/* * Copyright 2017, The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #define LOG_TAG "CCodecBufferChannel" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "CCodecBufferChannel.h" #include "Codec2Buffer.h" #include "SkipCutBuffer.h" namespace android { using android::base::StringPrintf; using hardware::hidl_handle; using hardware::hidl_string; using hardware::hidl_vec; using namespace hardware::cas::V1_0; using namespace hardware::cas::native::V1_0; using CasStatus = hardware::cas::V1_0::Status; /** * Base class for representation of buffers at one port. */ class CCodecBufferChannel::Buffers { public: Buffers(const char *componentName, const char *name = "Buffers") : mComponentName(componentName), mChannelName(std::string(componentName) + ":" + name), mName(mChannelName.c_str()) { } virtual ~Buffers() = default; /** * Set format for MediaCodec-facing buffers. */ void setFormat(const sp &format) { CHECK(format != nullptr); mFormat = format; } /** * Return a copy of current format. */ sp dupFormat() { return mFormat != nullptr ? mFormat->dup() : nullptr; } /** * Returns true if the buffers are operating under array mode. */ virtual bool isArrayMode() const { return false; } /** * Fills the vector with MediaCodecBuffer's if in array mode; otherwise, * no-op. */ virtual void getArray(Vector> *) const {} protected: std::string mComponentName; ///< name of component for debugging std::string mChannelName; ///< name of channel for debugging const char *mName; ///< C-string version of channel name // Format to be used for creating MediaCodec-facing buffers. sp mFormat; private: DISALLOW_EVIL_CONSTRUCTORS(Buffers); }; class CCodecBufferChannel::InputBuffers : public CCodecBufferChannel::Buffers { public: InputBuffers(const char *componentName, const char *name = "Input[]") : Buffers(componentName, name) { } virtual ~InputBuffers() = default; /** * Set a block pool to obtain input memory blocks. */ void setPool(const std::shared_ptr &pool) { mPool = pool; } /** * Get a new MediaCodecBuffer for input and its corresponding index. * Returns false if no new buffer can be obtained at the moment. */ virtual bool requestNewBuffer(size_t *index, sp *buffer) = 0; /** * Release the buffer obtained from requestNewBuffer() and get the * associated C2Buffer object back. Returns true if the buffer was on file * and released successfully. */ virtual bool releaseBuffer( const sp &buffer, std::shared_ptr *c2buffer, bool release) = 0; /** * Release the buffer that is no longer used by the codec process. Return * true if and only if the buffer was on file and released successfully. */ virtual bool expireComponentBuffer( const std::shared_ptr &c2buffer) = 0; /** * Flush internal state. After this call, no index or buffer previously * returned from requestNewBuffer() is valid. */ virtual void flush() = 0; /** * Return array-backed version of input buffers. The returned object * shall retain the internal state so that it will honor index and * buffer from previous calls of requestNewBuffer(). */ virtual std::unique_ptr toArrayMode(size_t size) = 0; protected: // Pool to obtain blocks for input buffers. std::shared_ptr mPool; private: DISALLOW_EVIL_CONSTRUCTORS(InputBuffers); }; class CCodecBufferChannel::OutputBuffers : public CCodecBufferChannel::Buffers { public: OutputBuffers(const char *componentName, const char *name = "Output") : Buffers(componentName, name) { } virtual ~OutputBuffers() = default; /** * Register output C2Buffer from the component and obtain corresponding * index and MediaCodecBuffer object. Returns false if registration * fails. */ virtual status_t registerBuffer( const std::shared_ptr &buffer, size_t *index, sp *clientBuffer) = 0; /** * Register codec specific data as a buffer to be consistent with * MediaCodec behavior. */ virtual status_t registerCsd( const C2StreamCsdInfo::output * /* csd */, size_t * /* index */, sp * /* clientBuffer */) = 0; /** * Release the buffer obtained from registerBuffer() and get the * associated C2Buffer object back. Returns true if the buffer was on file * and released successfully. */ virtual bool releaseBuffer( const sp &buffer, std::shared_ptr *c2buffer) = 0; /** * Flush internal state. After this call, no index or buffer previously * returned from registerBuffer() is valid. */ virtual void flush(const std::list> &flushedWork) = 0; /** * Return array-backed version of output buffers. The returned object * shall retain the internal state so that it will honor index and * buffer from previous calls of registerBuffer(). */ virtual std::unique_ptr toArrayMode(size_t size) = 0; /** * Initialize SkipCutBuffer object. */ void initSkipCutBuffer( int32_t delay, int32_t padding, int32_t sampleRate, int32_t channelCount) { CHECK(mSkipCutBuffer == nullptr); mDelay = delay; mPadding = padding; mSampleRate = sampleRate; setSkipCutBuffer(delay, padding, channelCount); } /** * Update the SkipCutBuffer object. No-op if it's never initialized. */ void updateSkipCutBuffer(int32_t sampleRate, int32_t channelCount) { if (mSkipCutBuffer == nullptr) { return; } int32_t delay = mDelay; int32_t padding = mPadding; if (sampleRate != mSampleRate) { delay = ((int64_t)delay * sampleRate) / mSampleRate; padding = ((int64_t)padding * sampleRate) / mSampleRate; } setSkipCutBuffer(delay, padding, channelCount); } /** * Submit buffer to SkipCutBuffer object, if initialized. */ void submit(const sp &buffer) { if (mSkipCutBuffer != nullptr) { mSkipCutBuffer->submit(buffer); } } /** * Transfer SkipCutBuffer object to the other Buffers object. */ void transferSkipCutBuffer(const sp &scb) { mSkipCutBuffer = scb; } protected: sp mSkipCutBuffer; private: int32_t mDelay; int32_t mPadding; int32_t mSampleRate; void setSkipCutBuffer(int32_t skip, int32_t cut, int32_t channelCount) { if (mSkipCutBuffer != nullptr) { size_t prevSize = mSkipCutBuffer->size(); if (prevSize != 0u) { ALOGD("[%s] Replacing SkipCutBuffer holding %zu bytes", mName, prevSize); } } mSkipCutBuffer = new SkipCutBuffer(skip, cut, channelCount); } DISALLOW_EVIL_CONSTRUCTORS(OutputBuffers); }; namespace { // TODO: get this info from component const static size_t kMinInputBufferArraySize = 4; const static size_t kMaxPipelineCapacity = 18; const static size_t kChannelOutputDelay = 0; const static size_t kMinOutputBufferArraySize = kMaxPipelineCapacity + kChannelOutputDelay; const static size_t kLinearBufferSize = 1048576; // This can fit 4K RGBA frame, and most likely client won't need more than this. const static size_t kMaxLinearBufferSize = 3840 * 2160 * 4; /** * Simple local buffer pool backed by std::vector. */ class LocalBufferPool : public std::enable_shared_from_this { public: /** * Create a new LocalBufferPool object. * * \param poolCapacity max total size of buffers managed by this pool. * * \return a newly created pool object. */ static std::shared_ptr Create(size_t poolCapacity) { return std::shared_ptr(new LocalBufferPool(poolCapacity)); } /** * Return an ABuffer object whose size is at least |capacity|. * * \param capacity requested capacity * \return nullptr if the pool capacity is reached * an ABuffer object otherwise. */ sp newBuffer(size_t capacity) { Mutex::Autolock lock(mMutex); auto it = std::find_if( mPool.begin(), mPool.end(), [capacity](const std::vector &vec) { return vec.capacity() >= capacity; }); if (it != mPool.end()) { sp buffer = new VectorBuffer(std::move(*it), shared_from_this()); mPool.erase(it); return buffer; } if (mUsedSize + capacity > mPoolCapacity) { while (!mPool.empty()) { mUsedSize -= mPool.back().capacity(); mPool.pop_back(); } if (mUsedSize + capacity > mPoolCapacity) { ALOGD("mUsedSize = %zu, capacity = %zu, mPoolCapacity = %zu", mUsedSize, capacity, mPoolCapacity); return nullptr; } } std::vector vec(capacity); mUsedSize += vec.capacity(); return new VectorBuffer(std::move(vec), shared_from_this()); } private: /** * ABuffer backed by std::vector. */ class VectorBuffer : public ::android::ABuffer { public: /** * Construct a VectorBuffer by taking the ownership of supplied vector. * * \param vec backing vector of the buffer. this object takes * ownership at construction. * \param pool a LocalBufferPool object to return the vector at * destruction. */ VectorBuffer(std::vector &&vec, const std::shared_ptr &pool) : ABuffer(vec.data(), vec.capacity()), mVec(std::move(vec)), mPool(pool) { } ~VectorBuffer() override { std::shared_ptr pool = mPool.lock(); if (pool) { // If pool is alive, return the vector back to the pool so that // it can be recycled. pool->returnVector(std::move(mVec)); } } private: std::vector mVec; std::weak_ptr mPool; }; Mutex mMutex; size_t mPoolCapacity; size_t mUsedSize; std::list> mPool; /** * Private constructor to prevent constructing non-managed LocalBufferPool. */ explicit LocalBufferPool(size_t poolCapacity) : mPoolCapacity(poolCapacity), mUsedSize(0) { } /** * Take back the ownership of vec from the destructed VectorBuffer and put * it in front of the pool. */ void returnVector(std::vector &&vec) { Mutex::Autolock lock(mMutex); mPool.push_front(std::move(vec)); } DISALLOW_EVIL_CONSTRUCTORS(LocalBufferPool); }; sp AllocateGraphicBuffer( const std::shared_ptr &pool, const sp &format, uint32_t pixelFormat, const C2MemoryUsage &usage, const std::shared_ptr &localBufferPool) { int32_t width, height; if (!format->findInt32("width", &width) || !format->findInt32("height", &height)) { ALOGD("format lacks width or height"); return nullptr; } std::shared_ptr block; c2_status_t err = pool->fetchGraphicBlock( width, height, pixelFormat, usage, &block); if (err != C2_OK) { ALOGD("fetch graphic block failed: %d", err); return nullptr; } return GraphicBlockBuffer::Allocate( format, block, [localBufferPool](size_t capacity) { return localBufferPool->newBuffer(capacity); }); } class BuffersArrayImpl; /** * Flexible buffer slots implementation. */ class FlexBuffersImpl { public: FlexBuffersImpl(const char *name) : mImplName(std::string(name) + ".Impl"), mName(mImplName.c_str()) { } /** * Assign an empty slot for a buffer and return the index. If there's no * empty slot, just add one at the end and return it. * * \param buffer[in] a new buffer to assign a slot. * \return index of the assigned slot. */ size_t assignSlot(const sp &buffer) { for (size_t i = 0; i < mBuffers.size(); ++i) { if (mBuffers[i].clientBuffer == nullptr && mBuffers[i].compBuffer.expired()) { mBuffers[i].clientBuffer = buffer; return i; } } mBuffers.push_back({ buffer, std::weak_ptr() }); return mBuffers.size() - 1; } /** * Release the slot from the client, and get the C2Buffer object back from * the previously assigned buffer. Note that the slot is not completely free * until the returned C2Buffer object is freed. * * \param buffer[in] the buffer previously assigned a slot. * \param c2buffer[in,out] pointer to C2Buffer to be populated. Ignored * if null. * \return true if the buffer is successfully released from a slot * false otherwise */ bool releaseSlot( const sp &buffer, std::shared_ptr *c2buffer, bool release) { sp clientBuffer; size_t index = mBuffers.size(); for (size_t i = 0; i < mBuffers.size(); ++i) { if (mBuffers[i].clientBuffer == buffer) { clientBuffer = mBuffers[i].clientBuffer; if (release) { mBuffers[i].clientBuffer.clear(); } index = i; break; } } if (clientBuffer == nullptr) { ALOGV("[%s] %s: No matching buffer found", mName, __func__); return false; } std::shared_ptr result = mBuffers[index].compBuffer.lock(); if (!result) { result = clientBuffer->asC2Buffer(); mBuffers[index].compBuffer = result; } if (c2buffer) { *c2buffer = result; } return true; } bool expireComponentBuffer(const std::shared_ptr &c2buffer) { for (size_t i = 0; i < mBuffers.size(); ++i) { std::shared_ptr compBuffer = mBuffers[i].compBuffer.lock(); if (!compBuffer || compBuffer != c2buffer) { continue; } mBuffers[i].compBuffer.reset(); ALOGV("[%s] codec released buffer #%zu", mName, i); return true; } ALOGV("[%s] codec released an unknown buffer", mName); return false; } void flush() { ALOGV("[%s] buffers are flushed %zu", mName, mBuffers.size()); mBuffers.clear(); } private: friend class BuffersArrayImpl; std::string mImplName; ///< name for debugging const char *mName; ///< C-string version of name struct Entry { sp clientBuffer; std::weak_ptr compBuffer; }; std::vector mBuffers; }; /** * Static buffer slots implementation based on a fixed-size array. */ class BuffersArrayImpl { public: BuffersArrayImpl() : mImplName("BuffersArrayImpl"), mName(mImplName.c_str()) { } /** * Initialize buffer array from the original |impl|. The buffers known by * the client is preserved, and the empty slots are populated so that the * array size is at least |minSize|. * * \param impl[in] FlexBuffersImpl object used so far. * \param minSize[in] minimum size of the buffer array. * \param allocate[in] function to allocate a client buffer for an empty slot. */ void initialize( const FlexBuffersImpl &impl, size_t minSize, std::function()> allocate) { mImplName = impl.mImplName + "[N]"; mName = mImplName.c_str(); for (size_t i = 0; i < impl.mBuffers.size(); ++i) { sp clientBuffer = impl.mBuffers[i].clientBuffer; bool ownedByClient = (clientBuffer != nullptr); if (!ownedByClient) { clientBuffer = allocate(); } mBuffers.push_back({ clientBuffer, impl.mBuffers[i].compBuffer, ownedByClient }); } ALOGV("[%s] converted %zu buffers to array mode of %zu", mName, mBuffers.size(), minSize); for (size_t i = impl.mBuffers.size(); i < minSize; ++i) { mBuffers.push_back({ allocate(), std::weak_ptr(), false }); } } /** * Grab a buffer from the underlying array which matches the criteria. * * \param index[out] index of the slot. * \param buffer[out] the matching buffer. * \param match[in] a function to test whether the buffer matches the * criteria or not. * \return OK if successful, * WOULD_BLOCK if slots are being used, * NO_MEMORY if no slot matches the criteria, even though it's * available */ status_t grabBuffer( size_t *index, sp *buffer, std::function &)> match = [](const sp &) { return true; }) { // allBuffersDontMatch remains true if all buffers are available but // match() returns false for every buffer. bool allBuffersDontMatch = true; for (size_t i = 0; i < mBuffers.size(); ++i) { if (!mBuffers[i].ownedByClient && mBuffers[i].compBuffer.expired()) { if (match(mBuffers[i].clientBuffer)) { mBuffers[i].ownedByClient = true; *buffer = mBuffers[i].clientBuffer; (*buffer)->meta()->clear(); (*buffer)->setRange(0, (*buffer)->capacity()); *index = i; return OK; } } else { allBuffersDontMatch = false; } } return allBuffersDontMatch ? NO_MEMORY : WOULD_BLOCK; } /** * Return the buffer from the client, and get the C2Buffer object back from * the buffer. Note that the slot is not completely free until the returned * C2Buffer object is freed. * * \param buffer[in] the buffer previously grabbed. * \param c2buffer[in,out] pointer to C2Buffer to be populated. Ignored * if null. * \return true if the buffer is successfully returned * false otherwise */ bool returnBuffer( const sp &buffer, std::shared_ptr *c2buffer, bool release) { sp clientBuffer; size_t index = mBuffers.size(); for (size_t i = 0; i < mBuffers.size(); ++i) { if (mBuffers[i].clientBuffer == buffer) { if (!mBuffers[i].ownedByClient) { ALOGD("[%s] Client returned a buffer it does not own according to our record: %zu", mName, i); } clientBuffer = mBuffers[i].clientBuffer; if (release) { mBuffers[i].ownedByClient = false; } index = i; break; } } if (clientBuffer == nullptr) { ALOGV("[%s] %s: No matching buffer found", mName, __func__); return false; } ALOGV("[%s] %s: matching buffer found (index=%zu)", mName, __func__, index); std::shared_ptr result = mBuffers[index].compBuffer.lock(); if (!result) { result = clientBuffer->asC2Buffer(); mBuffers[index].compBuffer = result; } if (c2buffer) { *c2buffer = result; } return true; } bool expireComponentBuffer(const std::shared_ptr &c2buffer) { for (size_t i = 0; i < mBuffers.size(); ++i) { std::shared_ptr compBuffer = mBuffers[i].compBuffer.lock(); if (!compBuffer) { continue; } if (c2buffer == compBuffer) { if (mBuffers[i].ownedByClient) { // This should not happen. ALOGD("[%s] codec released a buffer owned by client " "(index %zu)", mName, i); } mBuffers[i].compBuffer.reset(); ALOGV("[%s] codec released buffer #%zu(array mode)", mName, i); return true; } } ALOGV("[%s] codec released an unknown buffer (array mode)", mName); return false; } /** * Populate |array| with the underlying buffer array. * * \param array[out] an array to be filled with the underlying buffer array. */ void getArray(Vector> *array) const { array->clear(); for (const Entry &entry : mBuffers) { array->push(entry.clientBuffer); } } /** * The client abandoned all known buffers, so reclaim the ownership. */ void flush() { for (Entry &entry : mBuffers) { entry.ownedByClient = false; } } void realloc(std::function()> alloc) { size_t size = mBuffers.size(); mBuffers.clear(); for (size_t i = 0; i < size; ++i) { mBuffers.push_back({ alloc(), std::weak_ptr(), false }); } } private: std::string mImplName; ///< name for debugging const char *mName; ///< C-string version of name struct Entry { const sp clientBuffer; std::weak_ptr compBuffer; bool ownedByClient; }; std::vector mBuffers; }; class InputBuffersArray : public CCodecBufferChannel::InputBuffers { public: InputBuffersArray(const char *componentName, const char *name = "Input[N]") : InputBuffers(componentName, name) { } ~InputBuffersArray() override = default; void initialize( const FlexBuffersImpl &impl, size_t minSize, std::function()> allocate) { mImpl.initialize(impl, minSize, allocate); } bool isArrayMode() const final { return true; } std::unique_ptr toArrayMode( size_t) final { return nullptr; } void getArray(Vector> *array) const final { mImpl.getArray(array); } bool requestNewBuffer(size_t *index, sp *buffer) override { sp c2Buffer; status_t err = mImpl.grabBuffer(index, &c2Buffer); if (err == OK) { c2Buffer->setFormat(mFormat); *buffer = c2Buffer; return true; } return false; } bool releaseBuffer( const sp &buffer, std::shared_ptr *c2buffer, bool release) override { return mImpl.returnBuffer(buffer, c2buffer, release); } bool expireComponentBuffer( const std::shared_ptr &c2buffer) override { return mImpl.expireComponentBuffer(c2buffer); } void flush() override { mImpl.flush(); } private: BuffersArrayImpl mImpl; }; class LinearInputBuffers : public CCodecBufferChannel::InputBuffers { public: LinearInputBuffers(const char *componentName, const char *name = "1D-Input") : InputBuffers(componentName, name), mImpl(mName) { } bool requestNewBuffer(size_t *index, sp *buffer) override { int32_t capacity = kLinearBufferSize; (void)mFormat->findInt32(KEY_MAX_INPUT_SIZE, &capacity); if ((size_t)capacity > kMaxLinearBufferSize) { ALOGD("client requested %d, capped to %zu", capacity, kMaxLinearBufferSize); capacity = kMaxLinearBufferSize; } // TODO: proper max input size // TODO: read usage from intf sp newBuffer = alloc((size_t)capacity); if (newBuffer == nullptr) { return false; } *index = mImpl.assignSlot(newBuffer); *buffer = newBuffer; return true; } bool releaseBuffer( const sp &buffer, std::shared_ptr *c2buffer, bool release) override { return mImpl.releaseSlot(buffer, c2buffer, release); } bool expireComponentBuffer( const std::shared_ptr &c2buffer) override { return mImpl.expireComponentBuffer(c2buffer); } void flush() override { // This is no-op by default unless we're in array mode where we need to keep // track of the flushed work. mImpl.flush(); } std::unique_ptr toArrayMode( size_t size) final { int32_t capacity = kLinearBufferSize; (void)mFormat->findInt32(KEY_MAX_INPUT_SIZE, &capacity); if ((size_t)capacity > kMaxLinearBufferSize) { ALOGD("client requested %d, capped to %zu", capacity, kMaxLinearBufferSize); capacity = kMaxLinearBufferSize; } // TODO: proper max input size // TODO: read usage from intf std::unique_ptr array( new InputBuffersArray(mComponentName.c_str(), "1D-Input[N]")); array->setPool(mPool); array->setFormat(mFormat); array->initialize( mImpl, size, [this, capacity] () -> sp { return alloc(capacity); }); return std::move(array); } virtual sp alloc(size_t size) { C2MemoryUsage usage = { C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE }; std::shared_ptr block; c2_status_t err = mPool->fetchLinearBlock(size, usage, &block); if (err != C2_OK) { return nullptr; } return LinearBlockBuffer::Allocate(mFormat, block); } private: FlexBuffersImpl mImpl; }; class EncryptedLinearInputBuffers : public LinearInputBuffers { public: EncryptedLinearInputBuffers( bool secure, const sp &dealer, const sp &crypto, int32_t heapSeqNum, size_t capacity, const char *componentName, const char *name = "EncryptedInput") : LinearInputBuffers(componentName, name), mUsage({0, 0}), mDealer(dealer), mCrypto(crypto), mHeapSeqNum(heapSeqNum) { if (secure) { mUsage = { C2MemoryUsage::READ_PROTECTED, 0 }; } else { mUsage = { C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE }; } for (size_t i = 0; i < kMinInputBufferArraySize; ++i) { sp memory = mDealer->allocate(capacity); if (memory == nullptr) { ALOGD("[%s] Failed to allocate memory from dealer: only %zu slots allocated", mName, i); break; } mMemoryVector.push_back({std::weak_ptr(), memory}); } } ~EncryptedLinearInputBuffers() override { } sp alloc(size_t size) override { sp memory; size_t slot = 0; for (; slot < mMemoryVector.size(); ++slot) { if (mMemoryVector[slot].block.expired()) { memory = mMemoryVector[slot].memory; break; } } if (memory == nullptr) { return nullptr; } std::shared_ptr block; c2_status_t err = mPool->fetchLinearBlock(size, mUsage, &block); if (err != C2_OK || block == nullptr) { return nullptr; } mMemoryVector[slot].block = block; return new EncryptedLinearBlockBuffer(mFormat, block, memory, mHeapSeqNum); } private: C2MemoryUsage mUsage; sp mDealer; sp mCrypto; int32_t mHeapSeqNum; struct Entry { std::weak_ptr block; sp memory; }; std::vector mMemoryVector; }; class GraphicMetadataInputBuffers : public CCodecBufferChannel::InputBuffers { public: GraphicMetadataInputBuffers(const char *componentName, const char *name = "2D-MetaInput") : InputBuffers(componentName, name), mImpl(mName), mStore(GetCodec2PlatformAllocatorStore()) { } ~GraphicMetadataInputBuffers() override = default; bool requestNewBuffer(size_t *index, sp *buffer) override { std::shared_ptr alloc; c2_status_t err = mStore->fetchAllocator(mPool->getAllocatorId(), &alloc); if (err != C2_OK) { return false; } sp newBuffer = new GraphicMetadataBuffer(mFormat, alloc); if (newBuffer == nullptr) { return false; } *index = mImpl.assignSlot(newBuffer); *buffer = newBuffer; return true; } bool releaseBuffer( const sp &buffer, std::shared_ptr *c2buffer, bool release) override { return mImpl.releaseSlot(buffer, c2buffer, release); } bool expireComponentBuffer( const std::shared_ptr &c2buffer) override { return mImpl.expireComponentBuffer(c2buffer); } void flush() override { // This is no-op by default unless we're in array mode where we need to keep // track of the flushed work. } std::unique_ptr toArrayMode( size_t size) final { std::shared_ptr alloc; c2_status_t err = mStore->fetchAllocator(mPool->getAllocatorId(), &alloc); if (err != C2_OK) { return nullptr; } std::unique_ptr array( new InputBuffersArray(mComponentName.c_str(), "2D-MetaInput[N]")); array->setPool(mPool); array->setFormat(mFormat); array->initialize( mImpl, size, [format = mFormat, alloc]() -> sp { return new GraphicMetadataBuffer(format, alloc); }); return std::move(array); } private: FlexBuffersImpl mImpl; std::shared_ptr mStore; }; class GraphicInputBuffers : public CCodecBufferChannel::InputBuffers { public: GraphicInputBuffers(const char *componentName, const char *name = "2D-BB-Input") : InputBuffers(componentName, name), mImpl(mName), mLocalBufferPool(LocalBufferPool::Create( kMaxLinearBufferSize * kMinInputBufferArraySize)) { } ~GraphicInputBuffers() override = default; bool requestNewBuffer(size_t *index, sp *buffer) override { // TODO: proper max input size // TODO: read usage from intf C2MemoryUsage usage = { C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE }; sp newBuffer = AllocateGraphicBuffer( mPool, mFormat, HAL_PIXEL_FORMAT_YV12, usage, mLocalBufferPool); if (newBuffer == nullptr) { return false; } *index = mImpl.assignSlot(newBuffer); *buffer = newBuffer; return true; } bool releaseBuffer( const sp &buffer, std::shared_ptr *c2buffer, bool release) override { return mImpl.releaseSlot(buffer, c2buffer, release); } bool expireComponentBuffer( const std::shared_ptr &c2buffer) override { return mImpl.expireComponentBuffer(c2buffer); } void flush() override { // This is no-op by default unless we're in array mode where we need to keep // track of the flushed work. } std::unique_ptr toArrayMode( size_t size) final { std::unique_ptr array( new InputBuffersArray(mComponentName.c_str(), "2D-BB-Input[N]")); array->setPool(mPool); array->setFormat(mFormat); array->initialize( mImpl, size, [pool = mPool, format = mFormat, lbp = mLocalBufferPool]() -> sp { C2MemoryUsage usage = { C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE }; return AllocateGraphicBuffer( pool, format, HAL_PIXEL_FORMAT_YV12, usage, lbp); }); return std::move(array); } private: FlexBuffersImpl mImpl; std::shared_ptr mLocalBufferPool; }; class DummyInputBuffers : public CCodecBufferChannel::InputBuffers { public: DummyInputBuffers(const char *componentName, const char *name = "2D-Input") : InputBuffers(componentName, name) { } bool requestNewBuffer(size_t *, sp *) override { return false; } bool releaseBuffer( const sp &, std::shared_ptr *, bool) override { return false; } bool expireComponentBuffer(const std::shared_ptr &) override { return false; } void flush() override { } std::unique_ptr toArrayMode( size_t) final { return nullptr; } bool isArrayMode() const final { return true; } void getArray(Vector> *array) const final { array->clear(); } }; class OutputBuffersArray : public CCodecBufferChannel::OutputBuffers { public: OutputBuffersArray(const char *componentName, const char *name = "Output[N]") : OutputBuffers(componentName, name) { } ~OutputBuffersArray() override = default; void initialize( const FlexBuffersImpl &impl, size_t minSize, std::function()> allocate) { mImpl.initialize(impl, minSize, allocate); } bool isArrayMode() const final { return true; } std::unique_ptr toArrayMode( size_t) final { return nullptr; } status_t registerBuffer( const std::shared_ptr &buffer, size_t *index, sp *clientBuffer) final { sp c2Buffer; status_t err = mImpl.grabBuffer( index, &c2Buffer, [buffer](const sp &clientBuffer) { return clientBuffer->canCopy(buffer); }); if (err == WOULD_BLOCK) { ALOGV("[%s] buffers temporarily not available", mName); return err; } else if (err != OK) { ALOGD("[%s] grabBuffer failed: %d", mName, err); return err; } c2Buffer->setFormat(mFormat); if (!c2Buffer->copy(buffer)) { ALOGD("[%s] copy buffer failed", mName); return WOULD_BLOCK; } submit(c2Buffer); *clientBuffer = c2Buffer; ALOGV("[%s] grabbed buffer %zu", mName, *index); return OK; } status_t registerCsd( const C2StreamCsdInfo::output *csd, size_t *index, sp *clientBuffer) final { sp c2Buffer; status_t err = mImpl.grabBuffer( index, &c2Buffer, [csd](const sp &clientBuffer) { return clientBuffer->base() != nullptr && clientBuffer->capacity() >= csd->flexCount(); }); if (err != OK) { return err; } memcpy(c2Buffer->base(), csd->m.value, csd->flexCount()); c2Buffer->setRange(0, csd->flexCount()); c2Buffer->setFormat(mFormat); *clientBuffer = c2Buffer; return OK; } bool releaseBuffer( const sp &buffer, std::shared_ptr *c2buffer) override { return mImpl.returnBuffer(buffer, c2buffer, true); } void flush(const std::list> &flushedWork) override { (void)flushedWork; mImpl.flush(); if (mSkipCutBuffer != nullptr) { mSkipCutBuffer->clear(); } } void getArray(Vector> *array) const final { mImpl.getArray(array); } void realloc(const std::shared_ptr &c2buffer) { std::function()> alloc; switch (c2buffer->data().type()) { case C2BufferData::LINEAR: { uint32_t size = kLinearBufferSize; const C2ConstLinearBlock &block = c2buffer->data().linearBlocks().front(); if (block.size() < kMaxLinearBufferSize / 2) { size = block.size() * 2; } else { size = kMaxLinearBufferSize; } alloc = [format = mFormat, size] { return new LocalLinearBuffer(format, new ABuffer(size)); }; break; } // TODO: add support case C2BufferData::GRAPHIC: FALLTHROUGH_INTENDED; case C2BufferData::INVALID: FALLTHROUGH_INTENDED; case C2BufferData::LINEAR_CHUNKS: FALLTHROUGH_INTENDED; case C2BufferData::GRAPHIC_CHUNKS: FALLTHROUGH_INTENDED; default: ALOGD("Unsupported