FLOAT32, {1, 4}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in5 = model->addOperand(&type22); auto roi5 = model->addOperand(&type23); auto param41 = model->addOperand(&type19); auto param42 = model->addOperand(&type5); auto param43 = model->addOperand(&type5); auto param44 = model->addOperand(&type6); auto param45 = model->addOperand(&type6); auto param46 = model->addOperand(&type5); auto param47 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out4 = model->addOperand(&type38); // Phase 2, operations static int32_t param41_init[] = {0}; model->setOperandValue(param41, param41_init, sizeof(int32_t) * 1); static int32_t param42_init[] = {128}; model->setOperandValue(param42, param42_init, sizeof(int32_t) * 1); static int32_t param43_init[] = {4}; model->setOperandValue(param43, param43_init, sizeof(int32_t) * 1); static float param44_init[] = {1.0f}; model->setOperandValue(param44, param44_init, sizeof(float) * 1); static float param45_init[] = {64.0f}; model->setOperandValue(param45, param45_init, sizeof(float) * 1); static int32_t param46_init[] = {10}; model->setOperandValue(param46, param46_init, sizeof(int32_t) * 1); static int32_t param47_init[] = {10}; model->setOperandValue(param47, param47_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in5, roi5, param41, param42, param43, param44, param45, param46, param47, layout}, {out4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in5, roi5}, {out4}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_relaxed_5(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type22(Type::TENSOR_FLOAT32, {1, 512, 8, 1}); OperandType type23(Type::TENSOR_FLOAT32, {1, 4}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in5 = model->addOperand(&type22); auto roi5 = model->addOperand(&type23); auto param41 = model->addOperand(&type19); auto param42 = model->addOperand(&type5); auto param43 = model->addOperand(&type5); auto param44 = model->addOperand(&type6); auto param45 = model->addOperand(&type6); auto param46 = model->addOperand(&type5); auto param47 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out4 = model->addOperand(&type38); // Phase 2, operations static int32_t param41_init[] = {0}; model->setOperandValue(param41, param41_init, sizeof(int32_t) * 1); static int32_t param42_init[] = {128}; model->setOperandValue(param42, param42_init, sizeof(int32_t) * 1); static int32_t param43_init[] = {4}; model->setOperandValue(param43, param43_init, sizeof(int32_t) * 1); static float param44_init[] = {1.0f}; model->setOperandValue(param44, param44_init, sizeof(float) * 1); static float param45_init[] = {64.0f}; model->setOperandValue(param45, param45_init, sizeof(float) * 1); static int32_t param46_init[] = {10}; model->setOperandValue(param46, param46_init, sizeof(int32_t) * 1); static int32_t param47_init[] = {10}; model->setOperandValue(param47, param47_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in5, roi5, param41, param42, param43, param44, param45, param46, param47, layout}, {out4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in5, roi5}, {out4}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_relaxed_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_quant8_5(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type39(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.0625f, 128); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type86(Type::TENSOR_QUANT8_ASYMM, {1, 512, 8, 1}, 0.25f, 128); OperandType type88(Type::TENSOR_QUANT16_ASYMM, {1, 4}, 0.125f, 0); // Phase 1, operands auto in5 = model->addOperand(&type86); auto roi5 = model->addOperand(&type88); auto param41 = model->addOperand(&type19); auto param42 = model->addOperand(&type5); auto param43 = model->addOperand(&type5); auto param44 = model->addOperand(&type6); auto param45 = model->addOperand(&type6); auto param46 = model->addOperand(&type5); auto param47 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out4 = model->addOperand(&type39); // Phase 2, operations static int32_t param41_init[] = {0}; model->setOperandValue(param41, param41_init, sizeof(int32_t) * 1); static int32_t param42_init[] = {128}; model->setOperandValue(param42, param42_init, sizeof(int32_t) * 1); static int32_t param43_init[] = {4}; model->setOperandValue(param43, param43_init, sizeof(int32_t) * 1); static float param44_init[] = {1.0f}; model->setOperandValue(param44, param44_init, sizeof(float) * 1); static float param45_init[] = {64.0f}; model->setOperandValue(param45, param45_init, sizeof(float) * 1); static int32_t param46_init[] = {10}; model->setOperandValue(param46, param46_init, sizeof(int32_t) * 