/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "rsCpuIntrinsic.h" #include "rsCpuIntrinsicInlines.h" namespace android { namespace renderscript { class RsdCpuScriptIntrinsicBlur : public RsdCpuScriptIntrinsic { public: void populateScript(Script *) override; void invokeFreeChildren() override; void setGlobalVar(uint32_t slot, const void *data, size_t dataLength) override; void setGlobalObj(uint32_t slot, ObjectBase *data) override; ~RsdCpuScriptIntrinsicBlur() override; RsdCpuScriptIntrinsicBlur(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); protected: // The size of the kernel radius is limited to 25 in ScriptIntrinsicBlur.java. // So, the max kernel size is 51 (= 2 * 25 + 1). // Considering SSSE3 case, which requires the size is multiple of 4, // at least 52 words are necessary. Values outside of the kernel should be 0. float mFp[104]; uint16_t mIp[104]; void **mScratch; size_t *mScratchSize; float mRadius; int mIradius; ObjectBaseRef mAlloc; static void kernelU4(const RsExpandKernelDriverInfo *info, uint32_t xstart, uint32_t xend, uint32_t outstep); static void kernelU1(const RsExpandKernelDriverInfo *info, uint32_t xstart, uint32_t xend, uint32_t outstep); void ComputeGaussianWeights(); }; void RsdCpuScriptIntrinsicBlur::ComputeGaussianWeights() { memset(mFp, 0, sizeof(mFp)); memset(mIp, 0, sizeof(mIp)); // Compute gaussian weights for the blur // e is the euler's number // TODO Define these constants only once float e = 2.718281828459045f; float pi = 3.1415926535897932f; // g(x) = (1 / (sqrt(2 * pi) * sigma)) * e ^ (-x^2 / (2 * sigma^2)) // x is of the form [-radius .. 0 .. radius] // and sigma varies with the radius. // Based on some experimental radius values and sigmas, // we approximately fit sigma = f(radius) as // sigma = radius * 0.4 + 0.6 // The larger the radius gets, the more our gaussian blur // will resemble a box blur since with large sigma // the gaussian curve begins to lose its shape float sigma = 0.4f * mRadius + 0.6f; // Now compute the coefficients. We will store some redundant values to save // some math during the blur calculations precompute some values float coeff1 = 1.0f / (sqrtf(2.0f * pi) * sigma); float coeff2 = - 1.0f / (2.0f * sigma * sigma); float normalizeFactor = 0.0f; float floatR = 0.0f; int r; mIradius = (float)ceil(mRadius) + 0.5f; for (r = -mIradius; r <= mIradius; r ++) { floatR = (float)r; mFp[r + mIradius] = coeff1 * powf(e, floatR * floatR * coeff2); normalizeFactor += mFp[r + mIradius]; } // Now we need to normalize the weights because all our coefficients need to add up to one normalizeFactor = 1.0f / normalizeFactor; for (r = -mIradius; r <= mIradius; r ++) { mFp[r + mIradius] *= normalizeFactor; mIp[r + mIradius] = (uint16_t)(mFp[r + mIradius] * 65536.0f + 0.5f); } } void RsdCpuScriptIntrinsicBlur::setGlobalObj(uint32_t slot, ObjectBase *data) { rsAssert(slot == 1); mAlloc.set(static_cast(data)); } void RsdCpuScriptIntrinsicBlur::setGlobalVar(uint32_t slot, const void *data, size_t dataLength) { rsAssert(slot == 0); mRadius = ((const float *)data)[0]; ComputeGaussianWeights(); } static void OneVU4(const RsExpandKernelDriverInfo *info, float4 *out, int32_t x, int32_t y, const