• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
15 #define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
16 
17 #include "MCTargetDesc/X86BaseInfo.h"
18 #include "X86InstrFMA3Info.h"
19 #include "X86RegisterInfo.h"
20 #include "llvm/CodeGen/ISDOpcodes.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include <vector>
23 
24 #define GET_INSTRINFO_HEADER
25 #include "X86GenInstrInfo.inc"
26 
27 namespace llvm {
28 class MachineInstrBuilder;
29 class X86RegisterInfo;
30 class X86Subtarget;
31 
32 namespace X86 {
33 
34 enum AsmComments {
35   // For instr that was compressed from EVEX to VEX.
36   AC_EVEX_2_VEX = MachineInstr::TAsmComments
37 };
38 
39 // X86 specific condition code. These correspond to X86_*_COND in
40 // X86InstrInfo.td. They must be kept in synch.
41 enum CondCode {
42   COND_A = 0,
43   COND_AE = 1,
44   COND_B = 2,
45   COND_BE = 3,
46   COND_E = 4,
47   COND_G = 5,
48   COND_GE = 6,
49   COND_L = 7,
50   COND_LE = 8,
51   COND_NE = 9,
52   COND_NO = 10,
53   COND_NP = 11,
54   COND_NS = 12,
55   COND_O = 13,
56   COND_P = 14,
57   COND_S = 15,
58   LAST_VALID_COND = COND_S,
59 
60   // Artificial condition codes. These are used by AnalyzeBranch
61   // to indicate a block terminated with two conditional branches that together
62   // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
63   // which can't be represented on x86 with a single condition. These
64   // are never used in MachineInstrs and are inverses of one another.
65   COND_NE_OR_P,
66   COND_E_AND_NP,
67 
68   COND_INVALID
69 };
70 
71 // Turn condition code into conditional branch opcode.
72 unsigned GetCondBranchFromCond(CondCode CC);
73 
74 /// Return a pair of condition code for the given predicate and whether
75 /// the instruction operands should be swaped to match the condition code.
76 std::pair<CondCode, bool> getX86ConditionCode(CmpInst::Predicate Predicate);
77 
78 /// Return a set opcode for the given condition and whether it has
79 /// a memory operand.
80 unsigned getSETFromCond(CondCode CC, bool HasMemoryOperand = false);
81 
82 /// Return a cmov opcode for the given condition, register size in
83 /// bytes, and operand type.
84 unsigned getCMovFromCond(CondCode CC, unsigned RegBytes,
85                          bool HasMemoryOperand = false);
86 
87 // Turn jCC opcode into condition code.
88 CondCode getCondFromBranchOpc(unsigned Opc);
89 
90 // Turn setCC opcode into condition code.
91 CondCode getCondFromSETOpc(unsigned Opc);
92 
93 // Turn CMov opcode into condition code.
94 CondCode getCondFromCMovOpc(unsigned Opc);
95 
96 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
97 /// e.g. turning COND_E to COND_NE.
98 CondCode GetOppositeBranchCondition(CondCode CC);
99 
100 /// Get the VPCMP immediate for the given condition.
101 unsigned getVPCMPImmForCond(ISD::CondCode CC);
102 
103 /// Get the VPCMP immediate if the opcodes are swapped.
104 unsigned getSwappedVPCMPImm(unsigned Imm);
105 
106 /// Get the VPCOM immediate if the opcodes are swapped.
107 unsigned getSwappedVPCOMImm(unsigned Imm);
108 
109 } // namespace X86
110 
111 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
112 /// a reference to a stub for a global, not the global itself.
isGlobalStubReference(unsigned char TargetFlag)113 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
114   switch (TargetFlag) {
115   case X86II::MO_DLLIMPORT:               // dllimport stub.
116   case X86II::MO_GOTPCREL:                // rip-relative GOT reference.
117   case X86II::MO_GOT:                     // normal GOT reference.
118   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
119   case X86II::MO_DARWIN_NONLAZY:          // Normal $non_lazy_ptr ref.
120     return true;
121   default:
122     return false;
123   }
124 }
125 
126 /// isGlobalRelativeToPICBase - Return true if the specified global value
127 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
128 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
isGlobalRelativeToPICBase(unsigned char TargetFlag)129 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
130   switch (TargetFlag) {
131   case X86II::MO_GOTOFF:                  // isPICStyleGOT: local global.
