• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /**
18  * @addtogroup NeuralNetworks
19  * @{
20  */
21 
22 /**
23  * @file NeuralNetworks.h
24  */
25 
26 #ifndef ANDROID_ML_NN_RUNTIME_NEURAL_NETWORKS_H
27 #define ANDROID_ML_NN_RUNTIME_NEURAL_NETWORKS_H
28 
29 /******************************************************************
30  *
31  * IMPORTANT NOTICE:
32  *
33  *   This file is part of Android's set of stable system headers
34  *   exposed by the Android NDK (Native Development Kit).
35  *
36  *   Third-party source AND binary code relies on the definitions
37  *   here to be FROZEN ON ALL UPCOMING PLATFORM RELEASES.
38  *
39  *   - DO NOT MODIFY ENUMS (EXCEPT IF YOU ADD NEW 32-BIT VALUES)
40  *   - DO NOT MODIFY CONSTANTS OR FUNCTIONAL MACROS
41  *   - DO NOT CHANGE THE SIGNATURE OF FUNCTIONS IN ANY WAY
42  *   - DO NOT CHANGE THE LAYOUT OR SIZE OF STRUCTURES
43  */
44 
45 #include <android/hardware_buffer.h>
46 #include <stddef.h>
47 #include <stdint.h>
48 #include <sys/cdefs.h>
49 
50 __BEGIN_DECLS
51 
52 /**
53  * Operand types.
54  *
55  * The type of operands that can be added to a model.
56  *
57  * Although we define many types, most operators accept just a few
58  * types. Most used are {@link ANEURALNETWORKS_TENSOR_FLOAT32},
59  * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
60  * and {@link ANEURALNETWORKS_INT32}.
61  *
62  * Available since API level 27.
63  */
64 typedef enum {
65     /** A 32 bit floating point scalar value. */
66     ANEURALNETWORKS_FLOAT32 = 0,
67     /** A signed 32 bit integer scalar value. */
68     ANEURALNETWORKS_INT32 = 1,
69     /** An unsigned 32 bit integer scalar value. */
70     ANEURALNETWORKS_UINT32 = 2,
71     /** A tensor of 32 bit floating point values. */
72     ANEURALNETWORKS_TENSOR_FLOAT32 = 3,
73     /** A tensor of 32 bit integer values. */
74     ANEURALNETWORKS_TENSOR_INT32 = 4,
75     /**
76      * A tensor of 8 bit unsigned integers that represent real numbers.
77      *
78      * Attached to this tensor are two numbers that can be used to convert the
79      * 8 bit integer to the real value and vice versa. These two numbers are:
80      * - scale: a 32 bit floating point value greater than zero.
81      * - zeroPoint: a 32 bit integer, in range [0, 255].
82      *
83      * The formula is:
84      *   real_value = (integer_value - zeroPoint) * scale.
85      */
86     ANEURALNETWORKS_TENSOR_QUANT8_ASYMM = 5,
87 #if __ANDROID_API__ >= __ANDROID_API_Q__
88     /**
89      * An 8 bit boolean scalar value.
90      *
91      * Values of this operand type are either true or false. A zero value
92      * represents false; any other value represents true.
93      *
94      * Available since API level 29.
95      */
96     ANEURALNETWORKS_BOOL = 6,
97     /**
98      * A tensor of 16 bit signed integers that represent real numbers.
99      *
100      * Attached to this tensor is a number representing real value scale that is
101      * used to convert the 16 bit number to a real value in the following way:
102      * realValue = integerValue * scale.
103      *
104      * scale is a 32 bit floating point with value greater than zero.
105      *
106      * Available since API level 29.
107      */
108     ANEURALNETWORKS_TENSOR_QUANT16_SYMM = 7,
109     /**
110      * A tensor of IEEE 754 16 bit floating point values.
111      *
112      * Available since API level 29.
113      */
114     ANEURALNETWORKS_TENSOR_FLOAT16 = 8,
115     /**
116      * A tensor of 8 bit boolean values.
117      *
118      * Values of this operand type are either true or false. A zero value
119      * represents false; any other value represents true.
120      *
121      * Available since API level 29.
122      */
123     ANEURALNETWORKS_TENSOR_BOOL8 = 9,
124     /**
125      * An IEEE 754 16 bit floating point scalar value.
126      *
127      * Available since API level 29.
128      */
129     ANEURALNETWORKS_FLOAT16 = 10,
130     /**
131      * A tensor of 8 bit signed integers that represent real numbers.
132      *
133      * This tensor is associated with additional fields that can
134      * be used to convert the 8 bit signed integer to the real value and vice versa.
135      * These fields are:
136      * - channelDim: a 32 bit unsigned integer indicating channel dimension.
137      * - scales: an array of positive 32 bit floating point values.
138      * The size of the scales array must be equal to dimensions[channelDim].
139      *
140      * {@link ANeuralNetworksModel_setOperandSymmPerChannelQuantParams} must be used
141      * to set the parameters for an Operand of this type.
142      *
143      * The channel dimension of this tensor must not be unknown (dimensions[channelDim] != 0).
144      *
145      * The formula is:
146      * realValue[..., C, ...] =
147      *     integerValue[..., C, ...] * scales[C]
148      * where C is an index in the Channel dimension.
149      *
150      * Available since API level 29.
151      */
152     ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL = 11,
153 
154     /**
155      * A tensor of 16 bit unsigned integers that represent real numbers.
156      *
157      * Attached to this tensor are two numbers that can be used to convert the
158      * 16 bit integer to the real value and vice versa. These two numbers are:
159      * - scale: a 32 bit floating point value greater than zero.
160      * - zeroPoint: a 32 bit integer, in range [0, 65535].
161      *
162      * The formula is:
163      * real_value = (integer_value - zeroPoint) * scale.
164      *
165      * Available since API level 29.
166      */
167     ANEURALNETWORKS_TENSOR_QUANT16_ASYMM = 12,
168 
169     /**
170      * A tensor of 8 bit signed integers that represent real numbers.
171      *
172      * Attached to this tensor is a number representing real value scale that is
173      * used to convert the 8 bit number to a real value in the following way:
174      * realValue = integerValue * scale.
175      *
176      * scale is a 32 bit floating point with value greater than zero.
177      *
178      * Available since API level 29.
179      */
180     ANEURALNETWORKS_TENSOR_QUANT8_SYMM = 13,
181 #endif  // __ANDROID_API__ >= __ANDROID_API_Q__
182 
183 } OperandCode;
184 
185 /**
186  * Operation types.
187  *
188  * The type of operations that can be added to a model.
189  *
190  * Available since API level 27.
191  */
192 typedef enum {
193     // Operations below are available since API level 27.
194 
195     /**
196      * Adds two tensors, element-wise.
197      *
198      * Takes two input tensors of identical {@link OperandCode} and compatible
199      * dimensions. The output is the sum of both input tensors, optionally
200      * modified by an activation function.
201      *
202      * Two dimensions are compatible when:
203      *     1. they are equal, or
204      *     2. one of them is 1
205      *
206      * The size of the output is the maximum size along each dimension of the
207      * input operands. It starts with the trailing dimensions, and works its
208      * way forward.
209      *
210      * Example:
211      *
212      *     input1.dimension = {4, 1, 2}
213      *     input2.dimension = {5, 4, 3, 1}
214      *     output.dimension = {5, 4, 3, 2}
215      *
216      * Since API level 29, generic zero-sized input tensor is supported. Zero
217      * dimension is only compatible with 0 or 1. The size of the output
218      * dimension is zero if either of corresponding input dimension is zero.
219      *
220      * Supported tensor {@link OperandCode}:
221      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
222      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
223      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
224      *
225      * Supported tensor rank: up to 4
226      *
227      * Inputs:
228      * * 0: A tensor.
229      * * 1: A tensor of the same {@link OperandCode}, and compatible dimensions
230      *      as input0.