type: %d", (int)c2buffer->data().type()); return; } mImpl.realloc(alloc); } private: BuffersArrayImpl mImpl; }; class FlexOutputBuffers : public CCodecBufferChannel::OutputBuffers { public: FlexOutputBuffers(const char *componentName, const char *name = "Output[]") : OutputBuffers(componentName, name), mImpl(mName) { } status_t registerBuffer( const std::shared_ptr &buffer, size_t *index, sp *clientBuffer) override { sp newBuffer = wrap(buffer); newBuffer->setFormat(mFormat); *index = mImpl.assignSlot(newBuffer); *clientBuffer = newBuffer; ALOGV("[%s] registered buffer %zu", mName, *index); return OK; } status_t registerCsd( const C2StreamCsdInfo::output *csd, size_t *index, sp *clientBuffer) final { sp newBuffer = new LocalLinearBuffer( mFormat, ABuffer::CreateAsCopy(csd->m.value, csd->flexCount())); *index = mImpl.assignSlot(newBuffer); *clientBuffer = newBuffer; return OK; } bool releaseBuffer( const sp &buffer, std::shared_ptr *c2buffer) override { return mImpl.releaseSlot(buffer, c2buffer, true); } void flush( const std::list> &flushedWork) override { (void) flushedWork; // This is no-op by default unless we're in array mode where we need to keep // track of the flushed work. } std::unique_ptr toArrayMode( size_t size) override { std::unique_ptr array(new OutputBuffersArray(mComponentName.c_str())); array->setFormat(mFormat); array->transferSkipCutBuffer(mSkipCutBuffer); array->initialize( mImpl, size, [this]() { return allocateArrayBuffer(); }); return std::move(array); } /** * Return an appropriate Codec2Buffer object for the type of buffers. * * \param buffer C2Buffer object to wrap. * * \return appropriate Codec2Buffer object to wrap |buffer|. */ virtual sp wrap(const std::shared_ptr &buffer) = 0; /** * Return an appropriate Codec2Buffer object for the type of buffers, to be * used as an empty array buffer. * * \return appropriate Codec2Buffer object which can copy() from C2Buffers. */ virtual sp allocateArrayBuffer() = 0; private: FlexBuffersImpl mImpl; }; class LinearOutputBuffers : public FlexOutputBuffers { public: LinearOutputBuffers(const char *componentName, const char *name = "1D-Output") : FlexOutputBuffers(componentName, name) { } void flush( const std::list> &flushedWork) override { if (mSkipCutBuffer != nullptr) { mSkipCutBuffer->clear(); } FlexOutputBuffers::flush(flushedWork); } sp wrap(const std::shared_ptr &buffer) override { if (buffer == nullptr) { ALOGV("[%s] using a dummy buffer", mName); return new LocalLinearBuffer(mFormat, new ABuffer(0)); } if (buffer->data().type() != C2BufferData::LINEAR) { ALOGV("[%s] non-linear buffer %d", mName, buffer->data().type()); // We expect linear output buffers from the component. return nullptr; } if (buffer->data().linearBlocks().size() != 1u) { ALOGV("[%s] no linear buffers", mName); // We expect one and only one linear block from the component. return nullptr; } sp clientBuffer = ConstLinearBlockBuffer::Allocate(mFormat, buffer); submit(clientBuffer); return clientBuffer; } sp allocateArrayBuffer() override { // TODO: proper max output size return new LocalLinearBuffer(mFormat, new ABuffer(kLinearBufferSize)); } }; class GraphicOutputBuffers : public FlexOutputBuffers { public: GraphicOutputBuffers(const char *componentName, const char *name = "2D-Output") : FlexOutputBuffers(componentName, name) { } sp wrap(const std::shared_ptr &buffer) override { return new DummyContainerBuffer(mFormat, buffer); } sp allocateArrayBuffer() override { return new DummyContainerBuffer(mFormat); } }; class RawGraphicOutputBuffers : public FlexOutputBuffers { public: RawGraphicOutputBuffers(const char *componentName, const char *name = "2D-BB-Output") : FlexOutputBuffers(componentName, name), mLocalBufferPool(LocalBufferPool::Create( kMaxLinearBufferSize * kMinOutputBufferArraySize)) { } ~RawGraphicOutputBuffers() override = default; sp wrap(const std::shared_ptr &buffer) override { if (buffer == nullptr) { sp c2buffer = ConstGraphicBlockBuffer::AllocateEmpty( mFormat, [lbp = mLocalBufferPool](size_t capacity) { return lbp->newBuffer(capacity); }); c2buffer->setRange(0, 0); return c2buffer; } else { return ConstGraphicBlockBuffer::Allocate( mFormat, buffer, [lbp = mLocalBufferPool](size_t capacity) { return lbp->newBuffer(capacity); }); } } sp allocateArrayBuffer() override { return ConstGraphicBlockBuffer::AllocateEmpty( mFormat, [lbp = mLocalBufferPool](size_t capacity) { return lbp->newBuffer(capacity); }); } private: std::shared_ptr mLocalBufferPool; }; } // namespace CCodecBufferChannel::QueueGuard::QueueGuard( CCodecBufferChannel::QueueSync &sync) : mSync(sync) { Mutex::Autolock l(mSync.mGuardLock); // At this point it's guaranteed that mSync is not under state transition, // as we are holding its mutex. Mutexed::Locked count(mSync.mCount); if (count->value == -1) { mRunning = false; } else { ++count->value; mRunning = true; } } CCodecBufferChannel::QueueGuard::~QueueGuard() { if (mRunning) { // We are not holding mGuardLock at this point so that QueueSync::stop() can // keep holding the lock until mCount reaches zero. Mutexed::Locked count(mSync.mCount); --count->value; count->cond.broadcast(); } } void CCodecBufferChannel::QueueSync::start() { Mutex::Autolock l(mGuardLock); // If stopped, it goes to running state; otherwise no-op. Mutexed::Locked count(mCount); if (count->value == -1) { count->value = 0; } } void CCodecBufferChannel::QueueSync::stop() { Mutex::Autolock l(mGuardLock); Mutexed::Locked count(mCount); if (count->value == -1) { // no-op return; } // Holding mGuardLock here blocks creation of additional QueueGuard objects, so // mCount can only decrement. In other words, threads that acquired the lock // are allowed to finish execution but additional threads trying to acquire // the lock at this point will block, and then get QueueGuard at STOPPED // state. while (count->value != 0) { count.waitForCondition(count->cond); } count->value = -1; } // CCodecBufferChannel::PipelineCapacity CCodecBufferChannel::PipelineCapacity::PipelineCapacity() : input(0), component(0), mName("") { } void CCodecBufferChannel::PipelineCapacity::initialize( int newInput, int newComponent, const char* newName, const char* callerTag) { input.store(newInput, std::memory_order_relaxed); component.store(newComponent, std::memory_order_relaxed); mName = newName; ALOGV("[%s] %s -- PipelineCapacity::initialize(): " "pipeline availability initialized ==> " "input = %d, component = %d", mName, callerTag ? callerTag : "*", newInput, newComponent); } bool CCodecBufferChannel::PipelineCapacity::allocate(const char* callerTag) { int prevInput = input.fetch_sub(1, std::memory_order_relaxed); int prevComponent = component.fetch_sub(1, std::memory_order_relaxed); if (prevInput > 0 && prevComponent > 0) { ALOGV("[%s] %s -- PipelineCapacity::allocate() returns true: " "pipeline availability -1 all ==> " "input = %d, component = %d", mName, callerTag ? callerTag : "*", prevInput - 1, prevComponent - 1); return true; } input.fetch_add(1, std::memory_order_relaxed); component.fetch_add(1, std::memory_order_relaxed); ALOGV("[%s] %s -- PipelineCapacity::allocate() returns false: " "pipeline availability unchanged ==> " "input = %d, component = %d", mName, callerTag ? callerTag : "*", prevInput, prevComponent); return false; } void CCodecBufferChannel::PipelineCapacity::free(const char* callerTag) { int prevInput = input.fetch_add(1, std::memory_order_relaxed); int prevComponent = component.fetch_add(1, std::memory_order_relaxed); ALOGV("[%s] %s -- PipelineCapacity::free(): " "pipeline availability +1 all ==> " "input = %d, component = %d", mName, callerTag ? callerTag : "*", prevInput + 1, prevComponent + 1); } int CCodecBufferChannel::PipelineCapacity::freeInputSlots( size_t numDiscardedInputBuffers, const char* callerTag) { int prevInput = input.fetch_add(numDiscardedInputBuffers, std::memory_order_relaxed); ALOGV("[%s] %s -- PipelineCapacity::freeInputSlots(%zu): " "pipeline availability +%zu input ==> " "input = %d, component = %d", mName, callerTag ? callerTag : "*", numDiscardedInputBuffers, numDiscardedInputBuffers, prevInput + static_cast(numDiscardedInputBuffers), component.load(std::memory_order_relaxed)); return prevInput + static_cast(numDiscardedInputBuffers); } int CCodecBufferChannel::PipelineCapacity::freeComponentSlot( const char* callerTag) { int prevComponent = component.fetch_add(1, std::memory_order_relaxed); ALOGV("[%s] %s -- PipelineCapacity::freeComponentSlot(): " "pipeline availability +1 component ==> " "input = %d, component = %d", mName, callerTag ? callerTag : "*", input.load(std::memory_order_relaxed), prevComponent + 1); return prevComponent + 1; } // CCodecBufferChannel::ReorderStash CCodecBufferChannel::ReorderStash::ReorderStash() { clear(); } void CCodecBufferChannel::ReorderStash::clear() { mPending.clear(); mStash.clear(); mDepth = 0; mKey = C2Config::ORDINAL; } void CCodecBufferChannel::ReorderStash::setDepth(uint32_t depth) { mPending.splice(mPending.end(), mStash); mDepth = depth; } void CCodecBufferChannel::ReorderStash::setKey(C2Config::ordinal_key_t key) { mPending.splice(mPending.end(), mStash); mKey = key; } bool CCodecBufferChannel::ReorderStash::pop(Entry *entry) { if (mPending.empty()) { return false; } entry->buffer = mPending.front().buffer; entry->timestamp = mPending.front().timestamp; entry->flags = mPending.front().flags; entry->ordinal = mPending.front().ordinal; mPending.pop_front(); return true; } void CCodecBufferChannel::ReorderStash::emplace( const