// clang-format off // Generated file (from: unidirectional_sequence_rnn.mod.py). Do not edit void CreateModel(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {2, 16, 8}); OperandType type1(Type::TENSOR_FLOAT32, {16, 8}); OperandType type2(Type::TENSOR_FLOAT32, {16, 16}); OperandType type3(Type::TENSOR_FLOAT32, {16}); OperandType type4(Type::TENSOR_FLOAT32, {2, 16}); OperandType type5(Type::TENSOR_FLOAT32, {2, 16, 16}); OperandType type6(Type::INT32, {}); // Phase 1, operands auto input = model->addOperand(&type0); auto weights = model->addOperand(&type1); auto recurrent_weights = model->addOperand(&type2); auto bias = model->addOperand(&type3); auto hidden_state = model->addOperand(&type4); auto activation = model->addOperand(&type6); auto time_major = model->addOperand(&type6); auto output = model->addOperand(&type5); // Phase 2, operations static int32_t activation_init[] = {1}; model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); static int32_t time_major_init[] = {0}; model->setOperandValue(time_major, time_major_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN, {input, weights, recurrent_weights, bias, hidden_state, activation, time_major}, {output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input, weights, recurrent_weights, bias, hidden_state}, {output}); assert(model->isValid()); } inline bool is_ignored(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_relaxed(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {2, 16, 8}); OperandType type1(Type::TENSOR_FLOAT32, {16, 8}); OperandType type2(Type::TENSOR_FLOAT32, {16, 16}); OperandType type3(Type::TENSOR_FLOAT32, {16}); OperandType type4(Type::TENSOR_FLOAT32, {2, 16}); OperandType type5(Type::TENSOR_FLOAT32, {2, 16, 16}); OperandType type6(Type::INT32, {}); // Phase 1, operands auto input = model->addOperand(&type0); auto weights = model->addOperand(&type1); auto recurrent_weights = model->addOperand(&type2); auto bias = model->addOperand(&type3); auto hidden_state = model->addOperand(&type4); auto activation = model->addOperand(&type6); auto time_major = model->addOperand(&type6); auto output = model->addOperand(&type5); // Phase 2, operations static int32_t activation_init[] = {1}; model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); static int32_t time_major_init[] = {0}; model->setOperandValue(time_major, time_major_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN, {input, weights, recurrent_weights, bias, hidden_state, activation, time_major}, {output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input, weights, recurrent_weights, bias, hidden_state}, {output}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16(Model *model) { OperandType type10(Type::TENSOR_FLOAT16, {2, 16}); OperandType type11(Type::TENSOR_FLOAT16, {2, 16, 8}); OperandType type12(Type::TENSOR_FLOAT16, {2, 16, 16}); OperandType type13(Type::TENSOR_FLOAT16, {16, 16}); OperandType type14(Type::TENSOR_FLOAT16, {16, 8}); OperandType type6(Type::INT32, {}); OperandType type9(Type::TENSOR_FLOAT16, {16}); // Phase 1, operands auto input = model->addOperand(&type11); auto weights = model->addOperand(&type14); auto recurrent_weights = model->addOperand(&type13); auto bias = model->addOperand(&type9); auto hidden_state = model->addOperand(&type10); auto activation = model->addOperand(&type6); auto time_major = model->addOperand(&type6); auto output = model->addOperand(&type12); // Phase 2, operations static int32_t activation_init[] = {1}; model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); static int32_t time_major_init[] = {0}; model->setOperandValue(time_major, time_major_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN, {input, weights, recurrent_weights, bias, hidden_state, activation, time_major}, {output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input, weights, recurrent_weights, bias, hidden_state}, {output}); assert(model->isValid()); } inline bool is_ignored_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {2, 16, 8}); OperandType