/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include // data structures #include // functions to test #define MMC_DISK_STATS_PATH "/sys/block/mmcblk0/stat" #define SDA_DISK_STATS_PATH "/sys/block/sda/stat" using namespace std; using namespace chrono; using namespace storaged_proto; namespace { void write_and_pause(uint32_t sec) { const char* path = "/cache/test"; int fd = open(path, O_WRONLY | O_CREAT, 0600); ASSERT_LT(-1, fd); char buffer[2048]; memset(buffer, 1, sizeof(buffer)); int loop_size = 100; for (int i = 0; i < loop_size; ++i) { ASSERT_EQ(2048, write(fd, buffer, sizeof(buffer))); } fsync(fd); close(fd); fd = open(path, O_RDONLY); ASSERT_LT(-1, fd); for (int i = 0; i < loop_size; ++i) { ASSERT_EQ(2048, read(fd, buffer, sizeof(buffer))); } close(fd); sleep(sec); } } // namespace // the return values of the tested functions should be the expected ones const char* DISK_STATS_PATH; TEST(storaged_test, retvals) { struct disk_stats stats; memset(&stats, 0, sizeof(struct disk_stats)); if (access(MMC_DISK_STATS_PATH, R_OK) >= 0) { DISK_STATS_PATH = MMC_DISK_STATS_PATH; } else if (access(SDA_DISK_STATS_PATH, R_OK) >= 0) { DISK_STATS_PATH = SDA_DISK_STATS_PATH; } else { return; } EXPECT_TRUE(parse_disk_stats(DISK_STATS_PATH, &stats)); struct disk_stats old_stats; memset(&old_stats, 0, sizeof(struct disk_stats)); old_stats = stats; const char wrong_path[] = "/this/is/wrong"; EXPECT_FALSE(parse_disk_stats(wrong_path, &stats)); // reading a wrong path should not damage the output structure EXPECT_EQ(stats, old_stats); } TEST(storaged_test, disk_stats) { struct disk_stats stats = {}; ASSERT_TRUE(parse_disk_stats(DISK_STATS_PATH, &stats)); // every entry of stats (except io_in_flight) should all be greater than 0 for (uint i = 0; i < DISK_STATS_SIZE; ++i) { if (i == 8) continue; // skip io_in_flight which can be 0 EXPECT_LT((uint64_t)0, *((uint64_t*)&stats + i)); } // accumulation of the increments should be the same with the overall increment struct disk_stats base = {}, tmp = {}, curr, acc = {}, inc[5]; for (uint i = 0; i < 5; ++i) { ASSERT_TRUE(parse_disk_stats(DISK_STATS_PATH, &curr)); if (i == 0) { base = curr; tmp = curr; sleep(5); continue; } get_inc_disk_stats(&tmp, &curr, &inc[i]); add_disk_stats(&inc[i], &acc); tmp = curr; write_and_pause(5); } struct disk_stats overall_inc = {}; get_inc_disk_stats(&base, &curr, &overall_inc); EXPECT_EQ(overall_inc, acc); } double mean(std::deque nums) { double sum = 0.0; for (uint32_t i : nums) { sum += i; } return sum / nums.size(); } double standard_deviation(std::deque nums) { double sum = 0.0; double avg = mean(nums); for (uint32_t i : nums) { sum += ((double)i - avg) * ((double)i - avg); } return sqrt(sum / nums.size()); } TEST(storaged_test, stream_stats) { // 100 random numbers std::vector data = {8147,9058,1270,9134,6324,975,2785,5469,9575,9649,1576,9706,9572,4854,8003,1419,4218,9157,7922,9595,6557,357,8491,9340,6787,7577,7431,3922,6555,1712,7060,318,2769,462,971,8235,6948,3171,9502,344,4387,3816,7655,7952,1869,4898,4456,6463,7094,7547,2760,6797,6551,1626,1190,4984,9597,3404,5853,2238,7513,2551,5060,6991,8909,9593,5472,1386,1493,2575,8407,2543,8143,2435,9293,3500,1966,2511,6160,4733,3517,8308,5853,5497,9172,2858,7572,7537,3804,5678,759,540,5308,7792,9340,1299,5688,4694,119,3371}; std::deque test_data; stream_stats sstats; for (uint32_t i : data) { test_data.push_back(i); sstats.add(i); EXPECT_EQ((int)standard_deviation(test_data), (int)sstats.get_std()); EXPECT_EQ((int)mean(test_data), (int)sstats.get_mean()); } for (uint32_t i : data) { test_data.pop_front(); sstats.evict(i); EXPECT_EQ((int)standard_deviation(test_data), (int)sstats.get_std()); EXPECT_EQ((int)mean(test_data), (int)sstats.get_mean()); } // some real data std::vector another_data = {113875,81620,103145,28327,86855,207414,96526,52567,28553,250311}; test_data.clear(); uint32_t window_size = 2; uint32_t idx; stream_stats sstats1; for (idx = 0; idx < window_size; ++idx) { test_data.push_back(another_data[idx]); sstats1.add(another_data[idx]); } EXPECT_EQ((int)standard_deviation(test_data), (int)sstats1.get_std()); EXPECT_EQ((int)mean(test_data), (int)sstats1.get_mean()); for (;idx < another_data.size(); ++idx) { test_data.pop_front(); sstats1.evict(another_data[idx - window_size]); test_data.push_back(another_data[idx]); sstats1.add(another_data[idx]); EXPECT_EQ((int)standard_deviation(test_data), (int)sstats1.get_std()); EXPECT_EQ((int)mean(test_data), (int)sstats1.get_mean()); } } struct disk_perf disk_perf_multiply(struct disk_perf perf, double mul) { struct disk_perf retval; retval.read_perf = (double)perf.read_perf * mul; retval.read_ios = (double)perf.read_ios * mul; retval.write_perf = (double)perf.write_perf * mul; retval.write_ios = (double)perf.write_ios * mul; retval.queue = (double)perf.queue * mul; return retval; } struct disk_stats disk_stats_add(struct disk_stats stats1, struct disk_stats stats2) { struct disk_stats retval; retval.read_ios = stats1.read_ios + stats2.read_ios; retval.read_merges = stats1.read_merges + stats2.read_merges; retval.read_sectors = stats1.read_sectors + stats2.read_sectors; retval.read_ticks = stats1.read_ticks + stats2.read_ticks; retval.write_ios = stats1.write_ios + stats2.write_ios; retval.write_merges = stats1.write_merges + stats2.write_merges; retval.write_sectors = stats1.write_sectors + stats2.write_sectors; retval.write_ticks = stats1.write_ticks + stats2.write_ticks; retval.io_in_flight = stats1.io_in_flight + stats2.io_in_flight; retval.io_ticks = stats1.io_ticks + stats2.io_ticks; retval.io_in_queue = stats1.io_in_queue + stats2.io_in_queue; retval.end_time = stats1.end_time + stats2.end_time; return retval; } void expect_increasing(struct disk_stats stats1, struct disk_stats