/* * Copyright 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #undef LOG_TAG #define LOG_TAG "RenderEngine" #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include "GLESRenderEngine.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "GLExtensions.h" #include "GLFramebuffer.h" #include "GLImage.h" #include "Program.h" #include "ProgramCache.h" extern "C" EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name); bool checkGlError(const char* op, int lineNumber) { bool errorFound = false; GLint error = glGetError(); while (error != GL_NO_ERROR) { errorFound = true; error = glGetError(); ALOGV("after %s() (line # %d) glError (0x%x)\n", op, lineNumber, error); } return errorFound; } static constexpr bool outputDebugPPMs = false; void writePPM(const char* basename, GLuint width, GLuint height) { ALOGV("writePPM #%s: %d x %d", basename, width, height); std::vector pixels(width * height * 4); std::vector outBuffer(width * height * 3); // TODO(courtneygo): We can now have float formats, need // to remove this code or update to support. // Make returned pixels fit in uint32_t, one byte per component glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pixels.data()); if (checkGlError(__FUNCTION__, __LINE__)) { return; } std::string filename(basename); filename.append(".ppm"); std::ofstream file(filename.c_str(), std::ios::binary); if (!file.is_open()) { ALOGE("Unable to open file: %s", filename.c_str()); ALOGE("You may need to do: \"adb shell setenforce 0\" to enable " "surfaceflinger to write debug images"); return; } file << "P6\n"; file << width << "\n"; file << height << "\n"; file << 255 << "\n"; auto ptr = reinterpret_cast(pixels.data()); auto outPtr = reinterpret_cast(outBuffer.data()); for (int y = height - 1; y >= 0; y--) { char* data = ptr + y * width * sizeof(uint32_t); for (GLuint x = 0; x < width; x++) { // Only copy R, G and B components outPtr[0] = data[0]; outPtr[1] = data[1]; outPtr[2] = data[2]; data += sizeof(uint32_t); outPtr += 3; } } file.write(reinterpret_cast(outBuffer.data()), outBuffer.size()); } namespace android { namespace renderengine { namespace gl { using base::StringAppendF; using ui::Dataspace; static status_t selectConfigForAttribute(EGLDisplay dpy, EGLint const* attrs, EGLint attribute, EGLint wanted, EGLConfig* outConfig) { EGLint numConfigs = -1, n = 0; eglGetConfigs(dpy, nullptr, 0, &numConfigs); std::vector configs(numConfigs, EGL_NO_CONFIG_KHR); eglChooseConfig(dpy, attrs, configs.data(), configs.size(), &n); configs.resize(n); if (!configs.empty()) { if (attribute != EGL_NONE) { for (EGLConfig config : configs) { EGLint value = 0; eglGetConfigAttrib(dpy, config, attribute, &value); if (wanted == value) { *outConfig = config; return NO_ERROR; } } } else { // just pick the first one *outConfig = configs[0]; return NO_ERROR; } } return NAME_NOT_FOUND; } class EGLAttributeVector { struct Attribute; class Adder; friend class Adder; KeyedVector mList; struct Attribute { Attribute() : v(0){}; explicit Attribute(EGLint v) : v(v) {} EGLint v; bool operator<(const Attribute& other) const { // this places EGL_NONE at the end EGLint lhs(v); EGLint rhs(other.v); if (lhs == EGL_NONE) lhs = 0x7FFFFFFF; if (rhs == EGL_NONE) rhs = 0x7FFFFFFF; return lhs < rhs; } }; class Adder { friend class EGLAttributeVector; EGLAttributeVector& v; EGLint attribute; Adder(EGLAttributeVector& v, EGLint attribute) : v(v), attribute(attribute) {} public: void operator=(EGLint value) { if (attribute != EGL_NONE) { v.mList.add(Attribute(attribute), value); } } operator EGLint() const { return v.mList[attribute]; } }; public: EGLAttributeVector() { mList.add(Attribute(EGL_NONE), EGL_NONE); } void remove(EGLint attribute) { if (attribute != EGL_NONE) { mList.removeItem(Attribute(attribute)); } } Adder operator[](EGLint attribute) { return Adder(*this, attribute); } EGLint operator[](EGLint attribute) const { return mList[attribute]; } // cast-operator to (EGLint const*) operator EGLint const*() const { return &mList.keyAt(0).v; } }; static status_t selectEGLConfig(EGLDisplay display, EGLint format, EGLint renderableType, EGLConfig* config) { // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if // it is to be used with WIFI displays status_t err; EGLint wantedAttribute; EGLint wantedAttributeValue; EGLAttributeVector attribs; if (renderableType) { attribs[EGL_RENDERABLE_TYPE] = renderableType; attribs[EGL_RECORDABLE_ANDROID] = EGL_TRUE; attribs[EGL_SURFACE_TYPE] = EGL_WINDOW_BIT | EGL_PBUFFER_BIT; attribs[EGL_FRAMEBUFFER_TARGET_ANDROID] = EGL_TRUE; attribs[EGL_RED_SIZE] = 8; attribs[EGL_GREEN_SIZE] = 8; attribs[EGL_BLUE_SIZE] = 8; attribs[EGL_ALPHA_SIZE] = 8; wantedAttribute = EGL_NONE; wantedAttributeValue = EGL_NONE; } else { // if no renderable type specified, fallback to a simplified query wantedAttribute = EGL_NATIVE_VISUAL_ID; wantedAttributeValue = format; } err = selectConfigForAttribute(display, attribs, wantedAttribute, wantedAttributeValue, config); if (err == NO_ERROR) { EGLint caveat; if (eglGetConfigAttrib(display, *config, EGL_CONFIG_CAVEAT, &caveat)) ALOGW_IF(caveat == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!"); } return err; } std::unique_ptr GLESRenderEngine::create(int hwcFormat, uint32_t featureFlags, uint32_t imageCacheSize) { // initialize EGL for the default display EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY); if (!eglInitialize(display, nullptr, nullptr)) { LOG_ALWAYS_FATAL("failed to initialize EGL"); } GLExtensions& extensions = GLExtensions::getInstance(); extensions.initWithEGLStrings(eglQueryStringImplementationANDROID(display, EGL_VERSION), eglQueryStringImplementationANDROID(display, EGL_EXTENSIONS)); // The code assumes that ES2 or later is available if this extension is // supported. EGLConfig config = EGL_NO_CONFIG; if (!extensions.hasNoConfigContext()) { config = chooseEglConfig(display, hwcFormat, /*logConfig*/ true); } bool