std::shared_ptr &buffer, int64_t timestamp, int32_t flags, const C2WorkOrdinalStruct &ordinal) { for (auto it = mStash.begin(); it != mStash.end(); ++it) { if (less(ordinal, it->ordinal)) { mStash.emplace(it, buffer, timestamp, flags, ordinal); return; } } mStash.emplace_back(buffer, timestamp, flags, ordinal); while (!mStash.empty() && mStash.size() > mDepth) { mPending.push_back(mStash.front()); mStash.pop_front(); } } void CCodecBufferChannel::ReorderStash::defer( const CCodecBufferChannel::ReorderStash::Entry &entry) { mPending.push_front(entry); } bool CCodecBufferChannel::ReorderStash::hasPending() const { return !mPending.empty(); } bool CCodecBufferChannel::ReorderStash::less( const C2WorkOrdinalStruct &o1, const C2WorkOrdinalStruct &o2) { switch (mKey) { case C2Config::ORDINAL: return o1.frameIndex < o2.frameIndex; case C2Config::TIMESTAMP: return o1.timestamp < o2.timestamp; case C2Config::CUSTOM: return o1.customOrdinal < o2.customOrdinal; default: ALOGD("Unrecognized key; default to timestamp"); return o1.frameIndex < o2.frameIndex; } } // CCodecBufferChannel CCodecBufferChannel::CCodecBufferChannel( const std::shared_ptr &callback) : mHeapSeqNum(-1), mCCodecCallback(callback), mFrameIndex(0u), mFirstValidFrameIndex(0u), mMetaMode(MODE_NONE), mAvailablePipelineCapacity(), mInputMetEos(false) { Mutexed>::Locked buffers(mInputBuffers); buffers->reset(new DummyInputBuffers("")); } CCodecBufferChannel::~CCodecBufferChannel() { if (mCrypto != nullptr && mDealer != nullptr && mHeapSeqNum >= 0) { mCrypto->unsetHeap(mHeapSeqNum); } } void CCodecBufferChannel::setComponent( const std::shared_ptr &component) { mComponent = component; mComponentName = component->getName() + StringPrintf("#%d", int(uintptr_t(component.get()) % 997)); mName = mComponentName.c_str(); } status_t CCodecBufferChannel::setInputSurface( const std::shared_ptr &surface) { ALOGV("[%s] setInputSurface", mName); mInputSurface = surface; return mInputSurface->connect(mComponent); } status_t CCodecBufferChannel::signalEndOfInputStream() { if (mInputSurface == nullptr) { return INVALID_OPERATION; } return mInputSurface->signalEndOfInputStream(); } status_t CCodecBufferChannel::queueInputBufferInternal(const sp &buffer) { int64_t timeUs; CHECK(buffer->meta()->findInt64("timeUs", &timeUs)); if (mInputMetEos) { ALOGD("[%s] buffers after EOS ignored (%lld us)", mName, (long long)timeUs); return OK; } int32_t flags = 0; int32_t tmp = 0; bool eos = false; if (buffer->meta()->findInt32("eos", &tmp) && tmp) { eos = true; mInputMetEos = true; ALOGV("[%s] input EOS", mName); } if (buffer->meta()->findInt32("csd", &tmp) && tmp) { flags |= C2FrameData::FLAG_CODEC_CONFIG; } ALOGV("[%s] queueInputBuffer: buffer->size() = %zu", mName, buffer->size()); std::unique_ptr work(new C2Work); work->input.ordinal.timestamp = timeUs; work->input.ordinal.frameIndex = mFrameIndex++; // WORKAROUND: until codecs support handling work after EOS and max output sizing, use timestamp // manipulation to achieve image encoding via video codec, and to constrain encoded output. // Keep client timestamp in customOrdinal work->input.ordinal.customOrdinal = timeUs; work->input.buffers.clear(); if (buffer->size() > 0u) { Mutexed>::Locked buffers(mInputBuffers); std::shared_ptr c2buffer; if (!(*buffers)->releaseBuffer(buffer, &c2buffer, false)) { return -ENOENT; } work->input.buffers.push_back(c2buffer); } else { mAvailablePipelineCapacity.freeInputSlots(1, "queueInputBufferInternal"); if (eos) { flags |= C2FrameData::FLAG_END_OF_STREAM; } } work->input.flags = (C2FrameData::flags_t)flags; // TODO: fill info's work->input.configUpdate = std::move(mParamsToBeSet); work->worklets.clear(); work->worklets.emplace_back(new C2Worklet); std::list> items; items.push_back(std::move(work)); c2_status_t err = mComponent->queue(&items); if (err == C2_OK && eos && buffer->size() > 0u) { mCCodecCallback->onWorkQueued(false); work.reset(new C2Work); work->input.ordinal.timestamp = timeUs; work->input.ordinal.frameIndex = mFrameIndex++; // WORKAROUND: keep client timestamp in customOrdinal work->input.ordinal.customOrdinal = timeUs; work->input.buffers.clear(); work->input.flags = C2FrameData::FLAG_END_OF_STREAM; items.clear(); items.push_back(std::move(work)); err = mComponent->queue(&items); } if (err == C2_OK) { mCCodecCallback->onWorkQueued(eos); Mutexed>::Locked buffers(mInputBuffers); bool released = (*buffers)->releaseBuffer(buffer, nullptr, true); ALOGV("[%s] queueInputBuffer: buffer %sreleased", mName, released ? "" : "not "); } feedInputBufferIfAvailableInternal(); return err; } status_t CCodecBufferChannel::setParameters(std::vector> ¶ms) { QueueGuard guard(mSync); if (!guard.isRunning()) { ALOGD("[%s] setParameters is only supported in the running state.", mName); return -ENOSYS; } mParamsToBeSet.insert(mParamsToBeSet.end(), std::make_move_iterator(params.begin()), std::make_move_iterator(params.end())); params.clear(); return OK; } status_t CCodecBufferChannel::queueInputBuffer(const sp &buffer) { QueueGuard guard(mSync); if (!guard.isRunning()) { ALOGD("[%s] No more buffers should be queued at current state.", mName); return -ENOSYS; } return queueInputBufferInternal(buffer); } status_t CCodecBufferChannel::queueSecureInputBuffer( const sp &buffer, bool secure, const uint8_t *key, const uint8_t *iv, CryptoPlugin::Mode mode, CryptoPlugin::Pattern pattern, const CryptoPlugin::SubSample *subSamples, size_t numSubSamples, AString *errorDetailMsg) { QueueGuard guard(mSync); if (!guard.isRunning()) { ALOGD("[%s] No more buffers should be queued at current state.", mName); return -ENOSYS; } if (!hasCryptoOrDescrambler()) { return -ENOSYS; } sp encryptedBuffer((EncryptedLinearBlockBuffer *)buffer.get()); ssize_t result = -1; ssize_t codecDataOffset = 0; if (mCrypto != nullptr) { ICrypto::DestinationBuffer destination; if (secure) { destination.mType = ICrypto::kDestinationTypeNativeHandle; destination.mHandle = encryptedBuffer->handle(); } else { destination.mType = ICrypto::kDestinationTypeSharedMemory; destination.mSharedMemory = mDecryptDestination; } ICrypto::SourceBuffer source; encryptedBuffer->fillSourceBuffer(&source); result = mCrypto->decrypt( key, iv, mode, pattern, source, buffer->offset(), subSamples, numSubSamples, destination, errorDetailMsg); if (result < 0) { return result; } if (destination.mType == ICrypto::kDestinationTypeSharedMemory) { encryptedBuffer->copyDecryptedContent(mDecryptDestination, result); } } else { // Here we cast CryptoPlugin::SubSample to hardware::cas::native::V1_0::SubSample // directly, the structure definitions should match as checked in DescramblerImpl.cpp. hidl_vec hidlSubSamples; hidlSubSamples.setToExternal((SubSample *)subSamples, numSubSamples, false /*own*/); hardware::cas::native::V1_0::SharedBuffer srcBuffer; encryptedBuffer->fillSourceBuffer(&srcBuffer); DestinationBuffer dstBuffer; if (secure) { dstBuffer.type = BufferType::NATIVE_HANDLE; dstBuffer.secureMemory = hidl_handle(encryptedBuffer->handle()); } else { dstBuffer.type = BufferType::SHARED_MEMORY; dstBuffer.nonsecureMemory = srcBuffer; } CasStatus status = CasStatus::OK; hidl_string detailedError; ScramblingControl sctrl = ScramblingControl::UNSCRAMBLED; if (key != nullptr) { sctrl = (ScramblingControl)key[0]; // Adjust for the PES offset codecDataOffset = key[2] | (key[3] << 8); } auto returnVoid = mDescrambler->descramble( sctrl, hidlSubSamples, srcBuffer, 0, dstBuffer, 0, [&status, &result, &detailedError] ( CasStatus _status, uint32_t _bytesWritten, const hidl_string& _detailedError) { status = _status; result = (ssize_t)_bytesWritten; detailedError = _detailedError; }); if (!returnVoid.isOk() || status != CasStatus::OK || result < 0) { ALOGI("[%s] descramble failed, trans=%s, status=%d, result=%zd", mName, returnVoid.description().c_str(), status, result); return UNKNOWN_ERROR; } if (result < codecDataOffset) { ALOGD("invalid codec data offset: %zd, result %zd", codecDataOffset, result); return BAD_VALUE; } ALOGV("[%s] descramble succeeded, %zd bytes", mName, result); if (dstBuffer.type == BufferType::SHARED_MEMORY) { encryptedBuffer->copyDecryptedContentFromMemory(result); } } buffer->setRange(codecDataOffset, result - codecDataOffset); return queueInputBufferInternal(buffer); } void CCodecBufferChannel::feedInputBufferIfAvailable() { QueueGuard guard(mSync); if (!guard.isRunning()) { ALOGV("[%s] We're not running --- no input buffer reported", mName); return; } feedInputBufferIfAvailableInternal(); } void CCodecBufferChannel::feedInputBufferIfAvailableInternal() { while (!mInputMetEos && !mReorderStash.lock()->hasPending() && mAvailablePipelineCapacity.allocate("feedInputBufferIfAvailable")) { sp inBuffer; size_t index; { Mutexed>::Locked buffers(mInputBuffers); if (!