132   case X86II::MO_GOT:                     // isPICStyleGOT: other global.
133   case X86II::MO_PIC_BASE_OFFSET:         // Darwin local global.
134   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
135   case X86II::MO_TLVP:                    // ??? Pretty sure..
136     return true;
137   default:
138     return false;
139   }
140 }
141 
isScale(const MachineOperand & MO)142 inline static bool isScale(const MachineOperand &MO) {
143   return MO.isImm() && (MO.getImm() == 1 || MO.getImm() == 2 ||
144                         MO.getImm() == 4 || MO.getImm() == 8);
145 }
146 
isLeaMem(const MachineInstr & MI,unsigned Op)147 inline static bool isLeaMem(const MachineInstr &MI, unsigned Op) {
148   if (MI.getOperand(Op).isFI())
149     return true;
150   return Op + X86::AddrSegmentReg <= MI.getNumOperands() &&
151          MI.getOperand(Op + X86::AddrBaseReg).isReg() &&
152          isScale(MI.getOperand(Op + X86::AddrScaleAmt)) &&
153          MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
154          (MI.getOperand(Op + X86::AddrDisp).isImm() ||
155           MI.getOperand(Op + X86::AddrDisp).isGlobal() ||
156           MI.getOperand(Op + X86::AddrDisp).isCPI() ||
157           MI.getOperand(Op + X86::AddrDisp).isJTI());
158 }
159 
isMem(const MachineInstr & MI,unsigned Op)160 inline static bool isMem(const MachineInstr &MI, unsigned Op) {
161   if (MI.getOperand(Op).isFI())
162     return true;
163   return Op + X86::AddrNumOperands <= MI.getNumOperands() &&
164          MI.getOperand(Op + X86::AddrSegmentReg).isReg() && isLeaMem(MI, Op);
165 }
166 
167 class X86InstrInfo final : public X86GenInstrInfo {
168   X86Subtarget &Subtarget;
169   const X86RegisterInfo RI;
170 
171   virtual void anchor();
172 
173   bool AnalyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
174                          MachineBasicBlock *&FBB,
175                          SmallVectorImpl<MachineOperand> &Cond,
176                          SmallVectorImpl<MachineInstr *> &CondBranches,
177                          bool AllowModify) const;
178 
179 public:
180   explicit X86InstrInfo(X86Subtarget &STI);
181 
182   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
183   /// such, whenever a client has an instance of instruction info, it should
184   /// always be able to get register info as well (through this method).
185   ///
getRegisterInfo()186   const X86RegisterInfo &getRegisterInfo() const { return RI; }
187 
188   /// Returns the stack pointer adjustment that happens inside the frame
189   /// setup..destroy sequence (e.g. by pushes, or inside the callee).
getFrameAdjustment(const MachineInstr & I)190   int64_t getFrameAdjustment(const MachineInstr &I) const {
191     assert(isFrameInstr(I));
192     if (isFrameSetup(I))
193       return I.getOperand(2).getImm();
194     return I.getOperand(1).getImm();
195   }
196 
197   /// Sets the stack pointer adjustment made inside the frame made up by this
198   /// instruction.
setFrameAdjustment(MachineInstr & I,int64_t V)199   void setFrameAdjustment(MachineInstr &I, int64_t V) const {
200     assert(isFrameInstr(I));
201     if (isFrameSetup(I))
202       I.getOperand(2).setImm(V);
203     else
204       I.getOperand(1).setImm(V);
205   }
206 
207   /// getSPAdjust - This returns the stack pointer adjustment made by
208   /// this instruction. For x86, we need to handle more complex call
209   /// sequences involving PUSHes.
210   int getSPAdjust(const MachineInstr &MI) const override;
211 
212   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
213   /// extension instruction. That is, it's like a copy where it's legal for the
214   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
215   /// true, then it's expected the pre-extension value is available as a subreg
216   /// of the result register. This also returns the sub-register index in
217   /// SubIdx.
