/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #undef LOG_TAG #define LOG_TAG "BufferQueueLayer" #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include #include #include #include #include #include #include #include "BufferQueueLayer.h" #include "LayerRejecter.h" #include "SurfaceInterceptor.h" #include "TimeStats/TimeStats.h" namespace android { BufferQueueLayer::BufferQueueLayer(const LayerCreationArgs& args) : BufferLayer(args) {} BufferQueueLayer::~BufferQueueLayer() { mConsumer->abandon(); } // ----------------------------------------------------------------------- // Interface implementation for Layer // ----------------------------------------------------------------------- void BufferQueueLayer::onLayerDisplayed(const sp& releaseFence) { mConsumer->setReleaseFence(releaseFence); } void BufferQueueLayer::setTransformHint(uint32_t orientation) const { mConsumer->setTransformHint(orientation); } std::vector BufferQueueLayer::getOccupancyHistory(bool forceFlush) { std::vector history; status_t result = mConsumer->getOccupancyHistory(forceFlush, &history); if (result != NO_ERROR) { ALOGW("[%s] Failed to obtain occupancy history (%d)", mName.string(), result); return {}; } return history; } bool BufferQueueLayer::getTransformToDisplayInverse() const { return mConsumer->getTransformToDisplayInverse(); } void BufferQueueLayer::releasePendingBuffer(nsecs_t dequeueReadyTime) { if (!mConsumer->releasePendingBuffer()) { return; } auto releaseFenceTime = std::make_shared(mConsumer->getPrevFinalReleaseFence()); mReleaseTimeline.updateSignalTimes(); mReleaseTimeline.push(releaseFenceTime); Mutex::Autolock lock(mFrameEventHistoryMutex); if (mPreviousFrameNumber != 0) { mFrameEventHistory.addRelease(mPreviousFrameNumber, dequeueReadyTime, std::move(releaseFenceTime)); } } void BufferQueueLayer::setDefaultBufferSize(uint32_t w, uint32_t h) { mConsumer->setDefaultBufferSize(w, h); } int32_t BufferQueueLayer::getQueuedFrameCount() const { return mQueuedFrames; } bool BufferQueueLayer::shouldPresentNow(nsecs_t expectedPresentTime) const { if (getSidebandStreamChanged() || getAutoRefresh()) { return true; } if (!hasFrameUpdate()) { return false; } Mutex::Autolock lock(mQueueItemLock); const int64_t addedTime = mQueueItems[0].mTimestamp; // Ignore timestamps more than a second in the future const bool isPlausible = addedTime < (expectedPresentTime + s2ns(1)); ALOGW_IF(!isPlausible, "[%s] Timestamp %" PRId64 " seems implausible " "relative to expectedPresent %" PRId64, mName.string(), addedTime, expectedPresentTime); const bool isDue = addedTime < expectedPresentTime; return isDue || !isPlausible; } // ----------------------------------------------------------------------- // Interface implementation for BufferLayer // ----------------------------------------------------------------------- bool BufferQueueLayer::fenceHasSignaled() const { if (latchUnsignaledBuffers()) { return true; } if (!hasFrameUpdate()) { return true; } Mutex::Autolock lock(mQueueItemLock); if (mQueueItems[0].mIsDroppable) { // Even though this buffer's fence may not have signaled yet, it could // be replaced by another buffer before it has a chance to, which means // that it's possible to get into a situation where a buffer is never // able to be latched. To avoid this, grab this buffer anyway. return true; } return mQueueItems[0].mFenceTime->getSignalTime() != Fence::SIGNAL_TIME_PENDING; } bool BufferQueueLayer::framePresentTimeIsCurrent() const { if (!hasFrameUpdate() || isRemovedFromCurrentState()) { return true; } Mutex::Autolock lock(mQueueItemLock); return mQueueItems[0].mTimestamp <= mFlinger->mScheduler->expectedPresentTime(); } nsecs_t BufferQueueLayer::getDesiredPresentTime() { return mConsumer->getTimestamp(); } std::shared_ptr BufferQueueLayer::getCurrentFenceTime() const { return mConsumer->getCurrentFenceTime(); } void BufferQueueLayer::getDrawingTransformMatrix(float *matrix) { return mConsumer->getTransformMatrix(matrix); } // NOTE: SurfaceFlinger's definitions of "Current" and "Drawing" do not neatly map to BufferQueue's // These functions get the fields for the frame that is currently in SurfaceFlinger's Drawing state // so the functions start with "getDrawing". The data is retrieved from the BufferQueueConsumer's // current buffer so the consumer functions start with "getCurrent". // // This results in the rather confusing functions below. uint32_t BufferQueueLayer::getDrawingTransform() const { return mConsumer->getCurrentTransform(); } ui::Dataspace BufferQueueLayer::getDrawingDataSpace() const { return mConsumer->getCurrentDataSpace(); } Rect BufferQueueLayer::getDrawingCrop() const { return mConsumer->getCurrentCrop(); } uint32_t BufferQueueLayer::getDrawingScalingMode() const { return mConsumer->getCurrentScalingMode(); } Region BufferQueueLayer::getDrawingSurfaceDamage() const { return mConsumer->getSurfaceDamage(); } const HdrMetadata& BufferQueueLayer::getDrawingHdrMetadata() const { return mConsumer->getCurrentHdrMetadata(); } int BufferQueueLayer::getDrawingApi() const { return mConsumer->getCurrentApi(); } PixelFormat BufferQueueLayer::getPixelFormat() const { return mFormat; } uint64_t BufferQueueLayer::getFrameNumber() const { Mutex::Autolock lock(mQueueItemLock); uint64_t frameNumber = mQueueItems[0].mFrameNumber; // The head of the queue will be dropped if there are signaled and timely frames behind it nsecs_t expectedPresentTime = mFlinger->mScheduler->expectedPresentTime(); if (isRemovedFromCurrentState()) { expectedPresentTime = 0; } for (int i = 1; i < mQueueItems.size(); i++) { const bool fenceSignaled = mQueueItems[i].mFenceTime->getSignalTime() != Fence::SIGNAL_TIME_PENDING; if (!fenceSignaled) { break; } // We don't drop frames without explicit timestamps if (mQueueItems[i].mIsAutoTimestamp) { break; } const nsecs_t desiredPresent = mQueueItems[i].mTimestamp; if (desiredPresent < expectedPresentTime - BufferQueueConsumer::MAX_REASONABLE_NSEC || desiredPresent > expectedPresentTime) { break; } frameNumber = mQueueItems[i].mFrameNumber; } return frameNumber; } bool BufferQueueLayer::getAutoRefresh() const { return mAutoRefresh; } bool BufferQueueLayer::getSidebandStreamChanged() const { return mSidebandStreamChanged; } bool BufferQueueLayer::latchSidebandStream(bool& recomputeVisibleRegions) { bool sidebandStreamChanged = true; if (mSidebandStreamChanged.compare_exchange_strong(sidebandStreamChanged, false)) { // mSidebandStreamChanged was changed to false auto& layerCompositionState = getCompositionLayer()->editState().frontEnd; layerCompositionState.sidebandStream = mConsumer->getSidebandStream(); if (layerCompositionState.sidebandStream != nullptr) { setTransactionFlags(eTransactionNeeded); mFlinger->setTransactionFlags(eTraversalNeeded); } recomputeVisibleRegions = true; return true; } return false; } bool BufferQueueLayer::hasFrameUpdate() const { return mQueuedFrames > 0; } void BufferQueueLayer::setFilteringEnabled(bool enabled) { return