/****************************************************************************** * * Copyright 1999-2012 Broadcom Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /****************************************************************************** * * This file contains security manager protocol utility functions * ******************************************************************************/ #include "bt_target.h" #if (SMP_DEBUG == TRUE) #include #endif #include #include #include "bt_utils.h" #include "btm_ble_api.h" #include "btm_ble_int.h" #include "btm_int.h" #include "device/include/controller.h" #include "hcimsgs.h" #include "osi/include/osi.h" #include "p_256_ecc_pp.h" #include "smp_int.h" #include "stack/crypto_toolbox/crypto_toolbox.h" #include using base::Bind; using crypto_toolbox::aes_128; #ifndef SMP_MAX_ENC_REPEAT #define SMP_MAX_ENC_REPEAT 3 #endif static void smp_process_stk(tSMP_CB* p_cb, Octet16* p); static Octet16 smp_calculate_legacy_short_term_key(tSMP_CB* p_cb); static void smp_process_private_key(tSMP_CB* p_cb); #define SMP_PASSKEY_MASK 0xfff00000 void smp_debug_print_nbyte_little_endian(uint8_t* p, const char* key_name, uint8_t len) { #if (SMP_DEBUG == TRUE) int ind; int col_count = 32; int row_count; uint8_t p_buf[512]; SMP_TRACE_DEBUG("%s(LSB ~ MSB):", key_name); memset(p_buf, 0, sizeof(p_buf)); row_count = len % col_count ? len / col_count + 1 : len / col_count; ind = 0; for (int row = 0; row < row_count; row++) { for (int column = 0, x = 0; (ind < len) && (column < col_count); column++, ind++) { x += snprintf((char*)&p_buf[x], sizeof(p_buf) - x, "%02x ", p[ind]); } SMP_TRACE_DEBUG(" [%03d]: %s", row * col_count, p_buf); } #endif } inline void smp_debug_print_nbyte_little_endian(const Octet16& p, const char* key_name, uint8_t len) { smp_debug_print_nbyte_little_endian(const_cast(p.data()), key_name, len); } void smp_debug_print_nbyte_big_endian(uint8_t* p, const char* key_name, uint8_t len) { #if (SMP_DEBUG == TRUE) uint8_t p_buf[512]; SMP_TRACE_DEBUG("%s(MSB ~ LSB):", key_name); memset(p_buf, 0, sizeof(p_buf)); int ind = 0; int ncols = 32; /* num entries in one line */ int nrows; /* num lines */ nrows = len % ncols ? len / ncols + 1 : len / ncols; for (int row = 0; row < nrows; row++) { for (int col = 0, x = 0; (ind < len) && (col < ncols); col++, ind++) { x += snprintf((char*)&p_buf[len - x - 1], sizeof(p_buf) - (len - x - 1), "%02x ", p[ind]); } SMP_TRACE_DEBUG("[%03d]: %s", row * ncols, p_buf); } #endif } /** This function is called to process a passkey. */ void smp_proc_passkey(tSMP_CB* p_cb, BT_OCTET8 rand) { uint8_t* tt = p_cb->tk.data(); uint32_t passkey; /* 19655 test number; */ uint8_t* pp = rand; SMP_TRACE_DEBUG("%s", __func__); STREAM_TO_UINT32(passkey, pp); passkey &= ~SMP_PASSKEY_MASK; /* truncate by maximum value */ while (passkey > BTM_MAX_PASSKEY_VAL) passkey >>= 1; /* save the TK */ p_cb->tk = {0}; UINT32_TO_STREAM(tt, passkey); if (p_cb->p_callback) { tSMP_EVT_DATA smp_evt_data; smp_evt_data.passkey = passkey; (*p_cb->p_callback)(SMP_PASSKEY_NOTIF_EVT, p_cb->pairing_bda, &smp_evt_data); } if (p_cb->selected_association_model == SMP_MODEL_SEC_CONN_PASSKEY_DISP) { tSMP_INT_DATA smp_int_data; smp_int_data.passkey = passkey; smp_sm_event(&smp_cb, SMP_KEY_READY_EVT, &smp_int_data); } else { tSMP_KEY key; key.key_type = SMP_KEY_TYPE_TK; key.p_data = p_cb->tk.data(); tSMP_INT_DATA smp_int_data; smp_int_data.key = key; smp_sm_event(p_cb, SMP_KEY_READY_EVT, &smp_int_data); } } /******************************************************************************* * * Function smp_generate_passkey * * Description This function is called to generate passkey. * * Returns void * ******************************************************************************/ void smp_generate_passkey(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) { SMP_TRACE_DEBUG("%s", __func__); /* generate MRand or SRand */ btsnd_hcic_ble_rand(Bind(&smp_proc_passkey, p_cb)); } /******************************************************************************* * * Function smp_generate_stk * * Description This function is called to generate STK calculated by * running AES with the TK value as key and a concatenation of * the random values. * * Returns void * ******************************************************************************/ void smp_generate_stk(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) { Octet16 output; SMP_TRACE_DEBUG("%s", __func__); if (p_cb->le_secure_connections_mode_is_used) { SMP_TRACE_WARNING("FOR LE SC LTK IS USED INSTEAD OF STK"); output = p_cb->ltk; } else { output = smp_calculate_legacy_short_term_key(p_cb); } smp_process_stk(p_cb, &output); } /** * This function is called to calculate CSRK */ void smp_compute_csrk(uint16_t div, tSMP_CB* p_cb) { uint8_t buffer[4]; /* for (r || DIV) r=1*/ uint16_t r = 1; uint8_t* p = buffer; p_cb->div = div; SMP_TRACE_DEBUG("%s: div=%x", __func__, p_cb->div); const Octet16& er = BTM_GetDeviceEncRoot(); /* CSRK = d1(ER, DIV, 1) */ UINT16_TO_STREAM(p, p_cb->div); UINT16_TO_STREAM(p, r); p_cb->csrk = aes_128(er, buffer, 4); smp_send_csrk_info(p_cb, NULL); } /** * This function is called to calculate CSRK, starting with DIV generation. */ void smp_generate_csrk(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) { bool div_status; SMP_TRACE_DEBUG("smp_generate_csrk"); div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div); if (div_status) { smp_compute_csrk(p_cb->div, p_cb); } else { SMP_TRACE_DEBUG("Generate DIV for CSRK"); btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { uint16_t div; STREAM_TO_UINT16(div, rand); smp_compute_csrk(div, p_cb); }, p_cb)); } } /******************************************************************************* * Function smp_concatenate_peer - LSB first * add pairing command sent from local device into p1. ******************************************************************************/ void smp_concatenate_local(tSMP_CB* p_cb, uint8_t** p_data, uint8_t op_code) { uint8_t* p = *p_data; SMP_TRACE_DEBUG("%s", __func__); UINT8_TO_STREAM(p, op_code); UINT8_TO_STREAM(p, p_cb->local_io_capability); UINT8_TO_STREAM(p, p_cb->loc_oob_flag); UINT8_TO_STREAM(p, p_cb->loc_auth_req); UINT8_TO_STREAM(p, p_cb->loc_enc_size); UINT8_TO_STREAM(p, p_cb->local_i_key); UINT8_TO_STREAM(p, p_cb->local_r_key); *p_data = p; } /******************************************************************************* * Function smp_concatenate_peer - LSB first * add pairing command received from peer device into p1. ******************************************************************************/ void smp_concatenate_peer(tSMP_CB* p_cb, uint8_t** p_data, uint8_t op_code) { uint8_t* p = *p_data; SMP_TRACE_DEBUG("smp_concatenate_peer "); UINT8_TO_STREAM(p, op_code); UINT8_TO_STREAM(p, p_cb->peer_io_caps); UINT8_TO_STREAM(p, p_cb->peer_oob_flag); UINT8_TO_STREAM(p, p_cb->peer_auth_req); UINT8_TO_STREAM(p, p_cb->peer_enc_size); UINT8_TO_STREAM(p, p_cb->peer_i_key); UINT8_TO_STREAM(p, p_cb->peer_r_key); *p_data = p; } /** Generate Confirm/Compare Step1: * p1 = (MSB) pres || preq || rat' || iat' (LSB) * Fill in values LSB first thus * p1 = iat' || rat' || preq || pres */ Octet16 smp_gen_p1_4_confirm(tSMP_CB* p_cb, tBLE_ADDR_TYPE remote_bd_addr_type) { SMP_TRACE_DEBUG("%s", __func__); Octet16 p1; uint8_t* p = p1.data(); if (p_cb->role == HCI_ROLE_MASTER) { /* iat': initiator's (local) address type */ UINT8_TO_STREAM(p, p_cb->addr_type); /* rat': responder's (remote) address type */ UINT8_TO_STREAM(p, remote_bd_addr_type); /* preq : Pairing Request (local) command */ smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_REQ); /* pres : Pairing Response (remote) command */ smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_RSP); } else { /* iat': initiator's (remote) address type */ UINT8_TO_STREAM(p, remote_bd_addr_type); /* rat': responder's (local) address type */ UINT8_TO_STREAM(p, p_cb->addr_type); /* preq : Pairing Request (remote) command */ smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_REQ); /* pres : Pairing Response (local) command */ smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_RSP); } smp_debug_print_nbyte_little_endian(p1, "p1 = iat' || rat' || preq || pres", 16); return p1; } /** Generate Confirm/Compare Step2: * p2 = (MSB) padding || ia || ra (LSB) * Fill values LSB first and thus: * p2 = ra || ia || padding */ Octet16 smp_gen_p2_4_confirm(tSMP_CB* p_cb, const RawAddress& remote_bda) { SMP_TRACE_DEBUG("%s", __func__); Octet16 p2{0}; uint8_t* p = p2.data(); /* 32-bit Padding */ memset(p, 0, OCTET16_LEN); if (p_cb->role == HCI_ROLE_MASTER) { /* ra : Responder's (remote) address */ BDADDR_TO_STREAM(p, remote_bda); /* ia : Initiator's (local) address */ BDADDR_TO_STREAM(p, p_cb->local_bda); } else { /* ra : Responder's (local) address */ BDADDR_TO_STREAM(p, p_cb->local_bda); /* ia : Initiator's (remote) address */ BDADDR_TO_STREAM(p, remote_bda); } smp_debug_print_nbyte_little_endian(p2, "p2 = ra || ia || padding", 16); return p2; } /******************************************************************************* * * Function smp_calculate_comfirm * * Description This function (c1) is called to calculate Confirm value. * * Returns tSMP_STATUS status of confirmation calculation * ******************************************************************************/ tSMP_STATUS smp_calculate_comfirm(tSMP_CB* p_cb, const Octet16& rand, Octet16* output) { SMP_TRACE_DEBUG("%s", __func__); RawAddress remote_bda; tBLE_ADDR_TYPE remote_bd_addr_type = 0; /* get remote connection specific bluetooth address */ if (!BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, remote_bda, &remote_bd_addr_type)) { SMP_TRACE_ERROR("%s: cannot obtain remote device address", __func__); return SMP_PAIR_FAIL_UNKNOWN; } /* get local connection specific bluetooth address */ BTM_ReadConnectionAddr(p_cb->pairing_bda, p_cb->local_bda, &p_cb->addr_type); /* generate p1 = pres || preq || rat' || iat' */ Octet16 p1 = smp_gen_p1_4_confirm(p_cb, remote_bd_addr_type); /* p1' = rand XOR p1 */ smp_xor_128(&p1, rand); smp_debug_print_nbyte_little_endian(p1, "p1' = p1 XOR r", 16); /* calculate e1 = e(k, p1'), where k = TK */ smp_debug_print_nbyte_little_endian(p_cb->tk.data(), "TK", 16); Octet16 e1 = aes_128(p_cb->tk, p1); smp_debug_print_nbyte_little_endian(e1.data(), "e1 = e(k, p1')", 16); /* generate p2 = padding || ia || ra */ Octet16 p2 = smp_gen_p2_4_confirm(p_cb, remote_bda); /* calculate p2' = (p2 XOR e1) */ smp_xor_128(&p2, e1); smp_debug_print_nbyte_little_endian(p2, "p2' = p2 XOR e1", 16); /* calculate: c1 = e(k, p2') */ *output = aes_128(p_cb->tk, p2); return SMP_SUCCESS; } /******************************************************************************* * * Function smp_generate_confirm * * Description This function is called when random number (MRand or SRand) * is generated by the controller and the stack needs to * calculate c1 value (MConfirm or SConfirm) for the first time * * Returns void * ******************************************************************************/ static void smp_generate_confirm(tSMP_CB* p_cb) { SMP_TRACE_DEBUG("%s", __func__); smp_debug_print_nbyte_little_endian(p_cb->rand.data(), "local_rand", 16); Octet16 output; tSMP_STATUS status = smp_calculate_comfirm(p_cb, p_cb->rand, &output); if (status != SMP_SUCCESS) { tSMP_INT_DATA smp_int_data; smp_int_data.status = status; smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &smp_int_data); return; } tSMP_KEY key; p_cb->confirm = output; smp_debug_print_nbyte_little_endian(p_cb->confirm, "Local Confirm generated", 16); key.key_type = SMP_KEY_TYPE_CFM; key.p_data = output.data(); tSMP_INT_DATA smp_int_data; smp_int_data.key = key; smp_sm_event(p_cb, SMP_KEY_READY_EVT, &smp_int_data); } /******************************************************************************* * * Function smp_generate_srand_mrand_confirm * * Description This function is called to start the second pairing phase by * start generating random number. * * * Returns void * ******************************************************************************/ void smp_generate_srand_mrand_confirm(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) { SMP_TRACE_DEBUG("%s", __func__); /* generate MRand or SRand */ btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { memcpy(p_cb->rand.data(), rand, 8); /* generate 64 MSB of MRand or SRand */ btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { memcpy((void*)&p_cb->rand[8], rand, BT_OCTET8_LEN); smp_generate_confirm(p_cb); }, p_cb)); }, p_cb)); } /******************************************************************************* * * Function smp_generate_compare * * Description This function is called when random number (MRand or SRand) * is received from remote device and the c1 value (MConfirm * or SConfirm) needs to be generated to authenticate remote * device. * * Returns void * ******************************************************************************/ void smp_generate_compare(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) { SMP_TRACE_DEBUG("smp_generate_compare "); smp_debug_print_nbyte_little_endian(p_cb->rrand, "peer rand", 16); Octet16 output; tSMP_STATUS status = smp_calculate_comfirm(p_cb, p_cb->rrand, &output); if (status != SMP_SUCCESS) { tSMP_INT_DATA smp_int_data; smp_int_data.status = status; smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &smp_int_data); return; } tSMP_KEY key; smp_debug_print_nbyte_little_endian(output.data(), "Remote Confirm generated", 16); key.key_type = SMP_KEY_TYPE_CMP; key.p_data = output.data(); tSMP_INT_DATA smp_int_data; smp_int_data.key = key; smp_sm_event(p_cb, SMP_KEY_READY_EVT, &smp_int_data); } /** This function is called when STK is generated proceed to send the encrypt * the link using STK. */ static void smp_process_stk(tSMP_CB* p_cb, Octet16* p) { tSMP_KEY key; SMP_TRACE_DEBUG("smp_process_stk "); #if (SMP_DEBUG == TRUE) SMP_TRACE_ERROR("STK Generated"); #endif smp_mask_enc_key(p_cb->loc_enc_size, p); key.key_type = SMP_KEY_TYPE_STK; key.p_data = p->data(); tSMP_INT_DATA smp_int_data; smp_int_data.key = key; smp_sm_event(p_cb, SMP_KEY_READY_EVT, &smp_int_data); } /** This function calculates EDIV = Y xor DIV */ static void smp_process_ediv(tSMP_CB* p_cb, Octet16& p) { tSMP_KEY key; uint8_t* pp = p.data(); uint16_t y; SMP_TRACE_DEBUG("smp_process_ediv "); STREAM_TO_UINT16(y, pp); /* EDIV = Y xor DIV */ p_cb->ediv = p_cb->div ^ y; /* send LTK ready */ SMP_TRACE_ERROR("LTK ready"); key.key_type = SMP_KEY_TYPE_LTK; key.p_data = p.data(); tSMP_INT_DATA smp_int_data; smp_int_data.key = key; smp_sm_event(p_cb, SMP_KEY_READY_EVT, &smp_int_data); } /** * This function is to proceed generate Y = E(DHK, Rand) */ static void smp_generate_y(tSMP_CB* p_cb, BT_OCTET8 rand) { SMP_TRACE_DEBUG("%s ", __func__); const Octet16& dhk = BTM_GetDeviceDHK(); memcpy(p_cb->enc_rand, rand, BT_OCTET8_LEN); Octet16 output = aes_128(dhk, rand, BT_OCTET8_LEN); smp_process_ediv(p_cb, output); } /** * Calculate LTK = d1(ER, DIV, 0)= e(ER, DIV) */ static void smp_generate_ltk_cont(uint16_t div, tSMP_CB* p_cb) { p_cb->div = div; SMP_TRACE_DEBUG("%s", __func__); const Octet16& er = BTM_GetDeviceEncRoot(); /* LTK = d1(ER, DIV, 0)= e(ER, DIV)*/ Octet16 ltk = aes_128(er, (uint8_t*)&p_cb->div, sizeof(uint16_t)); /* mask the LTK */ smp_mask_enc_key(p_cb->loc_enc_size, <k); p_cb->ltk = ltk; /* generate EDIV and rand now */ btsnd_hcic_ble_rand(Bind(&smp_generate_y, p_cb)); } /******************************************************************************* * * Function smp_generate_ltk * * Description This function is called: * - in legacy pairing - to calculate LTK, starting with DIV * generation; * - in LE Secure Connections pairing over LE transport - to * process LTK already generated to encrypt LE link; * - in LE Secure Connections pairing over