218   bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg,
219                              unsigned &DstReg, unsigned &SubIdx) const override;
220 
221   unsigned isLoadFromStackSlot(const MachineInstr &MI,
222                                int &FrameIndex) const override;
223   unsigned isLoadFromStackSlot(const MachineInstr &MI,
224                                int &FrameIndex,
225                                unsigned &MemBytes) const override;
226   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
227   /// stack locations as well.  This uses a heuristic so it isn't
228   /// reliable for correctness.
229   unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
230                                      int &FrameIndex) const override;
231 
232   unsigned isStoreToStackSlot(const MachineInstr &MI,
233                               int &FrameIndex) const override;
234   unsigned isStoreToStackSlot(const MachineInstr &MI,
235                               int &FrameIndex,
236                               unsigned &MemBytes) const override;
237   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
238   /// stack locations as well.  This uses a heuristic so it isn't
239   /// reliable for correctness.
240   unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
241                                     int &FrameIndex) const override;
242 
243   bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
244                                          AliasAnalysis *AA) const override;
245   void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
246                      unsigned DestReg, unsigned SubIdx,
247                      const MachineInstr &Orig,
248                      const TargetRegisterInfo &TRI) const override;
249 
250   /// Given an operand within a MachineInstr, insert preceding code to put it
251   /// into the right format for a particular kind of LEA instruction. This may
252   /// involve using an appropriate super-register instead (with an implicit use
253   /// of the original) or creating a new virtual register and inserting COPY
254   /// instructions to get the data into the right class.
255   ///
256   /// Reference parameters are set to indicate how caller should add this
257   /// operand to the LEA instruction.
258   bool classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
259                       unsigned LEAOpcode, bool AllowSP, unsigned &NewSrc,
260                       bool &isKill, bool &isUndef, MachineOperand &ImplicitOp,
261                       LiveVariables *LV) const;
262 
263   /// convertToThreeAddress - This method must be implemented by targets that
264   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
265   /// may be able to convert a two-address instruction into a true
266   /// three-address instruction on demand.  This allows the X86 target (for
267   /// example) to convert ADD and SHL instructions into LEA instructions if they
268   /// would require register copies due to two-addressness.
269   ///
270   /// This method returns a null pointer if the transformation cannot be
271   /// performed, otherwise it returns the new instruction.
272   ///
273   MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
274                                       MachineInstr &MI,
275                                       LiveVariables *LV) const override;
276 
277   /// Returns true iff the routine could find two commutable operands in the
278   /// given machine instruction.
279   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
280   /// input values can be re-defined in this method only if the input values
281   /// are not pre-defined, which is designated by the special value
282   /// 'CommuteAnyOperandIndex' assigned to it.
283   /// If both of indices are pre-defined and refer to some operands, then the
284   /// method simply returns true if the corresponding operands are commutable
285   /// and returns false otherwise.
286   ///
287   /// For example, calling this method this way:
288   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
289   ///     findCommutedOpIndices(MI, Op1, Op2);
290   /// can be interpreted as a query asking to find an operand that would be
291   /// commutable with the operand#1.
292   bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
293                              unsigned &SrcOpIdx2) const override;
294 
295   /// Returns an adjusted FMA opcode that must be used in FMA instruction that
296   /// performs the same computations as the given \p MI but which has the
297   /// operands \p SrcOpIdx1 and \p SrcOpIdx2 commuted.
298   /// It may return 0 if it is unsafe to commute the operands.
299   /// Note that a machine instruction (instead of its opcode) is passed as the
300   /// first parameter to make it possible to analyze the instruction's uses and
301   /// commute the first operand of FMA even when it seems unsafe when you look
302   /// at the opcode. For example, it is Ok to commute the first operand of
303   /// VFMADD*SD_Int, if ONLY the lowest 64-bit element of the result is used.
304   ///
305   /// The returned FMA opcode may differ from the opcode in the given \p MI.
306   /// For example, commuting the operands #1 and #3 in the following FMA
307   ///     FMA213 #1, #2, #3
308   /// results into instruction with adjusted opcode:
309   ///     FMA231 #3, #2, #1
310   unsigned
311   getFMA3OpcodeToCommuteOperands(const MachineInstr &MI, unsigned SrcOpIdx1,
312                                  unsigned SrcOpIdx2,
313                                  const X86InstrFMA3Group &FMA3Group) const;
314 
315   // Branch analysis.
