// clang-format off // Generated file (from: roi_pooling.mod.py). Do not edit void CreateModel_nhwc(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {1, 4, 4, 1}); OperandType type2(Type::TENSOR_FLOAT32, {5, 4}); OperandType type3(Type::TENSOR_FLOAT32, {5, 2, 2, 1}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type1); auto roi = model->addOperand(&type2); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type3); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 5); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in, roi, param, param1, param2, param3, param4, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_nhwc(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_relaxed(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {1, 4, 4, 1}); OperandType type2(Type::TENSOR_FLOAT32, {5, 4}); OperandType type3(Type::TENSOR_FLOAT32, {5, 2, 2, 1}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type1); auto roi = model->addOperand(&type2); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type3); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 5); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in, roi, param, param1, param2, param3, param4, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nhwc_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_quant8(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type12(Type::TENSOR_QUANT8_ASYMM, {1, 4, 4, 1}, 0.25f, 128); OperandType type13(Type::TENSOR_QUANT8_ASYMM, {5, 2, 2, 1}, 0.25f, 128); OperandType type14(Type::TENSOR_QUANT16_ASYMM, {5, 4}, 0.125f, 0); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type12); auto roi = model->addOperand(&type14); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type13); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 5); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in, roi, param, param1, param2, param3, param4, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_nhwc_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_float16(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type15(Type::TENSOR_FLOAT16, {1, 4, 4, 1}); OperandType type16(Type::TENSOR_FLOAT16, {5, 2, 2, 1}); OperandType type17(Type::FLOAT16, {}); OperandType type18(Type::TENSOR_FLOAT16, {5, 4}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto in = model->addOperand(&type15); auto roi = model->addOperand(&type18); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type17); auto param4 = model->addOperand(&type17); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type16); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 5); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static _Float16 param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(_Float16) * 1); static _Float16 param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in, roi, param, param1, param2, param3, param4, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_nhwc_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_FLOAT32, {1, 1, 4, 4}); OperandType type2(Type::TENSOR_FLOAT32, {5, 4}); OperandType type20(Type::TENSOR_FLOAT32, {5, 1, 2, 2}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type19); auto roi = model->addOperand(&type2); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type20); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 5); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in, roi, param, param1, param2, param3, param4, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_nchw(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_relaxed(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_FLOAT32, {1, 1, 4, 4}); OperandType type2(Type::TENSOR_FLOAT32, {5, 4}); OperandType type20(Type::TENSOR_FLOAT32, {5, 1, 2, 2}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type19); auto roi = model->addOperand(&type2); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type20); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 5); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in, roi, param, param1, param2, param3, param4, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nchw_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_quant8(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type14(Type::TENSOR_QUANT16_ASYMM, {5, 4}, 0.125f, 0); OperandType type21(Type::TENSOR_QUANT8_ASYMM, {1, 1, 4, 4}, 0.25f, 128); OperandType type22(Type::TENSOR_QUANT8_ASYMM, {5, 1, 2, 2}, 0.25f, 128); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type21); auto roi = model->addOperand(&type14); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type22); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 5); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in, roi, param, param1, param2, param3, param4, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_nchw_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_float16(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type17(Type::FLOAT16, {}); OperandType type18(Type::TENSOR_FLOAT16, {5, 4}); OperandType type23(Type::TENSOR_FLOAT16, {1, 1, 4, 4}); OperandType type24(Type::TENSOR_FLOAT16, {5, 1, 2, 2}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto in = model->addOperand(&type23); auto roi = model->addOperand(&type18); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type17); auto param4 = model->addOperand(&type17); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type24); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 5); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static _Float16 param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(_Float16) * 1); static _Float16 param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in, roi, param, param1, param2, param3, param4, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_nchw_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {1, 4, 4, 1}); OperandType type2(Type::TENSOR_FLOAT32, {5, 4}); OperandType type25(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type1); auto roi = model->addOperand(&type2); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type25); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 5); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in, roi, param, param1, param2, param3, param4, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_relaxed(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type1(Type::TENSOR_FLOAT32, {1, 