stats2) { EXPECT_LE(stats1.read_ios, stats2.read_ios); EXPECT_LE(stats1.read_merges, stats2.read_merges); EXPECT_LE(stats1.read_sectors, stats2.read_sectors); EXPECT_LE(stats1.read_ticks, stats2.read_ticks); EXPECT_LE(stats1.write_ios, stats2.write_ios); EXPECT_LE(stats1.write_merges, stats2.write_merges); EXPECT_LE(stats1.write_sectors, stats2.write_sectors); EXPECT_LE(stats1.write_ticks, stats2.write_ticks); EXPECT_LE(stats1.io_ticks, stats2.io_ticks); EXPECT_LE(stats1.io_in_queue, stats2.io_in_queue); EXPECT_TRUE(stats1.read_ios < stats2.read_ios || stats1.read_merges < stats2.read_merges || stats1.read_sectors < stats2.read_sectors || stats1.read_ticks < stats2.read_ticks || stats1.write_ios < stats2.write_ios || stats1.write_merges < stats2.write_merges || stats1.write_sectors < stats2.write_sectors || stats1.write_ticks < stats2.write_ticks || stats1.io_ticks < stats2.io_ticks || stats1.io_in_queue < stats2.io_in_queue); } TEST(storaged_test, disk_stats_monitor) { using android::hardware::health::V2_0::get_health_service; auto healthService = get_health_service(); // asserting that there is one file for diskstats ASSERT_TRUE(healthService != nullptr || access(MMC_DISK_STATS_PATH, R_OK) >= 0 || access(SDA_DISK_STATS_PATH, R_OK) >= 0); // testing if detect() will return the right value disk_stats_monitor dsm_detect{healthService}; ASSERT_TRUE(dsm_detect.enabled()); // feed monitor with constant perf data for io perf baseline // using constant perf is reasonable since the functionality of stream_stats // has already been tested struct disk_perf norm_perf = { .read_perf = 10 * 1024, .read_ios = 50, .write_perf = 5 * 1024, .write_ios = 25, .queue = 5 }; std::random_device rd; std::mt19937 gen(rd()); std::uniform_real_distribution<> rand(0.8, 1.2); for (uint i = 0; i < dsm_detect.mWindow; ++i) { struct disk_perf perf = disk_perf_multiply(norm_perf, rand(gen)); dsm_detect.add(&perf); dsm_detect.mBuffer.push(perf); EXPECT_EQ(dsm_detect.mBuffer.size(), (uint64_t)i + 1); } dsm_detect.mValid = true; dsm_detect.update_mean(); dsm_detect.update_std(); for (double i = 0; i < 2 * dsm_detect.mSigma; i += 0.5) { struct disk_perf test_perf; struct disk_perf test_mean = dsm_detect.mMean; struct disk_perf test_std = dsm_detect.mStd; test_perf.read_perf = (double)test_mean.read_perf - i * test_std.read_perf; test_perf.read_ios = (double)test_mean.read_ios - i * test_std.read_ios; test_perf.write_perf = (double)test_mean.write_perf - i * test_std.write_perf; test_perf.write_ios = (double)test_mean.write_ios - i * test_std.write_ios; test_perf.queue = (double)test_mean.queue + i * test_std.queue; EXPECT_EQ((i > dsm_detect.mSigma), dsm_detect.detect(&test_perf)); } // testing if stalled disk_stats can be correctly accumulated in the monitor disk_stats_monitor dsm_acc{healthService}; struct disk_stats norm_inc = { .read_ios = 200, .read_merges = 0, .read_sectors = 200, .read_ticks = 200, .write_ios = 100, .write_merges = 0, .write_sectors = 100, .write_ticks = 