useContextPriority = extensions.hasContextPriority() && (featureFlags & RenderEngine::USE_HIGH_PRIORITY_CONTEXT); EGLContext protectedContext = EGL_NO_CONTEXT; if ((featureFlags & RenderEngine::ENABLE_PROTECTED_CONTEXT) && extensions.hasProtectedContent()) { protectedContext = createEglContext(display, config, nullptr, useContextPriority, Protection::PROTECTED); ALOGE_IF(protectedContext == EGL_NO_CONTEXT, "Can't create protected context"); } EGLContext ctxt = createEglContext(display, config, protectedContext, useContextPriority, Protection::UNPROTECTED); // if can't create a GL context, we can only abort. LOG_ALWAYS_FATAL_IF(ctxt == EGL_NO_CONTEXT, "EGLContext creation failed"); EGLSurface dummy = EGL_NO_SURFACE; if (!extensions.hasSurfacelessContext()) { dummy = createDummyEglPbufferSurface(display, config, hwcFormat, Protection::UNPROTECTED); LOG_ALWAYS_FATAL_IF(dummy == EGL_NO_SURFACE, "can't create dummy pbuffer"); } EGLBoolean success = eglMakeCurrent(display, dummy, dummy, ctxt); LOG_ALWAYS_FATAL_IF(!success, "can't make dummy pbuffer current"); extensions.initWithGLStrings(glGetString(GL_VENDOR), glGetString(GL_RENDERER), glGetString(GL_VERSION), glGetString(GL_EXTENSIONS)); EGLSurface protectedDummy = EGL_NO_SURFACE; if (protectedContext != EGL_NO_CONTEXT && !extensions.hasSurfacelessContext()) { protectedDummy = createDummyEglPbufferSurface(display, config, hwcFormat, Protection::PROTECTED); ALOGE_IF(protectedDummy == EGL_NO_SURFACE, "can't create protected dummy pbuffer"); } // now figure out what version of GL did we actually get GlesVersion version = parseGlesVersion(extensions.getVersion()); // initialize the renderer while GL is current std::unique_ptr engine; switch (version) { case GLES_VERSION_1_0: case GLES_VERSION_1_1: LOG_ALWAYS_FATAL("SurfaceFlinger requires OpenGL ES 2.0 minimum to run."); break; case GLES_VERSION_2_0: case GLES_VERSION_3_0: engine = std::make_unique(featureFlags, display, config, ctxt, dummy, protectedContext, protectedDummy, imageCacheSize); break; } ALOGI("OpenGL ES informations:"); ALOGI("vendor : %s", extensions.getVendor()); ALOGI("renderer : %s", extensions.getRenderer()); ALOGI("version : %s", extensions.getVersion()); ALOGI("extensions: %s", extensions.getExtensions()); ALOGI("GL_MAX_TEXTURE_SIZE = %zu", engine->getMaxTextureSize()); ALOGI("GL_MAX_VIEWPORT_DIMS = %zu", engine->getMaxViewportDims()); return engine; } EGLConfig GLESRenderEngine::chooseEglConfig(EGLDisplay display, int format, bool logConfig) { status_t err; EGLConfig config; // First try to get an ES3 config err = selectEGLConfig(display, format, EGL_OPENGL_ES3_BIT, &config); if (err != NO_ERROR) { // If ES3 fails, try to get an ES2 config err = selectEGLConfig(display, format, EGL_OPENGL_ES2_BIT, &config); if (err != NO_ERROR) { // If ES2 still doesn't work, probably because we're on the emulator. // try a simplified query ALOGW("no suitable EGLConfig found, trying a simpler query"); err = selectEGLConfig(display, format, 0, &config); if (err != NO_ERROR) { // this EGL is too lame for android LOG_ALWAYS_FATAL("no suitable EGLConfig found, giving up"); } } } if (logConfig) { // print some debugging info EGLint r, g, b, a; eglGetConfigAttrib(display, config, EGL_RED_SIZE, &r); eglGetConfigAttrib(display, config, EGL_GREEN_SIZE, &g); eglGetConfigAttrib(display, config, EGL_BLUE_SIZE, &b); eglGetConfigAttrib(display, config, EGL_ALPHA_SIZE, &a); ALOGI("EGL information:"); ALOGI("vendor : %s", eglQueryString(display, EGL_VENDOR)); ALOGI("version : %s", eglQueryString(display, EGL_VERSION)); ALOGI("extensions: %s", eglQueryString(display, EGL_EXTENSIONS)); ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS) ?: "Not Supported"); ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, config); } return config; } GLESRenderEngine::GLESRenderEngine(uint32_t featureFlags, EGLDisplay display, EGLConfig config, EGLContext ctxt, EGLSurface dummy, EGLContext protectedContext, EGLSurface protectedDummy, uint32_t imageCacheSize) : renderengine::impl::RenderEngine(featureFlags), mEGLDisplay(display), mEGLConfig(config), mEGLContext(ctxt), mDummySurface(dummy), mProtectedEGLContext(protectedContext), mProtectedDummySurface(protectedDummy), mVpWidth(0), mVpHeight(0), mFramebufferImageCacheSize(imageCacheSize), mUseColorManagement(featureFlags & USE_COLOR_MANAGEMENT) { glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize); glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims); glPixelStorei(GL_UNPACK_ALIGNMENT, 4); glPixelStorei(GL_PACK_ALIGNMENT, 4); // Initialize protected EGL Context. if (mProtectedEGLContext != EGL_NO_CONTEXT) { EGLBoolean success = eglMakeCurrent(display, mProtectedDummySurface, mProtectedDummySurface, mProtectedEGLContext); ALOGE_IF(!success, "can't make protected context current"); glPixelStorei(GL_UNPACK_ALIGNMENT, 4); glPixelStorei(GL_PACK_ALIGNMENT, 4); success = eglMakeCurrent(display, mDummySurface, mDummySurface, mEGLContext); LOG_ALWAYS_FATAL_IF(!success, "can't make default context current"); } const uint16_t protTexData[] = {0}; glGenTextures(1, &mProtectedTexName); glBindTexture(GL_TEXTURE_2D, mProtectedTexName); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData); // mColorBlindnessCorrection = M; if (mUseColorManagement) { const ColorSpace srgb(ColorSpace::sRGB()); const ColorSpace displayP3(ColorSpace::DisplayP3()); const ColorSpace bt2020(ColorSpace::BT2020()); // no chromatic adaptation needed since all color spaces use D65 for their white points. mSrgbToXyz = mat4(srgb.getRGBtoXYZ()); mDisplayP3ToXyz = mat4(displayP3.getRGBtoXYZ()); mBt2020ToXyz = mat4(bt2020.getRGBtoXYZ()); mXyzToSrgb = mat4(srgb.getXYZtoRGB()); mXyzToDisplayP3 = mat4(displayP3.getXYZtoRGB()); mXyzToBt2020 = mat4(bt2020.getXYZtoRGB()); // Compute sRGB to Display P3 and BT2020 transform matrix. // NOTE: For now, we are limiting output wide color space support to // Display-P3 