// clang-format off // Generated file (from: transpose_conv2d_large.mod.py). Do not edit void CreateModel_quant8(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type10(Type::TENSOR_QUANT8_ASYMM, {25, 32, 32, 16}, 0.5f, 0); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type7(Type::TENSOR_QUANT8_ASYMM, {25, 1, 1, 1}, 0.5f, 0); OperandType type8(Type::TENSOR_QUANT8_ASYMM, {16, 1, 1, 1}, 0.5f, 0); OperandType type9(Type::TENSOR_INT32, {16}, 0.25f, 0); // Phase 1, operands auto op1 = model->addOperand(&type7); auto op2 = model->addOperand(&type8); auto op3 = model->addOperand(&type9); auto shape = model->addOperand(&type4); auto param = model->addOperand(&type5); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto act = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto op4 = model->addOperand(&type10); // Phase 2, operations static uint8_t op2_init[] = {2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}; model->setOperandValue(op2, op2_init, sizeof(uint8_t) * 16); static int32_t op3_init[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; model->setOperandValue(op3, op3_init, sizeof(int32_t) * 16); static int32_t shape_init[] = {25, 32, 32, 16}; model->setOperandValue(shape, shape_init, sizeof(int32_t) * 4); static int32_t param_init[] = {1}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static int32_t param1_init[] = {32}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {32}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t act_init[] = {0}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_TRANSPOSE_CONV_2D, {op1, op2, op3, shape, param, param1, param2, act, layout}, {op4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {op1}, {op4}); assert(model->isValid()); } inline bool is_ignored_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_channelQuant8(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type11(Type::TENSOR_QUANT8_ASYMM, {25, 1, 1, 1}, 0.25f, 100); OperandType type12(Type::TENSOR_QUANT8_SYMM_PER_CHANNEL, {16, 1, 1, 1}, 0.0f, 0, SymmPerChannelQuantParams({0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f},0)); OperandType type13(Type::TENSOR_INT32, {16}, 0.0f, 0); OperandType type14(Type::TENSOR_QUANT8_ASYMM, {25, 32, 32, 16}, 0.5f, 80); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto op1 = model->addOperand(&type11); auto op2 = model->addOperand(&type12); auto op3 = model->addOperand(&type13); auto shape = model->addOperand(&type4); auto param = model->addOperand(&type5); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto act = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto op4 = model->addOperand(&type14); // Phase 2, operations static int8_t op2_init[] = {2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}; model->setOperandValue(op2, op2_init, sizeof(int8_t) * 16); static int32_t op3_init[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; model->setOperandValue(op3, op3_init, sizeof(int32_t) * 16); static int32_t shape_init[] = {25, 32, 32, 16}; model->setOperandValue(shape, shape_init, sizeof(int32_t) * 4); static int32_t param_init[] = {1}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static int32_t param1_init[] = {32}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {32}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t act_init[] = {0}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_TRANSPOSE_CONV_2D, {op1, op2, op3, shape, param, param1, param2, act, layout}, {op4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {op1}, {op4}); assert(model->isValid()); } inline bool is_ignored_channelQuant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_quant8(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type15(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.5f, 0); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); OperandType type7(Type::TENSOR_QUANT8_ASYMM, {25, 1, 1, 1}, 0.5f, 0); OperandType type8(Type::TENSOR_QUANT8_ASYMM, {16, 1, 1, 1}, 0.5f, 0); OperandType type9(Type::TENSOR_INT32, {16}, 0.25f, 0); // Phase 1, operands auto op1 = model->addOperand(&type7); auto op2 = model->addOperand(&type8); auto op3 = model->addOperand(&type9); auto shape = model->addOperand(&type4); auto param = model->addOperand(&type5); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto act = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto op4 = model->addOperand(&type15); // Phase 2, operations static uint8_t op2_init[] = {2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}; model->setOperandValue(op2, op2_init, sizeof(uint8_t) * 16); static int32_t op3_init[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; model->setOperandValue(op3, op3_init, sizeof(int32_t) * 16); static int32_t shape_init[] = {25, 32, 32, 16}; model->setOperandValue(shape, shape_init, sizeof(int32_t) * 4); static int32_t param_init[] = {1}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static int32_t param1_init[] = {32}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {32}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t act_init[] = {0}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_TRANSPOSE_CONV_2D, {op1, op2, op3, shape, param, param1, param2, act, layout}, {op4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {op1}, {op4}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_quant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_channelQuant8(Model *model) { OperandType type0(Type::BOOL, {}); OperandType type11(Type::TENSOR_QUANT8_ASYMM, {25, 1, 1, 1}, 0.25f, 100); OperandType type12(Type::TENSOR_QUANT8_SYMM_PER_CHANNEL, {16, 1, 1, 1}, 0.0f, 0, SymmPerChannelQuantParams({0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f},0)); OperandType type13(Type::TENSOR_INT32, {16}, 0.0f, 0); OperandType type16(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 0.5f, 80); OperandType type4(Type::TENSOR_INT32, {4}); OperandType type5(Type::INT32, {}); // Phase 1, operands auto op1 = model->addOperand(&type11); auto op2 = model->addOperand(&type12); auto op3 = model->addOperand(&type13); auto shape = model->addOperand(&type4); auto param = model->addOperand(&type5); auto param1 = model->addOperand(&type5); auto param2 = model->addOperand(&type5); auto act = model->addOperand(&type5); auto layout = model->addOperand(&type0); auto op4 = model->addOperand(&type16); // Phase 2, operations static int8_t op2_init[] = {2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}; model->setOperandValue(op2, op2_init, sizeof(int8_t) * 16); static int32_t op3_init[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; model->setOperandValue(op3, op3_init, sizeof(int32_t) * 16); static int32_t shape_init[] = {25, 32, 32, 16}; model->setOperandValue(shape, shape_init, sizeof(int32_t) * 4); static int32_t param_init[] = {1}; model->setOperandValue(param, param_init, sizeof(int32_t) * 1); static int32_t param1_init[] = {32}; model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1); static int32_t param2_init[] = {32}; model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1); static int32_t act_init[] = {0}; model->setOperandValue(act, act_init, sizeof(int32_t) * 1); static bool8 layout_init[] = {false}; model->setOperandValue(layout, layout_init, sizeof(bool8) * 1); model->addOperation(ANEURALNETWORKS_TRANSPOSE_CONV_2D, {op1, op2, op3, shape, param, param1, param2, act, layout}, {op4}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {op1}, {op4}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_channelQuant8(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); }