type1(Type::TENSOR_FLOAT32, {16, 8}); OperandType type15(Type::TENSOR_FLOAT32, {0, 0, 0}); OperandType type2(Type::TENSOR_FLOAT32, {16, 16}); OperandType type3(Type::TENSOR_FLOAT32, {16}); OperandType type4(Type::TENSOR_FLOAT32, {2, 16}); OperandType type6(Type::INT32, {}); // Phase 1, operands auto input = model->addOperand(&type0); auto weights = model->addOperand(&type1); auto recurrent_weights = model->addOperand(&type2); auto bias = model->addOperand(&type3); auto hidden_state = model->addOperand(&type4); auto activation = model->addOperand(&type6); auto time_major = model->addOperand(&type6); auto output = model->addOperand(&type15); // Phase 2, operations static int32_t activation_init[] = {1}; model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); static int32_t time_major_init[] = {0}; model->setOperandValue(time_major, time_major_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN, {input, weights, recurrent_weights, bias, hidden_state, activation, time_major}, {output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input, weights, recurrent_weights, bias, hidden_state}, {output}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_relaxed(Model *model) { OperandType type0(Type::TENSOR_FLOAT32, {2, 16, 8}); OperandType type1(Type::TENSOR_FLOAT32, {16, 8}); OperandType type15(Type::TENSOR_FLOAT32, {0, 0, 0}); OperandType type2(Type::TENSOR_FLOAT32, {16, 16}); OperandType type3(Type::TENSOR_FLOAT32, {16}); OperandType type4(Type::TENSOR_FLOAT32, {2, 16}); OperandType type6(Type::INT32, {}); // Phase 1, operands auto input = model->addOperand(&type0); auto weights = model->addOperand(&type1); auto recurrent_weights = model->addOperand(&type2); auto bias = model->addOperand(&type3); auto hidden_state = model->addOperand(&type4); auto activation = model->addOperand(&type6); auto time_major = model->addOperand(&type6); auto output = model->addOperand(&type15); // Phase 2, operations static int32_t activation_init[] = {1}; model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); static int32_t time_major_init[] = {0}; model->setOperandValue(time_major, time_major_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN, {input, weights, recurrent_weights, bias, hidden_state, activation, time_major}, {output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input, weights, recurrent_weights, bias, hidden_state}, {output}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_relaxed(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16(Model *model) { OperandType type10(Type::TENSOR_FLOAT16, {2, 16}); OperandType type11(Type::TENSOR_FLOAT16, {2, 16, 8}); OperandType type13(Type::TENSOR_FLOAT16, {16, 16}); OperandType type14(Type::TENSOR_FLOAT16, {16, 8}); OperandType type16(Type::TENSOR_FLOAT16, {0, 0, 0}); OperandType type6(Type::INT32, {}); OperandType type9(Type::TENSOR_FLOAT16, {16}); // Phase 1, operands auto input = model->addOperand(&type11); auto weights = model->addOperand(&type14); auto recurrent_weights = model->addOperand(&type13); auto bias = model->addOperand(&type9); auto hidden_state = model->addOperand(&type10); auto activation = model->addOperand(&type6); auto time_major = model->addOperand(&type6); auto output = model->addOperand(&type16); // Phase 2, operations static int32_t activation_init[] = {1}; model->setOperandValue(activation, activation_init, sizeof(int32_t) * 1); static int32_t time_major_init[] = {0}; model->setOperandValue(time_major, time_major_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN, {input, weights, recurrent_weights, bias, hidden_state, activation, time_major}, {output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input, weights, recurrent_weights, bias, hidden_state}, {output}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_2(Model *model) { OperandType type1(Type::TENSOR_FLOAT32, {16, 8}); OperandType type2(Type::TENSOR_FLOAT32, {16, 16}); OperandType type3(Type::TENSOR_FLOAT32, {16}); OperandType type4(Type::TENSOR_FLOAT32, {2, 16}); OperandType type6(Type::INT32, {}); OperandType