/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "BatteryService.h" #include "CorrectedGyroSensor.h" #include "GravitySensor.h" #include "LinearAccelerationSensor.h" #include "OrientationSensor.h" #include "RotationVectorSensor.h" #include "SensorFusion.h" #include "SensorInterface.h" #include "SensorService.h" #include "SensorDirectConnection.h" #include "SensorEventAckReceiver.h" #include "SensorEventConnection.h" #include "SensorRecord.h" #include "SensorRegistrationInfo.h" #include #include #include #include #include #include #include #include #include #include namespace android { // --------------------------------------------------------------------------- /* * Notes: * * - what about a gyro-corrected magnetic-field sensor? * - run mag sensor from time to time to force calibration * - gravity sensor length is wrong (=> drift in linear-acc sensor) * */ const char* SensorService::WAKE_LOCK_NAME = "SensorService_wakelock"; uint8_t SensorService::sHmacGlobalKey[128] = {}; bool SensorService::sHmacGlobalKeyIsValid = false; std::map SensorService::sPackageTargetVersion; Mutex SensorService::sPackageTargetVersionLock; AppOpsManager SensorService::sAppOpsManager; #define SENSOR_SERVICE_DIR "/data/system/sensor_service" #define SENSOR_SERVICE_HMAC_KEY_FILE SENSOR_SERVICE_DIR "/hmac_key" #define SENSOR_SERVICE_SCHED_FIFO_PRIORITY 10 // Permissions. static const String16 sDumpPermission("android.permission.DUMP"); static const String16 sLocationHardwarePermission("android.permission.LOCATION_HARDWARE"); static const String16 sManageSensorsPermission("android.permission.MANAGE_SENSORS"); SensorService::SensorService() : mInitCheck(NO_INIT), mSocketBufferSize(SOCKET_BUFFER_SIZE_NON_BATCHED), mWakeLockAcquired(false) { mUidPolicy = new UidPolicy(this); mSensorPrivacyPolicy = new SensorPrivacyPolicy(this); } bool SensorService::initializeHmacKey() { int fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_RDONLY|O_CLOEXEC); if (fd != -1) { int result = read(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey)); close(fd); if (result == sizeof(sHmacGlobalKey)) { return true; } ALOGW("Unable to read HMAC key; generating new one."); } if (RAND_bytes(sHmacGlobalKey, sizeof(sHmacGlobalKey)) == -1) { ALOGW("Can't generate HMAC key; dynamic sensor getId() will be wrong."); return false; } // We need to make sure this is only readable to us. bool wroteKey = false; mkdir(SENSOR_SERVICE_DIR, S_IRWXU); fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_WRONLY|O_CREAT|O_EXCL|O_CLOEXEC, S_IRUSR|S_IWUSR); if (fd != -1) { int result = write(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey)); close(fd); wroteKey = (result == sizeof(sHmacGlobalKey)); } if (wroteKey) { ALOGI("Generated new HMAC key."); } else { ALOGW("Unable to write HMAC key; dynamic sensor getId() will change " "after reboot."); } // Even if we failed to write the key we return true, because we did // initialize the HMAC key. return true; } // Set main thread to SCHED_FIFO to lower sensor event latency when system is under load void SensorService::enableSchedFifoMode() { struct sched_param param = {0}; param.sched_priority = SENSOR_SERVICE_SCHED_FIFO_PRIORITY; if (sched_setscheduler(getTid(), SCHED_FIFO | SCHED_RESET_ON_FORK, ¶m) != 0) { ALOGE("Couldn't set SCHED_FIFO for SensorService thread"); } } void SensorService::onFirstRef() { ALOGD("nuSensorService starting..."); SensorDevice& dev(SensorDevice::getInstance()); sHmacGlobalKeyIsValid = initializeHmacKey(); if (dev.initCheck() == NO_ERROR) { sensor_t const* list; ssize_t count = dev.getSensorList(&list); if (count > 0) { ssize_t orientationIndex = -1; bool hasGyro = false, hasAccel = false, hasMag = false; uint32_t virtualSensorsNeeds = (1< bool { if (s.getFifoMaxEventCount() > 0) { batchingSupported = true; } return !batchingSupported; }); if (batchingSupported) { // Increase socket buffer size to a max of 100 KB for batching capabilities. mSocketBufferSize = MAX_SOCKET_BUFFER_SIZE_BATCHED; } else { mSocketBufferSize = SOCKET_BUFFER_SIZE_NON_BATCHED; } // Compare the socketBufferSize value against the system limits and limit // it to maxSystemSocketBufferSize if necessary. FILE *fp = fopen("/proc/sys/net/core/wmem_max", "r"); char line[128]; if (fp != nullptr && fgets(line, sizeof(line), fp) != nullptr) { line[sizeof(line) - 1] = '\0'; size_t maxSystemSocketBufferSize; sscanf(line, "%zu", &maxSystemSocketBufferSize); if (mSocketBufferSize > maxSystemSocketBufferSize) { mSocketBufferSize = maxSystemSocketBufferSize; } } if (fp) { fclose(fp); } mWakeLockAcquired = false; mLooper = new Looper(false); const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT; mSensorEventBuffer = new sensors_event_t[minBufferSize]; mSensorEventScratch = new sensors_event_t[minBufferSize]; mMapFlushEventsToConnections = new wp [minBufferSize]; mCurrentOperatingMode = NORMAL; mNextSensorRegIndex = 0; for (int i = 0; i < SENSOR_REGISTRATIONS_BUF_SIZE; ++i) { mLastNSensorRegistrations.push(); } mInitCheck = NO_ERROR; mAckReceiver = new SensorEventAckReceiver(this); mAckReceiver->run("SensorEventAckReceiver", PRIORITY_URGENT_DISPLAY); run("SensorService", PRIORITY_URGENT_DISPLAY); // priority can only be changed after run enableSchedFifoMode(); // Start watching UID changes to apply policy. mUidPolicy->registerSelf(); // Start watching sensor privacy changes mSensorPrivacyPolicy->registerSelf(); } } } void SensorService::setSensorAccess(uid_t uid, bool hasAccess) { SortedVector< sp > activeConnections; populateActiveConnections(&activeConnections); { Mutex::Autolock _l(mLock); for (size_t i = 0 ; i < activeConnections.size(); i++) { if (activeConnections[i] != nullptr && activeConnections[i]->getUid() == uid) { activeConnections[i]->setSensorAccess(hasAccess); } } } } const Sensor& SensorService::registerSensor(SensorInterface* s, bool isDebug, bool isVirtual) { int handle = s->getSensor().getHandle(); int type = s->getSensor().getType(); if (mSensors.add(handle, s, isDebug, isVirtual)){ mRecentEvent.emplace(handle, new SensorServiceUtil::RecentEventLogger(type)); return s->getSensor(); } else { return mSensors.getNonSensor(); } } const Sensor& SensorService::registerDynamicSensorLocked(SensorInterface* s, bool isDebug) { return registerSensor(s, isDebug); } bool SensorService::unregisterDynamicSensorLocked(int handle) { bool ret = mSensors.remove(handle); const auto i = mRecentEvent.find(handle); if (i != mRecentEvent.end()) { delete i->second; mRecentEvent.erase(i); } return ret; } const Sensor& SensorService::registerVirtualSensor(SensorInterface* s, bool isDebug) { return registerSensor(s, isDebug, true); } SensorService::~SensorService() { for (auto && entry : mRecentEvent) { delete entry.second; } mUidPolicy->unregisterSelf(); mSensorPrivacyPolicy->unregisterSelf(); } status_t