316   bool isUnpredicatedTerminator(const MachineInstr &MI) const override;
317   bool isUnconditionalTailCall(const MachineInstr &MI) const override;
318   bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
319                                   const MachineInstr &TailCall) const override;
320   void replaceBranchWithTailCall(MachineBasicBlock &MBB,
321                                  SmallVectorImpl<MachineOperand> &Cond,
322                                  const MachineInstr &TailCall) const override;
323 
324   bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
325                      MachineBasicBlock *&FBB,
326                      SmallVectorImpl<MachineOperand> &Cond,
327                      bool AllowModify) const override;
328 
329   bool getMemOpBaseRegImmOfs(MachineInstr &LdSt, unsigned &BaseReg,
330                              int64_t &Offset,
331                              const TargetRegisterInfo *TRI) const override;
332   bool analyzeBranchPredicate(MachineBasicBlock &MBB,
333                               TargetInstrInfo::MachineBranchPredicate &MBP,
334                               bool AllowModify = false) const override;
335 
336   unsigned removeBranch(MachineBasicBlock &MBB,
337                         int *BytesRemoved = nullptr) const override;
338   unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
339                         MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
340                         const DebugLoc &DL,
341                         int *BytesAdded = nullptr) const override;
342   bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
343                        unsigned, unsigned, int &, int &, int &) const override;
344   void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
345                     const DebugLoc &DL, unsigned DstReg,
346                     ArrayRef<MachineOperand> Cond, unsigned TrueReg,
347                     unsigned FalseReg) const override;
348   void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
349                    const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
350                    bool KillSrc) const override;
351   bool isCopyInstr(const MachineInstr &MI, const MachineOperand *&Src,
352                    const MachineOperand *&Dest) const override;
353   void storeRegToStackSlot(MachineBasicBlock &MBB,
354                            MachineBasicBlock::iterator MI, unsigned SrcReg,
355                            bool isKill, int FrameIndex,
356                            const TargetRegisterClass *RC,
357                            const TargetRegisterInfo *TRI) const override;
358 
359   void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
360                       SmallVectorImpl<MachineOperand> &Addr,
361                       const TargetRegisterClass *RC,
362                       MachineInstr::mmo_iterator MMOBegin,
363                       MachineInstr::mmo_iterator MMOEnd,
364                       SmallVectorImpl<MachineInstr *> &NewMIs) const;
365 
366   void loadRegFromStackSlot(MachineBasicBlock &MBB,
367                             MachineBasicBlock::iterator MI, unsigned DestReg,
368                             int FrameIndex, const TargetRegisterClass *RC,
369                             const TargetRegisterInfo *TRI) const override;
370 
371   void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
372                        SmallVectorImpl<MachineOperand> &Addr,
373                        const TargetRegisterClass *RC,
374                        MachineInstr::mmo_iterator MMOBegin,
375                        MachineInstr::mmo_iterator MMOEnd,
376                        SmallVectorImpl<MachineInstr *> &NewMIs) const;
377 
378   bool expandPostRAPseudo(MachineInstr &MI) const override;
379 
380   /// Check whether the target can fold a load that feeds a subreg operand
381   /// (or a subreg operand that feeds a store).
isSubregFoldable()382   bool isSubregFoldable() const override { return true; }
383 
384   /// foldMemoryOperand - If this target supports it, fold a load or store of
385   /// the specified stack slot into the specified machine instruction for the
386   /// specified operand(s).  If this is possible, the target should perform the
387   /// folding and return true, otherwise it should return false.  If it folds
388   /// the instruction, it is likely that the MachineInstruction the iterator
389   /// references has been changed.
390   MachineInstr *
391   foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
392                         ArrayRef<unsigned> Ops,
393                         MachineBasicBlock::iterator InsertPt, int FrameIndex,
394                         LiveIntervals *LIS = nullptr) const override;
395 
396   /// foldMemoryOperand - Same as the previous version except it allows folding
397   /// of any load and store from / to any address, not just from a specific
398   /// stack slot.
399   MachineInstr *foldMemoryOperandImpl(
400       MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
401       MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
402       LiveIntervals *LIS = nullptr) const override;
403 
404   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
405   /// a store or a load and a store into two or more instruction. If this is
406   /// possible, returns true as well as the new instructions by reference.