uchar *ptrIn, int iStride, const float* gPtr, int iradius) { const uchar *pi = ptrIn + x*4; float4 blurredPixel = 0; for (int r = -iradius; r <= iradius; r ++) { int validY = rsMax((y + r), 0); validY = rsMin(validY, (int)(info->dim.y- 1)); const uchar4 *pvy = (const uchar4 *)&pi[validY * iStride]; float4 pf = convert_float4(pvy[0]); blurredPixel += pf * gPtr[0]; gPtr++; } out[0] = blurredPixel; } static void OneVU1(const RsExpandKernelDriverInfo *info, float *out, int32_t x, int32_t y, const uchar *ptrIn, int iStride, const float* gPtr, int iradius) { const uchar *pi = ptrIn + x; float blurredPixel = 0; for (int r = -iradius; r <= iradius; r ++) { int validY = rsMax((y + r), 0); validY = rsMin(validY, (int)(info->dim.y - 1)); float pf = (float)pi[validY * iStride]; blurredPixel += pf * gPtr[0]; gPtr++; } out[0] = blurredPixel; } } // namespace renderscript } // namespace android extern "C" void rsdIntrinsicBlurU1_K(uchar *out, uchar const *in, size_t w, size_t h, size_t p, size_t x, size_t y, size_t count, size_t r, uint16_t const *tab); extern "C" void rsdIntrinsicBlurU4_K(uchar4 *out, uchar4 const *in, size_t w, size_t h, size_t p, size_t x, size_t y, size_t count, size_t r, uint16_t const *tab); #if defined(ARCH_X86_HAVE_SSSE3) extern void rsdIntrinsicBlurVFU4_K(void *dst, const void *pin, int stride, const void *gptr, int rct, int x1, int ct); extern void rsdIntrinsicBlurHFU4_K(void *dst, const void *pin, const void *gptr, int rct, int x1, int ct); extern void rsdIntrinsicBlurHFU1_K(void *dst, const void *pin, const void *gptr, int rct, int x1, int ct); #endif using android::renderscript::gArchUseSIMD; static void OneVFU4(float4 *out, const uchar *ptrIn, int iStride, const float* gPtr, int ct, int x1, int x2) { out += x1; #if defined(ARCH_X86_HAVE_SSSE3) if (gArchUseSIMD) { int t = (x2 - x1); t &= ~1; if (t) { rsdIntrinsicBlurVFU4_K(out, ptrIn, iStride, gPtr, ct, x1, x1 + t); } x1 += t; out += t; ptrIn += t << 2; } #endif while(x2 > x1) { const uchar *pi = ptrIn; float4 blurredPixel = 0; const float* gp = gPtr; for (int r = 0; r < ct; r++) { float4 pf = convert_float4(((const uchar4 *)pi)[0]); blurredPixel += pf * gp[0]; pi += iStride; gp++; } out->xyzw = blurredPixel; x1++; out++; ptrIn+=4; } } static void OneVFU1(float *out, const uchar *ptrIn, int iStride, const float* gPtr, int ct, int x1, int x2) { int len = x2 - x1; out += x1; while((x2 > x1) && (((uintptr_t)ptrIn) & 0x3)) { const uchar *pi = ptrIn; float blurredPixel = 0; const float* gp = gPtr; for (int r = 0; r < ct; r++) { float pf = (float)pi[0]; blurredPixel += pf * gp[0]; pi += iStride; gp++; } out[0] = blurredPixel; x1++; out++; ptrIn++; len--; } #if defined(ARCH_X86_HAVE_SSSE3) if (gArchUseSIMD && (x2 > x1)) { int t = (x2 - x1) >> 2; t &= ~1; if (t) { rsdIntrinsicBlurVFU4_K(out, ptrIn, iStride, gPtr, ct, 0, t ); len -= t << 2; ptrIn += t << 2; out += t << 2; } } #endif while(len > 0) { const uchar *pi = ptrIn; float blurredPixel = 0; const float* gp = gPtr; for (int r = 0; r < ct; r++) { float pf = (float)pi[0]; blurredPixel += pf * gp[0]; pi += iStride; gp++; } out[0] = blurredPixel; len--; out++; ptrIn++; } } using android::renderscript::rsMin; using android::renderscript::rsMax; static