BR/EDR transport - * to start BR/EDR Link Key processing. * * Returns void * ******************************************************************************/ void smp_generate_ltk(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) { SMP_TRACE_DEBUG("%s", __func__); if (smp_get_br_state() == SMP_BR_STATE_BOND_PENDING) { smp_br_process_link_key(p_cb, NULL); return; } else if (p_cb->le_secure_connections_mode_is_used) { smp_process_secure_connection_long_term_key(); return; } bool div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div); if (div_status) { smp_generate_ltk_cont(p_cb->div, p_cb); } else { SMP_TRACE_DEBUG("%s: Generate DIV for LTK", __func__); /* generate MRand or SRand */ btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { uint16_t div; STREAM_TO_UINT16(div, rand); smp_generate_ltk_cont(div, p_cb); }, p_cb)); } } /* The function calculates legacy STK */ Octet16 smp_calculate_legacy_short_term_key(tSMP_CB* p_cb) { SMP_TRACE_DEBUG("%s", __func__); Octet16 text{0}; if (p_cb->role == HCI_ROLE_MASTER) { memcpy(text.data(), p_cb->rand.data(), BT_OCTET8_LEN); memcpy(text.data() + BT_OCTET8_LEN, p_cb->rrand.data(), BT_OCTET8_LEN); } else { memcpy(text.data(), p_cb->rrand.data(), BT_OCTET8_LEN); memcpy(text.data() + BT_OCTET8_LEN, p_cb->rand.data(), BT_OCTET8_LEN); } /* generate STK = Etk(rand|rrand)*/ return aes_128(p_cb->tk, text); } /******************************************************************************* * * Function smp_create_private_key * * Description This function is called to create private key used to * calculate public key and DHKey. * The function starts private key creation requesting * for the controller to generate [0-7] octets of private key. * * Returns void * ******************************************************************************/ void smp_create_private_key(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) { SMP_TRACE_DEBUG("%s", __func__); btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { memcpy((void*)p_cb->private_key, rand, BT_OCTET8_LEN); btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { memcpy((void*)&p_cb->private_key[8], rand, BT_OCTET8_LEN); btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { memcpy((void*)&p_cb->private_key[16], rand, BT_OCTET8_LEN); btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { memcpy((void*)&p_cb->private_key[24], rand, BT_OCTET8_LEN); smp_process_private_key(p_cb); }, p_cb)); }, p_cb)); }, p_cb)); }, p_cb)); } /******************************************************************************* * * Function smp_use_oob_private_key * * Description This function is called * - to save the secret key used to calculate the public key * used in calculations of commitment sent OOB to a peer * - to use this secret key to recalculate the public key and * start the process of sending this public key to the peer * if secret/public keys have to be reused. * If the keys aren't supposed to be reused, continue from the * point from which request for OOB data was issued. * * Returns void * ******************************************************************************/ void smp_use_oob_private_key(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) { SMP_TRACE_DEBUG("%s req_oob_type: %d, role: %d", __func__, p_cb->req_oob_type, p_cb->role); switch (p_cb->req_oob_type) { case SMP_OOB_BOTH: case SMP_OOB_LOCAL: SMP_TRACE_DEBUG("%s restore secret key", __func__) memcpy(p_cb->private_key, p_cb->sc_oob_data.loc_oob_data.private_key_used, BT_OCTET32_LEN); smp_process_private_key(p_cb); break; default: SMP_TRACE_DEBUG("%s create secret key anew", __func__); smp_set_state(SMP_STATE_PAIR_REQ_RSP); smp_decide_association_model(p_cb, NULL); break; } } /******************************************************************************* * * Function smp_process_private_key * * Description This function processes private key. * It calculates public key and notifies SM that private key / * public key pair is