100, .io_in_flight = 0, .io_ticks = 600, .io_in_queue = 300, .start_time = 0, .end_time = 100, .counter = 0, .io_avg = 0 }; struct disk_stats stall_inc = { .read_ios = 200, .read_merges = 0, .read_sectors = 20, .read_ticks = 200, .write_ios = 100, .write_merges = 0, .write_sectors = 10, .write_ticks = 100, .io_in_flight = 0, .io_ticks = 600, .io_in_queue = 1200, .start_time = 0, .end_time = 100, .counter = 0, .io_avg = 0 }; struct disk_stats stats_base = {}; int loop_size = 100; for (int i = 0; i < loop_size; ++i) { stats_base = disk_stats_add(stats_base, norm_inc); dsm_acc.update(&stats_base); EXPECT_EQ(dsm_acc.mValid, (uint32_t)i >= dsm_acc.mWindow); EXPECT_FALSE(dsm_acc.mStall); } stats_base = disk_stats_add(stats_base, stall_inc); dsm_acc.update(&stats_base); EXPECT_TRUE(dsm_acc.mValid); EXPECT_TRUE(dsm_acc.mStall); for (int i = 0; i < 10; ++i) { stats_base = disk_stats_add(stats_base, norm_inc); dsm_acc.update(&stats_base); EXPECT_TRUE(dsm_acc.mValid); EXPECT_FALSE(dsm_acc.mStall); } struct disk_stats stats_prev = {}; loop_size = 10; write_and_pause(5); for (int i = 0; i < loop_size; ++i) { dsm_detect.update(); expect_increasing(stats_prev, dsm_detect.mPrevious); stats_prev = dsm_detect.mPrevious; write_and_pause(5); } } TEST(storaged_test, storage_info_t) { storage_info_t si; time_point tp; time_point stp; // generate perf history [least_recent ------> most recent] // day 1: 5, 10, 15, 20 | daily average 12 // day 2: 25, 30, 35, 40, 45 | daily average 35 // day 3: 50, 55, 60, 65, 70 | daily average 60 // day 4: 75, 80, 85, 90, 95 | daily average 85 // day 5: 100, 105, 110, 115, | daily average 107 // day 6: 120, 125, 130, 135, 140 | daily average 130 // day 7: 145, 150, 155, 160, 165 | daily average 155 // end of week 1: | weekly average 83 // day 1: 170, 175, 180, 185, 190 | daily average 180 // day 2: 195, 200, 205, 210, 215 | daily average 205 // day 3: 220, 225, 230, 235 | daily average 227 // day 4: 240, 245, 250, 255, 260 | daily average 250 // day 5: 265, 270, 275, 280, 285 | daily average 275 // day 6: 290, 295, 300, 305, 310 | daily average 300 // day 7: 315, 320, 325, 330, 335 | daily average 325 // end of week 2: | weekly average 251 // day 1: 340, 345, 350, 355 | daily average 347 // day 2: 360, 365, 370, 375 si.day_start_tp = {}; for (int i = 0; i < 75; i++) { tp += hours(5); stp = {}; stp += duration_cast(tp.time_since_epoch()); si.update_perf_history((i + 1) * 5, stp); } vector history = si.get_perf_history(); EXPECT_EQ(history.size(), 66UL); size_t i = 0; EXPECT_EQ(history[i++], 4); EXPECT_EQ(history[i++], 7); // 7 days EXPECT_EQ(history[i++], 52); // 52 weeks // last 24 hours EXPECT_EQ(history[i++], 375); EXPECT_EQ(history[i++], 370); EXPECT_EQ(history[i++], 365); EXPECT_EQ(history[i++], 360); // daily average of last 7 days EXPECT_EQ(history[i++], 347); EXPECT_EQ(history[i++], 325); EXPECT_EQ(history[i++], 300); EXPECT_EQ(history[i++], 