/* * Copyright 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include "DisplayHardware/HWComposer.h" namespace android::compositionengine { OutputLayer::~OutputLayer() = default; namespace impl { namespace { FloatRect reduce(const FloatRect& win, const Region& exclude) { if (CC_LIKELY(exclude.isEmpty())) { return win; } // Convert through Rect (by rounding) for lack of FloatRegion return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect(); } } // namespace std::unique_ptr createOutputLayer( const CompositionEngine& compositionEngine, std::optional displayId, const compositionengine::Output& output, std::shared_ptr layer, sp layerFE) { auto result = std::make_unique(output, layer, layerFE); result->initialize(compositionEngine, displayId); return result; } OutputLayer::OutputLayer(const Output& output, std::shared_ptr layer, sp layerFE) : mOutput(output), mLayer(layer), mLayerFE(layerFE) {} OutputLayer::~OutputLayer() = default; void OutputLayer::initialize(const CompositionEngine& compositionEngine, std::optional displayId) { if (!displayId) { return; } auto& hwc = compositionEngine.getHwComposer(); mState.hwc.emplace(std::shared_ptr(hwc.createLayer(*displayId), [&hwc, displayId](HWC2::Layer* layer) { hwc.destroyLayer(*displayId, layer); })); } const compositionengine::Output& OutputLayer::getOutput() const { return mOutput; } compositionengine::Layer& OutputLayer::getLayer() const { return *mLayer; } compositionengine::LayerFE& OutputLayer::getLayerFE() const { return *mLayerFE; } const OutputLayerCompositionState& OutputLayer::getState() const { return mState; } OutputLayerCompositionState& OutputLayer::editState() { return mState; } Rect OutputLayer::calculateInitialCrop() const { const auto& layerState = mLayer->getState().frontEnd; // apply the projection's clipping to the window crop in // layerstack space, and convert-back to layer space. // if there are no window scaling involved, this operation will map to full // pixels in the buffer. FloatRect activeCropFloat = reduce(layerState.geomLayerBounds, layerState.geomActiveTransparentRegion); const Rect& viewport = mOutput.getState().viewport; const ui::Transform& layerTransform = layerState.geomLayerTransform; const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform; // Transform to screen space. activeCropFloat = layerTransform.transform(activeCropFloat); activeCropFloat = activeCropFloat.intersect(viewport.toFloatRect()); // Back to layer space to work with the content crop. activeCropFloat = inverseLayerTransform.transform(activeCropFloat); // This needs to be here as transform.transform(Rect) computes the // transformed rect and then takes the bounding box of the result before // returning. This means // transform.inverse().transform(transform.transform(Rect)) != Rect // in which case we need to make sure the final rect is clipped to the // display bounds. Rect activeCrop{activeCropFloat}; if (!activeCrop.intersect(layerState.geomBufferSize, &activeCrop)) { activeCrop.clear(); } return activeCrop; } FloatRect OutputLayer::calculateOutputSourceCrop() const { const auto& layerState = mLayer->getState().frontEnd; const auto& outputState = mOutput.getState(); if (!layerState.geomUsesSourceCrop) { return {}; } // the content crop is the area of the content that gets scaled to the // layer's size. This is in buffer space. FloatRect crop = layerState.geomContentCrop.toFloatRect(); // In addition there is a WM-specified crop we pull from our drawing state. Rect activeCrop = calculateInitialCrop(); const Rect& bufferSize = layerState.geomBufferSize; int winWidth = bufferSize.getWidth(); int winHeight = bufferSize.getHeight(); // The bufferSize for buffer state layers can be unbounded ([0, 0, -1, -1]) // if display frame hasn't been set and the parent is an unbounded layer. if (winWidth < 0 && winHeight < 0) { return crop; } // Transform the window crop to match the buffer coordinate system, // which means using the inverse of the current transform set on the // SurfaceFlingerConsumer. uint32_t invTransform = layerState.geomBufferTransform; if (layerState.geomBufferUsesDisplayInverseTransform) { /* * the code below applies the