231      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
232      *      the scales and zeroPoint can be different from input0 scale and zeroPoint.
233      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
234      *      {@link FuseCode} values. Specifies the activation to
235      *      invoke on the result.
236      *
237      * Outputs:
238      * * 0: The sum, a tensor of the same {@link OperandCode} as input0.
239      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
240      *      the scale and zeroPoint can be different from inputs' scale and zeroPoint.
241      *
242      * Available since API level 27.
243      */
244     ANEURALNETWORKS_ADD = 0,
245 
246     /**
247      * Performs a 2-D average pooling operation.
248      *
249      * The output dimensions are functions of the filter dimensions, stride, and
250      * padding.
251      *
252      * The values in the output tensor are computed as:
253      *
254      *     output[b, i, j, channel] =
255      *         sum_{di, dj}(
256      *             input[b, strides[1] * i + di, strides[2] * j + dj, channel]
257      *         ) / sum(1)
258      *
259      * Supported tensor {@link OperandCode}:
260      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
261      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
262      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
263      *
264      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
265      * With the default data layout NHWC, the data is stored in the order of:
266      * [batch, height, width, channels]. Alternatively, the data layout could
267      * be NCHW, the data storage order of: [batch, channels, height, width].
268      *
269      * Both explicit padding and implicit padding are supported.
270      *
271      * Inputs (explicit padding):
272      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
273      *      the input. Since API level 29, zero batches is supported for this
274      *      tensor.
275      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
276      *      the left, in the ‘width’ dimension.
277      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
278      *      the right, in the ‘width’ dimension.
279      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
280      *      the top, in the ‘height’ dimension.
281      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
282      *      the bottom, in the ‘height’ dimension.
283      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
284      *      walking through input in the ‘width’ dimension.
285      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
286      *      walking through input in the ‘height’ dimension.
287      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
288      *      width.
289      * * 8: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
290      *      height.
291      * * 9: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
292      *      {@link FuseCode} values. Specifies the activation to
293      *      invoke on the result.
294      * * 10: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
295      *       Set to true to specify NCHW data layout for input0 and output0.
296      *       Available since API level 29.
297      *
298      * Inputs (implicit padding):
299      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
300      *      the input. Since API level 29, zero batches is supported for this
301      *      tensor.
302      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the implicit
303      *      padding scheme, has to be one of the
304      *      {@link PaddingCode} values.
305      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
306      *      walking through input in the ‘width’ dimension.
307      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
308      *      walking through input in the ‘height’ dimension.
309      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
310      *      width.
311      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
312      *      height.
313      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
314      *      {@link FuseCode} values. Specifies the activation to
315      *      invoke on the result.
316      * * 7: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
317      *      Set to true to specify NCHW data layout for input0 and output0.
318      *      Available since API level 29.
319      *
320      * Outputs:
321      * * 0: The output 4-D tensor, of shape
322      *      [batches, out_height, out_width, depth].
323      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
324      *      the scale and zeroPoint must be the same as input0.
325      *
326      * Available since API level 27.
327      */
328     ANEURALNETWORKS_AVERAGE_POOL_2D = 1,
329 
330     /**
331      * Concatenates the input tensors along the given dimension.
332      *
333      * The input tensors must have identical {@link OperandCode} and the same
334      * dimensions except the dimension along the concatenation axis.
335      *
336      * Supported tensor {@link OperandCode}:
337      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
338      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
339      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} (full support since API
340      *   level 29, see the input section)
341      *
342      * Supported tensor rank: up to 4
343      *
344      * Inputs:
345      * * 0 ~ n-1: The list of n input tensors, of shape
346      *            [D0, D1, ..., Daxis(i), ..., Dm].
347      *            Before API level 29, all input tensors of
348      *            {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
349      *            must have the same scale and zeroPoint as the output tensor.
350      *            Since API level 29, zero-sized tensors are supported.
351      * * n: An {@link ANEURALNETWORKS_INT32} scalar, specifying the
352      *      concatenation axis.
353      *
354      * Outputs:
355      * * 0: The output, a tensor of the same {@link OperandCode} as the input
356      *      tensors. The output shape is [D0, D1, ..., sum(Daxis(i)), ..., Dm].
357      *      Since API level 29, for a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
358      *      the scale and zeroPoint values can be different from
359      *      input tensors. Before API level 29 they have to be the same as for the input tensors.
360      *
361      * Available since API level 27.
362      */
363     ANEURALNETWORKS_CONCATENATION = 2,
364 
365     /**
366      * Performs an 2-D convolution operation.
367      *
368      * The CONV_2D op sweeps a 2-D filter that can mix channels together over a
369      * batch of images, applying the filter to each window of each image of the
370      * appropriate size.
371      *
372      * The output dimensions are functions of the filter dimensions, stride, and
373      * padding.
374      *
375      * The values in the output tensor are computed as:
376      *
377      *     output[b, i, j, channel] =
378      *         sum_{di, dj, k} (
379      *             input[b, strides[1] * i + di, strides[2] * j + dj, k] *
380      *             filter[channel, di, dj, k]
381      *         ) + bias[channel]
382      *
383      * Supported tensor {@link OperandCode} configurations:
384      * * 32 bit floating point:
385      * * * {@link ANEURALNETWORKS_TENSOR_FLOAT32} for input, filter, output, and bias.
386      *
387      * * Quantized:
388      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} for input, filter, and output.
389      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (with scale set to
390      * * * input.scale * filter.scale).
391      *
392      * Available since API level 29:
393      * * 16 bit floating point:
394      * * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} for input, filter, output, and bias.
395      *
396      * * Quantized with symmetric per channel quantization for the filter:
397      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} for input, and output.
398      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
399      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (scale set to 0.0,
400      * * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
401      *
402      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
403      * With the default data layout NHWC, the data is stored in the order of:
404      * [batch, height, width, channels]. Alternatively, the data layout could
405      * be NCHW, the data storage order of: [batch, channels, height, width].
406      *
407      * Both explicit padding and implicit padding are supported.
408      *
409      * Inputs (explicit padding):
410      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
411      *      specifying the input. Since API level 29, zero batches is supported
412      *      for this tensor.
413      * * 1: A 4-D tensor, of shape
414      *      [depth_out, filter_height, filter_width, depth_in], specifying the
415      *      filter. For tensor of type
416      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} the channel
417      *      dimension (extraParams.channelQuant.channelDim) must be set to 0.
418      * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
419      *      tensor of type {@link ANEURALNETWORKS_TENSOR_FLOAT32} or
420      *      {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the bias must be of the same
421      *      type. For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
422      *      the bias should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint
423      *      of 0 and bias_scale == input_scale * filter_scale. For filter tensor
424      *      of {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
425      *      should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint of
426      *      0 and bias_scale of 0. The actual scale of each value 'i' is equal to
427      *      bias_scale[i] = input_scale * filter_scale[i].
428      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
429      *      the left, in the ‘width’ dimension.
430      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
431      *      the right, in the ‘width’ dimension.
432      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
433      *      the top, in the ‘height’ dimension.
434      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
435      *      the bottom, in the ‘height’ dimension.
436      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
437      *      walking through input in the ‘width’ dimension.
438      * * 8: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
439      *      walking through input in the ‘height’ dimension.
440      * * 9: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
441      *      {@link FuseCode} values. Specifies the activation to
442      *      invoke on the result.
443      * * 10: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
444      *      Set to true to specify NCHW data layout for input0 and output0.
445      *      Available since API level 29.
446      * * 11: An optional {@link ANEURALNETWORKS_INT32} scalar, specifying the dilation
447      *      factor for width. Defaults to 1. If set to k > 1, there will be k-1 skipped
448      *      cells between each filter element on width dimension. If this input is set,
449      *      input 12 (dilation factor for height) must be specified as well.