void OneHU4(const RsExpandKernelDriverInfo *info, uchar4 *out, int32_t x, const float4 *ptrIn, const float* gPtr, int iradius) { float4 blurredPixel = 0; for (int r = -iradius; r <= iradius; r ++) { int validX = rsMax((x + r), 0); validX = rsMin(validX, (int)(info->dim.x - 1)); float4 pf = ptrIn[validX]; blurredPixel += pf * gPtr[0]; gPtr++; } out->xyzw = convert_uchar4(blurredPixel); } static void OneHU1(const RsExpandKernelDriverInfo *info, uchar *out, int32_t x, const float *ptrIn, const float* gPtr, int iradius) { float blurredPixel = 0; for (int r = -iradius; r <= iradius; r ++) { int validX = rsMax((x + r), 0); validX = rsMin(validX, (int)(info->dim.x - 1)); float pf = ptrIn[validX]; blurredPixel += pf * gPtr[0]; gPtr++; } out[0] = (uchar)blurredPixel; } namespace android { namespace renderscript { void RsdCpuScriptIntrinsicBlur::kernelU4(const RsExpandKernelDriverInfo *info, uint32_t xstart, uint32_t xend, uint32_t outstep) { float4 stackbuf[2048]; float4 *buf = &stackbuf[0]; RsdCpuScriptIntrinsicBlur *cp = (RsdCpuScriptIntrinsicBlur *)info->usr; if (!cp->mAlloc.get()) { ALOGE("Blur executed without input, skipping"); return; } const uchar *pin = (const uchar *)cp->mAlloc->mHal.drvState.lod[0].mallocPtr; const size_t stride = cp->mAlloc->mHal.drvState.lod[0].stride; uchar4 *out = (uchar4 *)info->outPtr[0]; uint32_t x1 = xstart; uint32_t x2 = xend; #if defined(ARCH_ARM_USE_INTRINSICS) if (gArchUseSIMD && info->dim.x >= 4) { rsdIntrinsicBlurU4_K(out, (uchar4 const *)(pin + stride * info->current.y), info->dim.x, info->dim.y, stride, x1, info->current.y, x2 - x1, cp->mIradius, cp->mIp + cp->mIradius); return; } #endif if (info->dim.x > 2048) { if ((info->dim.x > cp->mScratchSize[info->lid]) || !cp->mScratch[info->lid]) { // Pad the side of the allocation by one unit to allow alignment later cp->mScratch[info->lid] = realloc(cp->mScratch[info->lid], (info->dim.x + 1) * 16); cp->mScratchSize[info->lid] = info->dim.x; } // realloc only aligns to 8 bytes so we manually align to 16. buf = (float4 *) ((((intptr_t)cp->mScratch[info->lid]) + 15) & ~0xf); } float4 *fout = (float4 *)buf; int y = info->current.y; if ((y > cp->mIradius) && (y < ((int)info->dim.y - cp->mIradius))) { const uchar *pi = pin + (y - cp->mIradius) * stride; OneVFU4(fout, pi, stride, cp->mFp, cp->mIradius * 2 + 1, 0, info->dim.x); } else { x1 = 0; while(info->dim.x > x1) { OneVU4(info, fout, x1, y, pin, stride, cp->mFp, cp->mIradius); fout++; x1++; } } x1 = xstart; while ((x1 < (uint32_t)cp->mIradius) && (x1 < x2)) { OneHU4(info, out, x1, buf, cp->mFp, cp->mIradius); out++; x1++; } #if defined(ARCH_X86_HAVE_SSSE3) if (gArchUseSIMD) { if ((x1 + cp->mIradius) < x2) { rsdIntrinsicBlurHFU4_K(out, buf - cp->mIradius, cp->mFp, cp->mIradius * 2 + 1, x1, x2 - cp->mIradius); out += (x2 - cp->mIradius) - x1; x1 = x2 - cp->mIradius; } } #endif while(x2 > x1) { OneHU4(info, out, x1, buf, cp->mFp, cp->mIradius); out++; x1++; } } void RsdCpuScriptIntrinsicBlur::kernelU1(const RsExpandKernelDriverInfo *info, uint32_t xstart, uint32_t xend, uint32_t outstep) { float buf[4 * 2048]; RsdCpuScriptIntrinsicBlur *cp = (RsdCpuScriptIntrinsicBlur *)info->usr; if (!cp->mAlloc.get()) { ALOGE("Blur