4, 4, 1}); OperandType type2(Type::TENSOR_FLOAT32, {5, 4}); OperandType type25(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type1); auto roi = model->addOperand(&type2); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type25); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 5); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in, roi, param, param1, param2, param3, param4, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_quant8(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type12(Type::TENSOR_QUANT8_ASYMM, {1, 4, 4, 1}, 0.25f, 128); OperandType type14(Type::TENSOR_QUANT16_ASYMM, {5, 4}, 0.125f, 0); OperandType type26(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.25f, 128); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type12); auto roi = model->addOperand(&type14); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type26); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 5); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in, roi, param, param1, param2, param3, param4, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_float16(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type15(Type::TENSOR_FLOAT16, {1, 4, 4, 1}); OperandType type17(Type::FLOAT16, {}); OperandType type18(Type::TENSOR_FLOAT16, {5, 4}); OperandType type27(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto in = model->addOperand(&type15); auto roi = model->addOperand(&type18); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type17); auto param4 = model->addOperand(&type17); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type27); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 5); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static _Float16 param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(_Float16) * 1); static _Float16 param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in, roi, param, param1, param2, param3, param4, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_FLOAT32, {1, 1, 4, 4}); OperandType type2(Type::TENSOR_FLOAT32, {5, 4}); OperandType type25(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type19); auto roi = model->addOperand(&type2); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type25); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 5); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in, roi, param, param1, param2, param3, param4, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_relaxed(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type19(Type::TENSOR_FLOAT32, {1, 1, 4, 4}); OperandType type2(Type::TENSOR_FLOAT32, {5, 4}); OperandType type25(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type19); auto roi = model->addOperand(&type2); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type25); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 5); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in, roi, param, param1, param2, param3, param4, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_quant8(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type14(Type::TENSOR_QUANT16_ASYMM, {5, 4}, 0.125f, 0); OperandType type21(Type::TENSOR_QUANT8_ASYMM, {1, 1, 4, 4}, 0.25f, 128); OperandType type26(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.25f, 128); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in = model->addOperand(&type21); auto roi = model->addOperand(&type14); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type6); auto param4 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type26); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 5); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static float param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(float) * 1); static float param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in, roi, param, param1, param2, param3, param4, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_float16(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type17(Type::FLOAT16, {}); OperandType type18(Type::TENSOR_FLOAT16, {5, 4}); OperandType type23(Type::TENSOR_FLOAT16, {1, 1, 4, 4}); OperandType type27(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto in = model->addOperand(&type23); auto roi = model->addOperand(&type18); auto param = model->addOperand(&type4); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto param3 = model->addOperand(&type17); auto param4 = model->addOperand(&type17); auto layout = model->addOperand(&type0); auto out = model->addOperand(&type27); // Phase 2, operations static int32_t param_init[] = {0, 0, 0, 0, 0}; model->setOperandValue(param, param_init, sizeof(int32_t) * 5); static int32_t param1_init[] = {2}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {2}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static _Float16 param3_init[] = {2.0f}; model->setOperandValue(param3, param3_init, sizeof(_Float16) * 1); static _Float16 param4_init[] = {2.0f}; model->setOperandValue(param4, param4_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in, roi, param, param1, param2, param3, param4, layout}, {out}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in, roi}, {out}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type7(Type::TENSOR_FLOAT32, {4, 4, 8, 2}); OperandType type8(Type::TENSOR_FLOAT32, {4, 4}); OperandType type9(Type::TENSOR_FLOAT32, {4, 2, 3, 2}); // Phase 1, operands auto in1 = model->addOperand(&type7); auto roi1 = model->addOperand(&type8); auto param5 = model->addOperand(&type10); auto param6 = model->addOperand(&type5); auto param7 = model->addOperand(&type5); auto param8 = model->addOperand(&type6); auto param9 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type9); // Phase 2, operations static int32_t param5_init[] = {0, 0, 3, 3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 4); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static float param8_init[] = {4.0f}; model->setOperandValue(param8, param8_init, sizeof(float) * 1); static float param9_init[] = {4.