SensorService::dump(int fd, const Vector& args) { String8 result; if (!PermissionCache::checkCallingPermission(sDumpPermission)) { result.appendFormat("Permission Denial: can't dump SensorService from pid=%d, uid=%d\n", IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid()); } else { bool privileged = IPCThreadState::self()->getCallingUid() == 0; if (args.size() > 2) { return INVALID_OPERATION; } Mutex::Autolock _l(mLock); SensorDevice& dev(SensorDevice::getInstance()); if (args.size() == 2 && args[0] == String16("restrict")) { // If already in restricted mode. Ignore. if (mCurrentOperatingMode == RESTRICTED) { return status_t(NO_ERROR); } // If in any mode other than normal, ignore. if (mCurrentOperatingMode != NORMAL) { return INVALID_OPERATION; } mCurrentOperatingMode = RESTRICTED; // temporarily stop all sensor direct report and disable sensors disableAllSensorsLocked(); mWhiteListedPackage.setTo(String8(args[1])); return status_t(NO_ERROR); } else if (args.size() == 1 && args[0] == String16("enable")) { // If currently in restricted mode, reset back to NORMAL mode else ignore. if (mCurrentOperatingMode == RESTRICTED) { mCurrentOperatingMode = NORMAL; // enable sensors and recover all sensor direct report enableAllSensorsLocked(); } if (mCurrentOperatingMode == DATA_INJECTION) { resetToNormalModeLocked(); } mWhiteListedPackage.clear(); return status_t(NO_ERROR); } else if (args.size() == 2 && args[0] == String16("data_injection")) { if (mCurrentOperatingMode == NORMAL) { dev.disableAllSensors(); status_t err = dev.setMode(DATA_INJECTION); if (err == NO_ERROR) { mCurrentOperatingMode = DATA_INJECTION; } else { // Re-enable sensors. dev.enableAllSensors(); } mWhiteListedPackage.setTo(String8(args[1])); return NO_ERROR; } else if (mCurrentOperatingMode == DATA_INJECTION) { // Already in DATA_INJECTION mode. Treat this as a no_op. return NO_ERROR; } else { // Transition to data injection mode supported only from NORMAL mode. return INVALID_OPERATION; } } else if (!mSensors.hasAnySensor()) { result.append("No Sensors on the device\n"); result.appendFormat("devInitCheck : %d\n", SensorDevice::getInstance().initCheck()); } else { // Default dump the sensor list and debugging information. // timespec curTime; clock_gettime(CLOCK_REALTIME, &curTime); struct tm* timeinfo = localtime(&(curTime.tv_sec)); result.appendFormat("Captured at: %02d:%02d:%02d.%03d\n", timeinfo->tm_hour, timeinfo->tm_min, timeinfo->tm_sec, (int)ns2ms(curTime.tv_nsec)); result.append("Sensor Device:\n"); result.append(SensorDevice::getInstance().dump().c_str()); result.append("Sensor List:\n"); result.append(mSensors.dump().c_str()); result.append("Fusion States:\n"); SensorFusion::getInstance().dump(result); result.append("Recent Sensor events:\n"); for (auto&& i : mRecentEvent) { sp s = mSensors.getInterface(i.first); if (!i.second->isEmpty()) { if (privileged || s->getSensor().getRequiredPermission().isEmpty()) { i.second->setFormat("normal"); } else { i.second->setFormat("mask_data"); } // if there is events and sensor does not need special permission. result.appendFormat("%s: ", s->getSensor().getName().string()); result.append(i.second->dump().c_str()); } } result.append("Active sensors:\n"); SensorDevice& dev = SensorDevice::getInstance(); for (size_t i=0 ; igetNumConnections()); } } result.appendFormat("Socket Buffer size = %zd events\n", mSocketBufferSize/sizeof(sensors_event_t)); result.appendFormat("WakeLock Status: %s \n", mWakeLockAcquired ? "acquired" : "not held"); result.appendFormat("Mode :"); switch(mCurrentOperatingMode) { case NORMAL: result.appendFormat(" NORMAL\n"); break; case RESTRICTED: result.appendFormat(" RESTRICTED : %s\n", mWhiteListedPackage.string()); break; case DATA_INJECTION: result.appendFormat(" DATA_INJECTION : %s\n", mWhiteListedPackage.string()); } result.appendFormat("Sensor Privacy: %s\n", mSensorPrivacyPolicy->isSensorPrivacyEnabled() ? "enabled" : "disabled"); result.appendFormat("%zd active connections\n", mActiveConnections.size()); for (size_t i=0 ; i < mActiveConnections.size() ; i++) { sp connection(mActiveConnections[i].promote()); if (connection != nullptr) { result.appendFormat("Connection Number: %zu \n", i); connection->dump(result); } } result.appendFormat("%zd direct connections\n", mDirectConnections.size()); for (size_t i = 0 ; i < mDirectConnections.size() ; i++) { sp connection(mDirectConnections[i].promote()); if (connection != nullptr) { result.appendFormat("Direct connection %zu:\n", i); connection->dump(result); } } result.appendFormat("Previous Registrations:\n"); // Log in the reverse chronological order. int currentIndex = (mNextSensorRegIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) % SENSOR_REGISTRATIONS_BUF_SIZE; const int startIndex = currentIndex; do { const SensorRegistrationInfo& reg_info = mLastNSensorRegistrations[currentIndex]; if (SensorRegistrationInfo::isSentinel(reg_info)) { // Ignore sentinel, proceed to next item. currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) % SENSOR_REGISTRATIONS_BUF_SIZE; continue; } result.appendFormat("%s\n", reg_info.dump().c_str()); currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) % SENSOR_REGISTRATIONS_BUF_SIZE; } while(startIndex != currentIndex); } } write(fd, result.string(), result.size()); return NO_ERROR; } void SensorService::disableAllSensors() { Mutex::Autolock _l(mLock); disableAllSensorsLocked(); } void SensorService::disableAllSensorsLocked() { SensorDevice& dev(SensorDevice::getInstance()); for (auto &i : mDirectConnections) { sp connection(i.promote()); if (connection != nullptr) { connection->stopAll(true /* backupRecord */); } } dev.disableAllSensors(); // Clear all pending flush connections for all active sensors. If one of the active // connections has called flush() and the underlying sensor has been disabled before a // flush complete event is returned, we need to remove the connection from this queue. for (size_t i=0 ; i< mActiveSensors.size(); ++i) { mActiveSensors.valueAt(i)->clearAllPendingFlushConnections(); } } void SensorService::enableAllSensors() { Mutex::Autolock _l(mLock); enableAllSensorsLocked(); } void SensorService::enableAllSensorsLocked() { // sensors should only be enabled if the operating state is not restricted and sensor // privacy is not enabled. if (mCurrentOperatingMode == RESTRICTED || mSensorPrivacyPolicy->isSensorPrivacyEnabled()) { ALOGW("Sensors cannot be enabled: mCurrentOperatingMode = %d, sensor privacy = %s", mCurrentOperatingMode, mSensorPrivacyPolicy->isSensorPrivacyEnabled() ? "enabled" : "disabled"); return; } SensorDevice& dev(SensorDevice::getInstance()); dev.enableAllSensors(); for (auto &i : mDirectConnections) { sp connection(i.promote()); if (connection != nullptr) { connection->recoverAll(); } } } // NOTE: This is a remote API - make sure all args are validated status_t SensorService::shellCommand(int in, int out, int err, Vector& args) { if (!checkCallingPermission(sManageSensorsPermission, nullptr, nullptr)) { return PERMISSION_DENIED; } if (in == BAD_TYPE || out == BAD_TYPE || err == BAD_TYPE) { return BAD_VALUE; } if (args[0] == String16("set-uid-state")) { return handleSetUidState(args, err); } else if (args[0] == String16("reset-uid-state")) { return handleResetUidState(args, err); } else if (args[0] == String16("get-uid-state")) { return handleGetUidState(args, out, err); } else if (args.size() == 1 && args[0] == String16("help")) { printHelp(out); return NO_ERROR; } printHelp(err); return BAD_VALUE; } static status_t getUidForPackage(String16 packageName, int userId, /*inout*/uid_t& uid, int err) { PermissionController pc; uid = pc.getPackageUid(packageName, 0); if (uid <= 0) { ALOGE("Unknown package: '%s'", String8(packageName).string()); dprintf(err, "Unknown package: '%s'\n", String8(packageName).string()); return BAD_VALUE; } if (userId < 0) { ALOGE("Invalid user: %d", userId); dprintf(err, "Invalid user: %d\n", userId); return BAD_VALUE; } uid = multiuser_get_uid(userId, uid); return NO_ERROR; } status_t SensorService::handleSetUidState(Vector& args, int err) { // Valid arg.size() is 3 or 5, args.size() is 5 with --user option. if (!(args.size() == 3 || args.size() == 5)) { printHelp(err); return BAD_VALUE; } bool active = false; if (args[2] == String16("active")) { active = true; } else if ((args[2] != String16("idle"))) { ALOGE("Expected active or idle but got: '%s'", String8(args[2]).string()); return BAD_VALUE; } int userId = 0; if (args.size() == 5 && args[3] == String16("--user")) { userId = atoi(String8(args[4])); } uid_t uid; if (getUidForPackage(args[1], userId, uid, err) != NO_ERROR) { return BAD_VALUE; } mUidPolicy->addOverrideUid(uid, active); return NO_ERROR; } status_t SensorService::handleResetUidState(Vector& args, int err) { // Valid arg.size() is 2 or 4, args.size() is 4 with --user option. if (!(args.size() == 2 || args.size() == 4)) { printHelp(err); return BAD_VALUE; } int userId = 0; if (args.size() == 4 && args[2] == String16("--user")) { userId = atoi(String8(args[3])); } uid_t uid; if (getUidForPackage(args[1], userId, uid, err) == BAD_VALUE) { return BAD_VALUE; } mUidPolicy->removeOverrideUid(uid); return NO_ERROR; } status_t SensorService::handleGetUidState(Vector& args, int out, int err) { // Valid arg.size() is 2 or 4, args.size() is 4 with --user option. if (!(args.size() == 2 || args.size() == 4)) { printHelp(err); return BAD_VALUE; } int userId = 0; if (args.size() == 4 && args[2] == String16("--user")) { userId = atoi(String8(args[3])); } uid_t uid; if (getUidForPackage(args[1], userId, uid, err) == BAD_VALUE) { return BAD_VALUE; } if (mUidPolicy->isUidActive(uid)) { return dprintf(out, "active\n"); } else { return dprintf(out, "idle\n"); } } status_t SensorService::printHelp(int out) { return dprintf(out, "Sensor service commands:\n" " get-uid-state [--user USER_ID] gets the uid state\n" " set-uid-state [--user USER_ID] overrides the uid state\n" " reset-uid-state [--user USER_ID] clears the uid state override\n" " help print this message\n"); } //TODO: move to SensorEventConnection later void SensorService::cleanupAutoDisabledSensorLocked(const sp& connection, sensors_event_t const* buffer, const int count) { for (int i=0 ; ihasSensor(handle)) { sp si = getSensorInterfaceFromHandle(handle); // If this buffer has an event from a one_shot sensor and this connection is registered // for this particular one_shot sensor, try cleaning up the connection. if (si != nullptr && si->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) { si->autoDisable(connection.get(), handle); cleanupWithoutDisableLocked(connection, handle); } } } } bool SensorService::threadLoop() { ALOGD("nuSensorService thread starting..."); // each virtual sensor could generate an event per "real" event, that's why we need to size // numEventMax much smaller than MAX_RECEIVE_BUFFER_EVENT_COUNT. in practice, this is too // aggressive, but guaranteed to be enough. const size_t vcount = mSensors.getVirtualSensors().size(); const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT; const size_t numEventMax = minBufferSize / (1 + vcount); SensorDevice& device(SensorDevice::getInstance()); const int halVersion = device.getHalDeviceVersion(); do { ssize_t count = device.poll(mSensorEventBuffer, numEventMax); if (count < 0) { if(count == DEAD_OBJECT && device.isReconnecting()) { device.reconnect(); continue; } else { ALOGE("sensor poll failed (%s)", strerror(-count)); break; } } // Reset sensors_event_t.flags to zero for all events in the buffer. for (int i = 0; i < count; i++) { mSensorEventBuffer[i].flags = 0; } // Make a copy of the connection vector as some connections may be removed during the course // of this loop (especially when one-shot sensor events are present in the sensor_event // buffer). Promote all connections to StrongPointers before the lock is acquired. If the // destructor of the sp gets called when the lock is acquired, it may result in a deadlock // as ~SensorEventConnection() needs to acquire mLock again for cleanup. So copy all the // strongPointers to a vector before the lock is acquired. SortedVector< sp > activeConnections; populateActiveConnections(&activeConnections); Mutex::Autolock _l(mLock); // Poll has returned. Hold a wakelock if one of the events is from a wake up sensor. The // rest of this loop is under a critical section protected by mLock. Acquiring a wakeLock, // sending events to clients (incrementing SensorEventConnection::mWakeLockRefCount) should // not be interleaved with decrementing SensorEventConnection::mWakeLockRefCount and // releasing the wakelock. uint32_t wakeEvents = 0; for (int i = 0; i < count; i++) { if (isWakeUpSensorEvent(mSensorEventBuffer[i])) { wakeEvents++; } } if (wakeEvents > 0) { if (!mWakeLockAcquired) { setWakeLockAcquiredLocked(true); } device.writeWakeLockHandled(wakeEvents); } recordLastValueLocked(mSensorEventBuffer, count); // handle virtual sensors if (count && vcount) { sensors_event_t const * const event = mSensorEventBuffer; if (!mActiveVirtualSensors.empty()) { size_t k = 0; SensorFusion& fusion(SensorFusion::getInstance()); if (fusion.isEnabled()) { for (size_t i=0 ; i= minBufferSize) { ALOGE("buffer too small to hold all events: " "count=%zd, k=%zu, size=%zu", count, k, minBufferSize); break; } sensors_event_t out; sp si = mSensors.getInterface(handle); if (si == nullptr) { ALOGE("handle %d is not an valid virtual sensor", handle); continue; } if (si->process(&out, event[i])) { mSensorEventBuffer[count + k] = out; k++; } } } if (k) { // record