(*buffers)->requestNewBuffer(&index, &inBuffer)) { ALOGV("[%s] no new buffer available", mName); mAvailablePipelineCapacity.free("feedInputBufferIfAvailable"); break; } } ALOGV("[%s] new input index = %zu [%p]", mName, index, inBuffer.get()); mCallback->onInputBufferAvailable(index, inBuffer); } } status_t CCodecBufferChannel::renderOutputBuffer( const sp &buffer, int64_t timestampNs) { ALOGV("[%s] renderOutputBuffer: %p", mName, buffer.get()); std::shared_ptr c2Buffer; bool released = false; { Mutexed>::Locked buffers(mOutputBuffers); if (*buffers) { released = (*buffers)->releaseBuffer(buffer, &c2Buffer); } } // NOTE: some apps try to releaseOutputBuffer() with timestamp and/or render // set to true. sendOutputBuffers(); // input buffer feeding may have been gated by pending output buffers feedInputBufferIfAvailable(); if (!c2Buffer) { if (released) { ALOGD("[%s] The app is calling releaseOutputBuffer() with " "timestamp or render=true with non-video buffers. Apps should " "call releaseOutputBuffer() with render=false for those.", mName); } return INVALID_OPERATION; } #if 0 const std::vector> infoParams = c2Buffer->info(); ALOGV("[%s] queuing gfx buffer with %zu infos", mName, infoParams.size()); for (const std::shared_ptr &info : infoParams) { AString res; for (size_t ix = 0; ix + 3 < info->size(); ix += 4) { if (ix) res.append(", "); res.append(*((int32_t*)info.get() + (ix / 4))); } ALOGV(" [%s]", res.c_str()); } #endif std::shared_ptr rotation = std::static_pointer_cast( c2Buffer->getInfo(C2StreamRotationInfo::output::PARAM_TYPE)); bool flip = rotation && (rotation->flip & 1); uint32_t quarters = ((rotation ? rotation->value : 0) / 90) & 3; uint32_t transform = 0; switch (quarters) { case 0: // no rotation transform = flip ? HAL_TRANSFORM_FLIP_H : 0; break; case 1: // 90 degrees counter-clockwise transform = flip ? (HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_ROT_90) : HAL_TRANSFORM_ROT_270; break; case 2: // 180 degrees transform = flip ? HAL_TRANSFORM_FLIP_V : HAL_TRANSFORM_ROT_180; break; case 3: // 90 degrees clockwise transform = flip ? (HAL_TRANSFORM_FLIP_H | HAL_TRANSFORM_ROT_90) : HAL_TRANSFORM_ROT_90; break; } std::shared_ptr surfaceScaling = std::static_pointer_cast( c2Buffer->getInfo(C2StreamSurfaceScalingInfo::output::PARAM_TYPE)); uint32_t videoScalingMode = NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW; if (surfaceScaling) { videoScalingMode = surfaceScaling->value; } // Use dataspace from format as it has the default aspects already applied android_dataspace_t dataSpace = HAL_DATASPACE_UNKNOWN; // this is 0 (void)buffer->format()->findInt32("android._dataspace", (int32_t *)&dataSpace); // HDR static info std::shared_ptr hdrStaticInfo = std::static_pointer_cast( c2Buffer->getInfo(C2StreamHdrStaticInfo::output::PARAM_TYPE)); // HDR10 plus info std::shared_ptr hdr10PlusInfo = std::static_pointer_cast( c2Buffer->getInfo(C2StreamHdr10PlusInfo::output::PARAM_TYPE)); { Mutexed::Locked output(mOutputSurface); if (output->surface == nullptr) { ALOGI("[%s] cannot render buffer without surface", mName); return OK; } } std::vector blocks = c2Buffer->data().graphicBlocks(); if (blocks.size() != 1u) { ALOGD("[%s] expected 1 graphic block, but got %zu", mName, blocks.size()); return UNKNOWN_ERROR; } const C2ConstGraphicBlock &block = blocks.front(); // TODO: revisit this after C2Fence implementation. android::IGraphicBufferProducer::QueueBufferInput qbi( timestampNs, false, // droppable dataSpace, Rect(blocks.front().crop().left, blocks.front().crop().top, blocks.front().crop().right(), blocks.front().crop().bottom()), videoScalingMode, transform, Fence::NO_FENCE, 0); if (hdrStaticInfo || hdr10PlusInfo) { HdrMetadata hdr; if (hdrStaticInfo) { struct android_smpte2086_metadata smpte2086_meta = { .displayPrimaryRed = { hdrStaticInfo->mastering.red.x, hdrStaticInfo->mastering.red.y }, .displayPrimaryGreen = { hdrStaticInfo->mastering.green.x, hdrStaticInfo->mastering.green.y }, .displayPrimaryBlue = { hdrStaticInfo->mastering.blue.x, hdrStaticInfo->mastering.blue.y }, .whitePoint = { hdrStaticInfo->mastering.white.x, hdrStaticInfo->mastering.white.y }, .maxLuminance = hdrStaticInfo->mastering.maxLuminance, .minLuminance = hdrStaticInfo->mastering.minLuminance, }; struct android_cta861_3_metadata cta861_meta = { .maxContentLightLevel = hdrStaticInfo->maxCll, .maxFrameAverageLightLevel = hdrStaticInfo->maxFall, }; hdr.validTypes = HdrMetadata::SMPTE2086 | HdrMetadata::CTA861_3; hdr.smpte2086 = smpte2086_meta; hdr.cta8613 = cta861_meta; } if (hdr10PlusInfo) { hdr.validTypes |= HdrMetadata::HDR10PLUS; hdr.hdr10plus.assign( hdr10PlusInfo->m.value, hdr10PlusInfo->m.value + hdr10PlusInfo->flexCount()); } qbi.setHdrMetadata(hdr); } // we don't have dirty regions qbi.setSurfaceDamage(Region::INVALID_REGION); android::IGraphicBufferProducer::QueueBufferOutput qbo; status_t result = mComponent->queueToOutputSurface(block, qbi, &qbo); if (result != OK) { ALOGI("[%s] queueBuffer failed: %d", mName, result); return result; } ALOGV("[%s] queue buffer successful", mName); int64_t mediaTimeUs = 0; (void)buffer->meta()->findInt64("timeUs", &mediaTimeUs); mCCodecCallback->onOutputFramesRendered(mediaTimeUs, timestampNs); return OK; } status_t CCodecBufferChannel::discardBuffer(const sp &buffer) { ALOGV("[%s] discardBuffer: %p", mName, buffer.get()); bool released = false; { Mutexed>::Locked buffers(mInputBuffers); if (*buffers && (*buffers)->releaseBuffer(buffer, nullptr, true)) { buffers.unlock(); released = true; mAvailablePipelineCapacity.freeInputSlots(1, "discardBuffer"); } } { Mutexed>::Locked buffers(mOutputBuffers); if (*buffers && (*buffers)->releaseBuffer(buffer, nullptr)) { buffers.unlock(); released = true; } } if (released) { sendOutputBuffers(); feedInputBufferIfAvailable(); } else { ALOGD("[%s] MediaCodec discarded an unknown buffer", mName); } return OK; } void CCodecBufferChannel::getInputBufferArray(Vector> *array) { array->clear(); Mutexed>::Locked buffers(mInputBuffers); if (!(*buffers)->isArrayMode()) { *buffers = (*buffers)->toArrayMode(kMinInputBufferArraySize); } (*buffers)->getArray(array); } void CCodecBufferChannel::getOutputBufferArray(Vector> *array) { array->clear(); Mutexed>::Locked buffers(mOutputBuffers); if (!(*buffers)->isArrayMode()) { *buffers = (*buffers)->toArrayMode(kMinOutputBufferArraySize); } (*buffers)->getArray(array); } status_t CCodecBufferChannel::start( const sp &inputFormat, const sp &outputFormat) { C2StreamBufferTypeSetting::input iStreamFormat(0u); C2StreamBufferTypeSetting::output oStreamFormat(0u); C2PortReorderBufferDepthTuning::output reorderDepth; C2PortReorderKeySetting::output reorderKey; c2_status_t err = mComponent->query( { &iStreamFormat, &oStreamFormat, &reorderDepth, &reorderKey, }, {}, C2_DONT_BLOCK, nullptr); if (err == C2_BAD_INDEX) { if (!iStreamFormat || !oStreamFormat) { return UNKNOWN_ERROR; } } else if (err != C2_OK) { return UNKNOWN_ERROR; } { Mutexed::Locked reorder(mReorderStash); reorder->clear(); if (reorderDepth) { reorder->setDepth(reorderDepth.value); } if (reorderKey) { reorder->setKey(reorderKey.value); } } // TODO: get this from input format bool secure = mComponent->getName().find(".secure") != std::string::npos; std::shared_ptr allocatorStore = GetCodec2PlatformAllocatorStore(); int poolMask = property_get_int32( "debug.stagefright.c2-poolmask", 1 << C2PlatformAllocatorStore::ION | 1 << C2PlatformAllocatorStore::BUFFERQUEUE); if (inputFormat != nullptr) { bool graphic = (iStreamFormat.value == C2FormatVideo); std::shared_ptr pool; { Mutexed::Locked pools(mBlockPools); // set default allocator ID. pools->inputAllocatorId = (graphic) ? C2PlatformAllocatorStore::GRALLOC : C2PlatformAllocatorStore::ION; // query C2PortAllocatorsTuning::input from component. If an allocator ID is obtained // from component, create the input block pool with given ID. Otherwise, use default IDs. std::vector> params; err = mComponent->query({ }, { C2PortAllocatorsTuning::input::PARAM_TYPE }, C2_DONT_BLOCK, ¶ms); if ((err != C2_OK && err != C2_BAD_INDEX) || params.size() != 1) { ALOGD("[%s] Query input allocators returned %zu params => %s (%u)", mName, params.size(), asString(err), err); } else if (err == C2_OK && params.size() == 1) { C2PortAllocatorsTuning::input *inputAllocators = C2PortAllocatorsTuning::input::From(params[0].get()); if (inputAllocators && inputAllocators->flexCount() > 0) { std::shared_ptr allocator; // verify allocator IDs and resolve default allocator allocatorStore->fetchAllocator(inputAllocators->m.values[0], &allocator); if (allocator) { pools->inputAllocatorId = allocator->getId(); } else { ALOGD("[%s] component requested invalid input allocator ID %u", mName, inputAllocators->m.values[0]); } } } // TODO: use C2Component wrapper to associate this pool with ourselves if ((poolMask >> pools->inputAllocatorId) & 1) { err = CreateCodec2BlockPool(pools->inputAllocatorId, nullptr, &pool); ALOGD("[%s] Created input block pool with allocatorID %u => poolID %llu - %s (%d)", mName, pools->inputAllocatorId, (unsigned long long)(pool ? pool->getLocalId() : 111000111), asString(err), err); } else { err = C2_NOT_FOUND; } if (err != C2_OK) { C2BlockPool::local_id_t inputPoolId = graphic ? C2BlockPool::BASIC_GRAPHIC : C2BlockPool::BASIC_LINEAR; err = GetCodec2BlockPool(inputPoolId, nullptr, &pool); ALOGD("[%s] Using basic input block pool with poolID %llu => got %llu - %s (%d)", mName, (unsigned long long)inputPoolId, (unsigned long long)(pool ? pool->getLocalId() : 111000111), asString(err), err); if (err != C2_OK) { return NO_MEMORY; } } pools->inputPool = pool; } bool forceArrayMode = false; Mutexed>::Locked buffers(mInputBuffers); if (graphic) { if (mInputSurface) { buffers->reset(new DummyInputBuffers(mName)); } else if (mMetaMode == MODE_ANW) { buffers->reset(new GraphicMetadataInputBuffers(mName)); } else { buffers->reset(new GraphicInputBuffers(mName)); } } else { if (hasCryptoOrDescrambler()) { int32_t capacity = kLinearBufferSize; (void)inputFormat->findInt32(KEY_MAX_INPUT_SIZE, &capacity); if ((size_t)capacity > kMaxLinearBufferSize) { ALOGD("client requested %d, capped to %zu", capacity, kMaxLinearBufferSize); capacity = kMaxLinearBufferSize; } if (mDealer == nullptr) { mDealer = new