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in1, roi1, param5, param6, param7, param8, param9, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_nhwc_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_relaxed_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type7(Type::TENSOR_FLOAT32, {4, 4, 8, 2}); OperandType type8(Type::TENSOR_FLOAT32, {4, 4}); OperandType type9(Type::TENSOR_FLOAT32, {4, 2, 3, 2}); // Phase 1, operands auto in1 = model->addOperand(&type7); auto roi1 = model->addOperand(&type8); auto param5 = model->addOperand(&type10); auto param6 = model->addOperand(&type5); auto param7 = model->addOperand(&type5); auto param8 = model->addOperand(&type6); auto param9 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type9); // Phase 2, operations static int32_t param5_init[] = {0, 0, 3, 3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 4); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static float param8_init[] = {4.0f}; model->setOperandValue(param8, param8_init, sizeof(float) * 1); static float param9_init[] = {4.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in1, roi1, param5, param6, param7, param8, param9, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nhwc_relaxed_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_quant8_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_INT32, {4}); OperandType type28(Type::TENSOR_QUANT8_ASYMM, {4, 4, 8, 2}, 0.04f, 0); OperandType type29(Type::TENSOR_QUANT8_ASYMM, {4, 2, 3, 2}, 0.04f, 0); OperandType type30(Type::TENSOR_QUANT16_ASYMM, {4, 4}, 0.125f, 0); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type28); auto roi1 = model->addOperand(&type30); auto param5 = model->addOperand(&type10); auto param6 = model->addOperand(&type5); auto param7 = model->addOperand(&type5); auto param8 = model->addOperand(&type6); auto param9 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type29); // Phase 2, operations static int32_t param5_init[] = {0, 0, 3, 3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 4); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static float param8_init[] = {4.0f}; model->setOperandValue(param8, param8_init, sizeof(float) * 1); static float param9_init[] = {4.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in1, roi1, param5, param6, param7, param8, param9, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_nhwc_quant8_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_float16_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_INT32, {4}); OperandType type17(Type::FLOAT16, {}); OperandType type31(Type::TENSOR_FLOAT16, {4, 4, 8, 2}); OperandType type32(Type::TENSOR_FLOAT16, {4, 2, 3, 2}); OperandType type33(Type::TENSOR_FLOAT16, {4, 4}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type31); auto roi1 = model->addOperand(&type33); auto param5 = model->addOperand(&type10); auto param6 = model->addOperand(&type5); auto param7 = model->addOperand(&type5); auto param8 = model->addOperand(&type17); auto param9 = model->addOperand(&type17); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type32); // Phase 2, operations static int32_t param5_init[] = {0, 0, 3, 3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 4); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static _Float16 param8_init[] = {4.0f}; model->setOperandValue(param8, param8_init, sizeof(_Float16) * 1); static _Float16 param9_init[] = {4.0f}; model->setOperandValue(param9, param9_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in1, roi1, param5, param6, param7, param8, param9, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_nhwc_float16_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_INT32, {4}); OperandType type34(Type::TENSOR_FLOAT32, {4, 2, 4, 8}); OperandType type35(Type::TENSOR_FLOAT32, {4, 2, 2, 3}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type8(Type::TENSOR_FLOAT32, {4, 4}); // Phase 1, operands auto in1 = model->addOperand(&type34); auto roi1 = model->addOperand(&type8); auto param5 = model->addOperand(&type10); auto param6 = model->addOperand(&type5); auto param7 = model->addOperand(&type5); auto param8 = model->addOperand(&type6); auto param9 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type35); // Phase 2, operations static int32_t param5_init[] = {0, 0, 3, 3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 4); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static float param8_init[] = {4.0f}; model->setOperandValue(param8, param8_init, sizeof(float) * 1); static float param9_init[] = {4.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in1, roi1, param5, param6, param7, param8, param9, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_nchw_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_relaxed_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_INT32, {4}); OperandType type34(Type::TENSOR_FLOAT32, {4, 2, 4, 8}); OperandType type35(Type::TENSOR_FLOAT32, {4, 2, 2, 3}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type8(Type::TENSOR_FLOAT32, {4, 4}); // Phase 1, operands auto in1 = model->addOperand(&type34); auto roi1 = model->addOperand(&type8); auto param5 = model->addOperand(&type10); auto param6 = model->addOperand(&type5); auto param7 = model->addOperand(&type5); auto param8 = model->addOperand(&type6); auto param9 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type35); // Phase 2, operations static int32_t param5_init[] = {0, 0, 3, 3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 4); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static float param8_init[] = {4.0f}; model->setOperandValue(param8, param8_init, sizeof(float) * 1); static float param9_init[] = {4.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in1, roi1, param5, param6, param7, param8, param9, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nchw_relaxed_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_quant8_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_INT32, {4}); OperandType type30(Type::TENSOR_QUANT16_ASYMM, {4, 4}, 0.125f, 0); OperandType type36(Type::TENSOR_QUANT8_ASYMM, {4, 2, 4, 8}, 0.04f, 0); OperandType type37(Type::TENSOR_QUANT8_ASYMM, {4, 2, 2, 3}, 0.04f, 0); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type36); auto roi1 = model->addOperand(&type30); auto param5 = model->addOperand(&type10); auto param6 = model->addOperand(&type5); auto param7 = model->addOperand(&type5); auto param8 = model->addOperand(&type6); auto param9 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type37); // Phase 2, operations static int32_t param5_init[] = {0, 0, 3, 3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 4); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static float param8_init[] = {4.0f}; model->setOperandValue(param8, param8_init, sizeof(float) * 1); static float param9_init[] = {4.