/****************************************************************************** * * Copyright 2008-2012 Broadcom Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /****************************************************************************** * * This file contains the implementation of the AES128 and AES CMAC algorithm. * ******************************************************************************/ #include "stack/crypto_toolbox/aes.h" #include "stack/crypto_toolbox/crypto_toolbox.h" #include #include namespace crypto_toolbox { namespace { typedef struct { uint8_t* text; uint16_t len; uint16_t round; } tCMAC_CB; tCMAC_CB cmac_cb; /* Rb for AES-128 as block cipher, LSB as [0] */ Octet16 const_Rb{0x87, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; /** utility function to do an biteise exclusive-OR of two bit strings of the * length of OCTET16_LEN. Result is stored in first argument. */ static void xor_128(Octet16* a, const Octet16& b) { CHECK(a); uint8_t i, *aa = a->data(); const uint8_t* bb = b.data(); for (i = 0; i < OCTET16_LEN; i++) { aa[i] = aa[i] ^ bb[i]; } } } // namespace /* This function computes AES_128(key, message) */ Octet16 aes_128(const Octet16& key, const Octet16& message) { Octet16 key_reversed; Octet16 message_reversed; Octet16 output; std::reverse_copy(key.begin(), key.end(), key_reversed.begin()); std::reverse_copy(message.begin(), message.end(), message_reversed.begin()); aes_context ctx; aes_set_key(key_reversed.data(), key_reversed.size(), &ctx); aes_encrypt(message_reversed.data(), output.data(), &ctx); std::reverse(output.begin(), output.end()); return output; } /** utility function to padding the given text to be a 128 bits data. The * parameter dest is input and output parameter, it must point to a * OCTET16_LEN memory space; where include length bytes valid data. */ static void padding(Octet16* dest, uint8_t length) { uint8_t i, *p = dest->data(); /* original last block */ for (i = length; i < OCTET16_LEN; i++) p[OCTET16_LEN - i - 1] = (i == length) ? 0x80 : 0; } /** utility function to left shift one bit for a 128 bits value. */ static void leftshift_onebit(uint8_t* input, uint8_t* output) { uint8_t i, overflow = 0, next_overflow = 0; DVLOG(2) << __func__; /* input[0] is LSB */ for (i = 0; i < OCTET16_LEN; i++) { next_overflow = (input[i] & 0x80) ? 1 : 0; output[i] = (input[i] << 1) | overflow; overflow = next_overflow; } return; } /** This function is the calculation of block cipher using AES-128. */ static Octet16 cmac_aes_k_calculate(const Octet16& key) { Octet16 output; Octet16 x{0}; // zero initialized DVLOG(2) << __func__; uint8_t i = 1; while (i <= cmac_cb.round) { /* Mi' := Mi (+) X */ xor_128((Octet16*)&cmac_cb.text[(cmac_cb.round - i) * OCTET16_LEN], x); output = aes_128(key, &cmac_cb.text[(cmac_cb.round - i) * OCTET16_LEN], OCTET16_LEN); x = output; i++; } return output; } /** This function proceeed to prepare the last block of message Mn depending on * the size of the message. */ static void cmac_prepare_last_block(const Octet16& k1, const Octet16& k2) { // uint8_t x[16] = {0}; bool flag; DVLOG(2) << __func__; /* last block is a complete block set flag to 1 */ flag = ((cmac_cb.len % OCTET16_LEN) == 0 && cmac_cb.len != 0) ? true : false; DVLOG(2) << "flag=" << flag << " round=" << cmac_cb.round; if (flag) { /* last block is complete block */ xor_128((Octet16*)&cmac_cb.text[0], k1); } else /* padding then xor with k2 */ { padding((Octet16*)&cmac_cb.text[0], (uint8_t)(cmac_cb.len % 16)); xor_128((Octet16*)&cmac_cb.text[0], k2); } } /** This is the function to generate the two subkeys. * |key| is CMAC key, expect SRK when used by SMP. */ static void cmac_generate_subkey(const Octet16& key) { DVLOG(2) << __func__; Octet16 zero{}; Octet16 p = aes_128(key, zero.data(), OCTET16_LEN); Octet16 k1, k2; uint8_t* pp = p.data(); /* If MSB(L) = 0, then K1 = L << 1 */ if ((pp[OCTET16_LEN - 1] & 0x80) != 0) { /* Else K1 = ( L << 1 ) (+) Rb */ leftshift_onebit(pp, k1.data()); xor_128(&k1, const_Rb); } else { leftshift_onebit(pp, k1.data()); } if ((k1[OCTET16_LEN - 1] & 0x80) != 0) { /* K2 = (K1 << 1) (+) Rb */ leftshift_onebit(k1.data(), k2.data()); xor_128(&k2, const_Rb); } else { /* If MSB(K1) = 0, then K2 = K1 << 1 */ leftshift_onebit(k1.data(), k2.data()); } cmac_prepare_last_block(k1, k2); } /** key - CMAC key in little endian order * input - text to be signed in little endian byte order. * length - length of the input in byte. */ Octet16 aes_cmac(const Octet16& key, const uint8_t* input, uint16_t length) { uint32_t len; uint16_t diff; /* n is number of rounds */ uint16_t n = (length + OCTET16_LEN - 1) / OCTET16_LEN; DVLOG(2) << __func__; if (n == 0) n = 1; len = n * OCTET16_LEN; DVLOG(2) << "AES128_CMAC started, allocate buffer size=" << len; /* allocate a memory space of multiple of 16 bytes to hold text */ cmac_cb.text = (uint8_t*)alloca(len); cmac_cb.round = n; diff = len - length; if (input != NULL && length > 0) { memcpy(&cmac_cb.text[diff], input, (int)length); cmac_cb.len = length; } else { cmac_cb.len = 0; } /* prepare calculation for subkey s and last block of data */ cmac_generate_subkey(key); /* start calculation */ Octet16 signature = cmac_aes_k_calculate(key); /* clean up */ memset(&cmac_cb, 0, sizeof(tCMAC_CB)); // cmac_cb.text is auto-freed by alloca return signature; } } // namespace crypto_toolbox