450      *      Available since API level 29.
451      * * 12: An optional {@link ANEURALNETWORKS_INT32} scalar, specifying the dilation
452      *      factor for height. Defaults to 1. If set to k > 1, there will be k-1 skipped
453      *      cells between each filter element on height dimension. If this input is set,
454      *      input 11 (dilation factor for width) must be specified as well.
455      *      Available since API level 29.
456      *
457      * Inputs (implicit padding):
458      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
459      *      specifying the input. Since API level 29, zero batches is supported
460      *      for this tensor.
461      * * 1: A 4-D tensor, of shape
462      *      [depth_out, filter_height, filter_width, depth_in], specifying the
463      *      filter. For tensor of type
464      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} the channel
465      *      dimension (extraParams.channelQuant.channelDim) must be set to 0.
466      * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
467      *      tensor of type {@link ANEURALNETWORKS_TENSOR_FLOAT32} or
468      *      {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the bias must be of the same
469      *      type. For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
470      *      the bias should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint
471      *      of 0 and bias_scale == input_scale * filter_scale. For filter tensor
472      *      of {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
473      *      should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint of
474      *      0 and bias_scale of 0. The actual scale of each value 'i' is equal to
475      *      bias_scale[i] = input_scale * filter_scale[i].
476      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the implicit
477      *      padding scheme, has to be one of the
478      *      {@link PaddingCode} values.
479      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
480      *      walking through input in the ‘width’ dimension.
481      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
482      *      walking through input in the ‘height’ dimension.
483      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
484      *      {@link FuseCode} values. Specifies the activation to
485      *      invoke on the result.
486      * * 7: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
487      *      Set to true to specify NCHW data layout for input0 and output0.
488      *      Available since API level 29.
489      * * 8: An optional {@link ANEURALNETWORKS_INT32} scalar, specifying the dilation
490      *      factor for width. Defaults to 1. If set to k > 1, there will be k-1 skipped
491      *      cells between each filter element on width dimension. If this input is set,
492      *      input 9 (dilation factor for height) must be specified as well.
493      *      Available since API level 29.
494      * * 9: An optional {@link ANEURALNETWORKS_INT32} scalar, specifying the dilation
495      *      factor for height. Defaults to 1. If set to k > 1, there will be k-1 skipped
496      *      cells between each filter element on height dimension. If this input is set,
497      *      input 8 (dilation factor for width) must be specified as well.
498      *      Available since API level 29.
499      *
500      * Outputs:
501      * * 0: The output 4-D tensor, of shape
502      *      [batches, out_height, out_width, depth_out]. Before API level 29,
503      *      for output tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
504      *      the following condition must be satisfied:
505      *      output_scale > input_scale * filter_scale
506      *
507      * Available since API level 27.
508      */
509     ANEURALNETWORKS_CONV_2D = 3,
510 
511     /**
512      * Performs a depthwise 2-D convolution operation.
513      *
514      * Given an input tensor of shape [batches, height, width, depth_in] and a
515      * filter tensor of shape [1, filter_height, filter_width, depth_out]
516      * containing depth_out convolutional filters of depth 1, DEPTHWISE_CONV
517      * applies a different filter to each input channel (expanding from 1
518      * channel to channel_multiplier channels for each), then concatenates the
519      * results together.
520      *
521      * The output has depth_out = depth_in * depth_multiplier channels.
522      * The output dimensions are functions of the filter dimensions, stride, and
523      * padding.
524      *
525      * The values in the output tensor are computed as:
526      *
527      *     output[b, i, j, k * channel_multiplier + q] =
528      *         sum_{di, dj} (
529      *             input[b, strides[1] * i + di, strides[2] * j + dj, k] *
530      *             filter[1, di, dj, k * channel_multiplier + q]
531      *         ) + bias[k * channel_multiplier + q]
532      *
533      * Supported tensor {@link OperandCode} configurations:
534      * * 32 bit floating point:
535      * * * {@link ANEURALNETWORKS_TENSOR_FLOAT32} for input, filter, output, and bias.
536      *
537      * * Quantized:
538      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} for input, filter, and output.
539      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (with scale set to
540      * * * input.scale * filter.scale).
541      *
542      * Available since API level 29:
543      * * 16 bit floating point:
544      * * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} for input, filter, output, and bias.
545      *
546      * * Quantized with symmetric per channel quantization for the filter:
547      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} for input, and output.
548      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
549      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (scale set to 0.0,
550      * * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
551      *
552      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
553      * With the default data layout NHWC, the data is stored in the order of:
554      * [batch, height, width, channels]. Alternatively, the data layout could
555      * be NCHW, the data storage order of: [batch, channels, height, width].
556      *
557      * Both explicit padding and implicit padding are supported.
558      *
559      * Inputs (explicit padding):
560      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
561      *      specifying the input.
562      * * 1: A 4-D tensor, of shape [1, filter_height, filter_width, depth_out],
563      *      specifying the filter. For tensor of type
564      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} the channel
565      *      dimension (extraParams.channelQuant.channelDim) must be set to 3.
566      * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
567      *      tensor of type {@link ANEURALNETWORKS_TENSOR_FLOAT32} or
568      *      {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the bias must be of the same
569      *      type. For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
570      *      the bias should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint
571      *      of 0 and bias_scale == input_scale * filter_scale. For filter tensor
572      *      of {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
573      *      should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint of
574      *      0 and bias_scale of 0. The actual scale of each value 'i' is equal to
575      *      bias_scale[i] = input_scale * filter_scale[i].
576      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
577      *      the left, in the ‘width’ dimension.
578      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
579      *      the right, in the ‘width’ dimension.
580      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
581      *      the top, in the ‘height’ dimension.
582      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
583      *      the bottom, in the ‘height’ dimension.
584      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
585      *      walking through input in the ‘width’ dimension.
586      * * 8: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
587      *      walking through input in the ‘height’ dimension.
588      * * 9: An {@link ANEURALNETWORKS_INT32} scalar, specifying the depthwise
589      *      multiplier.
590      * * 10: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
591      *       {@link FuseCode} values. Specifies the activation to
592      *       invoke on the result.
593      * * 11: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
594      *       Set to true to specify NCHW data layout for input0 and output0.
595      *       Available since API level 29.
596      * * 12: An optional {@link ANEURALNETWORKS_INT32} scalar, specifying the dilation
597      *      factor for width. Defaults to 1. If set to k > 1, there will be k-1 skipped
598      *      cells between each filter element on width dimension. If this input is set,
599      *      input 13 (dilation factor for height) must be specified as well.
600      *      Available since API level 29.
601      * * 13: An optional {@link ANEURALNETWORKS_INT32} scalar, specifying the dilation
602      *      factor for height. Defaults to 1. If set to k > 1, there will be k-1 skipped
603      *      cells between each filter element on height dimension. If this input is set,
604      *      input 12 (dilation factor for width) must be specified as well.
605      *      Available since API level 29.
606      *
607      * Inputs (implicit padding):
608      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
609      *      specifying the input.
610      * * 1: A 4-D tensor, of shape [1, filter_height, filter_width, depth_out],
611      *      specifying the filter.
612      * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
613      *      tensor of type {@link ANEURALNETWORKS_TENSOR_FLOAT32} or
614      *      {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the bias must be of the same
615      *      type. For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
616      *      the bias should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint
617      *      of 0 and bias_scale == input_scale * filter_scale. For filter tensor
618      *      of {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
619      *      should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint of
620      *      0 and bias_scale of 0. The actual scale of each value 'i' is equal to
621      *      bias_scale[i] = input_scale * filter_scale[i].
622      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the implicit
623      *      padding scheme, has to be one of the
624      *      {@link PaddingCode} values.
625      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
626      *      walking through input in the ‘width’ dimension.
627      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
628      *      walking through input in the ‘height’ dimension.
629      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the depthwise
630      *      multiplier.