executed without input, skipping"); return; } const uchar *pin = (const uchar *)cp->mAlloc->mHal.drvState.lod[0].mallocPtr; const size_t stride = cp->mAlloc->mHal.drvState.lod[0].stride; uchar *out = (uchar *)info->outPtr[0]; uint32_t x1 = xstart; uint32_t x2 = xend; #if defined(ARCH_ARM_USE_INTRINSICS) if (gArchUseSIMD && info->dim.x >= 16) { // The specialisation for r<=8 has an awkward prefill case, which is // fiddly to resolve, where starting close to the right edge can cause // a read beyond the end of input. So avoid that case here. if (cp->mIradius > 8 || (info->dim.x - rsMax(0, (int32_t)x1 - 8)) >= 16) { rsdIntrinsicBlurU1_K(out, pin + stride * info->current.y, info->dim.x, info->dim.y, stride, x1, info->current.y, x2 - x1, cp->mIradius, cp->mIp + cp->mIradius); return; } } #endif float *fout = (float *)buf; int y = info->current.y; if ((y > cp->mIradius) && (y < ((int)info->dim.y - cp->mIradius -1))) { const uchar *pi = pin + (y - cp->mIradius) * stride; OneVFU1(fout, pi, stride, cp->mFp, cp->mIradius * 2 + 1, 0, info->dim.x); } else { x1 = 0; while(info->dim.x > x1) { OneVU1(info, fout, x1, y, pin, stride, cp->mFp, cp->mIradius); fout++; x1++; } } x1 = xstart; while ((x1 < x2) && ((x1 < (uint32_t)cp->mIradius) || (((uintptr_t)out) & 0x3))) { OneHU1(info, out, x1, buf, cp->mFp, cp->mIradius); out++; x1++; } #if defined(ARCH_X86_HAVE_SSSE3) if (gArchUseSIMD) { if ((x1 + cp->mIradius) < x2) { uint32_t len = x2 - (x1 + cp->mIradius); len &= ~3; // rsdIntrinsicBlurHFU1_K() processes each four float values in |buf| at once, so it // nees to ensure four more values can be accessed in order to avoid accessing // uninitialized buffer. if (len > 4) { len -= 4; rsdIntrinsicBlurHFU1_K(out, ((float *)buf) - cp->mIradius, cp->mFp, cp->mIradius * 2 + 1, x1, x1 + len); out += len; x1 += len; } } } #endif while(x2 > x1) { OneHU1(info, out, x1, buf, cp->mFp, cp->mIradius); out++; x1++; } } RsdCpuScriptIntrinsicBlur::RsdCpuScriptIntrinsicBlur(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e) : RsdCpuScriptIntrinsic(ctx, s, e, RS_SCRIPT_INTRINSIC_ID_BLUR) { mRootPtr = nullptr; if (e->getType() == RS_TYPE_UNSIGNED_8) { switch (e->getVectorSize()) { case 1: mRootPtr = &kernelU1; break; case 4: mRootPtr = &kernelU4; break; } } rsAssert(mRootPtr); mRadius = 5; mScratch = new void *[mCtx->getThreadCount()]; mScratchSize = new size_t[mCtx->getThreadCount()]; memset(mScratch, 0, sizeof(void *) * mCtx->getThreadCount()); memset(mScratchSize, 0, sizeof(size_t) * mCtx->getThreadCount()); ComputeGaussianWeights(); } RsdCpuScriptIntrinsicBlur::~RsdCpuScriptIntrinsicBlur() { uint32_t threads = mCtx->getThreadCount(); if (mScratch) { for (size_t i = 0; i < threads; i++) { if (mScratch[i]) { free(mScratch[i]); } } delete []mScratch; } if (mScratchSize) { delete []mScratchSize; } } void RsdCpuScriptIntrinsicBlur::populateScript(Script *s) { s->mHal.info.exportedVariableCount = 2; } void RsdCpuScriptIntrinsicBlur::invokeFreeChildren() { mAlloc.clear(); } RsdCpuScriptImpl * rsdIntrinsic_Blur(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e) { return new RsdCpuScriptIntrinsicBlur(ctx, s, e); } } // namespace renderscript } // namespace android