type7(Type::TENSOR_FLOAT32, {16, 2, 8}); OperandType type8(Type::TENSOR_FLOAT32, {16, 2, 16}); // Phase 1, operands auto input1 = model->addOperand(&type7); auto weights1 = model->addOperand(&type1); auto recurrent_weights1 = model->addOperand(&type2); auto bias1 = model->addOperand(&type3); auto hidden_state1 = model->addOperand(&type4); auto activation1 = model->addOperand(&type6); auto time_major1 = model->addOperand(&type6); auto output1 = model->addOperand(&type8); // Phase 2, operations static int32_t activation1_init[] = {1}; model->setOperandValue(activation1, activation1_init, sizeof(int32_t) * 1); static int32_t time_major1_init[] = {1}; model->setOperandValue(time_major1, time_major1_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN, {input1, weights1, recurrent_weights1, bias1, hidden_state1, activation1, time_major1}, {output1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input1, weights1, recurrent_weights1, bias1, hidden_state1}, {output1}); assert(model->isValid()); } inline bool is_ignored_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_relaxed_2(Model *model) { OperandType type1(Type::TENSOR_FLOAT32, {16, 8}); OperandType type2(Type::TENSOR_FLOAT32, {16, 16}); OperandType type3(Type::TENSOR_FLOAT32, {16}); OperandType type4(Type::TENSOR_FLOAT32, {2, 16}); OperandType type6(Type::INT32, {}); OperandType type7(Type::TENSOR_FLOAT32, {16, 2, 8}); OperandType type8(Type::TENSOR_FLOAT32, {16, 2, 16}); // Phase 1, operands auto input1 = model->addOperand(&type7); auto weights1 = model->addOperand(&type1); auto recurrent_weights1 = model->addOperand(&type2); auto bias1 = model->addOperand(&type3); auto hidden_state1 = model->addOperand(&type4); auto activation1 = model->addOperand(&type6); auto time_major1 = model->addOperand(&type6); auto output1 = model->addOperand(&type8); // Phase 2, operations static int32_t activation1_init[] = {1}; model->setOperandValue(activation1, activation1_init, sizeof(int32_t) * 1); static int32_t time_major1_init[] = {1}; model->setOperandValue(time_major1, time_major1_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN, {input1, weights1, recurrent_weights1, bias1, hidden_state1, activation1, time_major1}, {output1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input1, weights1, recurrent_weights1, bias1, hidden_state1}, {output1}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_relaxed_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_float16_2(Model *model) { OperandType type10(Type::TENSOR_FLOAT16, {2, 16}); OperandType type13(Type::TENSOR_FLOAT16, {16, 16}); OperandType type14(Type::TENSOR_FLOAT16, {16, 8}); OperandType type17(Type::TENSOR_FLOAT16, {16, 2, 8}); OperandType type18(Type::TENSOR_FLOAT16, {16, 2, 16}); OperandType type6(Type::INT32, {}); OperandType type9(Type::TENSOR_FLOAT16, {16}); // Phase 1, operands auto input1 = model->addOperand(&type17); auto weights1 = model->addOperand(&type14); auto recurrent_weights1 = model->addOperand(&type13); auto bias1 = model->addOperand(&type9); auto hidden_state1 = model->addOperand(&type10); auto activation1 = model->addOperand(&type6); auto time_major1 = model->addOperand(&type6); auto output1 = model->addOperand(&type18); // Phase 2, operations static int32_t activation1_init[] = {1}; model->setOperandValue(activation1, activation1_init, sizeof(int32_t) * 1); static int32_t time_major1_init[] = {1}; model->setOperandValue(time_major1, time_major1_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN, {input1, weights1, recurrent_weights1, bias1, hidden_state1, activation1, time_major1}, {output1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input1, weights1, recurrent_weights1, bias1, hidden_state1}, {output1}); assert(model->isValid()); } inline bool is_ignored_float16_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_2(Model *model) { OperandType type1(Type::TENSOR_FLOAT32, {16, 8}); OperandType type15(Type::TENSOR_FLOAT32, {0, 0, 0}); OperandType type2(Type::TENSOR_FLOAT32, {16, 16}); OperandType