and BT2020 only. mSrgbToDisplayP3 = mXyzToDisplayP3 * mSrgbToXyz; mSrgbToBt2020 = mXyzToBt2020 * mSrgbToXyz; // Compute Display P3 to sRGB and BT2020 transform matrix. mDisplayP3ToSrgb = mXyzToSrgb * mDisplayP3ToXyz; mDisplayP3ToBt2020 = mXyzToBt2020 * mDisplayP3ToXyz; // Compute BT2020 to sRGB and Display P3 transform matrix mBt2020ToSrgb = mXyzToSrgb * mBt2020ToXyz; mBt2020ToDisplayP3 = mXyzToDisplayP3 * mBt2020ToXyz; } char value[PROPERTY_VALUE_MAX]; property_get("debug.egl.traceGpuCompletion", value, "0"); if (atoi(value)) { mTraceGpuCompletion = true; mFlushTracer = std::make_unique(this); } mDrawingBuffer = createFramebuffer(); } GLESRenderEngine::~GLESRenderEngine() { std::lock_guard lock(mRenderingMutex); unbindFrameBuffer(mDrawingBuffer.get()); mDrawingBuffer = nullptr; while (!mFramebufferImageCache.empty()) { EGLImageKHR expired = mFramebufferImageCache.front().second; mFramebufferImageCache.pop_front(); eglDestroyImageKHR(mEGLDisplay, expired); } mImageCache.clear(); eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT); eglTerminate(mEGLDisplay); } std::unique_ptr GLESRenderEngine::createFramebuffer() { return std::make_unique(*this); } std::unique_ptr GLESRenderEngine::createImage() { return std::make_unique(*this); } Framebuffer* GLESRenderEngine::getFramebufferForDrawing() { return mDrawingBuffer.get(); } void GLESRenderEngine::primeCache() const { ProgramCache::getInstance().primeCache(mInProtectedContext ? mProtectedEGLContext : mEGLContext, mFeatureFlags & USE_COLOR_MANAGEMENT); } bool GLESRenderEngine::isCurrent() const { return mEGLDisplay == eglGetCurrentDisplay() && mEGLContext == eglGetCurrentContext(); } base::unique_fd GLESRenderEngine::flush() { ATRACE_CALL(); if (!GLExtensions::getInstance().hasNativeFenceSync()) { return base::unique_fd(); } EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, nullptr); if (sync == EGL_NO_SYNC_KHR) { ALOGW("failed to create EGL native fence sync: %#x", eglGetError()); return base::unique_fd(); } // native fence fd will not be populated until flush() is done. glFlush(); // get the fence fd base::unique_fd fenceFd(eglDupNativeFenceFDANDROID(mEGLDisplay, sync)); eglDestroySyncKHR(mEGLDisplay, sync); if (fenceFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) { ALOGW("failed to dup EGL native fence sync: %#x", eglGetError()); } // Only trace if we have a valid fence, as current usage falls back to // calling finish() if the fence fd is invalid. if (CC_UNLIKELY(mTraceGpuCompletion && mFlushTracer) && fenceFd.get() >= 0) { mFlushTracer->queueSync(eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, nullptr)); } return fenceFd; } bool GLESRenderEngine::finish() { ATRACE_CALL(); if (!GLExtensions::getInstance().hasFenceSync()) { ALOGW("no synchronization support"); return false; } EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, nullptr); if (sync == EGL_NO_SYNC_KHR) { ALOGW("failed to create EGL fence sync: %#x", eglGetError()); return false; } if (CC_UNLIKELY(mTraceGpuCompletion && mFlushTracer)) { mFlushTracer->queueSync(eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, nullptr)); } return waitSync(sync, EGL_SYNC_FLUSH_COMMANDS_BIT_KHR); } bool GLESRenderEngine::waitSync(EGLSyncKHR sync, EGLint flags) { EGLint result = eglClientWaitSyncKHR(mEGLDisplay, sync, flags, 2000000000 /*2 sec*/); EGLint error = eglGetError(); eglDestroySyncKHR(mEGLDisplay, sync); if (result != EGL_CONDITION_SATISFIED_KHR) { if (result == EGL_TIMEOUT_EXPIRED_KHR) { ALOGW("fence wait timed out"); } else { ALOGW("error waiting on EGL fence: %#x", error); } return false; } return true; } bool GLESRenderEngine::waitFence(base::unique_fd fenceFd) { if (!GLExtensions::getInstance().hasNativeFenceSync() || !GLExtensions::getInstance().hasWaitSync()) { return false; } // release the fd and transfer the ownership to EGLSync EGLint attribs[] = {EGL_SYNC_NATIVE_FENCE_FD_ANDROID, fenceFd.release(), EGL_NONE}; EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, attribs); if (sync == EGL_NO_SYNC_KHR) { ALOGE("failed to create EGL native fence sync: %#x", eglGetError()); return false; } // XXX: The spec draft is inconsistent as to whether this should return an // EGLint or void. Ignore the return value for now, as it's not strictly // needed. eglWaitSyncKHR(mEGLDisplay, sync, 0); EGLint error = eglGetError(); eglDestroySyncKHR(mEGLDisplay, sync); if (error != EGL_SUCCESS) { ALOGE("failed to wait for EGL native fence sync: %#x", error); return false; } return true; } void GLESRenderEngine::clearWithColor(float red, float green, float blue, float alpha) { ATRACE_CALL(); glDisable(GL_BLEND); glClearColor(red, green, blue, alpha); glClear(GL_COLOR_BUFFER_BIT); } void GLESRenderEngine::fillRegionWithColor(const Region& region, float red, float green, float blue, float alpha) { size_t c; Rect const* r = region.getArray(&c); Mesh mesh(Mesh::TRIANGLES, c * 6, 2); Mesh::VertexArray position(mesh.getPositionArray()); for (size_t i = 0; i < c; i++, r++) { position[i * 6 + 0].x = r->left; position[i * 6 + 0].y = r->top; position[i * 6 + 1].x = r->left; position[i * 6 + 1].y = r->bottom; position[i * 6 + 2].x = r->right; position[i * 6 + 2].y = r->bottom; position[i * 6 + 3].x = r->left; position[i * 6 + 3].y = r->top; position[i * 6 + 4].x = r->right; position[i * 6 + 4].y = r->bottom; position[i * 6 + 5].x = r->right; position[i * 6 + 5].y = r->top; } setupFillWithColor(red, green, blue, alpha); drawMesh(mesh); } void GLESRenderEngine::setScissor(const Rect& region) { glScissor(region.left, region.top, region.getWidth(), region.getHeight()); glEnable(GL_SCISSOR_TEST); } void GLESRenderEngine::disableScissor() { glDisable(GL_SCISSOR_TEST); } void GLESRenderEngine::genTextures(size_t count, uint32_t* names) { glGenTextures(count, names); } void GLESRenderEngine::deleteTextures(size_t count, uint32_t const* names) { glDeleteTextures(count, names); } void