275); EXPECT_EQ(history[i++], 250); EXPECT_EQ(history[i++], 227); EXPECT_EQ(history[i++], 205); // weekly average of last 52 weeks EXPECT_EQ(history[i++], 251); EXPECT_EQ(history[i++], 83); for (; i < history.size(); i++) { EXPECT_EQ(history[i], 0); } } TEST(storaged_test, storage_info_t_proto) { storage_info_t si; si.day_start_tp = {}; IOPerfHistory proto; proto.set_nr_samples(10); proto.set_day_start_sec(0); si.load_perf_history_proto(proto); // Skip ahead > 1 day, with no data points in the previous day. time_point stp; stp += hours(36); si.update_perf_history(100, stp); vector history = si.get_perf_history(); EXPECT_EQ(history.size(), 63UL); EXPECT_EQ(history[0], 1); EXPECT_EQ(history[1], 7); EXPECT_EQ(history[2], 52); EXPECT_EQ(history[3], 100); for (size_t i = 4; i < history.size(); i++) { EXPECT_EQ(history[i], 0); } } TEST(storaged_test, uid_monitor) { uid_monitor uidm; auto& io_history = uidm.io_history(); io_history[200] = { .start_ts = 100, .entries = { { "app1", { .user_id = 0, .uid_ios.bytes[WRITE][FOREGROUND][CHARGER_ON] = 1000, } }, { "app2", { .user_id = 0, .uid_ios.bytes[READ][FOREGROUND][CHARGER_OFF] = 1000, } }, { "app1", { .user_id = 1, .uid_ios.bytes[WRITE][FOREGROUND][CHARGER_ON] = 1000, .uid_ios.bytes[READ][FOREGROUND][CHARGER_ON] = 1000, } }, }, }; io_history[300] = { .start_ts = 200, .entries = { { "app1", { .user_id = 1, .uid_ios.bytes[WRITE][FOREGROUND][CHARGER_OFF] = 1000, } }, { "app3", { .user_id = 0, .uid_ios.bytes[READ][BACKGROUND][CHARGER_OFF] = 1000, } }, }, }; unordered_map protos; uidm.update_uid_io_proto(&protos); EXPECT_EQ(protos.size(), 2U); EXPECT_EQ(protos.count(0), 1UL); EXPECT_EQ(protos.count(1), 1UL); EXPECT_EQ(protos[0].uid_io_usage().uid_io_items_size(), 2); const UidIOItem& user_0_item_0 = protos[0].uid_io_usage().uid_io_items(0); EXPECT_EQ(user_0_item_0.end_ts(), 200UL); EXPECT_EQ(user_0_item_0.records().start_ts(), 100UL); EXPECT_EQ(user_0_item_0.records().entries_size(), 2); EXPECT_EQ(user_0_item_0.records().entries(0).uid_name(), "app1"); EXPECT_EQ(user_0_item_0.records().entries(0).user_id(), 0UL); EXPECT_EQ(user_0_item_0.records().entries(0).uid_io().wr_fg_chg_on(), 1000UL); EXPECT_EQ(user_0_item_0.records().entries(1).uid_name(), "app2"); EXPECT_EQ(user_0_item_0.records().entries(1).user_id(), 0UL); EXPECT_EQ(user_0_item_0.records().entries(1).uid_io().rd_fg_chg_off(), 1000UL); const UidIOItem& user_0_item_1 = protos[0].uid_io_usage().uid_io_items(1); EXPECT_EQ(user_0_item_1.end_ts(), 300UL); EXPECT_EQ(user_0_item_1.records().start_ts(), 200UL); EXPECT_EQ(user_0_item_1.records().entries_size(), 1); EXPECT_EQ(user_0_item_1.records().entries(0).uid_name(), "app3"); EXPECT_EQ(user_0_item_1.records().entries(0).user_id(), 0UL); EXPECT_EQ(user_0_item_1.records().entries(0).uid_io().rd_bg_chg_off(), 1000UL); EXPECT_EQ(protos[1].uid_io_usage().uid_io_items_size(), 2); const UidIOItem& user_1_item_0 = protos[1].uid_io_usage().uid_io_items(0); EXPECT_EQ(user_1_item_0.end_ts(), 200UL); EXPECT_EQ(user_1_item_0.records().start_ts(), 100UL); EXPECT_EQ(user_1_item_0.records().entries_size(), 1); EXPECT_EQ(user_1_item_0.records().entries(0).uid_name(), "app1"); EXPECT_EQ(user_1_item_0.records().entries(0).user_id(), 1UL); EXPECT_EQ(user_1_item_0.records().entries(0).uid_io().rd_fg_chg_on(), 1000UL); EXPECT_EQ(user_1_item_0.records().entries(0).uid_io().wr_fg_chg_on(), 1000UL); const UidIOItem& user_1_item_1 = protos[1].uid_io_usage().uid_io_items(1); EXPECT_EQ(user_1_item_1.end_ts(), 300UL); EXPECT_EQ(user_1_item_1.records().start_ts(), 200UL); EXPECT_EQ(user_1_item_1.records().entries_size(), 1); EXPECT_EQ(user_1_item_1.records().entries(0).uid_name(), "app1"); EXPECT_EQ(user_1_item_1.records().entries(0).user_id(), 1UL); EXPECT_EQ(user_1_item_1.records().entries(0).uid_io().wr_fg_chg_off(), 1000UL); io_history.clear(); io_history[300] = { .start_ts = 200, .entries = { { "app1", { .user_id = 0, .uid_ios.bytes[WRITE][FOREGROUND][CHARGER_ON] = 1000, } }, }, }; io_history[400] = { .start_ts = 300, .entries = { { "app1", { .user_id = 0, .uid_ios.bytes[WRITE][FOREGROUND][CHARGER_ON] = 1000, } }, }, }; uidm.load_uid_io_proto(0, protos[0].uid_io_usage()); uidm.load_uid_io_proto(1, protos[1].uid_io_usage()); EXPECT_EQ(io_history.size(), 3UL); EXPECT_EQ(io_history.count(200), 1UL); EXPECT_EQ(io_history.count(300), 1UL); EXPECT_EQ(io_history.count(400), 1UL); EXPECT_EQ(io_history[200].start_ts, 100UL); const vector& entries_0 = io_history[200].entries; EXPECT_EQ(entries_0.size(), 3UL); EXPECT_EQ(entries_0[0].name, "app1"); EXPECT_EQ(entries_0[0].ios.user_id, 0UL); EXPECT_EQ(entries_0[0].ios.uid_ios.bytes[WRITE][FOREGROUND][CHARGER_ON], 1000UL); EXPECT_EQ(entries_0[1].name, "app2"); EXPECT_EQ(entries_0[1].ios.user_id, 0UL); EXPECT_EQ(entries_0[1].ios.uid_ios.bytes[READ][FOREGROUND][CHARGER_OFF], 1000UL); EXPECT_EQ(entries_0[2].name, "app1"); EXPECT_EQ(entries_0[2].ios.user_id, 1UL); EXPECT_EQ(entries_0[2].ios.uid_ios.bytes[WRITE][FOREGROUND][CHARGER_ON], 1000UL); EXPECT_EQ(entries_0[2].ios.uid_ios.bytes[READ][FOREGROUND][CHARGER_ON], 1000UL); EXPECT_EQ(io_history[300].start_ts, 200UL); const vector& entries_1 = io_history[300].entries; EXPECT_EQ(entries_1.size(), 3UL); EXPECT_EQ(entries_1[0].name, "app1"); EXPECT_EQ(entries_1[0].ios.user_id, 0UL); EXPECT_EQ(entries_1[0].ios.uid_ios.bytes[WRITE][FOREGROUND][CHARGER_ON], 1000UL); EXPECT_EQ(entries_1[1].name, "app3"); EXPECT_EQ(entries_1[1].ios.user_id, 0UL); EXPECT_EQ(entries_1[1].ios.uid_ios.bytes[READ][BACKGROUND][CHARGER_OFF], 1000UL); EXPECT_EQ(entries_1[2].name, "app1"); EXPECT_EQ(entries_1[2].ios.user_id, 1UL); EXPECT_EQ(entries_1[2].ios.uid_ios.bytes[WRITE][FOREGROUND][CHARGER_OFF], 1000UL); EXPECT_EQ(io_history[400].start_ts, 300UL); const vector& entries_2 = io_history[400].entries; EXPECT_EQ(entries_2.size(), 1UL); EXPECT_EQ(entries_2[0].name, "app1"); EXPECT_EQ(entries_2[0].ios.user_id, 