the last synthesized values recordLastValueLocked(&mSensorEventBuffer[count], k); count += k; // sort the buffer by time-stamps sortEventBuffer(mSensorEventBuffer, count); } } } // handle backward compatibility for RotationVector sensor if (halVersion < SENSORS_DEVICE_API_VERSION_1_0) { for (int i = 0; i < count; i++) { if (mSensorEventBuffer[i].type == SENSOR_TYPE_ROTATION_VECTOR) { // All the 4 components of the quaternion should be available // No heading accuracy. Set it to -1 mSensorEventBuffer[i].data[4] = -1; } } } for (int i = 0; i < count; ++i) { // Map flush_complete_events in the buffer to SensorEventConnections which called flush // on the hardware sensor. mapFlushEventsToConnections[i] will be the // SensorEventConnection mapped to the corresponding flush_complete_event in // mSensorEventBuffer[i] if such a mapping exists (NULL otherwise). mMapFlushEventsToConnections[i] = nullptr; if (mSensorEventBuffer[i].type == SENSOR_TYPE_META_DATA) { const int sensor_handle = mSensorEventBuffer[i].meta_data.sensor; SensorRecord* rec = mActiveSensors.valueFor(sensor_handle); if (rec != nullptr) { mMapFlushEventsToConnections[i] = rec->getFirstPendingFlushConnection(); rec->removeFirstPendingFlushConnection(); } } // handle dynamic sensor meta events, process registration and unregistration of dynamic // sensor based on content of event. if (mSensorEventBuffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META) { if (mSensorEventBuffer[i].dynamic_sensor_meta.connected) { int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle; const sensor_t& dynamicSensor = *(mSensorEventBuffer[i].dynamic_sensor_meta.sensor); ALOGI("Dynamic sensor handle 0x%x connected, type %d, name %s", handle, dynamicSensor.type, dynamicSensor.name); if (mSensors.isNewHandle(handle)) { const auto& uuid = mSensorEventBuffer[i].dynamic_sensor_meta.uuid; sensor_t s = dynamicSensor; // make sure the dynamic sensor flag is set s.flags |= DYNAMIC_SENSOR_MASK; // force the handle to be consistent s.handle = handle; SensorInterface *si = new HardwareSensor(s, uuid); // This will release hold on dynamic sensor meta, so it should be called // after Sensor object is created. device.handleDynamicSensorConnection(handle, true /*connected*/); registerDynamicSensorLocked(si); } else { ALOGE("Handle %d has been used, cannot use again before reboot.", handle); } } else { int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle; ALOGI("Dynamic sensor handle 0x%x disconnected", handle); device.handleDynamicSensorConnection(handle, false /*connected*/); if (!unregisterDynamicSensorLocked(handle)) { ALOGE("Dynamic sensor release error."); } size_t numConnections = activeConnections.size(); for (size_t i=0 ; i < numConnections; ++i) { if (activeConnections[i] != nullptr) { activeConnections[i]->removeSensor(handle); } } } } } // Send our events to clients. Check the state of wake lock for each client and release the // lock if none of the clients need it. bool needsWakeLock = false; size_t numConnections = activeConnections.size(); for (size_t i=0 ; i < numConnections; ++i) { if (activeConnections[i] != nullptr) { activeConnections[i]->sendEvents(mSensorEventBuffer, count, mSensorEventScratch, mMapFlushEventsToConnections); needsWakeLock |= activeConnections[i]->needsWakeLock(); // If the connection has one-shot sensors, it may be cleaned up after first trigger. // Early check for one-shot sensors. if (activeConnections[i]->hasOneShotSensors()) { cleanupAutoDisabledSensorLocked(activeConnections[i], mSensorEventBuffer, count); } } } if (mWakeLockAcquired && !needsWakeLock) { setWakeLockAcquiredLocked(false); } } while (!Thread::exitPending()); ALOGW("Exiting SensorService::threadLoop => aborting..."); abort(); return false; } sp SensorService::getLooper() const { return mLooper; } void SensorService::resetAllWakeLockRefCounts() { SortedVector< sp > activeConnections; populateActiveConnections(&activeConnections); { Mutex::Autolock _l(mLock); for (size_t i=0 ; i < activeConnections.size(); ++i) { if (activeConnections[i] != nullptr) { activeConnections[i]->resetWakeLockRefCount(); } } setWakeLockAcquiredLocked(false); } } void SensorService::setWakeLockAcquiredLocked(bool acquire) { if (acquire) { if (!mWakeLockAcquired) { acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_NAME); mWakeLockAcquired = true; } mLooper->wake(); } else { if (mWakeLockAcquired) { release_wake_lock(WAKE_LOCK_NAME); mWakeLockAcquired = false; } } } bool SensorService::isWakeLockAcquired() { Mutex::Autolock _l(mLock); return mWakeLockAcquired; } bool SensorService::SensorEventAckReceiver::threadLoop() { ALOGD("new thread SensorEventAckReceiver"); sp looper = mService->getLooper(); do { bool wakeLockAcquired = mService->isWakeLockAcquired(); int timeout = -1; if (wakeLockAcquired) timeout = 5000; int ret = looper->pollOnce(timeout); if (ret == ALOOPER_POLL_TIMEOUT) { mService->resetAllWakeLockRefCounts(); } } while(!Thread::exitPending()); return false; } void SensorService::recordLastValueLocked( const sensors_event_t* buffer, size_t count) { for (size_t i = 0; i < count; i++) { if (buffer[i].type == SENSOR_TYPE_META_DATA || buffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META || buffer[i].type == SENSOR_TYPE_ADDITIONAL_INFO) { continue; } auto logger = mRecentEvent.find(buffer[i].sensor); if (logger != mRecentEvent.end()) { logger->second->addEvent(buffer[i]); } } } void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count) { struct compar { static int cmp(void const* lhs, void const* rhs) { sensors_event_t const* l = static_cast(lhs); sensors_event_t const* r = static_cast(rhs); return l->timestamp - r->timestamp; } }; qsort(buffer, count, sizeof(sensors_event_t), compar::cmp); } String8 SensorService::getSensorName(int handle) const { return mSensors.getName(handle); } bool SensorService::isVirtualSensor(int handle) const { sp sensor = getSensorInterfaceFromHandle(handle); return sensor != nullptr && sensor->isVirtual(); } bool SensorService::isWakeUpSensorEvent(const sensors_event_t& event) const { int handle = event.sensor; if (event.type == SENSOR_TYPE_META_DATA) { handle = event.meta_data.sensor; } sp sensor = getSensorInterfaceFromHandle(handle); return sensor != nullptr && sensor->getSensor().isWakeUpSensor(); } int32_t SensorService::getIdFromUuid(const Sensor::uuid_t &uuid) const { if ((uuid.i64[0] == 0) && (uuid.i64[1] == 0)) { // UUID is not supported for this device. return 0; } if ((uuid.i64[0] == INT64_C(~0)) && (uuid.i64[1] == INT64_C(~0))) { // This sensor can be uniquely identified in the system by // the combination of its type and name. return -1; } // We have a dynamic sensor. if (!sHmacGlobalKeyIsValid) { // Rather than risk exposing UUIDs, we cripple dynamic sensors. ALOGW("HMAC key