407   bool
408   unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
409                       bool UnfoldLoad, bool UnfoldStore,
410                       SmallVectorImpl<MachineInstr *> &NewMIs) const override;
411 
412   bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
413                            SmallVectorImpl<SDNode *> &NewNodes) const override;
414 
415   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
416   /// instruction after load / store are unfolded from an instruction of the
417   /// specified opcode. It returns zero if the specified unfolding is not
418   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
419   /// index of the operand which will hold the register holding the loaded
420   /// value.
421   unsigned
422   getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
423                              unsigned *LoadRegIndex = nullptr) const override;
424 
425   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
426   /// to determine if two loads are loading from the same base address. It
427   /// should only return true if the base pointers are the same and the
428   /// only differences between the two addresses are the offset. It also returns
429   /// the offsets by reference.
430   bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
431                                int64_t &Offset2) const override;
432 
433   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
434   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
435   /// should be scheduled togther. On some targets if two loads are loading from
436   /// addresses in the same cache line, it's better if they are scheduled
437   /// together. This function takes two integers that represent the load offsets
438   /// from the common base address. It returns true if it decides it's desirable
439   /// to schedule the two loads together. "NumLoads" is the number of loads that
440   /// have already been scheduled after Load1.
441   bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1,
442                                int64_t Offset2,
443                                unsigned NumLoads) const override;
444 
445   void getNoop(MCInst &NopInst) const override;
446 
447   bool
448   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
449 
450   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
451   /// instruction that defines the specified register class.
452   bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
453 
454   /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction tha
455   /// would clobber the EFLAGS condition register. Note the result may be
456   /// conservative. If it cannot definitely determine the safety after visiting
457   /// a few instructions in each direction it assumes it's not safe.
458   bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
459                              MachineBasicBlock::iterator I) const;
460 
461   /// True if MI has a condition code def, e.g. EFLAGS, that is
462   /// not marked dead.
463   bool hasLiveCondCodeDef(MachineInstr &MI) const;
464 
465   /// getGlobalBaseReg - Return a virtual register initialized with the
466   /// the global base register value. Output instructions required to
467   /// initialize the register in the function entry block, if necessary.
468   ///
469   unsigned getGlobalBaseReg(MachineFunction *MF) const;
470 
471   std::pair<uint16_t, uint16_t>
472   getExecutionDomain(const MachineInstr &MI) const override;
473 
474   uint16_t getExecutionDomainCustom(const MachineInstr &MI) const;
475 
476   void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override;
477 
478   bool setExecutionDomainCustom(MachineInstr &MI, unsigned Domain) const;
479 
480   unsigned
481   getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
482                                const TargetRegisterInfo *TRI) const override;
483   unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
484                                 const TargetRegisterInfo *TRI) const override;
485   void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
486                                  const TargetRegisterInfo *TRI) const override;
487 
488   MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
489                                       unsigned OpNum,
490                                       ArrayRef<MachineOperand> MOs,
491                                       MachineBasicBlock::iterator InsertPt,
492                                       unsigned Size, unsigned Alignment,
493                                       bool AllowCommute) const;
494 
495   bool isHighLatencyDef(int opc) const override;
496 
497   bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
498                              const MachineRegisterInfo *MRI,
499                              const MachineInstr &DefMI, unsigned DefIdx,
500                              const MachineInstr &UseMI,
501                              unsigned UseIdx) const override;
502 
useMachineCombiner()503   bool useMachineCombiner() const override { return true; }
504 
505   bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
506 
507   bool hasReassociableOperands(const MachineInstr &Inst,
508                                const MachineBasicBlock *MBB) const override;
509 
510   void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
511                              MachineInstr &NewMI1,
512                              MachineInstr &NewMI2) const override;
513 
514   /// analyzeCompare - For a comparison instruction, return the source registers
515   /// in SrcReg and SrcReg2 if having two register operands, and the value it
516   /// compares against in CmpValue. Return true if the comparison instruction
517   /// can be analyzed.
518   bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
519                       unsigned &SrcReg2, int &CmpMask,
520                       int &CmpValue) const override;
521 
522   /// optimizeCompareInstr - Check if there exists an earlier instruction that
523   /// operates on the same source operands and sets flags in the same way as
524   /// Compare; remove Compare if possible.