GLESRenderEngine::bindExternalTextureImage(uint32_t texName, const Image& image) { ATRACE_CALL(); const GLImage& glImage = static_cast(image); const GLenum target = GL_TEXTURE_EXTERNAL_OES; glBindTexture(target, texName); if (glImage.getEGLImage() != EGL_NO_IMAGE_KHR) { glEGLImageTargetTexture2DOES(target, static_cast(glImage.getEGLImage())); } } status_t GLESRenderEngine::cacheExternalTextureBuffer(const sp& buffer) { std::lock_guard lock(mRenderingMutex); return cacheExternalTextureBufferLocked(buffer); } status_t GLESRenderEngine::bindExternalTextureBuffer(uint32_t texName, const sp& buffer, const sp& bufferFence) { std::lock_guard lock(mRenderingMutex); return bindExternalTextureBufferLocked(texName, buffer, bufferFence); } status_t GLESRenderEngine::cacheExternalTextureBufferLocked(const sp& buffer) { if (buffer == nullptr) { return BAD_VALUE; } ATRACE_CALL(); if (mImageCache.count(buffer->getId()) > 0) { return NO_ERROR; } std::unique_ptr newImage = createImage(); bool created = newImage->setNativeWindowBuffer(buffer->getNativeBuffer(), buffer->getUsage() & GRALLOC_USAGE_PROTECTED); if (!created) { ALOGE("Failed to create image. size=%ux%u st=%u usage=%#" PRIx64 " fmt=%d", buffer->getWidth(), buffer->getHeight(), buffer->getStride(), buffer->getUsage(), buffer->getPixelFormat()); return NO_INIT; } mImageCache.insert(std::make_pair(buffer->getId(), std::move(newImage))); return NO_ERROR; } status_t GLESRenderEngine::bindExternalTextureBufferLocked(uint32_t texName, const sp& buffer, const sp& bufferFence) { ATRACE_CALL(); status_t cacheResult = cacheExternalTextureBufferLocked(buffer); if (cacheResult != NO_ERROR) { return cacheResult; } auto cachedImage = mImageCache.find(buffer->getId()); if (cachedImage == mImageCache.end()) { // We failed creating the image if we got here, so bail out. bindExternalTextureImage(texName, *createImage()); return NO_INIT; } bindExternalTextureImage(texName, *cachedImage->second); // Wait for the new buffer to be ready. if (bufferFence != nullptr && bufferFence->isValid()) { if (GLExtensions::getInstance().hasWaitSync()) { base::unique_fd fenceFd(bufferFence->dup()); if (fenceFd == -1) { ALOGE("error dup'ing fence fd: %d", errno); return -errno; } if (!waitFence(std::move(fenceFd))) { ALOGE("failed to wait on fence fd"); return UNKNOWN_ERROR; } } else { status_t err = bufferFence->waitForever("RenderEngine::bindExternalTextureBuffer"); if (err != NO_ERROR) { ALOGE("error waiting for fence: %d", err); return err; } } } return NO_ERROR; } void GLESRenderEngine::unbindExternalTextureBuffer(uint64_t bufferId) { std::lock_guard lock(mRenderingMutex); const auto& cachedImage = mImageCache.find(bufferId); if (cachedImage != mImageCache.end()) { ALOGV("Destroying image for buffer: %" PRIu64, bufferId); mImageCache.erase(bufferId); return; } ALOGV("Failed to find image for buffer: %" PRIu64, bufferId); } FloatRect GLESRenderEngine::setupLayerCropping(const LayerSettings& layer, Mesh& mesh) { // Translate win by the rounded corners rect coordinates, to have all values in // layer coordinate space. FloatRect cropWin = layer.geometry.boundaries; const FloatRect& roundedCornersCrop = layer.geometry.roundedCornersCrop; cropWin.left -= roundedCornersCrop.left; cropWin.right -= roundedCornersCrop.left; cropWin.top -= roundedCornersCrop.top; cropWin.bottom -= roundedCornersCrop.top; Mesh::VertexArray cropCoords(mesh.getCropCoordArray()); cropCoords[0] = vec2(cropWin.left, cropWin.top); cropCoords[1] = vec2(cropWin.left, cropWin.top + cropWin.getHeight()); cropCoords[2] = vec2(cropWin.right, cropWin.top + cropWin.getHeight()); cropCoords[3] = vec2(cropWin.right, cropWin.top); setupCornerRadiusCropSize(roundedCornersCrop.getWidth(), roundedCornersCrop.getHeight()); return cropWin; } void GLESRenderEngine::handleRoundedCorners(const DisplaySettings& display, const LayerSettings& layer, const Mesh& mesh) { // We separate the layer into 3 parts essentially, such that we only turn on blending for the // top rectangle and the bottom rectangle, and turn off blending for the middle rectangle. FloatRect bounds = layer.geometry.roundedCornersCrop; // Firstly, we need to convert the coordination from layer native coordination space to // device coordination space. const auto transformMatrix = display.globalTransform * layer.geometry.positionTransform; const vec4 leftTopCoordinate(bounds.left, bounds.top, 1.0, 1.0); const vec4 rightBottomCoordinate(bounds.right, bounds.bottom, 1.0, 1.0); const vec4 leftTopCoordinateInBuffer = transformMatrix * leftTopCoordinate; const vec4 rightBottomCoordinateInBuffer = transformMatrix * rightBottomCoordinate; bounds = FloatRect(leftTopCoordinateInBuffer[0], leftTopCoordinateInBuffer[1], rightBottomCoordinateInBuffer[0], rightBottomCoordinateInBuffer[1]); // Secondly, if the display is rotated, we need to undo the rotation on coordination and // align the (left, top) and (right, bottom) coordination with the device coordination // space. switch (display.orientation) { case ui::Transform::ROT_90: std::swap(bounds.left, bounds.right); break; case ui::Transform::ROT_180: std::swap(bounds.left, bounds.right); std::swap(bounds.top, bounds.bottom); break; case ui::Transform::ROT_270: std::swap(bounds.top, bounds.bottom); break; default: break; } // Finally, we cut the layer into 3 parts, with top and bottom parts having rounded corners // and the middle part without rounded corners. const int32_t radius = ceil(layer.geometry.roundedCornersRadius); const Rect topRect(bounds.left, bounds.top, bounds.right, bounds.top + radius); setScissor(topRect); drawMesh(mesh); const Rect bottomRect(bounds.left, bounds.bottom - radius, bounds.right, bounds.bottom); setScissor(bottomRect); drawMesh(mesh); // The middle part of the layer can turn off blending. const Rect middleRect(bounds.left, bounds.top + radius, bounds.right, bounds.bottom - radius); setScissor(middleRect); mState.cornerRadius = 0.0; disableBlending(); drawMesh(mesh); disableScissor(); } status_t GLESRenderEngine::bindFrameBuffer(Framebuffer* framebuffer) { ATRACE_CALL(); GLFramebuffer* glFramebuffer = static_cast(framebuffer); EGLImageKHR eglImage = glFramebuffer->getEGLImage(); uint32_t textureName = glFramebuffer->getTextureName(); uint32_t framebufferName = glFramebuffer->getFramebufferName(); // Bind the texture and turn our EGLImage into a texture glBindTexture(GL_TEXTURE_2D, textureName); glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, (GLeglImageOES)eglImage); // Bind the Framebuffer to render into glBindFramebuffer(GL_FRAMEBUFFER, framebufferName); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, textureName, 0); uint32_t glStatus = glCheckFramebufferStatus(GL_FRAMEBUFFER); ALOGE_IF(glStatus != GL_FRAMEBUFFER_COMPLETE_OES, "glCheckFramebufferStatusOES error %d", glStatus); return glStatus == GL_FRAMEBUFFER_COMPLETE_OES ? NO_ERROR : BAD_VALUE; } void GLESRenderEngine::unbindFrameBuffer(Framebuffer* /* framebuffer */) { ATRACE_CALL(); // back to main framebuffer glBindFramebuffer(GL_FRAMEBUFFER, 0); } void GLESRenderEngine::checkErrors() const { do { // there could be more than one error flag GLenum error = glGetError(); if (error == GL_NO_ERROR) break; ALOGE("GL error 0x%04x", int(error)); } while (true); } bool GLESRenderEngine::supportsProtectedContent() const { return mProtectedEGLContext != EGL_NO_CONTEXT; } bool GLESRenderEngine::useProtectedContext(bool useProtectedContext) { if (useProtectedContext == mInProtectedContext) { return true; } if (useProtectedContext && mProtectedEGLContext == EGL_NO_CONTEXT) { return false; } const EGLSurface surface = useProtectedContext ? mProtectedDummySurface : mDummySurface; const EGLContext context = useProtectedContext ? mProtectedEGLContext : mEGLContext; const bool success = eglMakeCurrent(mEGLDisplay, surface, surface, context) == EGL_TRUE; if (success) { mInProtectedContext = useProtectedContext; } return success; } EGLImageKHR GLESRenderEngine::createFramebufferImageIfNeeded(ANativeWindowBuffer* nativeBuffer, bool isProtected, bool useFramebufferCache) { sp graphicBuffer = GraphicBuffer::from(nativeBuffer); if (useFramebufferCache) { for (const auto& image : mFramebufferImageCache) { if (image.first == graphicBuffer->getId()) { return image.second; } } } EGLint attributes[] = { isProtected ? EGL_PROTECTED_CONTENT_EXT : EGL_NONE, isProtected ? EGL_TRUE : EGL_NONE, EGL_NONE, }; EGLImageKHR image = eglCreateImageKHR(mEGLDisplay, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID, nativeBuffer, attributes); if (useFramebufferCache) { if (image != EGL_NO_IMAGE_KHR) { if (mFramebufferImageCache.size() >= mFramebufferImageCacheSize) { EGLImageKHR expired = mFramebufferImageCache.front().second; mFramebufferImageCache.pop_front(); eglDestroyImageKHR(mEGLDisplay, expired); } mFramebufferImageCache.push_back({graphicBuffer->getId(), image}); } } return image; } status_t GLESRenderEngine::drawLayers(const DisplaySettings& display, const std::vector& layers, ANativeWindowBuffer* const buffer, const bool useFramebufferCache, base::unique_fd&& bufferFence, base::unique_fd* drawFence) { ATRACE_CALL(); if (layers.empty()) { ALOGV("Drawing empty layer stack"); return NO_ERROR; } if (bufferFence.get() >= 0 && !waitFence(std::move(bufferFence))) { ATRACE_NAME("Waiting before draw"); sync_wait(bufferFence.get(), -1); } if (buffer == nullptr) { ALOGE("No output buffer provided. Aborting GPU composition."); return BAD_VALUE; } { std::lock_guard lock(mRenderingMutex); BindNativeBufferAsFramebuffer fbo(*this, buffer, useFramebufferCache); if (fbo.getStatus() != NO_ERROR) { ALOGE("Failed to bind framebuffer! Aborting GPU composition for buffer (%p).", buffer->handle); checkErrors(); return fbo.getStatus(); } // clear the entire buffer, sometimes when we reuse buffers we'd persist // ghost images otherwise. // we also require a full transparent framebuffer for overlays. This is // probably not quite efficient on all GPUs, since we could filter out // opaque layers. clearWithColor(0.0, 0.0, 0.0, 0.0); setViewportAndProjection(display.physicalDisplay, display.clip); setOutputDataSpace(display.outputDataspace); setDisplayMaxLuminance(display.maxLuminance); mat4 projectionMatrix = mState.projectionMatrix * display.globalTransform; mState.projectionMatrix = projectionMatrix; if (!display.clearRegion.isEmpty()) { glDisable(GL_BLEND); fillRegionWithColor(display.clearRegion, 0.0, 0.0, 0.0, 1.0); } Mesh mesh(Mesh::TRIANGLE_FAN, 4, 2, 2); for (auto layer : layers) { mState.projectionMatrix = projectionMatrix * layer.geometry.positionTransform; const FloatRect bounds = layer.geometry.boundaries; Mesh::VertexArray position(mesh.getPositionArray()); position[0] = vec2(bounds.left, bounds.top); position[1] = vec2(bounds.left, bounds.bottom); position[2] = vec2(bounds.right, bounds.bottom); position[3] = vec2(bounds.right, bounds.top); setupLayerCropping(layer, mesh); setColorTransform(display.colorTransform * layer.colorTransform); bool usePremultipliedAlpha = true; bool disableTexture = true; bool isOpaque = false; if (layer.source.buffer.buffer != nullptr) { disableTexture = false; isOpaque = layer.source.buffer.isOpaque; sp gBuf = layer.source.buffer.buffer; bindExternalTextureBufferLocked(layer.source.buffer.textureName, gBuf, layer.source.buffer.fence); usePremultipliedAlpha = layer.source.buffer.usePremultipliedAlpha; Texture texture(Texture::TEXTURE_EXTERNAL, layer.source.buffer.textureName); mat4 texMatrix = layer.source.buffer.textureTransform; texture.setMatrix(texMatrix.asArray()); texture.setFiltering(layer.source.buffer.useTextureFiltering); texture.setDimensions(gBuf->getWidth(), gBuf->getHeight()); setSourceY410BT2020(layer.source.buffer.isY410BT2020); renderengine::Mesh::VertexArray texCoords(mesh.getTexCoordArray()); texCoords[0] = vec2(0.0, 0.0); texCoords[1] = vec2(0.0, 