failure; dynamic sensor getId() will be wrong."); return 0; } // We want each app author/publisher to get a different ID, so that the // same dynamic sensor cannot be tracked across apps by multiple // authors/publishers. So we use both our UUID and our User ID. // Note potential confusion: // UUID => Universally Unique Identifier. // UID => User Identifier. // We refrain from using "uid" except as needed by API to try to // keep this distinction clear. auto appUserId = IPCThreadState::self()->getCallingUid(); uint8_t uuidAndApp[sizeof(uuid) + sizeof(appUserId)]; memcpy(uuidAndApp, &uuid, sizeof(uuid)); memcpy(uuidAndApp + sizeof(uuid), &appUserId, sizeof(appUserId)); // Now we use our key on our UUID/app combo to get the hash. uint8_t hash[EVP_MAX_MD_SIZE]; unsigned int hashLen; if (HMAC(EVP_sha256(), sHmacGlobalKey, sizeof(sHmacGlobalKey), uuidAndApp, sizeof(uuidAndApp), hash, &hashLen) == nullptr) { // Rather than risk exposing UUIDs, we cripple dynamic sensors. ALOGW("HMAC failure; dynamic sensor getId() will be wrong."); return 0; } int32_t id = 0; if (hashLen < sizeof(id)) { // We never expect this case, but out of paranoia, we handle it. // Our 'id' length is already quite small, we don't want the // effective length of it to be even smaller. // Rather than risk exposing UUIDs, we cripple dynamic sensors. ALOGW("HMAC insufficient; dynamic sensor getId() will be wrong."); return 0; } // This is almost certainly less than all of 'hash', but it's as secure // as we can be with our current 'id' length. memcpy(&id, hash, sizeof(id)); // Note at the beginning of the function that we return the values of // 0 and -1 to represent special cases. As a result, we can't return // those as dynamic sensor IDs. If we happened to hash to one of those // values, we change 'id' so we report as a dynamic sensor, and not as // one of those special cases. if (id == -1) { id = -2; } else if (id == 0) { id = 1; } return id; } void SensorService::makeUuidsIntoIdsForSensorList(Vector &sensorList) const { for (auto &sensor : sensorList) { int32_t id = getIdFromUuid(sensor.getUuid()); sensor.setId(id); } } Vector SensorService::getSensorList(const String16& /* opPackageName */) { char value[PROPERTY_VALUE_MAX]; property_get("debug.sensors", value, "0"); const Vector& initialSensorList = (atoi(value)) ? mSensors.getUserDebugSensors() : mSensors.getUserSensors(); Vector accessibleSensorList; for (size_t i = 0; i < initialSensorList.size(); i++) { Sensor sensor = initialSensorList[i]; accessibleSensorList.add(sensor); } makeUuidsIntoIdsForSensorList(accessibleSensorList); return accessibleSensorList; } Vector SensorService::getDynamicSensorList(const String16& opPackageName) { Vector accessibleSensorList; mSensors.forEachSensor( [&opPackageName, &accessibleSensorList] (const Sensor& sensor) -> bool { if (sensor.isDynamicSensor()) { if (canAccessSensor(sensor, "getDynamicSensorList", opPackageName)) { accessibleSensorList.add(sensor); } else { ALOGI("Skipped sensor %s because it requires permission %s and app op %" PRId32, sensor.getName().string(), sensor.getRequiredPermission().string(), sensor.getRequiredAppOp()); } } return true; }); makeUuidsIntoIdsForSensorList(accessibleSensorList); return accessibleSensorList; } sp SensorService::createSensorEventConnection(const String8& packageName, int requestedMode, const String16& opPackageName) { // Only 2 modes supported for a SensorEventConnection ... NORMAL and DATA_INJECTION. if (requestedMode != NORMAL && requestedMode != DATA_INJECTION) { return nullptr; } Mutex::Autolock _l(mLock); // To create a client in DATA_INJECTION mode to inject data, SensorService should already be // operating in DI mode. if (requestedMode == DATA_INJECTION) { if (mCurrentOperatingMode != DATA_INJECTION) return nullptr; if (!isWhiteListedPackage(packageName)) return nullptr; } uid_t uid = IPCThreadState::self()->getCallingUid(); pid_t pid = IPCThreadState::self()->getCallingPid(); String8 connPackageName = (packageName == "") ? String8::format("unknown_package_pid_%d", pid) : packageName; String16 connOpPackageName = (opPackageName == String16("")) ? String16(connPackageName) : opPackageName; bool hasSensorAccess = mUidPolicy->isUidActive(uid); sp result(new SensorEventConnection(this, uid, connPackageName, requestedMode == DATA_INJECTION, connOpPackageName, hasSensorAccess)); if (requestedMode == DATA_INJECTION) { if (mActiveConnections.indexOf(result) < 0) { mActiveConnections.add(result); } // Add the associated file descriptor to the Looper for polling whenever there is data to // be injected. result->updateLooperRegistration(mLooper); } return result; } int SensorService::isDataInjectionEnabled() { Mutex::Autolock _l(mLock); return (mCurrentOperatingMode == DATA_INJECTION); } sp SensorService::createSensorDirectConnection( const String16& opPackageName, uint32_t size, int32_t type, int32_t format, const native_handle *resource) { Mutex::Autolock _l(mLock); // No new direct connections are allowed when sensor privacy is enabled if (mSensorPrivacyPolicy->isSensorPrivacyEnabled()) { ALOGE("Cannot create new direct connections when sensor privacy is enabled"); return nullptr; } struct sensors_direct_mem_t mem = { .type = type, .format = format, .size = size, .handle = resource, }; uid_t uid = IPCThreadState::self()->getCallingUid(); if (mem.handle == nullptr) { ALOGE("Failed to clone resource handle"); return nullptr; } // check format if (format != SENSOR_DIRECT_FMT_SENSORS_EVENT) { ALOGE("Direct channel format %d is unsupported!", format); return nullptr; } // check for duplication for (auto &i : mDirectConnections) { sp connection(i.promote()); if (connection != nullptr && connection->isEquivalent(&mem)) { ALOGE("Duplicate create channel request for the same share memory"); return nullptr; } } // check specific to memory type switch(type) { case SENSOR_DIRECT_MEM_TYPE_ASHMEM: { // channel backed by ashmem if (resource->numFds < 1) { ALOGE("Ashmem direct channel requires a memory region to be supplied"); android_errorWriteLog(0x534e4554, "70986337"); // SafetyNet return nullptr; } int fd = resource->data[0]; int size2 = ashmem_get_size_region(fd); // check size consistency if (size2 < static_cast(size)) { ALOGE("Ashmem direct channel size %" PRIu32 " greater than shared memory size %d", size, size2); return nullptr; } break; } case SENSOR_DIRECT_MEM_TYPE_GRALLOC: // no specific checks for gralloc break; default: ALOGE("Unknown direct connection memory type %d", type); return nullptr; } native_handle_t *clone = native_handle_clone(resource); if (!clone) { return nullptr; } SensorDirectConnection* conn = nullptr; SensorDevice& dev(SensorDevice::getInstance()); int channelHandle = dev.registerDirectChannel(&mem); if (channelHandle <= 0) { ALOGE("SensorDevice::registerDirectChannel