1); static int32_t param47_init[] = {10}; model->setOperandValue(param47, param47_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in5, roi5, param41, param42, param43, param44, param45, param46, param47, layout}, {out4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in5, roi5}, {out4}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_quant8_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_float16_5(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type30(Type::FLOAT16, {}); OperandType type40(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type89(Type::TENSOR_FLOAT16, {1, 512, 8, 1}); OperandType type91(Type::TENSOR_FLOAT16, {1, 4}); // Phase 1, operands auto in5 = model->addOperand(&type89); auto roi5 = model->addOperand(&type91); auto param41 = model->addOperand(&type19); auto param42 = model->addOperand(&type5); auto param43 = model->addOperand(&type5); auto param44 = model->addOperand(&type30); auto param45 = model->addOperand(&type30); auto param46 = model->addOperand(&type5); auto param47 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out4 = model->addOperand(&type40); // Phase 2, operations static int32_t param41_init[] = {0}; model->setOperandValue(param41, param41_init, sizeof(int32_t) * 1); static int32_t param42_init[] = {128}; model->setOperandValue(param42, param42_init, sizeof(int32_t) * 1); static int32_t param43_init[] = {4}; model->setOperandValue(param43, param43_init, sizeof(int32_t) * 1); static _Float16 param44_init[] = {1.0f}; model->setOperandValue(param44, param44_init, sizeof(_Float16) * 1); static _Float16 param45_init[] = {64.0f}; model->setOperandValue(param45, param45_init, sizeof(_Float16) * 1); static int32_t param46_init[] = {10}; model->setOperandValue(param46, param46_init, sizeof(int32_t) * 1); static int32_t param47_init[] = {10}; model->setOperandValue(param47, param47_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in5, roi5, param41, param42, param43, param44, param45, param46, param47, layout}, {out4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in5, roi5}, {out4}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_float16_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_5(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type23(Type::TENSOR_FLOAT32, {1, 4}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type92(Type::TENSOR_FLOAT32, {1, 1, 512, 8}); // Phase 1, operands auto in5 = model->addOperand(&type92); auto roi5 = model->addOperand(&type23); auto param41 = model->addOperand(&type19); auto param42 = model->addOperand(&type5); auto param43 = model->addOperand(&type5); auto param44 = model->addOperand(&type6); auto param45 = model->addOperand(&type6); auto param46 = model->addOperand(&type5); auto param47 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out4 = model->addOperand(&type38); // Phase 2, operations static int32_t param41_init[] = {0}; model->setOperandValue(param41, param41_init, sizeof(int32_t) * 1); static int32_t param42_init[] = {128}; model->setOperandValue(param42, param42_init, sizeof(int32_t) * 1); static int32_t param43_init[] = {4}; model->setOperandValue(param43, param43_init, sizeof(int32_t) * 1); static float param44_init[] = {1.0f}; model->setOperandValue(param44, param44_init, sizeof(float) * 1); static float param45_init[] = {64.0f}; model->setOperandValue(param45, param45_init, sizeof(float) * 1); static int32_t param46_init[] = {10}; model->setOperandValue(param46, param46_init, sizeof(int32_t) * 1); static int32_t param47_init[] = {10}; model->setOperandValue(param47, param47_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in5, roi5, param41, param42, param43, param44, param45, param46, param47, layout}, {out4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in5, roi5}, {out4}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_relaxed_5(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type23(Type::TENSOR_FLOAT32, {1, 4}); OperandType type38(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type92(Type::TENSOR_FLOAT32, {1, 1, 512, 8}); // Phase 1, operands auto in5 = model->addOperand(&type92); auto roi5 = model->addOperand(&type23); auto param41 = model->addOperand(&type19); auto param42 = model->addOperand(&type5); auto param43 = model->addOperand(&type5); auto param44 = model->addOperand(&type6); auto param45 = model->addOperand(&type6); auto param46 = model->addOperand(&type5); auto param47 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out4 = model->addOperand(&type38); // Phase 2, operations static int32_t param41_init[] = {0}; model->setOperandValue(param41, param41_init, sizeof(int32_t) * 