1.0); texCoords[2] = vec2(1.0, 1.0); texCoords[3] = vec2(1.0, 0.0); setupLayerTexturing(texture); } const half3 solidColor = layer.source.solidColor; const half4 color = half4(solidColor.r, solidColor.g, solidColor.b, layer.alpha); // Buffer sources will have a black solid color ignored in the shader, // so in that scenario the solid color passed here is arbitrary. setupLayerBlending(usePremultipliedAlpha, isOpaque, disableTexture, color, layer.geometry.roundedCornersRadius); if (layer.disableBlending) { glDisable(GL_BLEND); } setSourceDataSpace(layer.sourceDataspace); // We only want to do a special handling for rounded corners when having rounded corners // is the only reason it needs to turn on blending, otherwise, we handle it like the // usual way since it needs to turn on blending anyway. if (layer.geometry.roundedCornersRadius > 0.0 && color.a >= 1.0f && isOpaque) { handleRoundedCorners(display, layer, mesh); } else { drawMesh(mesh); } // Cleanup if there's a buffer source if (layer.source.buffer.buffer != nullptr) { disableBlending(); setSourceY410BT2020(false); disableTexturing(); } } if (drawFence != nullptr) { *drawFence = flush(); } // If flush failed or we don't support native fences, we need to force the // gl command stream to be executed. if (drawFence == nullptr || drawFence->get() < 0) { bool success = finish(); if (!success) { ALOGE("Failed to flush RenderEngine commands"); checkErrors(); // Chances are, something illegal happened (either the caller passed // us bad parameters, or we messed up our shader generation). return INVALID_OPERATION; } } checkErrors(); } return NO_ERROR; } void GLESRenderEngine::setViewportAndProjection(size_t vpw, size_t vph, Rect sourceCrop, ui::Transform::orientation_flags rotation) { setViewportAndProjection(Rect(vpw, vph), sourceCrop); if (rotation == ui::Transform::ROT_0) { return; } // Apply custom rotation to the projection. float rot90InRadians = 2.0f * static_cast(M_PI) / 4.0f; mat4 m = mState.projectionMatrix; switch (rotation) { case ui::Transform::ROT_90: m = mat4::rotate(rot90InRadians, vec3(0, 0, 1)) * m; break; case ui::Transform::ROT_180: m = mat4::rotate(rot90InRadians * 2.0f, vec3(0, 0, 1)) * m; break; case ui::Transform::ROT_270: m = mat4::rotate(rot90InRadians * 3.0f, vec3(0, 0, 1)) * m; break; default: break; } mState.projectionMatrix = m; } void GLESRenderEngine::setViewportAndProjection(Rect viewport, Rect clip) { ATRACE_CALL(); mVpWidth = viewport.getWidth(); mVpHeight = viewport.getHeight(); // We pass the the top left corner instead of the bottom left corner, // because since we're rendering off-screen first. glViewport(viewport.left, viewport.top, mVpWidth, mVpHeight); mState.projectionMatrix = mat4::ortho(clip.left, clip.right, clip.top, clip.bottom, 0, 1); } void GLESRenderEngine::setupLayerBlending(bool premultipliedAlpha, bool opaque, bool disableTexture, const half4& color, float cornerRadius) { mState.isPremultipliedAlpha = premultipliedAlpha; mState.isOpaque = opaque; mState.color = color; mState.cornerRadius = cornerRadius; if (disableTexture) { mState.textureEnabled = false; } if (color.a < 1.0f || !opaque || cornerRadius > 0.0f) { glEnable(GL_BLEND); glBlendFunc(premultipliedAlpha ? GL_ONE : GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } else { glDisable(GL_BLEND); } } void GLESRenderEngine::setSourceY410BT2020(bool enable) { mState.isY410BT2020 = enable; } void GLESRenderEngine::setSourceDataSpace(Dataspace source) { mDataSpace = source; } void GLESRenderEngine::setOutputDataSpace(Dataspace dataspace) { mOutputDataSpace = dataspace; } void GLESRenderEngine::setDisplayMaxLuminance(const float maxLuminance) { mState.displayMaxLuminance = maxLuminance; } void GLESRenderEngine::setupLayerTexturing(const Texture& texture) { GLuint target = texture.getTextureTarget(); glBindTexture(target, texture.getTextureName()); GLenum filter = GL_NEAREST; if (texture.getFiltering()) { filter = GL_LINEAR; } glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(target, GL_TEXTURE_MAG_FILTER, filter); glTexParameteri(target, GL_TEXTURE_MIN_FILTER, filter); mState.texture = texture; mState.textureEnabled = true; } void GLESRenderEngine::setupLayerBlackedOut() { glBindTexture(GL_TEXTURE_2D, mProtectedTexName); Texture texture(Texture::TEXTURE_2D, mProtectedTexName); texture.setDimensions(1, 1); // FIXME: we should get that from somewhere mState.texture = texture; mState.textureEnabled = true; } void GLESRenderEngine::setColorTransform(const mat4& colorTransform) { mState.colorMatrix = colorTransform; } void GLESRenderEngine::disableTexturing() { mState.textureEnabled = false; } void GLESRenderEngine::disableBlending() { glDisable(GL_BLEND); } void GLESRenderEngine::setupFillWithColor(float r, float g, float b, float a) { mState.isPremultipliedAlpha = true; mState.isOpaque = false; mState.color = half4(r, g, b, a); mState.textureEnabled = false; glDisable(GL_BLEND); } void GLESRenderEngine::setupCornerRadiusCropSize(float width, float height) { mState.cropSize = half2(width, height); } void GLESRenderEngine::drawMesh(const Mesh& mesh) { ATRACE_CALL(); if (mesh.getTexCoordsSize()) { glEnableVertexAttribArray(Program::texCoords); glVertexAttribPointer(Program::texCoords, mesh.getTexCoordsSize(), GL_FLOAT, GL_FALSE, mesh.getByteStride(), mesh.getTexCoords()); } glVertexAttribPointer(Program::position, mesh.getVertexSize(), GL_FLOAT, GL_FALSE, mesh.getByteStride(), mesh.getPositions()); if (mState.cornerRadius > 0.0f) { glEnableVertexAttribArray(Program::cropCoords); glVertexAttribPointer(Program::cropCoords, mesh.getVertexSize(), GL_FLOAT, GL_FALSE, mesh.getByteStride(), mesh.getCropCoords()); } // By default, DISPLAY_P3 is the only supported wide color output. However, // when HDR content is present, hardware composer may be able to handle // BT2020 data space, in that case, the output data space is set to be // BT2020_HLG