MemoryDealer( align(capacity, MemoryDealer::getAllocationAlignment()) * (kMinInputBufferArraySize + 1), "EncryptedLinearInputBuffers"); mDecryptDestination = mDealer->allocate((size_t)capacity); } if (mCrypto != nullptr && mHeapSeqNum < 0) { mHeapSeqNum = mCrypto->setHeap(mDealer->getMemoryHeap()); } else { mHeapSeqNum = -1; } buffers->reset(new EncryptedLinearInputBuffers( secure, mDealer, mCrypto, mHeapSeqNum, (size_t)capacity, mName)); forceArrayMode = true; } else { buffers->reset(new LinearInputBuffers(mName)); } } (*buffers)->setFormat(inputFormat); if (err == C2_OK) { (*buffers)->setPool(pool); } else { // TODO: error } if (forceArrayMode) { *buffers = (*buffers)->toArrayMode(kMinInputBufferArraySize); } } if (outputFormat != nullptr) { sp outputSurface; uint32_t outputGeneration; { Mutexed::Locked output(mOutputSurface); outputSurface = output->surface ? output->surface->getIGraphicBufferProducer() : nullptr; outputGeneration = output->generation; } bool graphic = (oStreamFormat.value == C2FormatVideo); C2BlockPool::local_id_t outputPoolId_; { Mutexed::Locked pools(mBlockPools); // set default allocator ID. pools->outputAllocatorId = (graphic) ? C2PlatformAllocatorStore::GRALLOC : C2PlatformAllocatorStore::ION; // query C2PortAllocatorsTuning::output from component, or use default allocator if // unsuccessful. std::vector> params; err = mComponent->query({ }, { C2PortAllocatorsTuning::output::PARAM_TYPE }, C2_DONT_BLOCK, ¶ms); if ((err != C2_OK && err != C2_BAD_INDEX) || params.size() != 1) { ALOGD("[%s] Query output allocators returned %zu params => %s (%u)", mName, params.size(), asString(err), err); } else if (err == C2_OK && params.size() == 1) { C2PortAllocatorsTuning::output *outputAllocators = C2PortAllocatorsTuning::output::From(params[0].get()); if (outputAllocators && outputAllocators->flexCount() > 0) { std::shared_ptr allocator; // verify allocator IDs and resolve default allocator allocatorStore->fetchAllocator(outputAllocators->m.values[0], &allocator); if (allocator) { pools->outputAllocatorId = allocator->getId(); } else { ALOGD("[%s] component requested invalid output allocator ID %u", mName, outputAllocators->m.values[0]); } } } // use bufferqueue if outputting to a surface. // query C2PortSurfaceAllocatorTuning::output from component, or use default allocator // if unsuccessful. if (outputSurface) { params.clear(); err = mComponent->query({ }, { C2PortSurfaceAllocatorTuning::output::PARAM_TYPE }, C2_DONT_BLOCK, ¶ms); if ((err != C2_OK && err != C2_BAD_INDEX) || params.size() != 1) { ALOGD("[%s] Query output surface allocator returned %zu params => %s (%u)", mName, params.size(), asString(err), err); } else if (err == C2_OK && params.size() == 1) { C2PortSurfaceAllocatorTuning::output *surfaceAllocator = C2PortSurfaceAllocatorTuning::output::From(params[0].get()); if (surfaceAllocator) { std::shared_ptr allocator; // verify allocator IDs and resolve default allocator allocatorStore->fetchAllocator(surfaceAllocator->value, &allocator); if (allocator) { pools->outputAllocatorId = allocator->getId(); } else { ALOGD("[%s] component requested invalid surface output allocator ID %u", mName, surfaceAllocator->value); err = C2_BAD_VALUE; } } } if (pools->outputAllocatorId == C2PlatformAllocatorStore::GRALLOC && err != C2_OK && ((poolMask >> C2PlatformAllocatorStore::BUFFERQUEUE) & 1)) { pools->outputAllocatorId = C2PlatformAllocatorStore::BUFFERQUEUE; } } if ((poolMask >> pools->outputAllocatorId) & 1) { err = mComponent->createBlockPool( pools->outputAllocatorId, &pools->outputPoolId, &pools->outputPoolIntf); ALOGI("[%s] Created output block pool with allocatorID %u => poolID %llu - %s", mName, pools->outputAllocatorId, (unsigned long long)pools->outputPoolId, asString(err)); } else { err = C2_NOT_FOUND; } if (err != C2_OK) { // use basic pool instead pools->outputPoolId = graphic ? C2BlockPool::BASIC_GRAPHIC : C2BlockPool::BASIC_LINEAR; } // Configure output block pool ID as parameter C2PortBlockPoolsTuning::output to // component. std::unique_ptr poolIdsTuning = C2PortBlockPoolsTuning::output::AllocUnique({ pools->outputPoolId }); std::vector> failures; err = mComponent->config({ poolIdsTuning.get() }, C2_MAY_BLOCK, &failures); ALOGD("[%s] Configured output block pool ids %llu => %s", mName, (unsigned long long)poolIdsTuning->m.values[0], asString(err)); outputPoolId_ = pools->outputPoolId; } Mutexed>::Locked buffers(mOutputBuffers); if (graphic) { if (outputSurface) { buffers->reset(new GraphicOutputBuffers(mName)); } else { buffers->reset(new RawGraphicOutputBuffers(mName)); } } else { buffers->reset(new LinearOutputBuffers(mName)); } (*buffers)->setFormat(outputFormat->dup()); // Try to set output surface to created block pool if given. if (outputSurface) { mComponent->setOutputSurface( outputPoolId_, outputSurface, outputGeneration); } if (oStreamFormat.value == C2BufferData::LINEAR && mComponentName.find("c2.qti.") == std::string::npos) { // WORKAROUND: if we're using early CSD workaround we convert to // array mode, to appease apps assuming the output // buffers to be of the same size. (*buffers) = (*buffers)->toArrayMode(kMinOutputBufferArraySize); int32_t channelCount; int32_t sampleRate; if (outputFormat->findInt32(KEY_CHANNEL_COUNT, &channelCount) && outputFormat->findInt32(KEY_SAMPLE_RATE, &sampleRate)) { int32_t delay = 0; int32_t padding = 0;; if (!outputFormat->findInt32("encoder-delay", &delay)) { delay = 0; } if (!outputFormat->findInt32("encoder-padding", &padding)) { padding = 0; } if (delay || padding) { // We need write access to the buffers, and we're already in // array mode. (*buffers)->initSkipCutBuffer(delay, padding, sampleRate, channelCount); } } } } // Set up pipeline control. This has to be done after mInputBuffers and // mOutputBuffers are initialized to make sure that lingering callbacks // about buffers from the previous generation do not interfere with the // newly initialized pipeline capacity. // Query delays C2PortRequestedDelayTuning::input inputDelay; C2PortRequestedDelayTuning::output outputDelay; C2RequestedPipelineDelayTuning pipelineDelay; #if 0 err = mComponent->query( { &inputDelay, &pipelineDelay, &outputDelay }, {}, C2_DONT_BLOCK, nullptr); mAvailablePipelineCapacity.initialize( inputDelay, inputDelay + pipelineDelay, inputDelay + pipelineDelay + outputDelay, mName); #else mAvailablePipelineCapacity.initialize( kMinInputBufferArraySize, kMaxPipelineCapacity, mName); #endif mInputMetEos = false; mSync.start(); return OK; } status_t CCodecBufferChannel::requestInitialInputBuffers() { if (mInputSurface) { return OK; } C2StreamFormatConfig::output oStreamFormat(0u); c2_status_t err = mComponent->query({ &oStreamFormat }, {}, C2_DONT_BLOCK, nullptr); if (err != C2_OK) { return UNKNOWN_ERROR; } std::vector> toBeQueued; // TODO: use proper buffer depth instead of this random value for (size_t i = 0; i < kMinInputBufferArraySize; ++i) { size_t index; sp buffer; { Mutexed>::Locked buffers(mInputBuffers); if (!(*buffers)->requestNewBuffer(&index, &buffer)) { if (i == 0) { ALOGW("[%s] start: cannot allocate memory at all", mName); return NO_MEMORY; } else { ALOGV("[%s] start: cannot allocate memory, only %zu buffers allocated", mName, i); } break; } } if (buffer) { Mutexed>>::Locked configs(mFlushedConfigs); ALOGV("[%s] input buffer %zu available", mName, index); bool post = true; if (!configs->empty()) { sp config = configs->front(); if (buffer->capacity() >= config->size()) { memcpy(buffer->base(), config->data(), config->size()); buffer->setRange(0, config->size()); buffer->meta()->clear(); buffer->meta()->setInt64("timeUs", 0); buffer->meta()->setInt32("csd", 1); post = false; } else { ALOGD("[%s] buffer capacity too small for the config (%zu < %zu)", mName, buffer->capacity(), config->size()); } } else if (oStreamFormat.value == C2BufferData::LINEAR && i == 0 && mComponentName.find("c2.qti.") == std::string::npos) { // WORKAROUND: Some apps expect CSD available without queueing // any input. Queue an empty buffer to get the CSD. buffer->setRange(0, 0); buffer->meta()->clear(); buffer->meta()->setInt64("timeUs", 0); post = false; } if (mAvailablePipelineCapacity.allocate("requestInitialInputBuffers")) { if (post) { mCallback->onInputBufferAvailable(index, buffer); } else { toBeQueued.emplace_back(buffer); } } else { ALOGD("[%s] pipeline is full while requesting %zu-th input buffer", mName, i); } } } for (const sp &buffer : toBeQueued) { if (queueInputBufferInternal(buffer) != OK) { mAvailablePipelineCapacity.freeComponentSlot("requestInitialInputBuffers"); } } return OK; } void CCodecBufferChannel::stop() { mSync.stop(); mFirstValidFrameIndex = mFrameIndex.load(std::memory_order_relaxed); if (mInputSurface != nullptr) { mInputSurface.reset(); } } void CCodecBufferChannel::flush(const std::list> &flushedWork) { ALOGV("[%s] flush", mName); { Mutexed>>::Locked configs(mFlushedConfigs); for (const std::unique_ptr &work : flushedWork) { if (!