631      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
632      *      {@link FuseCode} values. Specifies the activation to
633      *      invoke on the result.
634      * * 8: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
635      *      Set to true to specify NCHW data layout for input0 and output0.
636      *      Available since API level 29.
637      * * 9: An optional {@link ANEURALNETWORKS_INT32} scalar, specifying the dilation
638      *      factor for width. Defaults to 1. If set to k > 1, there will be k-1 skipped
639      *      cells between each filter element on width dimension. If this input is set,
640      *      input 10 (dilation factor for height) must be specified as well.
641      *      Available since API level 29.
642      * * 10: An optional {@link ANEURALNETWORKS_INT32} scalar, specifying the dilation
643      *      factor for height. Defaults to 1. If set to k > 1, there will be k-1 skipped
644      *      cells between each filter element on height dimension. If this input is set,
645      *      input 9 (dilation factor for width) must be specified as well.
646      *      Available since API level 29.
647 
648      *
649      * Outputs:
650      * * 0: The output 4-D tensor, of shape
651      *      [batches, out_height, out_width, depth_out]. Before API level 29,
652      *      for output tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
653      *      the following condition must be satisfied:
654      *      output_scale > input_scale * filter_scale
655      *
656      * Available since API level 27.
657      */
658     ANEURALNETWORKS_DEPTHWISE_CONV_2D = 4,
659 
660     /**
661      * Rearranges data from depth into blocks of spatial data.
662      *
663      * More specifically, this op outputs a copy of the input tensor where
664      * values from the depth dimension are moved in spatial blocks to the height
665      * and width dimensions. The value block_size indicates the input block size
666      * and how the data is moved.
667      *
668      * Chunks of data of size block_size * block_size from depth are rearranged
669      * into non-overlapping blocks of size block_size x block_size.
670      *
671      * The width of the output tensor is input_depth * block_size, whereas the
672      * height is input_height * block_size. The depth of the input tensor must
673      * be divisible by block_size * block_size
674      *
675      * Supported tensor {@link OperandCode}:
676      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
677      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
678      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
679      *
680      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
681      * With the default data layout NHWC, the data is stored in the order of:
682      * [batch, height, width, channels]. Alternatively, the data layout could
683      * be NCHW, the data storage order of: [batch, channels, height, width].
684      *
685      * Inputs:
686      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
687      *      specifying the input.
688      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the block_size.
689      *      block_size must be >=1 and block_size * block_size must be a divisor
690      *      of the input depth.
691      * * 2: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
692      *      Set to true to specify NCHW data layout for input0 and output0.
693      *      Available since API level 29.
694      *
695      * Outputs:
696      * * 0: The output 4-D tensor, of shape [batch, height*block_size,
697      *      width*block_size, depth/(block_size*block_size)].
698      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
699      *      the scale and zeroPoint must be the same as input0.
700      *
701      * Available since API level 27.
702      */
703     ANEURALNETWORKS_DEPTH_TO_SPACE = 5,
704 
705     /**
706      * Dequantizes the input tensor.
707      *
708      * The formula is:
709      *
710      *     output = (input - zeroPoint) * scale.
711      *
712      * Supported input tensor {@link OperandCode}:
713      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
714      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM} (since API level 29)
715      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} (since API level 29)
716      *
717      * Supported output tensor {@link OperandCode}:
718      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
719      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}.
720      *
721      * Supported tensor rank: up to 4
722      *
723      * Inputs:
724      * * 0: A tensor. Since API level 29, this tensor may be zero-sized.
725      *
726      * Outputs:
727      * * 0: A tensor with the same shape as input0.
728      *
729      * Available since API level 27.
730      */
731     ANEURALNETWORKS_DEQUANTIZE = 6,
732 
733     /**
734      * Looks up sub-tensors in the input tensor.
735      *
736      * This operator takes for input a tensor of values (Values) and
737      * a one-dimensional tensor of selection indices (Lookups).
738      * The output tensor is the concatenation of sub-tensors of Values as
739      * selected by Lookups.
740      *
741      * Think of Values as being sliced along its first dimension:
742      * The entries in Lookups select which slices are concatenated together
743      * to create the output tensor.
744      *
745      * For example, if Values has shape of [40, 200, 300] and
746      * Lookups has shape of [3], all three values found in Lookups are
747      * expected to be between 0 and 39. The resulting tensor must
748      * have shape of [3, 200, 300].
749      *
750      * If a value in Lookups is out of bounds, the operation must fail
751      * and an error must be reported.
752      *
753      * Supported value tensor {@link OperandCode}:
754      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
755      * * {@link ANEURALNETWORKS_TENSOR_INT32}
756      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
757      *
758      * Supported value tensor rank: from 2
759      *
760      * Inputs:
761      * * 0: Lookups. A 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}.
762      *      The values are indices into the first dimension of Values.
763      * * 1: Values. An n-D tensor, where n >= 2, from which sub-tensors are
764      *      extracted.
765      *
766      * Output:
767      * * 0: A n-D tensor with the same rank and shape as the Values
768      *      tensor, except for the first dimension which has the same size
769      *      as Lookups' only dimension.
770      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
771      *      the scale and zeroPoint must be the same as input1.
772      *
773      * Available since API level 27.
774      */
775     ANEURALNETWORKS_EMBEDDING_LOOKUP = 7,
776 
777     /**
778      * Computes element-wise floor() on the input tensor.
779      *
780      * Supported tensor {@link OperandCode}:
781      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
782      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
783      *
784      * Supported tensor rank: up to 4
785      *
786      * Inputs:
787      * * 0: A tensor.
788      *
789      * Outputs:
790      * * 0: The output tensor, of the same {@link OperandCode} and dimensions as
791      *      the input tensor.
792      *
793      * Available since API level 27.
794      */
795     ANEURALNETWORKS_FLOOR = 8,
796 
797     /**
798      * Denotes a fully (densely) connected layer, which connects all elements
799      * in the input tensor with each element in the output tensor.
800      *
801      * This layer implements the operation:
802      *
803      *     outputs = activation(inputs * weights’ + bias)
804      *
805      * Supported tensor {@link OperandCode}:
806      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
807      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
808      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
809      *
810      * Supported tensor rank: up to 4.
811      *
812      * Inputs:
813      * * 0: A tensor of at least rank 2, specifying the input. If rank is
814      *      greater than 2, then it gets flattened to a 2-D Tensor. The
815      *      (flattened) 2-D Tensor is reshaped (if necessary) to
816      *      [batch_size, input_size], where "input_size" corresponds to the
817      *      number of inputs to the layer, matching the second dimension of
818      *      weights, and "batch_size" is calculated by dividing the number of
819      *      elements by "input_size". Since API level 29, zero batch_size is
820      *      supported for this tensor.
821      * * 1: A 2-D tensor, specifying the weights, of shape
822      *      [num_units, input_size], where "num_units" corresponds to the number
823      *      of output nodes.
824      * * 2: A 1-D tensor, of shape [num_units], specifying the bias. For input
825      *      tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT32}, the bias should
826      *      also be of {@link ANEURALNETWORKS_TENSOR_FLOAT32}. For input tensor
827      *      of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}, the bias should be
828      *      of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint of 0 and
829      *      bias_scale == input_scale * filter_scale.
830      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
831      *      {@link FuseCode} values. Specifies the activation to
832      *      invoke on the result.
833      *
834      * Outputs:
835      * * 0: The output tensor, of shape [batch_size, num_units]. Before API
836      *      level 29, for output tensor of {@link
837      *      ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}, the following condition must
838      *      be satisfied: output_scale > input_scale * filter_scale.
839      *
840      * Available since API level 27.
841      */
842     ANEURALNETWORKS_FULLY_CONNECTED = 9,
843 
844     /**
845      * Looks up sub-tensors in the input tensor using a key-value map.