mConsumer->setFilteringEnabled(enabled); } status_t BufferQueueLayer::bindTextureImage() { return mConsumer->bindTextureImage(); } status_t BufferQueueLayer::updateTexImage(bool& recomputeVisibleRegions, nsecs_t latchTime) { // This boolean is used to make sure that SurfaceFlinger's shadow copy // of the buffer queue isn't modified when the buffer queue is returning // BufferItem's that weren't actually queued. This can happen in shared // buffer mode. bool queuedBuffer = false; const int32_t layerID = getSequence(); LayerRejecter r(mDrawingState, getCurrentState(), recomputeVisibleRegions, getProducerStickyTransform() != 0, mName.string(), mOverrideScalingMode, getTransformToDisplayInverse(), mFreezeGeometryUpdates); nsecs_t expectedPresentTime = mFlinger->mScheduler->expectedPresentTime(); if (isRemovedFromCurrentState()) { expectedPresentTime = 0; } // updateTexImage() below might drop the some buffers at the head of the queue if there is a // buffer behind them which is timely to be presented. However this buffer may not be signaled // yet. The code below makes sure that this wouldn't happen by setting maxFrameNumber to the // last buffer that was signaled. uint64_t lastSignaledFrameNumber = mLastFrameNumberReceived; { Mutex::Autolock lock(mQueueItemLock); for (int i = 0; i < mQueueItems.size(); i++) { bool fenceSignaled = mQueueItems[i].mFenceTime->getSignalTime() != Fence::SIGNAL_TIME_PENDING; if (!fenceSignaled) { break; } lastSignaledFrameNumber = mQueueItems[i].mFrameNumber; } } const uint64_t maxFrameNumberToAcquire = std::min(mLastFrameNumberReceived.load(), lastSignaledFrameNumber); status_t updateResult = mConsumer->updateTexImage(&r, expectedPresentTime, &mAutoRefresh, &queuedBuffer, maxFrameNumberToAcquire); if (updateResult == BufferQueue::PRESENT_LATER) { // Producer doesn't want buffer to be displayed yet. Signal a // layer update so we check again at the next opportunity. mFlinger->signalLayerUpdate(); return BAD_VALUE; } else if (updateResult == BufferLayerConsumer::BUFFER_REJECTED) { // If the buffer has been rejected, remove it from the shadow queue // and return early if (queuedBuffer) { Mutex::Autolock lock(mQueueItemLock); mFlinger->mTimeStats->removeTimeRecord(layerID, mQueueItems[0].mFrameNumber); mQueueItems.removeAt(0); mQueuedFrames--; } return BAD_VALUE; } else if (updateResult != NO_ERROR || mUpdateTexImageFailed) { // This can occur if something goes wrong when trying to create the // EGLImage for this buffer. If this happens, the buffer has already // been released, so we need to clean up the queue and bug out // early. if (queuedBuffer) { Mutex::Autolock lock(mQueueItemLock); mQueueItems.clear(); mQueuedFrames = 0; mFlinger->mTimeStats->onDestroy(layerID); } // Once we have hit this state, the shadow queue may no longer // correctly reflect the incoming BufferQueue's contents, so even if // updateTexImage starts working, the only safe course of action is // to continue to ignore updates. mUpdateTexImageFailed = true; return BAD_VALUE; } if (queuedBuffer) { // Autolock scope auto currentFrameNumber = mConsumer->getFrameNumber(); Mutex::Autolock lock(mQueueItemLock); // Remove any stale buffers that have been dropped during // updateTexImage while (mQueueItems[0].mFrameNumber != currentFrameNumber) { mFlinger->mTimeStats->removeTimeRecord(layerID, mQueueItems[0].mFrameNumber); mQueueItems.removeAt(0); mQueuedFrames--; } mFlinger->mTimeStats->setAcquireFence(layerID, currentFrameNumber, mQueueItems[0].mFenceTime); mFlinger->mTimeStats->setLatchTime(layerID, currentFrameNumber, latchTime); mQueueItems.removeAt(0); } // Decrement