primary display's inverse transform to the * buffer */ uint32_t invTransformOrient = outputState.orientation; // calculate the inverse transform if (invTransformOrient & HAL_TRANSFORM_ROT_90) { invTransformOrient ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; } // and apply to the current transform invTransform = (ui::Transform(invTransformOrient) * ui::Transform(invTransform)).getOrientation(); } if (invTransform & HAL_TRANSFORM_ROT_90) { // If the activeCrop has been rotate the ends are rotated but not // the space itself so when transforming ends back we can't rely on // a modification of the axes of rotation. To account for this we // need to reorient the inverse rotation in terms of the current // axes of rotation. bool is_h_flipped = (invTransform & HAL_TRANSFORM_FLIP_H) != 0; bool is_v_flipped = (invTransform & HAL_TRANSFORM_FLIP_V) != 0; if (is_h_flipped == is_v_flipped) { invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; } std::swap(winWidth, winHeight); } const Rect winCrop = activeCrop.transform(invTransform, bufferSize.getWidth(), bufferSize.getHeight()); // below, crop is intersected with winCrop expressed in crop's coordinate space float xScale = crop.getWidth() / float(winWidth); float yScale = crop.getHeight() / float(winHeight); float insetL = winCrop.left * xScale; float insetT = winCrop.top * yScale; float insetR = (winWidth - winCrop.right) * xScale; float insetB = (winHeight - winCrop.bottom) * yScale; crop.left += insetL; crop.top += insetT; crop.right -= insetR; crop.bottom -= insetB; return crop; } Rect OutputLayer::calculateOutputDisplayFrame() const { const auto& layerState = mLayer->getState().frontEnd; const auto& outputState = mOutput.getState(); // apply the layer's transform, followed by the display's global transform // here we're guaranteed that the layer's transform preserves rects Region activeTransparentRegion = layerState.geomActiveTransparentRegion; const ui::Transform& layerTransform = layerState.geomLayerTransform; const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform; const Rect& bufferSize = layerState.geomBufferSize; Rect activeCrop = layerState.geomCrop; if (!activeCrop.isEmpty() && bufferSize.isValid()) { activeCrop = layerTransform.transform(activeCrop); if (!activeCrop.intersect(outputState.viewport, &activeCrop)) { activeCrop.clear(); } activeCrop = inverseLayerTransform.transform(activeCrop, true); // This needs to be here as transform.transform(Rect) computes the // transformed rect and then takes the bounding box of the result before // returning. This means // transform.inverse().transform(transform.transform(Rect)) != Rect // in which case we need to make sure the final rect is clipped to the // display bounds. if (!activeCrop.intersect(bufferSize, &activeCrop)) { activeCrop.clear(); } // mark regions outside the crop as transparent activeTransparentRegion.orSelf(Rect(0, 0, bufferSize.getWidth(), activeCrop.top)); activeTransparentRegion.orSelf( Rect(0, activeCrop.bottom, bufferSize.getWidth(), bufferSize.getHeight())); activeTransparentRegion.orSelf(Rect(0, activeCrop.top, activeCrop.left, activeCrop.bottom)); activeTransparentRegion.orSelf( Rect(activeCrop.right, activeCrop.top, bufferSize.getWidth(), activeCrop.bottom)); } // reduce uses a FloatRect to provide more accuracy during the // transformation. We then round upon constructing 'frame'. Rect frame{ layerTransform.transform(reduce(layerState.geomLayerBounds, activeTransparentRegion))}; if (!frame.intersect(outputState.viewport, &frame)) { frame.clear(); } const ui::Transform displayTransform{outputState.transform}; return displayTransform.transform(frame); } uint32_t OutputLayer::calculateOutputRelativeBufferTransform() const { const auto& layerState = mLayer->getState().frontEnd; const auto& outputState = mOutput.getState(); /* * Transformations are applied in this order: * 1) buffer orientation/flip/mirror * 2) state transformation (window manager) * 3) layer orientation (screen orientation) * (NOTE: the matrices are multiplied in reverse order) */ const ui::Transform& layerTransform = layerState.geomLayerTransform; const ui::Transform