846      *
847      * This operator takes for input a tensor of values (Values),
848      * a one-dimensional tensor of selection values (Lookups) and
849      * a one-dimensional tensor that maps these values to Values
850      * indexes. The output tensor is the concatenation of sub-tensors of
851      * Values as selected by Lookups via Keys.
852      *
853      * Think of Values as being sliced along its outer-most dimension.
854      * The output is a concatenation of selected slices, with one slice
855      * for each entry of Lookups. The slice selected is the one at the
856      * same index as the Maps entry that matches the value in Lookups.
857      *
858      * For a hit, the corresponding sub-tensor of Values is included
859      * in the Output tensor. For a miss, the corresponding sub-tensor in
860      * Output must have zero values.
861      *
862      * For example, if Values has shape of [40, 200, 300],
863      * Keys should have a shape of [40]. If Lookups tensor has shape
864      * of [3], three slices are being concatenated, so the resulting tensor
865      * must have the shape of [3, 200, 300]. If the first entry in Lookups
866      * has the value 123456, that value must be located in Keys tensor.
867      * If the sixth entry of Keys contains 123456, the sixth slice of Values
868      * must be selected. If no entry in Keys has 123456, a slice of zeroes
869      * must be concatenated.
870      *
871      * Supported value tensor {@link OperandCode}:
872      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
873      * * {@link ANEURALNETWORKS_TENSOR_INT32}
874      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
875      *
876      * Supported value tensor rank: from 2
877      *
878      * Inputs:
879      * * 0: Lookups. A 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor with
880      *      shape [ k ].
881      * * 1: Keys. A 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor with shape
882      *      [ n ]; Keys and Values pair represent a map, i.e., the ith element
883      *      in Keys (Keys[i]) is the key to select the ith sub-tensor in Values
884      *      (Values[i]), where 0 <= i <= n-1. Keys tensor *MUST* be sorted in
885      *      ascending order.
886      * * 2: Values. A tensor with shape of [ n, … ]; i.e., the first dimension
887      *      must be n.
888      *
889      * Outputs:
890      * * 0: Output. A tensor with shape [ k …].
891      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
892      *      the scale and zeroPoint must be the same as input2.
893      * * 1: Hits. A boolean tensor with shape [ k ] indicates whether the lookup
894      *      hits (True) or not (False).
895      *      Stored as {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} with offset 0
896      *      and scale 1.0f.
897      *      A non-zero byte represents True, a hit. A zero indicates otherwise.
898      *
899      * Available since API level 27.
900      */
901     ANEURALNETWORKS_HASHTABLE_LOOKUP = 10,
902 
903     /**
904      * Applies L2 normalization along the depth dimension.
905      *
906      * The values in the output tensor are computed as:
907      *
908      *     output[batch, row, col, channel] =
909      *         input[batch, row, col, channel] /
910      *         sqrt(sum_{c} pow(input[batch, row, col, c], 2))
911      *
912      * For input tensor with rank less than 4, independently normalizes each
913      * 1-D slice along dimension dim.
914      *
915      * Supported tensor {@link OperandCode}:
916      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
917      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
918      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} (since API level 29)
919      *
920      * Supported tensor rank: up to 4
921      * Tensors with rank less than 4 are only supported since API level 29.
922      *
923      * Inputs:
924      * * 0: An n-D tensor, specifying the tensor to be normalized.
925      * * 1: An optional {@link ANEURALNETWORKS_INT32} scalar, default to -1,
926      *      specifying the dimension normalization would be performed on.
927      *      Negative index is used to specify axis from the end (e.g. -1 for
928      *      the last axis). Must be in the range [-n, n).
929      *      Available since API level 29.
930      *
931      * Outputs:
932      * * 0: A tensor of the same {@link OperandCode} and same shape as input0.
933      *      For {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
934      *      the scale must be 1.f / 128 and the zeroPoint must be 128.
935      *
936      * Available since API level 27.
937      */
938     ANEURALNETWORKS_L2_NORMALIZATION = 11,
939 
940     /**
941      * Performs an 2-D L2 pooling operation.
942      *
943      * The output dimensions are functions of the filter dimensions, stride, and
944      * padding.
945      *
946      * The values in the output tensor are computed as:
947      *
948      *     output[b, i, j, c] =
949      *         sqrt(sum_{di, dj} pow(input[b, strides[1] * i + di, strides[2] * j + dj, c], 2) /
950      *              sum(1))
951      *
952      * Supported tensor {@link OperandCode}:
953      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
954      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
955      *
956      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
957      * With the default data layout NHWC, the data is stored in the order of:
958      * [batch, height, width, channels]. Alternatively, the data layout could
959      * be NCHW, the data storage order of: [batch, channels, height, width].
960      *
961      * Both explicit padding and implicit padding are supported.
962      *
963      * Inputs (explicit padding):
964      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
965      *      the input. Since API level 29, zero batches is supported for this
966      *      tensor.
967      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
968      *      the left, in the ‘width’ dimension.
969      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
970      *      the right, in the ‘width’ dimension.
971      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
972      *      the top, in the ‘height’ dimension.
973      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
974      *      the bottom, in the ‘height’ dimension.
975      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
976      *      walking through input in the ‘width’ dimension.
977      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
978      *      walking through input in the ‘height’ dimension.
979      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
980      *      width.
981      * * 8: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
982      *      height.
983      * * 9: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
984      *      {@link FuseCode} values. Specifies the activation to
985      *      invoke on the result.
986      * * 10: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
987      *       Set to true to specify NCHW data layout for input0 and output0.
988      *       Available since API level 29.
989      *
990      * Inputs (implicit padding):
991      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
992      *      the input. Since API level 29, zero batches is supported for this
993      *      tensor.
994      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the implicit
995      *      padding scheme, has to be one of the
996      *      {@link PaddingCode} values.
997      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
998      *      walking through input in the ‘width’ dimension.
999      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
1000      *      walking through input in the ‘height’ dimension.
1001      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
1002      *      width.
1003      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
1004      *      height.
1005      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
1006      *      {@link FuseCode} values. Specifies the activation to
1007      *      invoke on the result.
1008      * * 7: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
1009      *      Set to true to specify NCHW data layout for input0 and output0.
1010      *      Available since API level 29.
1011      *
1012      * Outputs:
1013      * * 0: The output 4-D tensor, of shape
1014      *      [batches, out_height, out_width, depth].
1015      *
1016      * Available since API level 27.
1017      */
1018     ANEURALNETWORKS_L2_POOL_2D = 12,
1019 
1020     /**
1021      * Applies Local Response Normalization along the depth dimension.
1022      *
1023      * The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the
1024      * last dimension), and each vector is normalized independently. Within a
1025      * given vector, each component is divided by the weighted, squared sum of
1026      * inputs within depth_radius.
1027      *
1028      * The output is calculated using this formula:
1029      *
1030      *     sqr_sum[a, b, c, d] = sum(
1031      *         pow(input[a, b, c, d - depth_radius : d + depth_radius + 1], 2))
1032      *     output = input / pow((bias + alpha * sqr_sum), beta)
1033      *
1034      * For input tensor with rank less than 4, independently normalizes each
1035      * 1-D slice along specified dimension.
1036      *
1037      * Supported tensor {@link OperandCode}:
1038      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1039      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1040      *
1041      * Supported tensor rank: up to 4
1042      * Tensors with rank less than 4 are only supported since API level 29.
1043      *
1044      * Inputs:
1045      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
1046      *      the input.
1047      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the radius of
1048      *      the normalization window.
1049      * * 2: A scalar, specifying the bias, must not be zero.
1050      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the bias
1051      *      value must be of {@link ANEURALNETWORKS_FLOAT16}.
1052      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT32}, the bias
1053      *      value must be of {@link ANEURALNETWORKS_FLOAT32}.
1054      * * 3: A scalar, specifying the scale factor, alpha.