the queued-frames count. Signal another event if we // have more frames pending. if ((queuedBuffer && mQueuedFrames.fetch_sub(1) > 1) || mAutoRefresh) { mFlinger->signalLayerUpdate(); } return NO_ERROR; } status_t BufferQueueLayer::updateActiveBuffer() { // update the active buffer mActiveBuffer = mConsumer->getCurrentBuffer(&mActiveBufferSlot, &mActiveBufferFence); auto& layerCompositionState = getCompositionLayer()->editState().frontEnd; layerCompositionState.buffer = mActiveBuffer; layerCompositionState.bufferSlot = mActiveBufferSlot; if (mActiveBuffer == nullptr) { // this can only happen if the very first buffer was rejected. return BAD_VALUE; } return NO_ERROR; } status_t BufferQueueLayer::updateFrameNumber(nsecs_t latchTime) { mPreviousFrameNumber = mCurrentFrameNumber; mCurrentFrameNumber = mConsumer->getFrameNumber(); { Mutex::Autolock lock(mFrameEventHistoryMutex); mFrameEventHistory.addLatch(mCurrentFrameNumber, latchTime); } return NO_ERROR; } void BufferQueueLayer::setHwcLayerBuffer(const sp& display) { const auto outputLayer = findOutputLayerForDisplay(display); LOG_FATAL_IF(!outputLayer); LOG_FATAL_IF(!outputLayer->getState.hwc); auto& hwcLayer = (*outputLayer->getState().hwc).hwcLayer; uint32_t hwcSlot = 0; sp hwcBuffer; // INVALID_BUFFER_SLOT is used to identify BufferStateLayers. Default to 0 // for BufferQueueLayers int slot = (mActiveBufferSlot == BufferQueue::INVALID_BUFFER_SLOT) ? 0 : mActiveBufferSlot; (*outputLayer->editState().hwc) .hwcBufferCache.getHwcBuffer(slot, mActiveBuffer, &hwcSlot, &hwcBuffer); auto acquireFence = mConsumer->getCurrentFence(); auto error = hwcLayer->setBuffer(hwcSlot, hwcBuffer, acquireFence); if (error != HWC2::Error::None) { ALOGE("[%s] Failed to set buffer %p: %s (%d)", mName.string(), mActiveBuffer->handle, to_string(error).c_str(), static_cast(error)); } auto& layerCompositionState = getCompositionLayer()->editState().frontEnd; layerCompositionState.bufferSlot = mActiveBufferSlot; layerCompositionState.buffer = mActiveBuffer; layerCompositionState.acquireFence = acquireFence; } // ----------------------------------------------------------------------- // Interface implementation for BufferLayerConsumer::ContentsChangedListener // ----------------------------------------------------------------------- void BufferQueueLayer::fakeVsync() { mRefreshPending = false; bool ignored = false; latchBuffer(ignored, systemTime()); usleep(16000); releasePendingBuffer(systemTime()); } void BufferQueueLayer::onFrameAvailable(const BufferItem& item) { ATRACE_CALL(); // Add this buffer from our internal queue tracker { // Autolock scope if (mFlinger->mUseSmart90ForVideo) { const nsecs_t presentTime = item.mIsAutoTimestamp ? 0 : item.mTimestamp; mFlinger->mScheduler->addLayerPresentTimeAndHDR(mSchedulerLayerHandle, presentTime, item.mHdrMetadata.validTypes != 0); } Mutex::Autolock lock(mQueueItemLock); // Reset the frame number tracker when we receive the first buffer after // a frame number reset if (item.mFrameNumber == 1) { mLastFrameNumberReceived = 0; } // Ensure that callbacks are handled in order while (item.mFrameNumber != mLastFrameNumberReceived + 1) { status_t result = mQueueItemCondition.waitRelative(mQueueItemLock, ms2ns(500)); if (result != NO_ERROR) { ALOGE("[%s] Timed out waiting on callback", mName.string()); } } mQueueItems.push_back(item); mQueuedFrames++; // Wake