525   bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
526                             unsigned SrcReg2, int CmpMask, int CmpValue,
527                             const MachineRegisterInfo *MRI) const override;
528 
529   /// optimizeLoadInstr - Try to remove the load by folding it to a register
530   /// operand at the use. We fold the load instructions if and only if the
531   /// def and use are in the same BB. We only look at one load and see
532   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
533   /// defined by the load we are trying to fold. DefMI returns the machine
534   /// instruction that defines FoldAsLoadDefReg, and the function returns
535   /// the machine instruction generated due to folding.
536   MachineInstr *optimizeLoadInstr(MachineInstr &MI,
537                                   const MachineRegisterInfo *MRI,
538                                   unsigned &FoldAsLoadDefReg,
539                                   MachineInstr *&DefMI) const override;
540 
541   std::pair<unsigned, unsigned>
542   decomposeMachineOperandsTargetFlags(unsigned TF) const override;
543 
544   ArrayRef<std::pair<unsigned, const char *>>
545   getSerializableDirectMachineOperandTargetFlags() const override;
546 
547   virtual outliner::OutlinedFunction getOutliningCandidateInfo(
548       std::vector<outliner::Candidate> &RepeatedSequenceLocs) const override;
549 
550   bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
551                                    bool OutlineFromLinkOnceODRs) const override;
552 
553   outliner::InstrType
554   getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const override;
555 
556   void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
557                           const outliner::OutlinedFunction &OF) const override;
558 
559   MachineBasicBlock::iterator
560   insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
561                      MachineBasicBlock::iterator &It, MachineFunction &MF,
562                      const outliner::Candidate &C) const override;
563 
564 protected:
565   /// Commutes the operands in the given instruction by changing the operands
566   /// order and/or changing the instruction's opcode and/or the immediate value
567   /// operand.
568   ///
569   /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
570   /// to be commuted.
571   ///
572   /// Do not call this method for a non-commutable instruction or
573   /// non-commutable operands.
574   /// Even though the instruction is commutable, the method may still
575   /// fail to commute the operands, null pointer is returned in such cases.
576   MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
577                                        unsigned CommuteOpIdx1,
578                                        unsigned CommuteOpIdx2) const override;
579 
580 private:
581   MachineInstr *convertToThreeAddressWithLEA(unsigned MIOpc,
582                                              MachineFunction::iterator &MFI,
583                                              MachineInstr &MI,
584                                              LiveVariables *LV) const;
585 
586   /// Handles memory folding for special case instructions, for instance those
587   /// requiring custom manipulation of the address.
588   MachineInstr *foldMemoryOperandCustom(MachineFunction &MF, MachineInstr &MI,
589                                         unsigned OpNum,
590                                         ArrayRef<MachineOperand> MOs,
591                                         MachineBasicBlock::iterator InsertPt,
592                                         unsigned Size, unsigned Align) const;
593 
594   /// isFrameOperand - Return true and the FrameIndex if the specified
595   /// operand and follow operands form a reference to the stack frame.
596   bool isFrameOperand(const MachineInstr &MI, unsigned int Op,
597                       int &FrameIndex) const;
598 
599   /// Returns true iff the routine could find two commutable operands in the
600   /// given machine instruction with 3 vector inputs.
601   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
602   /// input values can be re-defined in this method only if the input values
603   /// are not pre-defined, which is designated by the special value
604   /// 'CommuteAnyOperandIndex' assigned to it.
605   /// If both of indices are pre-defined and refer to some operands, then the
606   /// method simply returns true if the corresponding operands are commutable
607   /// and returns false otherwise.
608   ///
609   /// For example, calling this method this way:
610   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
611   ///     findThreeSrcCommutedOpIndices(MI, Op1, Op2);
612   /// can be interpreted as a query asking to find an operand that would be
613   /// commutable with the operand#1.
614   ///
615   /// If IsIntrinsic is set, operand 1 will be ignored for commuting.
616   bool findThreeSrcCommutedOpIndices(const MachineInstr &MI,
617                                      unsigned &SrcOpIdx1,
618                                      unsigned &SrcOpIdx2,
619                                      bool IsIntrinsic = false) const;
620 };
621 
622 } // namespace llvm
623 
624 #endif
625