1055      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the
1056      *      alpha value must be of {@link ANEURALNETWORKS_FLOAT16}.
1057      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT32}, the
1058      *      alpha value must be of {@link ANEURALNETWORKS_FLOAT32}.
1059      * * 4: A scalar, specifying the exponent, beta.
1060      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the beta
1061      *      value must be of {@link ANEURALNETWORKS_FLOAT16}.
1062      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT32}, the beta
1063      *      value must be of {@link ANEURALNETWORKS_FLOAT32}.
1064      * * 5: An optional {@link ANEURALNETWORKS_INT32} scalar, default to -1,
1065      *      specifying the dimension normalization would be performed on.
1066      *      Negative index is used to specify axis from the end (e.g. -1 for
1067      *      the last axis). Must be in the range [-n, n).
1068      *      Available since API level 29.
1069      *
1070      * Outputs:
1071      * * 0: The output tensor of same shape as input0.
1072      *
1073      * Available since API level 27.
1074      */
1075     ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION = 13,
1076 
1077     /**
1078      * Computes sigmoid activation on the input tensor element-wise.
1079      *
1080      * The output is calculated using this formula:
1081      *
1082      *     output = 1 / (1 + exp(-input))
1083      *
1084      * Supported tensor {@link OperandCode}:
1085      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1086      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1087      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1088      *
1089      * Supported tensor rank: up to 4.
1090      *
1091      * Inputs:
1092      * * 0: A tensor, specifying the input. Since API level 29, this tensor may
1093      *      be zero-sized.
1094      *
1095      * Outputs:
1096      * * 0: The output tensor of same shape as input0.
1097      *      For {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
1098      *      the scale must be 1.f / 256 and the zeroPoint must be 0.
1099      *
1100      * Available since API level 27.
1101      */
1102     ANEURALNETWORKS_LOGISTIC = 14,
1103 
1104     /**
1105      * Projects an input to a bit vector via locality senstive hashing.
1106      *
1107      * Supported input tensor {@link OperandCode}:
1108      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1109      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1110      * * {@link ANEURALNETWORKS_TENSOR_INT32}
1111      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1112      *
1113      * Supported input tensor rank: from 1
1114      *
1115      * Inputs:
1116      * * 0: Hash functions. Dim.size == 2, DataType: Float.
1117      *      Tensor[0].Dim[0]: Number of hash functions.
1118      *      Tensor[0].Dim[1]: Number of projected output bits generated by each
1119      *      hash function.
1120      *      If the projection type is Sparse:
1121      *      Tensor[0].Dim[1] + ceil(log2(Tensor[0].Dim[0])) <= 32
1122      *
1123      * * 1: Input. Dim.size >= 1, no restriction on DataType.
1124      * * 2: Weight. Optional. Dim.size == 1, DataType: Float.
1125      *      If not set, each input element is considered to have the same weight
1126      *      of 1.0.
1127      *      Tensor[1].Dim[0] == Tensor[2].Dim[0]
1128      * * 3: Type:
1129      *        Sparse:
1130      *          Value LSHProjectionType_SPARSE(=3) (since API level 29).
1131      *          Computed bit vector is considered to be sparse.
1132      *          Each output element is an int32 made up of multiple bits
1133      *          computed from hash functions.
1134      *
1135      *          NOTE: To avoid collisions across hash functions, an offset value
1136      *          of k * (1 << Tensor[0].Dim[1]) will be added to each signature,
1137      *          where k is the index of the hash function.
1138      *
1139      *          Value LSHProjectionType_SPARSE_DEPRECATED(=1).
1140      *          Legacy behavior that does not include the offset value.
1141      *
1142      *        Dense:
1143      *          Value LSHProjectionType_DENSE(=2).
1144      *          Computed bit vector is considered to be dense. Each output
1145      *          element represents a bit and can take the value of either
1146      *          0 or 1.
1147      *
1148      * Outputs:
1149      * * 0: If the projection type is Sparse:
1150      *      Output.Dim == { Tensor[0].Dim[0] }
1151      *      A tensor of int32 that represents hash signatures,
1152      *
1153      *      If the projection type is Dense:
1154      *      Output.Dim == { Tensor[0].Dim[0] * Tensor[0].Dim[1] }
1155      *      A flattened tensor that represents projected bit vectors.
1156      *
1157      * Available since API level 27.
1158      * The offset value for sparse projections was added in API level 29.
1159      */
1160     ANEURALNETWORKS_LSH_PROJECTION = 15,
1161 
1162     /**
1163      * Performs a single time step in a Long Short-Term Memory (LSTM) layer
1164      *
1165      * The LSTM operation is described by the following equations.
1166      *
1167      * \f{eqnarray*}{
1168      * i_t =& \sigma(W_{xi}x_t+W_{hi}h_{t-1}+W_{ci}C_{t-1}+b_i) & \\
1169      * f_t =& \sigma(W_{xf}x_t+W_{hf}h_{t-1}+W_{cf}C_{t-1}+b_f) & \\
1170      * C_t =& clip(f_t \odot C_{t-1} + i_t \odot
1171      *        g(W_{xc}x_t+W_{hc}h_{t-1}+b_c),\ t_{cell}) & \\
1172      * o_t =& \sigma(W_{xo}x_t+W_{ho}h_{t-1}+W_{co}C_t+b_o) & \\
1173      *      & & \\
1174      *      & clip(W_{proj}(o_t \odot g(C_t))+b_{proj},\ t_{proj})
1175      *      & if\ there\ is\ a\ projection; \\
1176      * h_t =& & \\
1177      *      & o_t \odot g(C_t) & otherwise. \\
1178      * \f}
1179      * Where:
1180      * * \f$x_t\f$ is the input,
1181      * * \f$i_t\f$ is the input gate,
1182      * * \f$f_t\f$ is the forget gate,
1183      * * \f$C_t\f$ is the cell state,
1184      * * \f$o_t\f$ is the output,
1185      * * \f$h_t\f$ is the output state,
1186      * * \f$\sigma\f$ is the logistic sigmoid function,
1187      * * \f$g\f$ is the cell input and cell output activation function, usually
1188      *   \f$tahn\f$,
1189      * * \f$W_{xi}\f$ is the input-to-input weight matrix,
1190      * * \f$W_{hi}\f$ is the recurrent to input weight matrix,
1191      * * \f$W_{ci}\f$ is the cell-to-input weight matrix,
1192      * * \f$b_i\f$ is the input gate bias,
1193      * * \f$W_{xf}\f$ is the input-to-forget weight matrix,
1194      * * \f$W_{hf}\f$ is the recurrent-to-forget weight matrix,
1195      * * \f$W_{cf}\f$ is the cell-to-forget weight matrix,
1196      * * \f$b_f\f$ is the forget gate bias,
1197      * * \f$W_{xc}\f$ is the input-to-cell weight matrix,
1198      * * \f$W_{hc}\f$ is the recurrent-to-cell weight matrix,
1199      * * \f$b_c\f$ is the cell bias,
1200      * * \f$W_{xo}\f$ is the input-to-output weight matrix,
1201      * * \f$W_{ho}\f$ is the recurrent-to-output weight matrix,
1202      * * \f$W_{co}\f$ is the cell-to-output weight matrix,
1203      * * \f$b_o\f$ is the output gate bias,
1204      * * \f$W_{proj}\f$ is the projection weight matrix,
1205      * * \f$b_{proj}\f$ is the projection bias,
1206      * * \f$t_{cell}\f$ is the threshold for clipping the cell state, and
1207      * * \f$t_{proj}\f$ is the threshold for clipping the projected output.
1208      * * \f$\odot\f$ is the
1209      *   <a href="https://en.wikipedia.org/wiki/Hadamard_product_(matrices)">
1210      *   Hadamard product</a> that takes two matrices and produces another
1211      *   matrix, each element of which is the product of the corresponding
1212      *   elements of the input matrices.