returns %d", channelHandle); } else { mem.handle = clone; conn = new SensorDirectConnection(this, uid, &mem, channelHandle, opPackageName); } if (conn == nullptr) { native_handle_close(clone); native_handle_delete(clone); } else { // add to list of direct connections // sensor service should never hold pointer or sp of SensorDirectConnection object. mDirectConnections.add(wp(conn)); } return conn; } int SensorService::setOperationParameter( int32_t handle, int32_t type, const Vector &floats, const Vector &ints) { Mutex::Autolock _l(mLock); if (!checkCallingPermission(sLocationHardwarePermission, nullptr, nullptr)) { return PERMISSION_DENIED; } bool isFloat = true; bool isCustom = false; size_t expectSize = INT32_MAX; switch (type) { case AINFO_LOCAL_GEOMAGNETIC_FIELD: isFloat = true; expectSize = 3; break; case AINFO_LOCAL_GRAVITY: isFloat = true; expectSize = 1; break; case AINFO_DOCK_STATE: case AINFO_HIGH_PERFORMANCE_MODE: case AINFO_MAGNETIC_FIELD_CALIBRATION: isFloat = false; expectSize = 1; break; default: // CUSTOM events must only contain float data; it may have variable size if (type < AINFO_CUSTOM_START || type >= AINFO_DEBUGGING_START || ints.size() || sizeof(additional_info_event_t::data_float)/sizeof(float) < floats.size() || handle < 0) { return BAD_VALUE; } isFloat = true; isCustom = true; expectSize = floats.size(); break; } if (!isCustom && handle != -1) { return BAD_VALUE; } // three events: first one is begin tag, last one is end tag, the one in the middle // is the payload. sensors_event_t event[3]; int64_t timestamp = elapsedRealtimeNano(); for (sensors_event_t* i = event; i < event + 3; i++) { *i = (sensors_event_t) { .version = sizeof(sensors_event_t), .sensor = handle, .type = SENSOR_TYPE_ADDITIONAL_INFO, .timestamp = timestamp++, .additional_info = (additional_info_event_t) { .serial = 0 } }; } event[0].additional_info.type = AINFO_BEGIN; event[1].additional_info.type = type; event[2].additional_info.type = AINFO_END; if (isFloat) { if (floats.size() != expectSize) { return BAD_VALUE; } for (size_t i = 0; i < expectSize; ++i) { event[1].additional_info.data_float[i] = floats[i]; } } else { if (ints.size() != expectSize) { return BAD_VALUE; } for (size_t i = 0; i < expectSize; ++i) { event[1].additional_info.data_int32[i] = ints[i]; } } SensorDevice& dev(SensorDevice::getInstance()); for (sensors_event_t* i = event; i < event + 3; i++) { int ret = dev.injectSensorData(i); if (ret != NO_ERROR) { return ret; } } return NO_ERROR; } status_t SensorService::resetToNormalMode() { Mutex::Autolock _l(mLock); return resetToNormalModeLocked(); } status_t SensorService::resetToNormalModeLocked() { SensorDevice& dev(SensorDevice::getInstance()); status_t err = dev.setMode(NORMAL); if (err == NO_ERROR) { mCurrentOperatingMode = NORMAL; dev.enableAllSensors(); } return err; } void SensorService::cleanupConnection(SensorEventConnection* c) { Mutex::Autolock _l(mLock); const wp connection(c); size_t size = mActiveSensors.size(); ALOGD_IF(DEBUG_CONNECTIONS, "%zu active sensors", size); for (size_t i=0 ; ihasSensor(handle)) { ALOGD_IF(DEBUG_CONNECTIONS, "%zu: disabling handle=0x%08x", i, handle); sp sensor = getSensorInterfaceFromHandle(handle); if (sensor != nullptr) { sensor->activate(c, false); } else { ALOGE("sensor interface of handle=0x%08x is null!", handle); } c->removeSensor(handle); } SensorRecord* rec = mActiveSensors.valueAt(i); ALOGE_IF(!rec, "mActiveSensors[%zu] is null (handle=0x%08x)!", i, handle); ALOGD_IF(DEBUG_CONNECTIONS, "removing connection %p for sensor[%zu].handle=0x%08x", c, i, handle); if (rec && rec->removeConnection(connection)) { ALOGD_IF(DEBUG_CONNECTIONS, "... and it was the last connection"); mActiveSensors.removeItemsAt(i, 1); mActiveVirtualSensors.erase(handle); delete rec; size--; } else { i++; } } c->updateLooperRegistration(mLooper); mActiveConnections.remove(connection); BatteryService::cleanup(c->getUid()); if (c->needsWakeLock()) { checkWakeLockStateLocked(); } { Mutex::Autolock packageLock(sPackageTargetVersionLock); auto iter = sPackageTargetVersion.find(c->mOpPackageName); if (iter != sPackageTargetVersion.end()) { sPackageTargetVersion.erase(iter); } } SensorDevice& dev(SensorDevice::getInstance()); dev.notifyConnectionDestroyed(c); } void SensorService::cleanupConnection(SensorDirectConnection* c) { Mutex::Autolock _l(mLock); SensorDevice& dev(SensorDevice::getInstance()); dev.unregisterDirectChannel(c->getHalChannelHandle()); mDirectConnections.remove(c); } sp SensorService::getSensorInterfaceFromHandle(int handle) const { return mSensors.getInterface(handle); } status_t SensorService::enable(const sp& connection, int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags, const String16& opPackageName) { if (mInitCheck != NO_ERROR) return mInitCheck; sp sensor = getSensorInterfaceFromHandle(handle); if (sensor == nullptr || !canAccessSensor(sensor->getSensor(), "Tried enabling", opPackageName)) { return BAD_VALUE; } Mutex::Autolock _l(mLock); if (mCurrentOperatingMode != NORMAL && !isWhiteListedPackage(connection->getPackageName())) { return INVALID_OPERATION; } SensorRecord* rec = mActiveSensors.valueFor(handle); if (rec == nullptr) { rec = new SensorRecord(connection); mActiveSensors.add(handle, rec); if (sensor->isVirtual()) { mActiveVirtualSensors.emplace(handle); } // There was no SensorRecord for this sensor which means it was previously disabled. Mark // the recent event as stale to ensure that the previous event is not sent to a client. This // ensures on-change events that were generated during a previous sensor activation are not // erroneously sent to newly connected clients, especially if a second client registers for // an on-change sensor before the first client receives the updated event. Once an updated // event is received, the recent events will be marked as current, and any new clients will // immediately receive the most recent event. if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) { auto logger = mRecentEvent.find(handle); if (logger != mRecentEvent.end()) { logger->second->setLastEventStale(); } } } else { if (rec->addConnection(connection)) { // this sensor is already activated, but we are adding a connection that uses it. // Immediately send down the last known value of the requested sensor if it's not a // "continuous" sensor. if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) { // NOTE: The wake_up flag of this event may get set to // WAKE_UP_SENSOR_EVENT_NEEDS_ACK if this is a wake_up event. auto logger = mRecentEvent.find(handle); if (logger != mRecentEvent.end()) { sensors_event_t event; // Verify that the last sensor event was generated from the current activation // of the sensor. If not, it is possible for an on-change sensor to receive a // sensor