1); static int32_t param42_init[] = {128}; model->setOperandValue(param42, param42_init, sizeof(int32_t) * 1); static int32_t param43_init[] = {4}; model->setOperandValue(param43, param43_init, sizeof(int32_t) * 1); static float param44_init[] = {1.0f}; model->setOperandValue(param44, param44_init, sizeof(float) * 1); static float param45_init[] = {64.0f}; model->setOperandValue(param45, param45_init, sizeof(float) * 1); static int32_t param46_init[] = {10}; model->setOperandValue(param46, param46_init, sizeof(int32_t) * 1); static int32_t param47_init[] = {10}; model->setOperandValue(param47, param47_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in5, roi5, param41, param42, param43, param44, param45, param46, param47, layout}, {out4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in5, roi5}, {out4}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_relaxed_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_quant8_5(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type39(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.0625f, 128); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type88(Type::TENSOR_QUANT16_ASYMM, {1, 4}, 0.125f, 0); OperandType type94(Type::TENSOR_QUANT8_ASYMM, {1, 1, 512, 8}, 0.25f, 128); // Phase 1, operands auto in5 = model->addOperand(&type94); auto roi5 = model->addOperand(&type88); auto param41 = model->addOperand(&type19); auto param42 = model->addOperand(&type5); auto param43 = model->addOperand(&type5); auto param44 = model->addOperand(&type6); auto param45 = model->addOperand(&type6); auto param46 = model->addOperand(&type5); auto param47 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out4 = model->addOperand(&type39); // Phase 2, operations static int32_t param41_init[] = {0}; model->setOperandValue(param41, param41_init, sizeof(int32_t) * 1); static int32_t param42_init[] = {128}; model->setOperandValue(param42, param42_init, sizeof(int32_t) * 1); static int32_t param43_init[] = {4}; model->setOperandValue(param43, param43_init, sizeof(int32_t) * 1); static float param44_init[] = {1.0f}; model->setOperandValue(param44, param44_init, sizeof(float) * 1); static float param45_init[] = {64.0f}; model->setOperandValue(param45, param45_init, sizeof(float) * 1); static int32_t param46_init[] = {10}; model->setOperandValue(param46, param46_init, sizeof(int32_t) * 1); static int32_t param47_init[] = {10}; model->setOperandValue(param47, param47_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in5, roi5, param41, param42, param43, param44, param45, param46, param47, layout}, {out4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in5, roi5}, {out4}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_quant8_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_float16_5(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_INT32, {1}); OperandType type30(Type::FLOAT16, {}); OperandType type40(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type91(Type::TENSOR_FLOAT16, {1, 4}); OperandType type96(Type::TENSOR_FLOAT16, {1, 1, 512, 8}); // Phase 1, operands auto in5 = model->addOperand(&type96); auto roi5 = model->addOperand(&type91); auto param41 = model->addOperand(&type19); auto param42 = model->addOperand(&type5); auto param43 = model->addOperand(&type5); auto param44 = model->addOperand(&type30); auto param45 = model->addOperand(&type30); auto param46 = model->addOperand(&type5); auto param47 = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto out4 = model->addOperand(&type40); // Phase 2, operations static int32_t param41_init[] = {0}; model->setOperandValue(param41, param41_init, sizeof(int32_t) * 1); static int32_t param42_init[] = {128}; model->setOperandValue(param42, param42_init, sizeof(int32_t) * 1); static int32_t param43_init[] = {4}; model->setOperandValue(param43, param43_init, sizeof(int32_t) * 1); static _Float16 param44_init[] = {1.0f}; model->setOperandValue(param44, param44_init, sizeof(_Float16) * 1); static _Float16 param45_init[] = {64.0f}; model->setOperandValue(param45, param45_init, sizeof(_Float16) * 1); static int32_t param46_init[] = {10}; model->setOperandValue(param46, param46_init, sizeof(int32_t) * 1); static int32_t param47_init[] = {10}; model->setOperandValue(param47, param47_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_ALIGN, {in5, roi5, param41, param42, param43, param44, param45, param46, param47, layout}, {out4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in5, roi5}, {out4}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_float16_5(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); }