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in1, roi1, param5, param6, param7, param8, param9, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_nchw_quant8_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_float16_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_INT32, {4}); OperandType type17(Type::FLOAT16, {}); OperandType type33(Type::TENSOR_FLOAT16, {4, 4}); OperandType type38(Type::TENSOR_FLOAT16, {4, 2, 4, 8}); OperandType type39(Type::TENSOR_FLOAT16, {4, 2, 2, 3}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type38); auto roi1 = model->addOperand(&type33); auto param5 = model->addOperand(&type10); auto param6 = model->addOperand(&type5); auto param7 = model->addOperand(&type5); auto param8 = model->addOperand(&type17); auto param9 = model->addOperand(&type17); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type39); // Phase 2, operations static int32_t param5_init[] = {0, 0, 3, 3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 4); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static _Float16 param8_init[] = {4.0f}; model->setOperandValue(param8, param8_init, sizeof(_Float16) * 1); static _Float16 param9_init[] = {4.0f}; model->setOperandValue(param9, param9_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in1, roi1, param5, param6, param7, param8, param9, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_nchw_float16_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_INT32, {4}); OperandType type25(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type7(Type::TENSOR_FLOAT32, {4, 4, 8, 2}); OperandType type8(Type::TENSOR_FLOAT32, {4, 4}); // Phase 1, operands auto in1 = model->addOperand(&type7); auto roi1 = model->addOperand(&type8); auto param5 = model->addOperand(&type10); auto param6 = model->addOperand(&type5); auto param7 = model->addOperand(&type5); auto param8 = model->addOperand(&type6); auto param9 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type25); // Phase 2, operations static int32_t param5_init[] = {0, 0, 3, 3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 4); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static float param8_init[] = {4.0f}; model->setOperandValue(param8, param8_init, sizeof(float) * 1); static float param9_init[] = {4.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in1, roi1, param5, param6, param7, param8, param9, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_relaxed_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_INT32, {4}); OperandType type25(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type7(Type::TENSOR_FLOAT32, {4, 4, 8, 2}); OperandType type8(Type::TENSOR_FLOAT32, {4, 4}); // Phase 1, operands auto in1 = model->addOperand(&type7); auto roi1 = model->addOperand(&type8); auto param5 = model->addOperand(&type10); auto param6 = model->addOperand(&type5); auto param7 = model->addOperand(&type5); auto param8 = model->addOperand(&type6); auto param9 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type25); // Phase 2, operations static int32_t param5_init[] = {0, 0, 3, 3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 4); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static float param8_init[] = {4.0f}; model->setOperandValue(param8, param8_init, sizeof(float) * 1); static float param9_init[] = {4.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in1, roi1, param5, param6, param7, param8, param9, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_relaxed_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_quant8_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_INT32, {4}); OperandType type28(Type::TENSOR_QUANT8_ASYMM, {4, 4, 8, 2}, 0.04f, 0); OperandType type30(Type::TENSOR_QUANT16_ASYMM, {4, 4}, 0.125f, 0); OperandType type40(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.04f, 0); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type28); auto roi1 = model->addOperand(&type30); auto param5 = model->addOperand(&type10); auto param6 = model->addOperand(&type5); auto param7 = model->addOperand(&type5); auto param8 = model->addOperand(&type6); auto param9 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type40); // Phase 2, operations static int32_t param5_init[] = {0, 0, 3, 3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 4); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static float param8_init[] = {4.0f}; model->setOperandValue(param8, param8_init, sizeof(float) * 1); static float param9_init[] = {4.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in1, roi1, param5, param6, param7, param8, param9, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_quant8_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_float16_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_INT32, {4}); OperandType type17(Type::FLOAT16, {}); OperandType type27(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type31(Type::TENSOR_FLOAT16, {4, 4, 8, 2}); OperandType type33(Type::TENSOR_FLOAT16, {4, 4}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type31); auto roi1 = model->addOperand(&type33); auto param5 = model->addOperand(&type10); auto param6 = model->addOperand(&type5); auto param7 = model->addOperand(&type5); auto param8 = model->addOperand(&type17); auto param9 = model->addOperand(&type17); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type27); // Phase 2, operations static int32_t param5_init[] = {0, 0, 3, 3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 4); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static _Float16 param8_init[] = {4.0f}; model->setOperandValue(param8, param8_init, sizeof(_Float16) * 1); static _Float16 