displayTransform{outputState.orientation}; const ui::Transform bufferTransform{layerState.geomBufferTransform}; ui::Transform transform(displayTransform * layerTransform * bufferTransform); if (layerState.geomBufferUsesDisplayInverseTransform) { /* * the code below applies the primary display's inverse transform to the * buffer */ uint32_t invTransform = outputState.orientation; // calculate the inverse transform if (invTransform & HAL_TRANSFORM_ROT_90) { invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; } /* * Here we cancel out the orientation component of the WM transform. * The scaling and translate components are already included in our bounds * computation so it's enough to just omit it in the composition. * See comment in BufferLayer::prepareClientLayer with ref to b/36727915 for why. */ transform = ui::Transform(invTransform) * displayTransform * bufferTransform; } // this gives us only the "orientation" component of the transform return transform.getOrientation(); } // namespace impl void OutputLayer::updateCompositionState(bool includeGeometry) { if (includeGeometry) { mState.displayFrame = calculateOutputDisplayFrame(); mState.sourceCrop = calculateOutputSourceCrop(); mState.bufferTransform = static_cast(calculateOutputRelativeBufferTransform()); if ((mLayer->getState().frontEnd.isSecure && !mOutput.getState().isSecure) || (mState.bufferTransform & ui::Transform::ROT_INVALID)) { mState.forceClientComposition = true; } } } void OutputLayer::writeStateToHWC(bool includeGeometry) const { // Skip doing this if there is no HWC interface if (!mState.hwc) { return; } auto& hwcLayer = (*mState.hwc).hwcLayer; if (!hwcLayer) { ALOGE("[%s] failed to write composition state to HWC -- no hwcLayer for output %s", mLayerFE->getDebugName(), mOutput.getName().c_str()); return; } if (includeGeometry) { // Output dependent state if (auto error = hwcLayer->setDisplayFrame(mState.displayFrame); error != HWC2::Error::None) { ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)", mLayerFE->getDebugName(), mState.displayFrame.left, mState.displayFrame.top, mState.displayFrame.right, mState.displayFrame.bottom, to_string(error).c_str(), static_cast(error)); } if (auto error = hwcLayer->setSourceCrop(mState.sourceCrop); error != HWC2::Error::None) { ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: " "%s (%d)", mLayerFE->getDebugName(), mState.sourceCrop.left, mState.sourceCrop.top, mState.sourceCrop.right, mState.sourceCrop.bottom, to_string(error).c_str(), static_cast(error)); } if (auto error = hwcLayer->setZOrder(mState.z); error != HWC2::Error::None) { ALOGE("[%s] Failed to set Z %u: %s (%d)", mLayerFE->getDebugName(), mState.z, to_string(error).c_str(), static_cast(error)); } if (auto error = hwcLayer->setTransform(static_cast(mState.bufferTransform)); error != HWC2::Error::None) { ALOGE("[%s] Failed to set transform %s: %s (%d)", mLayerFE->getDebugName(), toString(mState.bufferTransform).c_str(), to_string(error).c_str(), static_cast(error)); } // Output independent state const auto& outputIndependentState = mLayer->getState().frontEnd; if (auto error = hwcLayer->setBlendMode( static_cast(outputIndependentState.blendMode)); error != HWC2::Error::None) { ALOGE("[%s] Failed to set blend mode %s: %s (%d)", mLayerFE->getDebugName(), toString(outputIndependentState.blendMode).c_str(), to_string(error).c_str(), static_cast(error)); } if (auto error = hwcLayer->setPlaneAlpha(outputIndependentState.alpha); error != HWC2::Error::None) { ALOGE("[%s] Failed to set plane alpha %.3f: %s (%d)", mLayerFE->getDebugName(), outputIndependentState.alpha, to_string(error).c_str(), static_cast(error)); } if (auto error = hwcLayer->setInfo(outputIndependentState.type, outputIndependentState.appId); error != HWC2::Error::None) { ALOGE("[%s] Failed to set info %s (%d)", mLayerFE->getDebugName(), to_string(error).c_str(), static_cast(error)); } } } void OutputLayer::dump(std::string& out) const { using android::base::StringAppendF; StringAppendF(&out, " - Output Layer %p (Composition layer %p) (%s)\n", this, mLayer.get(), mLayerFE->getDebugName()); mState.dump(out); } } // namespace impl } // namespace android::compositionengine