created. * * Returns void * ******************************************************************************/ void smp_process_private_key(tSMP_CB* p_cb) { Point public_key; BT_OCTET32 private_key; SMP_TRACE_DEBUG("%s", __func__); memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN); ECC_PointMult(&public_key, &(curve_p256.G), (uint32_t*)private_key, KEY_LENGTH_DWORDS_P256); memcpy(p_cb->loc_publ_key.x, public_key.x, BT_OCTET32_LEN); memcpy(p_cb->loc_publ_key.y, public_key.y, BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian(p_cb->private_key, "private", BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian(p_cb->loc_publ_key.x, "local public(x)", BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian(p_cb->loc_publ_key.y, "local public(y)", BT_OCTET32_LEN); p_cb->flags |= SMP_PAIR_FLAG_HAVE_LOCAL_PUBL_KEY; smp_sm_event(p_cb, SMP_LOC_PUBL_KEY_CRTD_EVT, NULL); } /******************************************************************************* * * Function smp_compute_dhkey * * Description The function: * - calculates a new public key using as input local private * key and peer public key; * - saves the new public key x-coordinate as DHKey. * * Returns void * ******************************************************************************/ void smp_compute_dhkey(tSMP_CB* p_cb) { Point peer_publ_key, new_publ_key; BT_OCTET32 private_key; SMP_TRACE_DEBUG("%s", __func__); memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN); memcpy(peer_publ_key.x, p_cb->peer_publ_key.x, BT_OCTET32_LEN); memcpy(peer_publ_key.y, p_cb->peer_publ_key.y, BT_OCTET32_LEN); ECC_PointMult(&new_publ_key, &peer_publ_key, (uint32_t*)private_key, KEY_LENGTH_DWORDS_P256); memcpy(p_cb->dhkey, new_publ_key.x, BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian(p_cb->dhkey, "Old DHKey", BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian(p_cb->private_key, "private", BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian(p_cb->peer_publ_key.x, "rem public(x)", BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian(p_cb->peer_publ_key.y, "rem public(y)", BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian(p_cb->dhkey, "Reverted DHKey", BT_OCTET32_LEN); } /** The function calculates and saves local commmitment in CB. */ void smp_calculate_local_commitment(tSMP_CB* p_cb) { uint8_t random_input; SMP_TRACE_DEBUG("%s", __func__); switch (p_cb->selected_association_model) { case SMP_MODEL_SEC_CONN_JUSTWORKS: case SMP_MODEL_SEC_CONN_NUM_COMP: if (p_cb->role == HCI_ROLE_MASTER) SMP_TRACE_WARNING( "local commitment calc on master is not expected " "for Just Works/Numeric Comparison models"); p_cb->commitment = crypto_toolbox::f4( p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, 0); break; case SMP_MODEL_SEC_CONN_PASSKEY_ENT: case SMP_MODEL_SEC_CONN_PASSKEY_DISP: random_input = smp_calculate_random_input(p_cb->local_random.data(), p_cb->round); p_cb->commitment = crypto_toolbox::f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, random_input); break; case SMP_MODEL_SEC_CONN_OOB: SMP_TRACE_WARNING( "local commitment calc is expected for OOB model BEFORE pairing"); p_cb->commitment = crypto_toolbox::f4( p_cb->loc_publ_key.x, p_cb->loc_publ_key.x, p_cb->local_random, 0); break; default: SMP_TRACE_ERROR("Association Model = %d is not used in LE SC", p_cb->selected_association_model); return; } SMP_TRACE_EVENT("local commitment calculation is completed"); } /** The function calculates peer commmitment */ Octet16 smp_calculate_peer_commitment(tSMP_CB* p_cb) { uint8_t ri; SMP_TRACE_DEBUG("%s", __func__); Octet16 output; switch (p_cb->selected_association_model) { case SMP_MODEL_SEC_CONN_JUSTWORKS: case SMP_MODEL_SEC_CONN_NUM_COMP: if (p_cb->role == HCI_ROLE_SLAVE) SMP_TRACE_WARNING( "peer commitment calc on slave is not expected " "for Just Works/Numeric Comparison models"); output = crypto_toolbox::f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, 0); break; case SMP_MODEL_SEC_CONN_PASSKEY_ENT: case SMP_MODEL_SEC_CONN_PASSKEY_DISP: ri = smp_calculate_random_input(p_cb->peer_random.data(), p_cb->round); output = crypto_toolbox::f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, ri); break; case SMP_MODEL_SEC_CONN_OOB: output = crypto_toolbox::f4(p_cb->peer_publ_key.x, p_cb->peer_publ_key.x, p_cb->peer_random, 0); break; default: SMP_TRACE_ERROR("Association Model = %d is not used in LE SC", p_cb->selected_association_model); return output; } SMP_TRACE_EVENT("peer commitment calculation is completed"); return output; } /******************************************************************************* * * Function smp_calculate_numeric_comparison_display_number * * Description The function calculates and saves number to display in * numeric comparison association mode. * * Returns void * ******************************************************************************/ void smp_calculate_numeric_comparison_display_number(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) { SMP_TRACE_DEBUG("%s", __func__); if (p_cb->role == HCI_ROLE_MASTER) { p_cb->number_to_display = crypto_toolbox::g2( p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, p_cb->rrand); } else { p_cb->number_to_display = crypto_toolbox::g2( p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, p_cb->rand); } if (p_cb->number_to_display >= (BTM_MAX_PASSKEY_VAL + 1)) { tSMP_INT_DATA smp_int_data; smp_int_data.status = SMP_PAIR_FAIL_UNKNOWN; p_cb->failure = SMP_PAIR_FAIL_UNKNOWN; smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &smp_int_data); return; } SMP_TRACE_EVENT("Number to display in numeric comparison = %d", p_cb->number_to_display); p_cb->cb_evt = SMP_NC_REQ_EVT; tSMP_INT_DATA smp_int_data; smp_int_data.passkey = p_cb->number_to_display; smp_sm_event(p_cb, SMP_SC_DSPL_NC_EVT, &smp_int_data); return; } /******************************************************************************* * * Function smp_calculate_local_dhkey_check * * Description The function calculates and saves local device DHKey check * value in CB. * Before doing this it calls * smp_calculate_f5_mackey_and_long_term_key(...). * to calculate MacKey and LTK. * MacKey is used in dhkey calculation. * * Returns void * ******************************************************************************/ void smp_calculate_local_dhkey_check(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) { uint8_t iocap[3], a[7], b[7]; SMP_TRACE_DEBUG("%s", __func__); smp_calculate_f5_mackey_and_long_term_key(p_cb); smp_collect_local_io_capabilities(iocap, p_cb); smp_collect_local_ble_address(a, p_cb); smp_collect_peer_ble_address(b, p_cb); p_cb->dhkey_check = crypto_toolbox::f6(p_cb->mac_key, p_cb->rand, p_cb->rrand, p_cb->peer_random, iocap, a, b); SMP_TRACE_EVENT("local DHKey check calculation is completed"); } /******************************************************************************* * * Function smp_calculate_peer_dhkey_check * * Description The function calculates peer device DHKey check value. * * Returns void * ******************************************************************************/ void smp_calculate_peer_dhkey_check(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) { uint8_t iocap[3], a[7], b[7]; tSMP_KEY key; SMP_TRACE_DEBUG("%s", __func__); smp_collect_peer_io_capabilities(iocap, p_cb); smp_collect_local_ble_address(a, p_cb); smp_collect_peer_ble_address(b, p_cb); Octet16 param_buf = crypto_toolbox::f6(p_cb->mac_key, p_cb->rrand, p_cb->rand, p_cb->local_random, iocap, b, a); SMP_TRACE_EVENT("peer DHKey check calculation is completed"); #if (SMP_DEBUG == TRUE) smp_debug_print_nbyte_little_endian(param_buf, "peer DHKey check", OCTET16_LEN); #endif key.key_type = SMP_KEY_TYPE_PEER_DHK_CHCK; key.p_data = param_buf.data(); tSMP_INT_DATA smp_int_data; smp_int_data.key = key; smp_sm_event(p_cb, SMP_SC_KEY_READY_EVT, &smp_int_data); } /******************************************************************************* * * Function