or BT2020_PQ respectively. In GPU fall back we need // to respect this and convert non-HDR content to HDR format. if (mUseColorManagement) { Description managedState = mState; Dataspace inputStandard = static_cast(mDataSpace & Dataspace::STANDARD_MASK); Dataspace inputTransfer = static_cast(mDataSpace & Dataspace::TRANSFER_MASK); Dataspace outputStandard = static_cast(mOutputDataSpace & Dataspace::STANDARD_MASK); Dataspace outputTransfer = static_cast(mOutputDataSpace & Dataspace::TRANSFER_MASK); bool needsXYZConversion = needsXYZTransformMatrix(); // NOTE: if the input standard of the input dataspace is not STANDARD_DCI_P3 or // STANDARD_BT2020, it will be treated as STANDARD_BT709 if (inputStandard != Dataspace::STANDARD_DCI_P3 && inputStandard != Dataspace::STANDARD_BT2020) { inputStandard = Dataspace::STANDARD_BT709; } if (needsXYZConversion) { // The supported input color spaces are standard RGB, Display P3 and BT2020. switch (inputStandard) { case Dataspace::STANDARD_DCI_P3: managedState.inputTransformMatrix = mDisplayP3ToXyz; break; case Dataspace::STANDARD_BT2020: managedState.inputTransformMatrix = mBt2020ToXyz; break; default: managedState.inputTransformMatrix = mSrgbToXyz; break; } // The supported output color spaces are BT2020, Display P3 and standard RGB. switch (outputStandard) { case Dataspace::STANDARD_BT2020: managedState.outputTransformMatrix = mXyzToBt2020; break; case Dataspace::STANDARD_DCI_P3: managedState.outputTransformMatrix = mXyzToDisplayP3; break; default: managedState.outputTransformMatrix = mXyzToSrgb; break; } } else if (inputStandard != outputStandard) { // At this point, the input data space and output data space could be both // HDR data spaces, but they match each other, we do nothing in this case. // In addition to the case above, the input data space could be // - scRGB linear // - scRGB non-linear // - sRGB // - Display P3 // - BT2020 // The output data spaces could be // - sRGB // - Display P3 // - BT2020 switch (outputStandard) { case Dataspace::STANDARD_BT2020: if (inputStandard == Dataspace::STANDARD_BT709) { managedState.outputTransformMatrix = mSrgbToBt2020; } else if (inputStandard == Dataspace::STANDARD_DCI_P3) { managedState.outputTransformMatrix = mDisplayP3ToBt2020; } break; case Dataspace::STANDARD_DCI_P3: if (inputStandard == Dataspace::STANDARD_BT709) { managedState.outputTransformMatrix = mSrgbToDisplayP3; } else if (inputStandard == Dataspace::STANDARD_BT2020) { managedState.outputTransformMatrix = mBt2020ToDisplayP3; } break; default: if (inputStandard == Dataspace::STANDARD_DCI_P3) { managedState.outputTransformMatrix = mDisplayP3ToSrgb; } else if (inputStandard == Dataspace::STANDARD_BT2020) { managedState.outputTransformMatrix = mBt2020ToSrgb; } break; } } // we need to convert the RGB value to linear space and convert it back when: // - there is a color matrix that is not an identity matrix, or // - there is an output transform matrix that is not an identity matrix, or // - the input transfer function doesn't match the output transfer function. if (managedState.hasColorMatrix() || managedState.hasOutputTransformMatrix() || inputTransfer != outputTransfer) { managedState.inputTransferFunction = Description::dataSpaceToTransferFunction(inputTransfer); managedState.outputTransferFunction = Description::dataSpaceToTransferFunction(outputTransfer); } ProgramCache::getInstance().useProgram(mInProtectedContext ? mProtectedEGLContext : mEGLContext, managedState); glDrawArrays(mesh.getPrimitive(), 0, mesh.getVertexCount()); if (outputDebugPPMs) { static uint64_t managedColorFrameCount = 0; std::ostringstream out; out << "/data/texture_out" << managedColorFrameCount++; writePPM(out.str().c_str(), mVpWidth, mVpHeight); } } else { ProgramCache::getInstance().useProgram(mInProtectedContext ? mProtectedEGLContext : mEGLContext, mState); glDrawArrays(mesh.getPrimitive(), 0, mesh.getVertexCount()); } if (mesh.getTexCoordsSize()) { glDisableVertexAttribArray(Program::texCoords); } if (mState.cornerRadius > 0.0f) { glDisableVertexAttribArray(Program::cropCoords); } } size_t GLESRenderEngine::getMaxTextureSize() const { return mMaxTextureSize; } size_t GLESRenderEngine::getMaxViewportDims() const { return mMaxViewportDims[0] < mMaxViewportDims[1] ? mMaxViewportDims[0] : mMaxViewportDims[1]; } void GLESRenderEngine::dump(std::string& result) { const GLExtensions& extensions = GLExtensions::getInstance(); ProgramCache& cache = ProgramCache::getInstance(); StringAppendF(&result, "EGL implementation : %s\n", extensions.getEGLVersion()); StringAppendF(&result, "%s\n", extensions.getEGLExtensions()); StringAppendF(&result, "GLES: %s, %s, %s\n", extensions.getVendor(), extensions.getRenderer(), extensions.getVersion()); StringAppendF(&result, "%s\n", extensions.getExtensions()); StringAppendF(&result, "RenderEngine supports protected context: %d\n", supportsProtectedContent()); StringAppendF(&result, "RenderEngine is in protected context: %d\n", mInProtectedContext); StringAppendF(&result, "RenderEngine program cache size for unprotected context: %zu\n", cache.getSize(mEGLContext)); StringAppendF(&result, "RenderEngine program cache size for protected context: %zu\n", cache.getSize(mProtectedEGLContext)); StringAppendF(&result, "RenderEngine last dataspace conversion: (%s) to (%s)\n", dataspaceDetails(static_cast(mDataSpace)).c_str(), dataspaceDetails(static_cast(mOutputDataSpace)).c_str()); } GLESRenderEngine::GlesVersion GLESRenderEngine::parseGlesVersion(const char* str) { int major, minor; if (sscanf(str, "OpenGL ES-CM %d.%d", &major, &minor) != 2) { if (sscanf(str, "OpenGL ES %d.%d", &major, &minor) != 2) { ALOGW("Unable to parse GL_VERSION string: \"%s\"", str); return GLES_VERSION_1_0; } } if (major == 1 && minor == 0) return GLES_VERSION_1_0; if (major == 1 && minor >= 1) return GLES_VERSION_1_1; if (major == 2 && minor >= 0) return GLES_VERSION_2_0; if (major == 3 && minor >= 0) return GLES_VERSION_3_0; ALOGW("Unrecognized OpenGL ES version: %d.