/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include namespace android::audio_utils { void Balance::setChannelMask(audio_channel_mask_t channelMask) { channelMask &= ~ AUDIO_CHANNEL_HAPTIC_ALL; if (!audio_is_output_channel(channelMask) // invalid mask || mChannelMask == channelMask) { // no need to do anything return; } mChannelMask = channelMask; mChannelCount = audio_channel_count_from_out_mask(channelMask); // save mBalance into balance for later restoring, then reset const float balance = mBalance; mBalance = 0.f; // reset mVolumes mVolumes.resize(mChannelCount); std::fill(mVolumes.begin(), mVolumes.end(), 1.f); // reset ramping variables mRampBalance = 0.f; mRampVolumes.clear(); if (audio_channel_mask_get_representation(mChannelMask) == AUDIO_CHANNEL_REPRESENTATION_INDEX) { mSides.clear(); // mSides unused for channel index masks. setBalance(balance); // recompute balance return; } // Implementation detail (may change): // For implementation speed, we precompute the side (left, right, center), // which is a fixed geometrical constant for a given channel mask. // This assumes that the channel mask does not change frequently. // // For the channel mask spec, see system/media/audio/include/system/audio-base.h. // // The side is: 0 = left, 1 = right, 2 = center. static constexpr int sideFromChannel[] = { 0, // AUDIO_CHANNEL_OUT_FRONT_LEFT = 0x1u, 1, // AUDIO_CHANNEL_OUT_FRONT_RIGHT = 0x2u, 2, // AUDIO_CHANNEL_OUT_FRONT_CENTER = 0x4u, 2, // AUDIO_CHANNEL_OUT_LOW_FREQUENCY = 0x8u, 0, // AUDIO_CHANNEL_OUT_BACK_LEFT = 0x10u, 1, // AUDIO_CHANNEL_OUT_BACK_RIGHT = 0x20u, 0, // AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER = 0x40u, 1, // AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER = 0x80u, 2, // AUDIO_CHANNEL_OUT_BACK_CENTER = 0x100u, 0, // AUDIO_CHANNEL_OUT_SIDE_LEFT = 0x200u, 1, // AUDIO_CHANNEL_OUT_SIDE_RIGHT = 0x400u, 2, // AUDIO_CHANNEL_OUT_TOP_CENTER = 0x800u, 0, // AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT = 0x1000u, 2, // AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER = 0x2000u, 1, // AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT = 0x4000u, 0, // AUDIO_CHANNEL_OUT_TOP_BACK_LEFT = 0x8000u, 2, // AUDIO_CHANNEL_OUT_TOP_BACK_CENTER = 0x10000u, 1, // AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT = 0x20000u, 0, // AUDIO_CHANNEL_OUT_TOP_SIDE_LEFT = 0x40000u, 1, // AUDIO_CHANNEL_OUT_TOP_SIDE_RIGHT = 0x80000u, }; mSides.resize(mChannelCount); for (unsigned i = 0, channel = channelMask; channel != 0; ++i) { const int index = __builtin_ctz(channel); if (index < std::size(sideFromChannel)) { mSides[i] = sideFromChannel[index]; } else { mSides[i] = 2; // consider center } channel &= ~(1 << index); } setBalance(balance); // recompute balance } void Balance::process(float *buffer, size_t frames) { if (mBalance == 0.f || mChannelCount < 2) { return; } if (mRamp) { if (mRampVolumes.size() != mVolumes.size()) { // If mRampVolumes is empty, we do not ramp in this process() but directly // apply the existing mVolumes. We save the balance and volume state here // and fall through to non-ramping code below. The next process() will ramp if needed. mRampBalance = mBalance; mRampVolumes = mVolumes; } else if (mRampBalance != mBalance) { if (frames > 0) { std::vector mDeltas(mVolumes.size()); const float r = 1.f / frames; for (size_t j = 0; j < mChannelCount; ++j) { mDeltas[j] = (mVolumes[j] - mRampVolumes[j]) * r; } // ramped balance for (size_t i = 0; i < frames; ++i) { const float findex = i; for (size_t j = 0; j < mChannelCount; ++j) { // better precision: delta * i *buffer++ *= mRampVolumes[j] + mDeltas[j] * findex; } } } mRampBalance = mBalance; mRampVolumes = mVolumes; return; } // fall through } // non-ramped balance for (size_t i = 0; i < frames; ++i) { for (size_t j = 0; j < mChannelCount; ++j) { *buffer++ *= mVolumes[j]; } } } void Balance::computeStereoBalance(float balance, float *left, float *right) const { if (balance > 0.f) { *left = mCurve(1.f - balance); *right = 1.f; } else if (balance < 0.f) { *left = 1.f; *right = mCurve(1.f + balance); } else { *left = 1.f; *right = 1.f; } // Functionally: // *left = balance > 0.f ? mCurve(1.f - balance) : 1.f; // *right = balance < 0.f ? mCurve(1.f + balance) : 1.f; } std::string Balance::toString() const { std::stringstream ss; ss << "balance " << mBalance << " channelCount " << mChannelCount << " volumes:"; for (float volume : mVolumes) { ss << " " << volume; } // we do not show mSides, which is only valid for channel position masks. return ss.str(); } void Balance::setBalance(float balance) { if (mBalance == balance // no change || isnan(balance) || fabs(balance) > 1.f) { // balance out of range return; } mBalance = balance; if (mChannelCount < 2) { // if channel count is 1, mVolumes[0] is already set to 1.f return; // and if channel count < 2, we don't do anything in process(). } // Handle the common cases: // stereo and channel index masks only affect the first two channels as left and right. if (mChannelMask == AUDIO_CHANNEL_OUT_STEREO || audio_channel_mask_get_representation(mChannelMask) == AUDIO_CHANNEL_REPRESENTATION_INDEX) { computeStereoBalance(balance, &mVolumes[0], &mVolumes[1]); return; } // For position masks with more than 2 channels, we consider which side the // speaker position is on to figure the volume used. float balanceVolumes[3]; // left, right, center computeStereoBalance(balance, &balanceVolumes[0], &balanceVolumes[1]); balanceVolumes[2] = 1.f; // center TODO: consider center scaling. for (size_t i = 0; i < mVolumes.size(); ++i) { mVolumes[i] = balanceVolumes[mSides[i]]; } } } // namespace android::audio_utils