param9_init[] = {4.0f}; model->setOperandValue(param9, param9_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in1, roi1, param5, param6, param7, param8, param9, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_float16_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_INT32, {4}); OperandType type25(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type34(Type::TENSOR_FLOAT32, {4, 2, 4, 8}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type8(Type::TENSOR_FLOAT32, {4, 4}); // Phase 1, operands auto in1 = model->addOperand(&type34); auto roi1 = model->addOperand(&type8); auto param5 = model->addOperand(&type10); auto param6 = model->addOperand(&type5); auto param7 = model->addOperand(&type5); auto param8 = model->addOperand(&type6); auto param9 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type25); // Phase 2, operations static int32_t param5_init[] = {0, 0, 3, 3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 4); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static float param8_init[] = {4.0f}; model->setOperandValue(param8, param8_init, sizeof(float) * 1); static float param9_init[] = {4.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in1, roi1, param5, param6, param7, param8, param9, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_relaxed_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_INT32, {4}); OperandType type25(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type34(Type::TENSOR_FLOAT32, {4, 2, 4, 8}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); OperandType type8(Type::TENSOR_FLOAT32, {4, 4}); // Phase 1, operands auto in1 = model->addOperand(&type34); auto roi1 = model->addOperand(&type8); auto param5 = model->addOperand(&type10); auto param6 = model->addOperand(&type5); auto param7 = model->addOperand(&type5); auto param8 = model->addOperand(&type6); auto param9 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type25); // Phase 2, operations static int32_t param5_init[] = {0, 0, 3, 3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 4); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static float param8_init[] = {4.0f}; model->setOperandValue(param8, param8_init, sizeof(float) * 1); static float param9_init[] = {4.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in1, roi1, param5, param6, param7, param8, param9, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_relaxed_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_quant8_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_INT32, {4}); OperandType type30(Type::TENSOR_QUANT16_ASYMM, {4, 4}, 0.125f, 0); OperandType type36(Type::TENSOR_QUANT8_ASYMM, {4, 2, 4, 8}, 0.04f, 0); OperandType type40(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.04f, 0); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type36); auto roi1 = model->addOperand(&type30); auto param5 = model->addOperand(&type10); auto param6 = model->addOperand(&type5); auto param7 = model->addOperand(&type5); auto param8 = model->addOperand(&type6); auto param9 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type40); // Phase 2, operations static int32_t param5_init[] = {0, 0, 3, 3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 4); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static float param8_init[] = {4.0f}; model->setOperandValue(param8, param8_init, sizeof(float) * 1); static float param9_init[] = {4.0f}; model->setOperandValue(param9, param9_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in1, roi1, param5, param6, param7, param8, param9, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_quant8_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_float16_2(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_INT32, {4}); OperandType type17(Type::FLOAT16, {}); OperandType type27(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type33(Type::TENSOR_FLOAT16, {4, 4}); OperandType type38(Type::TENSOR_FLOAT16, {4, 2, 4, 8}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto in1 = model->addOperand(&type38); auto roi1 = model->addOperand(&type33); auto param5 = model->addOperand(&type10); auto param6 = model->addOperand(&type5); auto param7 = model->addOperand(&type5); auto param8 = model->addOperand(&type17); auto param9 = model->addOperand(&type17); auto layout = model->addOperand(&type0); auto out1 = model->addOperand(&type27); // Phase 2, operations static int32_t param5_init[] = {0, 0, 3, 3}; model->setOperandValue(param5, param5_init, sizeof(int32_t) * 4); static int32_t param6_init[] = {2}; model->setOperandValue(param6, param6_init, sizeof(int32_t) * 1); static int32_t param7_init[] = {3}; model->setOperandValue(param7, param7_init, sizeof(int32_t) * 1); static _Float16 param8_init[] = {4.0f}; model->setOperandValue(param8, param8_init, sizeof(_Float16) * 1); static _Float16 param9_init[] = {4.0f}; model->setOperandValue(param9, param9_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in1, roi1, param5, param6, param7, param8, param9, layout}, {out1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in1, roi1}, {out1}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_float16_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type11(Type::TENSOR_FLOAT32, {4, 4, 4, 1}); OperandType type2(Type::TENSOR_FLOAT32, {5, 4}); OperandType type3(Type::TENSOR_FLOAT32, {5, 2, 2, 1}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type11); auto roi2 = model->addOperand(&type2); auto param10 = model->addOperand(&type4); auto param11 = model->addOperand(&type5); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type6); auto param14 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type3); // Phase 2, operations static int32_t param10_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 5); static int32_t param11_init[] = {2}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {2}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static float param13_init[] = {2.0f}; model->setOperandValue(param13, param13_init, sizeof(float) * 1); static float param14_init[] = {1.0f}; model->setOperandValue(param14, param14_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in2, roi2, param10, param11, param12, param13, param14, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_nhwc_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_relaxed_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type11(Type::TENSOR_FLOAT32, {4, 