// clang-format off // Generated file (from: svdf_relaxed.mod.py). Do not edit void CreateModel(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {2, 3}); OperandType type1(Type::TENSOR_FLOAT32, {4, 3}); OperandType type2(Type::TENSOR_FLOAT32, {4, 10}); OperandType type3(Type::TENSOR_FLOAT32, {4}); OperandType type4(Type::TENSOR_FLOAT32, {2, 40}); OperandType type5(Type::INT32, {}); OperandType type6(Type::TENSOR_FLOAT32, {2, 4}); // Phase 1, operands auto input = model->addOperand(&type0); auto weights_feature = model->addOperand(&type1); auto weights_time = model->addOperand(&type2); auto bias = model->addOperand(&type3); auto state_in = model->addOperand(&type4); auto rank_param = model->addOperand(&type5); auto activation_param = model->addOperand(&type5); auto state_out = model->addOperand(&type4); auto output = model->addOperand(&type6); // Phase 2, operations static int32_t rank_param_init[] = {1}; model->setOperandValue(rank_param, rank_param_init, sizeof(int32_t) * 1); static int32_t activation_param_init[] = {0}; model->setOperandValue(activation_param, activation_param_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SVDF, {input, weights_feature, weights_time, bias, state_in, rank_param, activation_param}, {state_out, output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input, weights_feature, weights_time, bias, state_in}, {state_out, output}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored(int i) { static std::set ignore = {0}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {2, 3}); OperandType type1(Type::TENSOR_FLOAT32, {4, 3}); OperandType type2(Type::TENSOR_FLOAT32, {4, 10}); OperandType type3(Type::TENSOR_FLOAT32, {4}); OperandType type4(Type::TENSOR_FLOAT32, {2, 40}); OperandType type5(Type::INT32, {}); OperandType type7(Type::TENSOR_FLOAT32, {0, 0}); // Phase 1, operands auto input = model->addOperand(&type0); auto weights_feature = model->addOperand(&type1); auto weights_time = model->addOperand(&type2); auto bias = model->addOperand(&type3); auto state_in = model->addOperand(&type4); auto rank_param = model->addOperand(&type5); auto activation_param = model->addOperand(&type5); auto state_out = model->addOperand(&type7); auto output = model->addOperand(&type7); // Phase 2, operations static int32_t rank_param_init[] = {1}; model->setOperandValue(rank_param, rank_param_init, sizeof(int32_t) * 1); static int32_t activation_param_init[] = {0}; model->setOperandValue(activation_param, activation_param_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_SVDF, {input, weights_feature, weights_time, bias, state_in, rank_param, activation_param}, {state_out, output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input, weights_feature, weights_time, bias, state_in}, {state_out, output}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape(int i) { static std::set ignore = {0}; return ignore.find(i) != ignore.end(); }