1213      *
1214      * Since API level 29 LSTM supports layer normalization.
1215      * In case layer normalization is used, the inputs to internal activation
1216      * functions (sigmoid and \f$g\f$) are normalized, rescaled and recentered
1217      * following an approach from section 3.1 from
1218      * https://arxiv.org/pdf/1607.06450.pdf
1219      *
1220      * The operation has the following independently optional inputs:
1221      * * The cell-to-input weights (\f$W_{ci}\f$), cell-to-forget weights
1222      *   (\f$W_{cf}\f$) and cell-to-output weights (\f$W_{co}\f$) either all
1223      *   have values or neither of them have values (i.e., all set to null). If
1224      *   they have values, the peephole optimization is used.
1225      * * The input-to-input weights (\f$W_{xi}\f$), recurrent-to-input weights
1226      *   (\f$W_{hi}\f$) and input gate bias (\f$b_i\f$) either all have values,
1227      *   or none of them have values. If they have no values, coupling of input
1228      *   and forget gates (CIFG) is used, in which case the input gate
1229      *   (\f$i_t\f$) is calculated using the following equation instead.
1230      *   \f{eqnarray*}{
1231      *   i_t = 1 - f_t
1232      *   \f}
1233      *   In case peephole optimization is used and CIFG is not used
1234      *   cell-to-input (\f$W_{ci}\f$) weights must be present. Otherwise, the
1235      *   cell-to-input weights must have no value.
1236      * * The projection weights (\f$W_{proj}\f$) is required only for the
1237      *   recurrent projection layer, and should otherwise have no value.
1238      * * The projection bias (\f$b_{proj}\f$) may (but not required to) have a
1239      *   value if the recurrent projection layer exists, and should otherwise
1240      *   have no value.
1241      * * (API level >= 29) The four layer normalization weights either all have
1242      *   values or none of them have values. Additionally, if CIFG is used,
1243      *   input layer normalization weights tensor is omitted and the other layer
1244      *   normalization weights either all have values or none of them have
1245      *   values. Layer normalization is used when the values of all the layer
1246      *   normalization weights are present.
1247      *
1248      * References:
1249      *
1250      * The default non-peephole non-CIFG implementation is based on:
1251      * http://www.bioinf.jku.at/publications/older/2604.pdf
1252      * S. Hochreiter and J. Schmidhuber. "Long Short-Term Memory". Neural
1253      * Computation, 9(8):1735-1780, 1997.
1254      *
1255      * The peephole implementation and projection layer is based on:
1256      * https://research.google.com/pubs/archive/43905.pdf
1257      * Hasim Sak, Andrew Senior, and Francoise Beaufays. "Long short-term memory
1258      * recurrent neural network architectures for large scale acoustic
1259      * modeling." INTERSPEECH, 2014.
1260      * (However, the concept of peephole optimization was introduced in work
1261      * prior to this paper.)
1262      *
1263      * The coupling of input and forget gate (CIFG) is based on:
1264      * http://arxiv.org/pdf/1503.04069.pdf
1265      * Greff et al. "LSTM: A Search Space Odyssey"
1266      *
1267      * The layer normalization is based on:
1268      * https://arxiv.org/pdf/1607.06450.pdf
1269      * Jimmy Ba et al. "Layer Normalization"
1270      *
1271      * Supported tensor {@link OperandCode}:
1272      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1273      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1274      *
1275      * All input and output tensors must be of the same type.
1276      *
1277      * Inputs:
1278      * * 0: The input (\f$x_t\f$).
1279      *      A 2-D tensor of shape [batch_size, input_size], where “batch_size”
1280      *      corresponds to the batching dimension, and “input_size” is the size
1281      *      of the input.
1282      * * 1: The input-to-input weights (\f$W_{xi}\f$). Optional.
1283      *      A 2-D tensor of shape [num_units, input_size], where “num_units”
1284      *      corresponds to the number of cell units.
1285      * * 2: The input-to-forget weights (\f$W_{xf}\f$).
1286      *      A 2-D tensor of shape [num_units, input_size].
1287      * * 3: The input-to-cell weights (\f$W_{xc}\f$).
1288      *      A 2-D tensor of shape [num_units, input_size].
1289      * * 4: The input-to-output weights (\f$W_{xo}\f$).
1290      *      A 2-D tensor of shape [num_units, input_size].
1291      * * 5: The recurrent-to-input weights (\f$W_{hi}\f$). Optional.
1292      *      A 2-D tensor of shape [num_units, output_size], where “output_size”
1293      *      corresponds to either the number of cell units (i.e., “num_units”),
1294      *      or the second dimension of the “projection_weights”, if defined.
1295      * * 6: The recurrent-to-forget weights (\f$W_{hf}\f$).
1296      *      A 2-D tensor of shape [num_units, output_size].
1297      * * 7: The recurrent-to-cell weights (\f$W_{hc}\f$).
1298      *      A 2-D tensor of shape [num_units, output_size].
1299      * * 8: The recurrent-to-output weights (\f$W_{ho}\f$).
1300      *      A 2-D tensor of shape [num_units, output_size].
1301      * * 9: The cell-to-input weights (\f$W_{ci}\f$). Optional.
1302      *      A 1-D tensor of shape [num_units].
1303      * * 10:The cell-to-forget weights (\f$W_{cf}\f$). Optional.
1304      *      A 1-D tensor of shape [num_units].
1305      * * 11:The cell-to-output weights (\f$W_{co}\f$). Optional.
1306      *      A 1-D tensor of shape [num_units].
1307      * * 12:The input gate bias (\f$b_i\f$). Optional.
1308      *      A 1-D tensor of shape [num_units].
1309      * * 13:The forget gate bias (\f$b_f\f$).
1310      *      A 1-D tensor of shape [num_units].
1311      * * 14:The cell bias (\f$b_c\f$).
1312      *      A 1-D tensor of shape [num_units].
1313      * * 15:The output gate bias (\f$b_o\f$).
1314      *      A 1-D tensor of shape [num_units].
1315      * * 16:The projection weights (\f$W_{proj}\f$). Optional.
1316      *      A 2-D tensor of shape [output_size, num_units].
1317      * * 17:The projection bias (\f$b_{proj}\f$). Optional.
1318      *      A 1-D tensor of shape [output_size].
1319      * * 18:The output state (in) (\f$h_{t-1}\f$).
1320      *      A 2-D tensor of shape [batch_size, output_size].
1321      * * 19:The cell state (in) (\f$C_{t-1}\f$).
1322      *      A 2-D tensor of shape [batch_size, num_units].
1323      * * 20:The activation function (\f$g\f$).
1324      *      A value indicating the activation function:
1325      *      <ul>
1326      *      <li>0: None;
1327      *      <li>1: Relu;
1328      *      <li>3: Relu6;
1329      *      <li>4: Tanh;
1330      *      <li>6: Sigmoid.
1331      *      </ul>
1332      * * 21:The clipping threshold (\f$t_{cell}\f$) for the cell state, such
1333      *      that values are bound within [-cell_clip, cell_clip]. If set to 0.0
1334      *      then clipping is disabled.
1335      *      Until API level 29 this scalar must be of type {@link
1336      *      ANEURALNETWORKS_FLOAT32}. Since API level 29, if all the input
1337      *      tensors have type {@link ANEURALNETWORKS_TENSOR_FLOAT32}, this
1338      *      scalar must be of the type {@link ANEURALNETWORKS_FLOAT32},
1339      *      otherwise if all the input tensors have the type {@link
1340      *      ANEURALNETWORKS_TENSOR_FLOAT16}, this scalar must be of type {@link
1341      *      ANEURALNETWORKS_FLOAT16}.