4, 4, 1}); OperandType type2(Type::TENSOR_FLOAT32, {5, 4}); OperandType type3(Type::TENSOR_FLOAT32, {5, 2, 2, 1}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type11); auto roi2 = model->addOperand(&type2); auto param10 = model->addOperand(&type4); auto param11 = model->addOperand(&type5); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type6); auto param14 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type3); // Phase 2, operations static int32_t param10_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 5); static int32_t param11_init[] = {2}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {2}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static float param13_init[] = {2.0f}; model->setOperandValue(param13, param13_init, sizeof(float) * 1); static float param14_init[] = {1.0f}; model->setOperandValue(param14, param14_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in2, roi2, param10, param11, param12, param13, param14, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nhwc_relaxed_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_quant8_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type13(Type::TENSOR_QUANT8_ASYMM, {5, 2, 2, 1}, 0.25f, 128); OperandType type14(Type::TENSOR_QUANT16_ASYMM, {5, 4}, 0.125f, 0); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type41(Type::TENSOR_QUANT8_ASYMM, {4, 4, 4, 1}, 0.25f, 128); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type41); auto roi2 = model->addOperand(&type14); auto param10 = model->addOperand(&type4); auto param11 = model->addOperand(&type5); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type6); auto param14 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type13); // Phase 2, operations static int32_t param10_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 5); static int32_t param11_init[] = {2}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {2}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static float param13_init[] = {2.0f}; model->setOperandValue(param13, param13_init, sizeof(float) * 1); static float param14_init[] = {1.0f}; model->setOperandValue(param14, param14_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in2, roi2, param10, param11, param12, param13, param14, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_nhwc_quant8_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nhwc_float16_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type16(Type::TENSOR_FLOAT16, {5, 2, 2, 1}); OperandType type17(Type::FLOAT16, {}); OperandType type18(Type::TENSOR_FLOAT16, {5, 4}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type42(Type::TENSOR_FLOAT16, {4, 4, 4, 1}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type42); auto roi2 = model->addOperand(&type18); auto param10 = model->addOperand(&type4); auto param11 = model->addOperand(&type5); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type17); auto param14 = model->addOperand(&type17); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type16); // Phase 2, operations static int32_t param10_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 5); static int32_t param11_init[] = {2}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {2}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static _Float16 param13_init[] = {2.0f}; model->setOperandValue(param13, param13_init, sizeof(_Float16) * 1); static _Float16 param14_init[] = {1.0f}; model->setOperandValue(param14, param14_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in2, roi2, param10, param11, param12, param13, param14, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_nhwc_float16_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {5, 4}); OperandType type20(Type::TENSOR_FLOAT32, {5, 1, 2, 2}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type43(Type::TENSOR_FLOAT32, {4, 1, 4, 4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type43); auto roi2 = model->addOperand(&type2); auto param10 = model->addOperand(&type4); auto param11 = model->addOperand(&type5); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type6); auto param14 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type20); // Phase 2, operations static int32_t param10_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 5); static int32_t param11_init[] = {2}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {2}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static float param13_init[] = {2.0f}; model->setOperandValue(param13, param13_init, sizeof(float) * 1); static float param14_init[] = {1.0f}; model->setOperandValue(param14, param14_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in2, roi2, param10, param11, param12, param13, param14, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_nchw_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_relaxed_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {5, 4}); OperandType type20(Type::TENSOR_FLOAT32, {5, 1, 2, 2}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type43(Type::TENSOR_FLOAT32, {4, 1, 4, 4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type43); auto roi2 = model->addOperand(&type2); auto param10 = model->addOperand(&type4); auto param11 = model->addOperand(&type5); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type6); auto param14 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type20); // Phase 2, operations static int32_t param10_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 5); static int32_t param11_init[] = {2}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {2}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static float param13_init[] = {2.0f}; model->setOperandValue(param13, param13_init, sizeof(float) * 1); static float param14_init[] = {1.0f}; model->setOperandValue(param14, param14_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in2, roi2, param10, param11, param12, param13, param14, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_nchw_relaxed_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_quant8_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type14(Type::TENSOR_QUANT16_ASYMM, {5, 4}, 0.125f, 0); OperandType type22(Type::TENSOR_QUANT8_ASYMM, {5, 1, 2, 2}, 0.25f, 128); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type44(Type::TENSOR_QUANT8_ASYMM, {4, 1, 4, 4}, 0.25f, 128); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type44); auto roi2 = model->addOperand(&type14); auto param10 = model->addOperand(&type4); auto param11 = model->addOperand(&type5); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type6); auto param14 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type22); // Phase 2, operations static int32_t param10_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 5); static int32_t param11_init[] = {2}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {2}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static float param13_init[] = {2.0f}; model->setOperandValue(param13, param13_init, sizeof(float) * 1); static float param14_init[] = {1.0f}; model->setOperandValue(param14, param14_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in2, roi2, param10, param11, param12, param13, param14, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_nchw_quant8_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_nchw_float16_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type17(Type::FLOAT16, {}); OperandType type18(Type::TENSOR_FLOAT16, {5, 4}); OperandType type24(Type::TENSOR_FLOAT16, {5, 1, 2, 2}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type45(Type::TENSOR_FLOAT16, {4, 1, 4, 4}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type45); auto roi2 = model->addOperand(&type18); auto param10 = model->addOperand(&type4); auto param11 = model->addOperand(&type5); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type17); auto param14 = model->addOperand(&type17); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type24); // Phase 2, operations static int32_t param10_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 5); static int32_t param11_init[] = {2}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {2}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static _Float16 param13_init[] = {2.0f}; model->setOperandValue(param13, param13_init, sizeof(_Float16) * 1); static _Float16 param14_init[] = {1.0f}; model->setOperandValue(param14, param14_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in2, roi2, param10, param11, param12, param13, param14, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_nchw_float16_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type11(Type::TENSOR_FLOAT32, {4, 4, 4, 1}); OperandType type2(Type::TENSOR_FLOAT32, {5, 4}); OperandType type25(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type11); auto roi2 = model->addOperand(&type2); auto param10 = model->addOperand(&type4); auto param11 = model->addOperand(&type5); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type6); auto param14 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type25); // Phase 2, operations static int32_t param10_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 5); static int32_t param11_init[] = {2}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {2}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static float param13_init[] = {2.0f}; model->setOperandValue(param13, param13_init, sizeof(float) * 1); static float param14_init[] = {1.0f}; model->setOperandValue(param14, param14_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in2, roi2, param10, param11, param12, param13, param14, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_relaxed_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type11(Type::TENSOR_FLOAT32, {4, 4, 4, 1}); OperandType type2(Type::TENSOR_FLOAT32, {5, 4}); OperandType type25(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type11); auto roi2 = model->addOperand(&type2); auto param10 = model->addOperand(&type4); auto param11 = model->addOperand(&type5); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type6); auto param14 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type25); // Phase 2, operations static int32_t param10_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 5); static int32_t param11_init[] = {2}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {2}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static float param13_init[] = {2.0f}; model->setOperandValue(param13, param13_init, sizeof(float) * 1); static float param14_init[] = {1.0f}; model->setOperandValue(param14, param14_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in2, roi2, param10, param11, param12, param13, param14, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_relaxed_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_quant8_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type14(Type::TENSOR_QUANT16_ASYMM, {5, 4}, 0.125f, 0); OperandType type26(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.25f, 128); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type41(Type::TENSOR_QUANT8_ASYMM, {4, 4, 4, 1}, 0.25f, 128); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type41); auto roi2 = model->addOperand(&type14); auto param10 = model->addOperand(&type4); auto param11 = model->addOperand(&type5); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type6); auto param14 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type26); // Phase 2, operations static int32_t param10_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 5); static int32_t param11_init[] = {2}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {2}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static float param13_init[] = {2.0f}; model->setOperandValue(param13, param13_init, sizeof(float) * 1); static float param14_init[] = {1.0f}; model->setOperandValue(param14, param14_init, sizeof(float) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in2, roi2, param10, param11, param12, param13, param14, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_quant8_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nhwc_float16_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type17(Type::FLOAT16, {}); OperandType type18(Type::TENSOR_FLOAT16, {5, 4}); OperandType type27(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type42(Type::TENSOR_FLOAT16, {4, 4, 4, 1}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type42); auto roi2 = model->addOperand(&type18); auto