type3(Type::TENSOR_FLOAT32, {16}); OperandType type4(Type::TENSOR_FLOAT32, {2, 16}); OperandType type6(Type::INT32, {}); OperandType type7(Type::TENSOR_FLOAT32, {16, 2, 8}); // Phase 1, operands auto input1 = model->addOperand(&type7); auto weights1 = model->addOperand(&type1); auto recurrent_weights1 = model->addOperand(&type2); auto bias1 = model->addOperand(&type3); auto hidden_state1 = model->addOperand(&type4); auto activation1 = model->addOperand(&type6); auto time_major1 = model->addOperand(&type6); auto output1 = model->addOperand(&type15); // Phase 2, operations static int32_t activation1_init[] = {1}; model->setOperandValue(activation1, activation1_init, sizeof(int32_t) * 1); static int32_t time_major1_init[] = {1}; model->setOperandValue(time_major1, time_major1_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN, {input1, weights1, recurrent_weights1, bias1, hidden_state1, activation1, time_major1}, {output1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input1, weights1, recurrent_weights1, bias1, hidden_state1}, {output1}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_relaxed_2(Model *model) { OperandType type1(Type::TENSOR_FLOAT32, {16, 8}); OperandType type15(Type::TENSOR_FLOAT32, {0, 0, 0}); OperandType type2(Type::TENSOR_FLOAT32, {16, 16}); OperandType type3(Type::TENSOR_FLOAT32, {16}); OperandType type4(Type::TENSOR_FLOAT32, {2, 16}); OperandType type6(Type::INT32, {}); OperandType type7(Type::TENSOR_FLOAT32, {16, 2, 8}); // Phase 1, operands auto input1 = model->addOperand(&type7); auto weights1 = model->addOperand(&type1); auto recurrent_weights1 = model->addOperand(&type2); auto bias1 = model->addOperand(&type3); auto hidden_state1 = model->addOperand(&type4); auto activation1 = model->addOperand(&type6); auto time_major1 = model->addOperand(&type6); auto output1 = model->addOperand(&type15); // Phase 2, operations static int32_t activation1_init[] = {1}; model->setOperandValue(activation1, activation1_init, sizeof(int32_t) * 1); static int32_t time_major1_init[] = {1}; model->setOperandValue(time_major1, time_major1_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN, {input1, weights1, recurrent_weights1, bias1, hidden_state1, activation1, time_major1}, {output1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input1, weights1, recurrent_weights1, bias1, hidden_state1}, {output1}); // Phase 4: set relaxed execution model->relaxComputationFloat32toFloat16(true); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_relaxed_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); } void CreateModel_dynamic_output_shape_float16_2(Model *model) { OperandType type10(Type::TENSOR_FLOAT16, {2, 16}); OperandType type13(Type::TENSOR_FLOAT16, {16, 16}); OperandType type14(Type::TENSOR_FLOAT16, {16, 8}); OperandType type16(Type::TENSOR_FLOAT16, {0, 0, 0}); OperandType type17(Type::TENSOR_FLOAT16, {16, 2, 8}); OperandType type6(Type::INT32, {}); OperandType type9(Type::TENSOR_FLOAT16, {16}); // Phase 1, operands auto input1 = model->addOperand(&type17); auto weights1 = model->addOperand(&type14); auto recurrent_weights1 = model->addOperand(&type13); auto bias1 = model->addOperand(&type9); auto hidden_state1 = model->addOperand(&type10); auto activation1 = model->addOperand(&type6); auto time_major1 = model->addOperand(&type6); auto output1 = model->addOperand(&type16); // Phase 2, operations static int32_t activation1_init[] = {1}; model->setOperandValue(activation1, activation1_init, sizeof(int32_t) * 1); static int32_t time_major1_init[] = {1}; model->setOperandValue(time_major1, time_major1_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN, {input1, weights1, recurrent_weights1, bias1, hidden_state1, activation1, time_major1}, {output1}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input1, weights1, recurrent_weights1, bias1, hidden_state1}, {output1}); assert(model->isValid()); } inline bool is_ignored_dynamic_output_shape_float16_2(int i) { static std::set ignore = {}; return ignore.find(i) != ignore.end(); }