0UL); EXPECT_EQ(entries_2[0].ios.uid_ios.bytes[WRITE][FOREGROUND][CHARGER_ON], 1000UL); map merged_entries_0 = merge_io_usage(entries_0); EXPECT_EQ(merged_entries_0.size(), 2UL); EXPECT_EQ(merged_entries_0.count("app1"), 1UL); EXPECT_EQ(merged_entries_0.count("app2"), 1UL); EXPECT_EQ(merged_entries_0["app1"].bytes[READ][FOREGROUND][CHARGER_ON], 1000UL); EXPECT_EQ(merged_entries_0["app1"].bytes[WRITE][FOREGROUND][CHARGER_ON], 2000UL); EXPECT_EQ(merged_entries_0["app2"].bytes[READ][FOREGROUND][CHARGER_OFF], 1000UL); map merged_entries_1 = merge_io_usage(entries_1); EXPECT_EQ(merged_entries_1.size(), 2UL); EXPECT_EQ(merged_entries_1.count("app1"), 1UL); EXPECT_EQ(merged_entries_1.count("app3"), 1UL); EXPECT_EQ(merged_entries_1["app1"].bytes[WRITE][FOREGROUND][CHARGER_OFF], 1000UL); EXPECT_EQ(merged_entries_1["app1"].bytes[WRITE][FOREGROUND][CHARGER_ON], 1000UL); EXPECT_EQ(merged_entries_1["app3"].bytes[READ][BACKGROUND][CHARGER_OFF], 1000UL); map merged_entries_2 = merge_io_usage(entries_2); EXPECT_EQ(merged_entries_2.size(), 1UL); EXPECT_EQ(merged_entries_2.count("app1"), 1UL); EXPECT_EQ(merged_entries_2["app1"].bytes[WRITE][FOREGROUND][CHARGER_ON], 1000UL); uidm.clear_user_history(0); EXPECT_EQ(io_history.size(), 2UL); EXPECT_EQ(io_history.count(200), 1UL); EXPECT_EQ(io_history.count(300), 1UL); EXPECT_EQ(io_history[200].entries.size(), 1UL); EXPECT_EQ(io_history[300].entries.size(), 1UL); uidm.clear_user_history(1); EXPECT_EQ(io_history.size(), 0UL); } TEST(storaged_test, load_uid_io_proto) { uid_monitor uidm; auto& io_history = uidm.io_history(); static const uint64_t kProtoTime = 200; io_history[kProtoTime] = { .start_ts = 100, .entries = { { "app1", { .user_id = 0, .uid_ios.bytes[WRITE][FOREGROUND][CHARGER_ON] = 1000, } }, { "app2", { .user_id = 0, .uid_ios.bytes[READ][FOREGROUND][CHARGER_OFF] = 2000, } }, { "app3", { .user_id = 0, .uid_ios.bytes[READ][FOREGROUND][CHARGER_OFF] = 3000, } }, }, }; unordered_map protos; uidm.update_uid_io_proto(&protos); ASSERT_EQ(protos.size(), size_t(1)); // Loading the same proto many times should not add duplicate entries. UidIOUsage user_0 = protos[0].uid_io_usage(); for (size_t i = 0; i < 10000; i++) { uidm.load_uid_io_proto(0, user_0); } ASSERT_EQ(io_history.size(), size_t(1)); ASSERT_EQ(io_history[kProtoTime].entries.size(), size_t(3)); // Create duplicate entries until we go over the limit. auto record = io_history[kProtoTime]; io_history.clear(); for (size_t i = 0; i < uid_monitor::MAX_UID_RECORDS_SIZE * 2; i++) { if (i == kProtoTime) { continue; } io_history[i] = record; } ASSERT_GT(io_history.size(), size_t(uid_monitor::MAX_UID_RECORDS_SIZE)); // After loading, the history should be truncated. for (auto& item : *user_0.mutable_uid_io_items()) { item.set_end_ts(io_history.size()); } uidm.load_uid_io_proto(0, user_0); ASSERT_LE(io_history.size(), size_t(uid_monitor::MAX_UID_RECORDS_SIZE)); }