param10 = model->addOperand(&type4); auto param11 = model->addOperand(&type5); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type17); auto param14 = model->addOperand(&type17); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type27); // Phase 2, operations static int32_t param10_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 5); static int32_t param11_init[] = {2}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {2}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static _Float16 param13_init[] = {2.0f}; model->setOperandValue(param13, param13_init, sizeof(_Float16) * 1); static _Float16 param14_init[] = {1.0f}; model->setOperandValue(param14, param14_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in2, roi2, param10, param11, param12, param13, param14, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nhwc_float16_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {5, 4}); OperandType type25(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type43(Type::TENSOR_FLOAT32, {4, 1, 4, 4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type43); auto roi2 = model->addOperand(&type2); auto param10 = model->addOperand(&type4); auto param11 = model->addOperand(&type5); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type6); auto param14 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type25); // Phase 2, operations static int32_t param10_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 5); static int32_t param11_init[] = {2}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {2}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static float param13_init[] = {2.0f}; model->setOperandValue(param13, param13_init, sizeof(float) * 1); static float param14_init[] = {1.0f}; model->setOperandValue(param14, param14_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in2, roi2, param10, param11, param12, param13, param14, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_relaxed_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type2(Type::TENSOR_FLOAT32, {5, 4}); OperandType type25(Type::TENSOR_FLOAT32, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type43(Type::TENSOR_FLOAT32, {4, 1, 4, 4}); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type43); auto roi2 = model->addOperand(&type2); auto param10 = model->addOperand(&type4); auto param11 = model->addOperand(&type5); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type6); auto param14 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type25); // Phase 2, operations static int32_t param10_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 5); static int32_t param11_init[] = {2}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {2}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static float param13_init[] = {2.0f}; model->setOperandValue(param13, param13_init, sizeof(float) * 1); static float param14_init[] = {1.0f}; model->setOperandValue(param14, param14_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in2, roi2, param10, param11, param12, param13, param14, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_relaxed_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_quant8_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type14(Type::TENSOR_QUANT16_ASYMM, {5, 4}, 0.125f, 0); OperandType type26(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.25f, 128); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type44(Type::TENSOR_QUANT8_ASYMM, {4, 1, 4, 4}, 0.25f, 128); OperandType type5(Type::INT32, {}); OperandType type6(Type::FLOAT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type44); auto roi2 = model->addOperand(&type14); auto param10 = model->addOperand(&type4); auto param11 = model->addOperand(&type5); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type6); auto param14 = model->addOperand(&type6); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type26); // Phase 2, operations static int32_t param10_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 5); static int32_t param11_init[] = {2}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {2}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static float param13_init[] = {2.0f}; model->setOperandValue(param13, param13_init, sizeof(float) * 1); static float param14_init[] = {1.0f}; model->setOperandValue(param14, param14_init, sizeof(float) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in2, roi2, param10, param11, param12, param13, param14, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_quant8_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_nchw_float16_3(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type17(Type::FLOAT16, {}); OperandType type18(Type::TENSOR_FLOAT16, {5, 4}); OperandType type27(Type::TENSOR_FLOAT16, {0, 0, 0, 0}); OperandType type4(Type::TENSOR_INT32, {5}); OperandType type45(Type::TENSOR_FLOAT16, {4, 1, 4, 4}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto in2 = model->addOperand(&type45); auto roi2 = model->addOperand(&type18); auto param10 = model->addOperand(&type4); auto param11 = model->addOperand(&type5); auto param12 = model->addOperand(&type5); auto param13 = model->addOperand(&type17); auto param14 = model->addOperand(&type17); auto layout = model->addOperand(&type0); auto out2 = model->addOperand(&type27); // Phase 2, operations static int32_t param10_init[] = {2, 2, 2, 2, 2}; model->setOperandValue(param10, param10_init, sizeof(int32_t) * 5); static int32_t param11_init[] = {2}; model->setOperandValue(param11, param11_init, sizeof(int32_t) * 1); static int32_t param12_init[] = {2}; model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1); static _Float16 param13_init[] = {2.0f}; model->setOperandValue(param13, param13_init, sizeof(_Float16) * 1); static _Float16 param14_init[] = {1.0f}; model->setOperandValue(param14, param14_init, sizeof(_Float16) * 1); static bool8 layout_init[] = {true}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_ROI_POOLING, {in2, roi2, param10, param11, param12, param13, param14, layout}, {out2}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {in2, roi2}, {out2}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_nchw_float16_3(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); }