(work->input.flags & C2FrameData::FLAG_CODEC_CONFIG)) { continue; } if (work->input.buffers.empty() || work->input.buffers.front()->data().linearBlocks().empty()) { ALOGD("[%s] no linear codec config data found", mName); continue; } C2ReadView view = work->input.buffers.front()->data().linearBlocks().front().map().get(); if (view.error() != C2_OK) { ALOGD("[%s] failed to map flushed codec config data: %d", mName, view.error()); continue; } configs->push_back(ABuffer::CreateAsCopy(view.data(), view.capacity())); ALOGV("[%s] stashed flushed codec config data (size=%u)", mName, view.capacity()); } } { Mutexed>::Locked buffers(mInputBuffers); (*buffers)->flush(); } { Mutexed>::Locked buffers(mOutputBuffers); (*buffers)->flush(flushedWork); } } void CCodecBufferChannel::onWorkDone( std::unique_ptr work, const sp &outputFormat, const C2StreamInitDataInfo::output *initData, size_t numDiscardedInputBuffers) { if (handleWork(std::move(work), outputFormat, initData)) { mAvailablePipelineCapacity.freeInputSlots(numDiscardedInputBuffers, "onWorkDone"); feedInputBufferIfAvailable(); } } void CCodecBufferChannel::onInputBufferDone( const std::shared_ptr& buffer) { bool newInputSlotAvailable; { Mutexed>::Locked buffers(mInputBuffers); newInputSlotAvailable = (*buffers)->expireComponentBuffer(buffer); if (newInputSlotAvailable) { mAvailablePipelineCapacity.freeInputSlots(1, "onInputBufferDone"); } } if (newInputSlotAvailable) { feedInputBufferIfAvailable(); } } bool CCodecBufferChannel::handleWork( std::unique_ptr work, const sp &outputFormat, const C2StreamInitDataInfo::output *initData) { if ((work->input.ordinal.frameIndex - mFirstValidFrameIndex.load()).peek() < 0) { // Discard frames from previous generation. ALOGD("[%s] Discard frames from previous generation.", mName); return false; } if (work->worklets.size() != 1u || !work->worklets.front() || !(work->worklets.front()->output.flags & C2FrameData::FLAG_INCOMPLETE)) { mAvailablePipelineCapacity.freeComponentSlot("handleWork"); } if (work->result == C2_NOT_FOUND) { ALOGD("[%s] flushed work; ignored.", mName); return true; } if (work->result != C2_OK) { ALOGD("[%s] work failed to complete: %d", mName, work->result); mCCodecCallback->onError(work->result, ACTION_CODE_FATAL); return false; } // NOTE: MediaCodec usage supposedly have only one worklet if (work->worklets.size() != 1u) { ALOGI("[%s] onWorkDone: incorrect number of worklets: %zu", mName, work->worklets.size()); mCCodecCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL); return false; } const std::unique_ptr &worklet = work->worklets.front(); std::shared_ptr buffer; // NOTE: MediaCodec usage supposedly have only one output stream. if (worklet->output.buffers.size() > 1u) { ALOGI("[%s] onWorkDone: incorrect number of output buffers: %zu", mName, worklet->output.buffers.size()); mCCodecCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL); return false; } else if (worklet->output.buffers.size() == 1u) { buffer = worklet->output.buffers[0]; if (!buffer) { ALOGD("[%s] onWorkDone: nullptr found in buffers; ignored.", mName); } } while (!worklet->output.configUpdate.empty()) { std::unique_ptr param; worklet->output.configUpdate.back().swap(param); worklet->output.configUpdate.pop_back(); switch (param->coreIndex().coreIndex()) { case C2PortReorderBufferDepthTuning::CORE_INDEX: { C2PortReorderBufferDepthTuning::output reorderDepth; if (reorderDepth.updateFrom(*param)) { mReorderStash.lock()->setDepth(reorderDepth.value); ALOGV("[%s] onWorkDone: updated reorder depth to %u", mName, reorderDepth.value); } else { ALOGD("[%s] onWorkDone: failed to read reorder depth", mName); } break; } case C2PortReorderKeySetting::CORE_INDEX: { C2PortReorderKeySetting::output reorderKey; if (reorderKey.updateFrom(*param)) { mReorderStash.lock()->setKey(reorderKey.value); ALOGV("[%s] onWorkDone: updated reorder key to %u", mName, reorderKey.value); } else { ALOGD("[%s] onWorkDone: failed to read reorder key", mName); } break; } default: ALOGV("[%s] onWorkDone: unrecognized config update (%08X)", mName, param->index()); break; } } if (outputFormat != nullptr) { Mutexed>::Locked buffers(mOutputBuffers); ALOGD("[%s] onWorkDone: output format changed to %s", mName, outputFormat->debugString().c_str()); (*buffers)->setFormat(outputFormat); AString mediaType; if (outputFormat->findString(KEY_MIME, &mediaType) && mediaType == MIMETYPE_AUDIO_RAW) { int32_t channelCount; int32_t sampleRate; if (outputFormat->findInt32(KEY_CHANNEL_COUNT, &channelCount) && outputFormat->findInt32(KEY_SAMPLE_RATE, &sampleRate)) { (*buffers)->updateSkipCutBuffer(sampleRate, channelCount); } } } int32_t flags = 0; if (worklet->output.flags & C2FrameData::FLAG_END_OF_STREAM) { flags |= MediaCodec::BUFFER_FLAG_EOS; ALOGV("[%s] onWorkDone: output EOS", mName); } sp outBuffer; size_t index; // WORKAROUND: adjust output timestamp based on client input timestamp and codec // input timestamp. Codec output timestamp (in the timestamp field) shall correspond to // the codec input timestamp, but client output timestamp should (reported in timeUs) // shall correspond to the client input timesamp (in customOrdinal). By using the // delta between the two, this allows for some timestamp deviation - e.g. if one input // produces multiple output. c2_cntr64_t timestamp = worklet->output.ordinal.timestamp + work->input.ordinal.customOrdinal - work->input.ordinal.timestamp; ALOGV("[%s] onWorkDone: input %lld, codec %lld => output %lld => %lld", mName, work->input.ordinal.customOrdinal.peekll(), work->input.ordinal.timestamp.peekll(), worklet->output.ordinal.timestamp.peekll(), timestamp.peekll()); if (initData != nullptr) { Mutexed>::Locked buffers(mOutputBuffers); if ((*buffers)->registerCsd(initData, &index, &outBuffer) == OK) { outBuffer->meta()->setInt64("timeUs", timestamp.peek()); outBuffer->meta()->setInt32("flags", MediaCodec::BUFFER_FLAG_CODECCONFIG); ALOGV("[%s] onWorkDone: csd index = %zu [%p]", mName, index, outBuffer.get()); buffers.unlock(); mCallback->onOutputBufferAvailable(index, outBuffer); buffers.lock(); } else { ALOGD("[%s] onWorkDone: unable to register csd", mName); buffers.unlock(); mCCodecCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL); buffers.lock(); return false; } } if (!buffer && !flags) { ALOGV("[%s] onWorkDone: Not reporting output buffer (%lld)", mName, work->input.ordinal.frameIndex.peekull()); return true; } if (buffer) { for (const std::shared_ptr &info : buffer->info()) { // TODO: properly translate these to metadata switch (info->coreIndex().coreIndex()) { case C2StreamPictureTypeMaskInfo::CORE_INDEX: if (((C2StreamPictureTypeMaskInfo *)info.get())->value & C2PictureTypeKeyFrame) { flags |= MediaCodec::BUFFER_FLAG_SYNCFRAME; } break; default: break; } } } { Mutexed::Locked reorder(mReorderStash); reorder->emplace(buffer, timestamp.peek(), flags, worklet->output.ordinal); if (flags & MediaCodec::BUFFER_FLAG_EOS) { // Flush reorder stash reorder->setDepth(0); } } sendOutputBuffers(); return true; } void CCodecBufferChannel::sendOutputBuffers() { ReorderStash::Entry entry; sp outBuffer; size_t index; while (true) { { Mutexed::Locked reorder(mReorderStash); if (!reorder->hasPending()) { break; } if (!reorder->pop(&entry)) { break; } } Mutexed>::Locked buffers(mOutputBuffers); status_t err = (*buffers)->registerBuffer(entry.buffer, &index, &outBuffer); if (err != OK) { if (err != WOULD_BLOCK) { OutputBuffersArray *array = (OutputBuffersArray *)buffers->get(); array->realloc(entry.buffer); mCCodecCallback->onOutputBuffersChanged(); } buffers.unlock(); ALOGV("[%s] sendOutputBuffers: unable to register output buffer", mName); mReorderStash.lock()->defer(entry); return; } buffers.unlock(); outBuffer->meta()->setInt64("timeUs", entry.timestamp); outBuffer->meta()->setInt32("flags", entry.flags); ALOGV("[%s] sendOutputBuffers: out buffer index = %zu [%p] => %p + %zu", mName, index, outBuffer.get(), outBuffer->data(), outBuffer->size()); mCallback->onOutputBufferAvailable(index, outBuffer); } } status_t CCodecBufferChannel::setSurface(const sp &newSurface) { static std::atomic_uint32_t surfaceGeneration{0}; uint32_t generation = (getpid() << 10) | ((surfaceGeneration.fetch_add(1, std::memory_order_relaxed) + 1) & ((1 << 10) - 1)); sp producer; if (newSurface) { newSurface->setScalingMode(NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW); newSurface->setMaxDequeuedBufferCount(kMinOutputBufferArraySize); producer = newSurface->getIGraphicBufferProducer(); producer->setGenerationNumber(generation); } else { ALOGE("[%s] setting output surface to null", mName); return INVALID_OPERATION; } std::shared_ptr outputPoolIntf; C2BlockPool::local_id_t outputPoolId; { Mutexed::Locked pools(mBlockPools); outputPoolId = pools->outputPoolId; outputPoolIntf = pools->outputPoolIntf; } if (outputPoolIntf) { if (mComponent->setOutputSurface( outputPoolId, producer, generation) != C2_OK) { ALOGI("[%s] setSurface: component setOutputSurface failed", mName); return INVALID_OPERATION; } } { Mutexed::Locked output(mOutputSurface); output->surface = newSurface; output->generation = generation; } return OK; } void CCodecBufferChannel::setMetaMode(MetaMode mode) { mMetaMode = mode; } status_t toStatusT(c2_status_t c2s, c2_operation_t c2op) { // C2_OK is always translated to OK. if (c2s == C2_OK) { return OK; } // Operation-dependent translation // TODO: Add as necessary switch (c2op) { case C2_OPERATION_Component_start: switch (c2s) { case C2_NO_MEMORY: return NO_MEMORY; default: return UNKNOWN_ERROR; } default: break; } // Backup operation-agnostic translation switch (c2s) { case C2_BAD_INDEX: return BAD_INDEX; case C2_BAD_VALUE: return BAD_VALUE; case C2_BLOCKING: return WOULD_BLOCK; case C2_DUPLICATE: return ALREADY_EXISTS; case C2_NO_INIT: return NO_INIT; case C2_NO_MEMORY: return NO_MEMORY; case C2_NOT_FOUND: return NAME_NOT_FOUND; case C2_TIMED_OUT: return TIMED_OUT; case C2_BAD_STATE: case C2_CANCELED: case C2_CANNOT_DO: case C2_CORRUPTED: case C2_OMITTED: case C2_REFUSED: return UNKNOWN_ERROR; default: return -static_cast(c2s); } } } // namespace android