up any pending callbacks mLastFrameNumberReceived = item.mFrameNumber; mQueueItemCondition.broadcast(); } mFlinger->mInterceptor->saveBufferUpdate(this, item.mGraphicBuffer->getWidth(), item.mGraphicBuffer->getHeight(), item.mFrameNumber); // If this layer is orphaned, then we run a fake vsync pulse so that // dequeueBuffer doesn't block indefinitely. if (isRemovedFromCurrentState()) { fakeVsync(); } else { mFlinger->signalLayerUpdate(); } mConsumer->onBufferAvailable(item); } void BufferQueueLayer::onFrameReplaced(const BufferItem& item) { ATRACE_CALL(); { // Autolock scope Mutex::Autolock lock(mQueueItemLock); // Ensure that callbacks are handled in order while (item.mFrameNumber != mLastFrameNumberReceived + 1) { status_t result = mQueueItemCondition.waitRelative(mQueueItemLock, ms2ns(500)); if (result != NO_ERROR) { ALOGE("[%s] Timed out waiting on callback", mName.string()); } } if (!hasFrameUpdate()) { ALOGE("Can't replace a frame on an empty queue"); return; } mQueueItems.editItemAt(mQueueItems.size() - 1) = item; // Wake up any pending callbacks mLastFrameNumberReceived = item.mFrameNumber; mQueueItemCondition.broadcast(); } mConsumer->onBufferAvailable(item); } void BufferQueueLayer::onSidebandStreamChanged() { bool sidebandStreamChanged = false; if (mSidebandStreamChanged.compare_exchange_strong(sidebandStreamChanged, true)) { // mSidebandStreamChanged was changed to true mFlinger->signalLayerUpdate(); } } // ----------------------------------------------------------------------- void BufferQueueLayer::onFirstRef() { BufferLayer::onFirstRef(); // Creates a custom BufferQueue for SurfaceFlingerConsumer to use sp producer; sp consumer; BufferQueue::createBufferQueue(&producer, &consumer, true); mProducer = new MonitoredProducer(producer, mFlinger, this); { // Grab the SF state lock during this since it's the only safe way to access RenderEngine Mutex::Autolock lock(mFlinger->mStateLock); mConsumer = new BufferLayerConsumer(consumer, mFlinger->getRenderEngine(), mTextureName, this); } mConsumer->setConsumerUsageBits(getEffectiveUsage(0)); mConsumer->setContentsChangedListener(this); mConsumer->setName(mName); // BufferQueueCore::mMaxDequeuedBufferCount is default to 1 if (!mFlinger->isLayerTripleBufferingDisabled()) { mProducer->setMaxDequeuedBufferCount(2); } if (const auto display = mFlinger->getDefaultDisplayDevice()) { updateTransformHint(display); } } status_t BufferQueueLayer::setDefaultBufferProperties(uint32_t w, uint32_t h, PixelFormat format) { uint32_t const maxSurfaceDims = std::min(mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims()); // never allow a surface larger than what our underlying GL implementation // can handle. if ((uint32_t(w) > maxSurfaceDims) || (uint32_t(h) > maxSurfaceDims)) { ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h)); return BAD_VALUE; } mFormat = format; setDefaultBufferSize(w, h); mConsumer->setDefaultBufferFormat(format); mConsumer->setConsumerUsageBits(getEffectiveUsage(0)); return NO_ERROR; } sp BufferQueueLayer::getProducer() const { return mProducer; } uint32_t BufferQueueLayer::getProducerStickyTransform() const { int producerStickyTransform = 0; int ret = mProducer->query(NATIVE_WINDOW_STICKY_TRANSFORM, &producerStickyTransform); if (ret != OK) { ALOGW("%s: Error %s (%d) while querying window sticky transform.", __FUNCTION__, strerror(-ret), ret); return 0; } return static_cast(producerStickyTransform); } } // namespace android