smp_calculate_link_key_from_long_term_key * * Description The function calculates and saves BR/EDR link key derived * from LE SC LTK. * * Returns false if out of resources, true in other cases. * ******************************************************************************/ bool smp_calculate_link_key_from_long_term_key(tSMP_CB* p_cb) { tBTM_SEC_DEV_REC* p_dev_rec; RawAddress bda_for_lk; tBLE_ADDR_TYPE conn_addr_type; SMP_TRACE_DEBUG("%s", __func__); if (p_cb->id_addr_rcvd && p_cb->id_addr_type == BLE_ADDR_PUBLIC) { SMP_TRACE_DEBUG( "Use rcvd identity address as BD_ADDR of LK rcvd identity address"); bda_for_lk = p_cb->id_addr; } else if ((BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, bda_for_lk, &conn_addr_type)) && conn_addr_type == BLE_ADDR_PUBLIC) { SMP_TRACE_DEBUG("Use rcvd connection address as BD_ADDR of LK"); } else { SMP_TRACE_WARNING("Don't have peer public address to associate with LK"); return false; } p_dev_rec = btm_find_dev(p_cb->pairing_bda); if (p_dev_rec == NULL) { SMP_TRACE_ERROR("%s failed to find Security Record", __func__); return false; } Octet16 link_key = crypto_toolbox::ltk_to_link_key(p_cb->ltk, p_cb->key_derivation_h7_used); uint8_t link_key_type; if (btm_cb.security_mode == BTM_SEC_MODE_SC) { /* Secure Connections Only Mode */ link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256; } else if (controller_get_interface()->supports_secure_connections()) { /* both transports are SC capable */ if (p_cb->sec_level == SMP_SEC_AUTHENTICATED) link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256; else link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB_P_256; } else if (btm_cb.security_mode == BTM_SEC_MODE_SP) { /* BR/EDR transport is SSP capable */ if (p_cb->sec_level == SMP_SEC_AUTHENTICATED) link_key_type = BTM_LKEY_TYPE_AUTH_COMB; else link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB; } else { SMP_TRACE_ERROR("%s failed to update link_key. Sec Mode = %d, sm4 = 0x%02x", __func__, btm_cb.security_mode, p_dev_rec->sm4); return false; } link_key_type += BTM_LTK_DERIVED_LKEY_OFFSET; Octet16 notif_link_key = link_key; btm_sec_link_key_notification(bda_for_lk, notif_link_key, link_key_type); SMP_TRACE_EVENT("%s is completed", __func__); return true; } /** The function calculates and saves SC LTK derived from BR/EDR link key. */ bool smp_calculate_long_term_key_from_link_key(tSMP_CB* p_cb) { tBTM_SEC_DEV_REC* p_dev_rec; SMP_TRACE_DEBUG("%s", __func__); p_dev_rec = btm_find_dev(p_cb->pairing_bda); if (p_dev_rec == NULL) { SMP_TRACE_ERROR("%s failed to find Security Record", __func__); return false; } uint8_t br_link_key_type; br_link_key_type = BTM_SecGetDeviceLinkKeyType(p_cb->pairing_bda); if (br_link_key_type == BTM_LKEY_TYPE_IGNORE) { SMP_TRACE_ERROR("%s failed to retrieve BR link type", __func__); return false; } if ((br_link_key_type != BTM_LKEY_TYPE_AUTH_COMB_P_256) && (br_link_key_type != BTM_LKEY_TYPE_UNAUTH_COMB_P_256)) { SMP_TRACE_ERROR("%s LE SC LTK can't be derived from LK %d", __func__, br_link_key_type); return false; } Octet16 rev_link_key; std::reverse_copy(p_dev_rec->link_key.begin(), p_dev_rec->link_key.end(), rev_link_key.begin()); p_cb->ltk = crypto_toolbox::link_key_to_ltk(rev_link_key, p_cb->key_derivation_h7_used); p_cb->sec_level = (br_link_key_type == BTM_LKEY_TYPE_AUTH_COMB_P_256) ? SMP_SEC_AUTHENTICATED : SMP_SEC_UNAUTHENTICATE; SMP_TRACE_EVENT("%s is completed", __func__); return true; } /** * This function generates nonce. */ void smp_start_nonce_generation(tSMP_CB* p_cb) { SMP_TRACE_DEBUG("%s", __func__); btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { memcpy(p_cb->rand.data(), rand, BT_OCTET8_LEN); btsnd_hcic_ble_rand(Bind( [](tSMP_CB* p_cb, BT_OCTET8 rand) { memcpy(p_cb->rand.data() + 8, rand, BT_OCTET8_LEN); SMP_TRACE_DEBUG("%s round %d", __func__, p_cb->round); /* notifies SM that it has new nonce. */ smp_sm_event(p_cb, SMP_HAVE_LOC_NONCE_EVT, NULL); }, p_cb)); }, p_cb)); }