%d", major, minor); return GLES_VERSION_1_0; } EGLContext GLESRenderEngine::createEglContext(EGLDisplay display, EGLConfig config, EGLContext shareContext, bool useContextPriority, Protection protection) { EGLint renderableType = 0; if (config == EGL_NO_CONFIG) { renderableType = EGL_OPENGL_ES3_BIT; } else if (!eglGetConfigAttrib(display, config, EGL_RENDERABLE_TYPE, &renderableType)) { LOG_ALWAYS_FATAL("can't query EGLConfig RENDERABLE_TYPE"); } EGLint contextClientVersion = 0; if (renderableType & EGL_OPENGL_ES3_BIT) { contextClientVersion = 3; } else if (renderableType & EGL_OPENGL_ES2_BIT) { contextClientVersion = 2; } else if (renderableType & EGL_OPENGL_ES_BIT) { contextClientVersion = 1; } else { LOG_ALWAYS_FATAL("no supported EGL_RENDERABLE_TYPEs"); } std::vector contextAttributes; contextAttributes.reserve(7); contextAttributes.push_back(EGL_CONTEXT_CLIENT_VERSION); contextAttributes.push_back(contextClientVersion); if (useContextPriority) { contextAttributes.push_back(EGL_CONTEXT_PRIORITY_LEVEL_IMG); contextAttributes.push_back(EGL_CONTEXT_PRIORITY_HIGH_IMG); } if (protection == Protection::PROTECTED) { contextAttributes.push_back(EGL_PROTECTED_CONTENT_EXT); contextAttributes.push_back(EGL_TRUE); } contextAttributes.push_back(EGL_NONE); EGLContext context = eglCreateContext(display, config, shareContext, contextAttributes.data()); if (contextClientVersion == 3 && context == EGL_NO_CONTEXT) { // eglGetConfigAttrib indicated we can create GLES 3 context, but we failed, thus // EGL_NO_CONTEXT so that we can abort. if (config != EGL_NO_CONFIG) { return context; } // If |config| is EGL_NO_CONFIG, we speculatively try to create GLES 3 context, so we should // try to fall back to GLES 2. contextAttributes[1] = 2; context = eglCreateContext(display, config, shareContext, contextAttributes.data()); } return context; } EGLSurface GLESRenderEngine::createDummyEglPbufferSurface(EGLDisplay display, EGLConfig config, int hwcFormat, Protection protection) { EGLConfig dummyConfig = config; if (dummyConfig == EGL_NO_CONFIG) { dummyConfig = chooseEglConfig(display, hwcFormat, /*logConfig*/ true); } std::vector attributes; attributes.reserve(7); attributes.push_back(EGL_WIDTH); attributes.push_back(1); attributes.push_back(EGL_HEIGHT); attributes.push_back(1); if (protection == Protection::PROTECTED) { attributes.push_back(EGL_PROTECTED_CONTENT_EXT); attributes.push_back(EGL_TRUE); } attributes.push_back(EGL_NONE); return eglCreatePbufferSurface(display, dummyConfig, attributes.data()); } bool GLESRenderEngine::isHdrDataSpace(const Dataspace dataSpace) const { const Dataspace standard = static_cast(dataSpace & Dataspace::STANDARD_MASK); const Dataspace transfer = static_cast(dataSpace & Dataspace::TRANSFER_MASK); return standard == Dataspace::STANDARD_BT2020 && (transfer == Dataspace::TRANSFER_ST2084 || transfer == Dataspace::TRANSFER_HLG); } // For convenience, we want to convert the input color space to XYZ color space first, // and then convert from XYZ color space to output color space when // - SDR and HDR contents are mixed, either SDR content will be converted to HDR or // HDR content will be tone-mapped to SDR; Or, // - there are HDR PQ and HLG contents presented at the same time, where we want to convert // HLG content to PQ content. // In either case above, we need to operate the Y value in XYZ color space. Thus, when either // input data space or output data space is HDR data space, and the input transfer function // doesn't match the output transfer function, we would enable an intermediate transfrom to // XYZ color space. bool GLESRenderEngine::needsXYZTransformMatrix() const { const bool isInputHdrDataSpace = isHdrDataSpace(mDataSpace); const bool isOutputHdrDataSpace = isHdrDataSpace(mOutputDataSpace); const Dataspace inputTransfer = static_cast(mDataSpace & Dataspace::TRANSFER_MASK); const Dataspace outputTransfer = static_cast(mOutputDataSpace & Dataspace::TRANSFER_MASK); return (isInputHdrDataSpace || isOutputHdrDataSpace) && inputTransfer != outputTransfer; } bool GLESRenderEngine::isImageCachedForTesting(uint64_t bufferId) { std::lock_guard lock(mRenderingMutex); const auto& cachedImage = mImageCache.find(bufferId); return cachedImage != mImageCache.end(); } bool GLESRenderEngine::isFramebufferImageCachedForTesting(uint64_t bufferId) { std::lock_guard lock(mRenderingMutex); return std::any_of(mFramebufferImageCache.cbegin(), mFramebufferImageCache.cend(), [=](std::pair image) { return image.first == bufferId; }); } // FlushTracer implementation GLESRenderEngine::FlushTracer::FlushTracer(GLESRenderEngine* engine) : mEngine(engine) { mThread = std::thread(&GLESRenderEngine::FlushTracer::loop, this); } GLESRenderEngine::FlushTracer::~FlushTracer() { { std::lock_guard lock(mMutex); mRunning = false; } mCondition.notify_all(); if (mThread.joinable()) { mThread.join(); } } void GLESRenderEngine::FlushTracer::queueSync(EGLSyncKHR sync) { std::lock_guard lock(mMutex); char name[64]; const uint64_t frameNum = mFramesQueued++; snprintf(name, sizeof(name), "Queueing sync for frame: %lu", static_cast(frameNum)); ATRACE_NAME(name); mQueue.push({sync, frameNum}); ATRACE_INT("GPU Frames Outstanding", mQueue.size()); mCondition.notify_one(); } void GLESRenderEngine::FlushTracer::loop() { while (mRunning) { QueueEntry entry; { std::lock_guard lock(mMutex); mCondition.wait(mMutex, [&]() REQUIRES(mMutex) { return !mQueue.empty() || !mRunning; }); if (!mRunning) { // if mRunning is false, then FlushTracer is being destroyed, so // bail out now. break; } entry = mQueue.front(); mQueue.pop(); } { char name[64]; snprintf(name, sizeof(name), "waiting for frame %lu", static_cast(entry.mFrameNum)); ATRACE_NAME(name); mEngine->waitSync(entry.mSync, 0); } } } } // namespace gl } // namespace renderengine } // namespace android