event that is stale if two clients re-activate the sensor // simultaneously. if(logger->second->populateLastEventIfCurrent(&event)) { event.sensor = handle; if (event.version == sizeof(sensors_event_t)) { if (isWakeUpSensorEvent(event) && !mWakeLockAcquired) { setWakeLockAcquiredLocked(true); } connection->sendEvents(&event, 1, nullptr); if (!connection->needsWakeLock() && mWakeLockAcquired) { checkWakeLockStateLocked(); } } } } } } } if (connection->addSensor(handle)) { BatteryService::enableSensor(connection->getUid(), handle); // the sensor was added (which means it wasn't already there) // so, see if this connection becomes active if (mActiveConnections.indexOf(connection) < 0) { mActiveConnections.add(connection); } } else { ALOGW("sensor %08x already enabled in connection %p (ignoring)", handle, connection.get()); } // Check maximum delay for the sensor. nsecs_t maxDelayNs = sensor->getSensor().getMaxDelay() * 1000LL; if (maxDelayNs > 0 && (samplingPeriodNs > maxDelayNs)) { samplingPeriodNs = maxDelayNs; } nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs(); if (samplingPeriodNs < minDelayNs) { samplingPeriodNs = minDelayNs; } ALOGD_IF(DEBUG_CONNECTIONS, "Calling batch handle==%d flags=%d" "rate=%" PRId64 " timeout== %" PRId64"", handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs); status_t err = sensor->batch(connection.get(), handle, 0, samplingPeriodNs, maxBatchReportLatencyNs); // Call flush() before calling activate() on the sensor. Wait for a first // flush complete event before sending events on this connection. Ignore // one-shot sensors which don't support flush(). Ignore on-change sensors // to maintain the on-change logic (any on-change events except the initial // one should be trigger by a change in value). Also if this sensor isn't // already active, don't call flush(). if (err == NO_ERROR && sensor->getSensor().getReportingMode() == AREPORTING_MODE_CONTINUOUS && rec->getNumConnections() > 1) { connection->setFirstFlushPending(handle, true); status_t err_flush = sensor->flush(connection.get(), handle); // Flush may return error if the underlying h/w sensor uses an older HAL. if (err_flush == NO_ERROR) { rec->addPendingFlushConnection(connection.get()); } else { connection->setFirstFlushPending(handle, false); } } if (err == NO_ERROR) { ALOGD_IF(DEBUG_CONNECTIONS, "Calling activate on %d", handle); err = sensor->activate(connection.get(), true); } if (err == NO_ERROR) { connection->updateLooperRegistration(mLooper); if (sensor->getSensor().getRequiredPermission().size() > 0 && sensor->getSensor().getRequiredAppOp() >= 0) { connection->mHandleToAppOp[handle] = sensor->getSensor().getRequiredAppOp(); } mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) = SensorRegistrationInfo(handle, connection->getPackageName(), samplingPeriodNs, maxBatchReportLatencyNs, true); mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE; } if (err != NO_ERROR) { // batch/activate has failed, reset our state. cleanupWithoutDisableLocked(connection, handle); } return err; } status_t SensorService::disable(const sp& connection, int handle) { if (mInitCheck != NO_ERROR) return mInitCheck; Mutex::Autolock _l(mLock); status_t err = cleanupWithoutDisableLocked(connection, handle); if (err == NO_ERROR) { sp sensor = getSensorInterfaceFromHandle(handle); err = sensor != nullptr ? sensor->activate(connection.get(), false) : status_t(BAD_VALUE); } if (err == NO_ERROR) { mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) = SensorRegistrationInfo(handle, connection->getPackageName(), 0, 0, false); mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE; } return err; } status_t SensorService::cleanupWithoutDisable( const sp& connection, int handle) { Mutex::Autolock _l(mLock); return cleanupWithoutDisableLocked(connection, handle); } status_t SensorService::cleanupWithoutDisableLocked( const sp& connection, int handle) { SensorRecord* rec = mActiveSensors.valueFor(handle); if (rec) { // see if this connection becomes inactive if (connection->removeSensor(handle)) { BatteryService::disableSensor(connection->getUid(), handle); } if (connection->hasAnySensor() == false) { connection->updateLooperRegistration(mLooper); mActiveConnections.remove(connection); } // see if this sensor becomes inactive if (rec->removeConnection(connection)) { mActiveSensors.removeItem(handle); mActiveVirtualSensors.erase(handle); delete rec; } return NO_ERROR; } return BAD_VALUE; } status_t SensorService::setEventRate(const sp& connection, int handle, nsecs_t ns, const String16& opPackageName) { if (mInitCheck != NO_ERROR) return mInitCheck; sp sensor = getSensorInterfaceFromHandle(handle); if (sensor == nullptr || !canAccessSensor(sensor->getSensor(), "Tried configuring", opPackageName)) { return BAD_VALUE; } if (ns < 0) return BAD_VALUE; nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs(); if (ns < minDelayNs) { ns = minDelayNs; } return sensor->setDelay(connection.get(), handle, ns); } status_t SensorService::flushSensor(const sp& connection, const String16& opPackageName) { if (mInitCheck != NO_ERROR) return mInitCheck; SensorDevice& dev(SensorDevice::getInstance()); const int halVersion = dev.getHalDeviceVersion(); status_t err(NO_ERROR); Mutex::Autolock _l(mLock); // Loop through all sensors for this connection and call flush on each of them. for (size_t i = 0; i < connection->mSensorInfo.size(); ++i) { const int handle = connection->mSensorInfo.keyAt(i); sp sensor = getSensorInterfaceFromHandle(handle); if (sensor == nullptr) { continue; } if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) { ALOGE("flush called on a one-shot sensor"); err = INVALID_OPERATION; continue; } if (halVersion <= SENSORS_DEVICE_API_VERSION_1_0 || isVirtualSensor(handle)) { // For older devices just increment pending flush count which will send a trivial // flush complete event. connection->incrementPendingFlushCount(handle); } else { if (!canAccessSensor(sensor->getSensor(), "Tried flushing", opPackageName)) { err = INVALID_OPERATION; continue; } status_t err_flush = sensor->flush(connection.get(), handle); if (err_flush == NO_ERROR) { SensorRecord* rec = mActiveSensors.valueFor(handle); if (rec != nullptr) rec->addPendingFlushConnection(connection); } err = (err_flush != NO_ERROR) ? err_flush : err; } } return err; } bool SensorService::canAccessSensor(const Sensor& sensor, const char* operation, const String16& opPackageName) { // Check if a permission is required for this sensor if (sensor.getRequiredPermission().length() <= 0) { return true; } const int32_t opCode = sensor.getRequiredAppOp(); const int32_t appOpMode = sAppOpsManager.checkOp(opCode, IPCThreadState::self()->getCallingUid(), opPackageName); bool appOpAllowed = appOpMode == AppOpsManager::MODE_ALLOWED; bool canAccess = false; if (hasPermissionForSensor(sensor)) { // Ensure that the AppOp is allowed, or that there is no necessary app op for the sensor if (opCode < 0 || appOpAllowed) { canAccess = true; } } else if (sensor.getType() == SENSOR_TYPE_STEP_COUNTER || sensor.getType() == SENSOR_TYPE_STEP_DETECTOR) { int targetSdkVersion = getTargetSdkVersion(opPackageName); // Allow access to the sensor if the application targets pre-Q, which is before the // requirement to hold the AR permission to access Step Counter and Step Detector events // was introduced, and the user hasn't revoked the app op. // // Verifying the app op is required to ensure that the user hasn't revoked the necessary // permissions to access the Step Detector and Step Counter when the application targets // pre-Q. Without this check, if the user revokes the pre-Q install-time GMS Core AR // permission, the app would still be able to receive Step Counter and Step Detector events. if (appOpAllowed && targetSdkVersion > 0 && targetSdkVersion <= __ANDROID_API_P__) { canAccess = true; } } if (canAccess) { sAppOpsManager.noteOp(opCode, IPCThreadState::self()->getCallingUid(), opPackageName); } else { ALOGE("%s a sensor (%s) without holding its required permission: %s", operation, sensor.getName().string(), sensor.getRequiredPermission().string()); } return canAccess; } bool SensorService::hasPermissionForSensor(const Sensor& sensor) { bool hasPermission = false; const String8& requiredPermission = sensor.getRequiredPermission(); // Runtime permissions can't use the cache as they may change. if (sensor.isRequiredPermissionRuntime()) { hasPermission = checkPermission(String16(requiredPermission), IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid()); } else { hasPermission = PermissionCache::checkCallingPermission(String16(requiredPermission)); } return hasPermission; } int SensorService::getTargetSdkVersion(const String16& opPackageName) { Mutex::Autolock packageLock(sPackageTargetVersionLock); int targetSdkVersion = -1; auto entry = sPackageTargetVersion.find(opPackageName); if (entry != sPackageTargetVersion.end()) { targetSdkVersion = entry->second; } else { sp binder = defaultServiceManager()->getService(String16("package_native")); if (binder != nullptr) { sp packageManager = interface_cast(binder); if (packageManager != nullptr) { binder::Status status = packageManager->getTargetSdkVersionForPackage( opPackageName, &targetSdkVersion); if (!status.isOk()) { targetSdkVersion = -1; } } } sPackageTargetVersion[opPackageName] = targetSdkVersion; } return targetSdkVersion; } void SensorService::checkWakeLockState() { Mutex::Autolock _l(mLock); checkWakeLockStateLocked(); } void SensorService::checkWakeLockStateLocked() { if (!mWakeLockAcquired) { return; } bool releaseLock = true; for (size_t i=0 ; i connection(mActiveConnections[i].promote()); if (connection != nullptr) { if (connection->needsWakeLock()) { releaseLock = false; break; } } } if (releaseLock) { setWakeLockAcquiredLocked(false); } } void SensorService::sendEventsFromCache(const sp& connection) { Mutex::Autolock _l(mLock); connection->writeToSocketFromCache(); if (connection->needsWakeLock()) { setWakeLockAcquiredLocked(true); } } void SensorService::populateActiveConnections( SortedVector< sp >* activeConnections) { Mutex::Autolock _l(mLock); for (size_t i=0 ; i < mActiveConnections.size(); ++i) { sp connection(mActiveConnections[i].promote()); if (connection != nullptr) { activeConnections->add(connection); } } } bool SensorService::isWhiteListedPackage(const String8& packageName) { return (packageName.contains(mWhiteListedPackage.string())); } bool SensorService::isOperationPermitted(const String16& opPackageName) { Mutex::Autolock _l(mLock); if (mCurrentOperatingMode == RESTRICTED) { String8 package(opPackageName); return isWhiteListedPackage(package); } return true; } void SensorService::UidPolicy::registerSelf() { ActivityManager am; am.registerUidObserver(this, ActivityManager::UID_OBSERVER_GONE | ActivityManager::UID_OBSERVER_IDLE | ActivityManager::UID_OBSERVER_ACTIVE, ActivityManager::PROCESS_STATE_UNKNOWN, String16("android")); } void SensorService::UidPolicy::unregisterSelf() { ActivityManager am; am.unregisterUidObserver(this); } void SensorService::UidPolicy::onUidGone(__unused uid_t uid, __unused bool disabled) { onUidIdle(uid, disabled); } void SensorService::UidPolicy::onUidActive(uid_t uid) { { Mutex::Autolock _l(mUidLock); mActiveUids.insert(uid); } sp service = mService.promote(); if (service != nullptr) { service->setSensorAccess(uid, true); } } void SensorService::UidPolicy::onUidIdle(uid_t uid, __unused bool disabled) { bool deleted = false; { Mutex::Autolock _l(mUidLock); if (mActiveUids.erase(uid) > 0) { deleted = true; } } if (deleted) { sp service = mService.promote(); if (service != nullptr) { service->setSensorAccess(uid, false); } } } void SensorService::UidPolicy::addOverrideUid(uid_t uid, bool active) { updateOverrideUid(uid, active, true); } void SensorService::UidPolicy::removeOverrideUid(uid_t uid) { updateOverrideUid(uid, false, false); } void SensorService::UidPolicy::updateOverrideUid(uid_t uid, bool active, bool insert) { bool wasActive = false; bool isActive = false; { Mutex::Autolock _l(mUidLock); wasActive = isUidActiveLocked(uid); mOverrideUids.erase(uid); if (insert) { mOverrideUids.insert(std::pair(uid, active)); } isActive = isUidActiveLocked(uid); } if (wasActive != isActive) { sp service = mService.promote(); if (service != nullptr) { service->setSensorAccess(uid, isActive); } } } bool SensorService::UidPolicy::isUidActive(uid_t uid) { // Non-app UIDs are considered always active if (uid < FIRST_APPLICATION_UID) { return true; } Mutex::Autolock _l(mUidLock); return isUidActiveLocked(uid); } bool SensorService::UidPolicy::isUidActiveLocked(uid_t uid) { // Non-app UIDs are considered always active if (uid < FIRST_APPLICATION_UID) { return true; } auto it = mOverrideUids.find(uid); if (it != mOverrideUids.end()) { return it->second; } return mActiveUids.find(uid) != mActiveUids.end(); } void SensorService::SensorPrivacyPolicy::registerSelf() { SensorPrivacyManager spm; mSensorPrivacyEnabled = spm.isSensorPrivacyEnabled(); spm.addSensorPrivacyListener(this); } void SensorService::SensorPrivacyPolicy::unregisterSelf() { SensorPrivacyManager spm; spm.removeSensorPrivacyListener(this); } bool SensorService::SensorPrivacyPolicy::isSensorPrivacyEnabled() { return mSensorPrivacyEnabled; } binder::Status SensorService::SensorPrivacyPolicy::onSensorPrivacyChanged(bool enabled) { mSensorPrivacyEnabled = enabled; sp service = mService.promote(); if (service != nullptr) { if (enabled) { service->disableAllSensors(); } else { service->enableAllSensors(); } } return binder::Status::ok(); } }; // namespace android