1342      * * 22:The clipping threshold (\f$t_{proj}\f$) for the output from the
1343      *      projection layer, such that values are bound within
1344      *      [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
1345      *      Until API level 29 this scalar must be of type {@link
1346      *      ANEURALNETWORKS_FLOAT32}. Since API level 29, if all the input
1347      *      tensors have type {@link ANEURALNETWORKS_TENSOR_FLOAT32}, this
1348      *      scalar must be of the type {@link ANEURALNETWORKS_FLOAT32},
1349      *      otherwise if all the input tensors have the type {@link
1350      *      ANEURALNETWORKS_TENSOR_FLOAT16}, this scalar must be of type {@link
1351      *      ANEURALNETWORKS_FLOAT16}.
1352      * Since API level 29 there are additional inputs to this op:
1353      * * 23:The input layer normalization weights.
1354      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
1355      *      to activation at input gate.
1356      * * 24:The forget layer normalization weights.
1357      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
1358      *      to activation at forget gate.
1359      * * 25:The cell layer normalization weights.
1360      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
1361      *      to activation at cell gate.
1362      * * 26:The output layer normalization weights.
1363      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
1364      *      to activation at output gate.
1365      *
1366      * Outputs:
1367      * * 0: The scratch buffer.
1368      *      A 2-D tensor of shape [batch_size, num_units * 3] with CIFG, or
1369      *      [batch_size, num_units * 4] without CIFG.
1370      * * 1: The output state (out) (\f$h_t\f$).
1371      *      A 2-D tensor of shape [batch_size, output_size].
1372      * * 2: The cell state (out) (\f$C_t\f$).
1373      *      A 2-D tensor of shape [batch_size, num_units].
1374      * * 3: The output (\f$o_t\f$).
1375      *      A 2-D tensor of shape [batch_size, output_size]. This is effectively
1376      *      the same as the current “output state (out)” value.
1377      *
1378      * Available since API level 27.
1379      */
1380     ANEURALNETWORKS_LSTM = 16,
1381 
1382     /**
1383      * Performs an 2-D max pooling operation.
1384      *
1385      * The output dimensions are functions of the filter dimensions, stride, and
1386      * padding.
1387      *
1388      * The values in the output tensor are computed as:
1389      *
1390      *     output[b, i, j, channel] =
1391      *         max_{di, dj} (
1392      *             input[b, strides[1] * i + di, strides[2] * j + dj, channel]
1393      *         )
1394      *
1395      * Supported tensor {@link OperandCode}:
1396      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1397      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1398      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1399      *
1400      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
1401      * With the default data layout NHWC, the data is stored in the order of:
1402      * [batch, height, width, channels]. Alternatively, the data layout could
1403      * be NCHW, the data storage order of: [batch, channels, height, width].
1404      *
1405      * Both explicit padding and implicit padding are supported.
1406      *
1407      * Inputs (explicit padding):
1408      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
1409      *      the input. Since API level 29, zero batches is supported for this
1410      *      tensor.
1411      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
1412      *      the left, in the ‘width’ dimension.
1413      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
1414      *      the right, in the ‘width’ dimension.
1415      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
1416      *      the top, in the ‘height’ dimension.
1417      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
1418      *      the bottom, in the ‘height’ dimension.
1419      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
1420      *      walking through input in the ‘width’ dimension.
1421      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
1422      *      walking through input in the ‘height’ dimension.
1423      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
1424      *      width.
1425      * * 8: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
1426      *      height.
1427      * * 9: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
1428      *      {@link FuseCode} values. Specifies the activation to
1429      *      invoke on the result.
1430      * * 10: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
1431      *       Set to true to specify NCHW data layout for input0 and output0.
1432      *       Available since API level 29.
1433      *
1434      * Inputs (implicit padding):
1435      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
1436      *      the input. Since API level 29, zero batches is supported for this
1437      *      tensor.
1438      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the implicit
1439      *      padding scheme, has to be one of the
1440      *      {@link PaddingCode} values.
1441      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
1442      *      walking through input in the ‘width’ dimension.
1443      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
1444      *      walking through input in the ‘height’ dimension.
1445      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
1446      *      width.
1447      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
1448      *      height.
1449      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
1450      *      {@link FuseCode} values. Specifies the activation to
1451      *      invoke on the result.
1452      * * 7: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
1453      *      Set to true to specify NCHW data layout for input0 and output0.
1454      *      Available since API level 29.
1455      *
1456      * Outputs:
1457      * * 0: The output 4-D tensor, of shape
1458      *      [batches, out_height, out_width, depth].
1459      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
1460      *      the scale and zeroPoint must be the same as input0.
1461      *
1462      * Available since API level 27.
1463      */
1464     ANEURALNETWORKS_MAX_POOL_2D = 17,
1465 
1466     /**
1467      * Multiplies two tensors, element-wise.
1468      *
1469      * Takes two input tensors of identical {@link OperandCode} and compatible
1470      * dimensions. The output is the product of both input tensors, optionally
1471      * modified by an activation function.
1472      *
1473      * Two dimensions are compatible when:
1474      *     1. they are equal, or
1475      *     2. one of them is 1
1476      *
1477      * The size of the resulting output is the maximum size along each dimension
1478      * of the input operands. It starts with the trailing dimensions, and works
1479      * its way forward.
1480      *
1481      * Since API level 29, generic zero-sized input tensor is supported. Zero
1482      * dimension is only compatible with 0 or 1. The size of the output
1483      * dimension is zero if either of corresponding input dimension is zero.
1484      *
1485      * Supported tensor {@link OperandCode}:
1486      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1487      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1488      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1489      *
1490      * Supported tensor rank: up to 4
1491      *
1492      * Inputs:
1493      * * 0: A tensor.
1494      * * 1: A tensor of the same {@link OperandCode}, and compatible dimensions
1495      *      as input0.
1496      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
1497      *      {@link FuseCode} values. Specifies the activation to
1498      *      invoke on the result.
1499      *
1500      * Outputs:
1501      * * 0: The product, a tensor of the same {@link OperandCode} as input0.
1502      *      For output tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
1503      *      the following condition must be satisfied:
1504      *      output_scale > input1_scale * input2_scale.
1505      *
1506      * Available since API level 27.
1507      */
1508     ANEURALNETWORKS_MUL = 18,
1509 
1510     /**
1511      * Computes rectified linear activation on the input tensor element-wise.
1512      *
1513      * The output is calculated using this formula:
1514      *
1515      *     output = max(0, input)
1516      *
1517      * Supported tensor {@link OperandCode}:
1518      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1519      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1520      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1521      *
1522      * Supported tensor rank: up to 4.
1523      *
1524      * Inputs:
1525      * * 0: A tensor, specifying the input. Since API level 29, this tensor may
1526      *      be zero-sized.
1527      *
1528      * Outputs:
1529      * * 0: The output tensor of same shape as input0.
1530      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
1531      *      the scale and zeroPoint must be the same as input0.
1532      *
1533      * Available since API level 27.
1534      */
1535     ANEURALNETWORKS_RELU = 19,
1536 
1537     /**
1538      * Computes rectified linear 1 activation on the input tensor element-wise.
1539      *
1540      * The output is calculated using this formula:
1541      *
1542      *     output = min(1.f, max(-1.f, input))
1543      *
1544      * Supported tensor {@link OperandCode}:
1545      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1546      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1547      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1548      *
1549      * Supported tensor rank: up to 4.
1550      *
1551      * Inputs:
1552      * * 0: A tensor, specifying the input. Since API level 29, this tensor may
1553      *      be zero-sized.
1554      *
1555      * Outputs:
1556      * * 0: The output tensor of the same shape as input0.
1557      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
1558      *      the scale and zeroPoint must be the same as input0.
1559      *
1560      * Available since API level 27.
1561      */
1562     ANEURALNETWORKS_RELU1 = 20,
1563 
1564     /**
1565      * Computes rectified linear 6 activation on the input tensor element-wise.
1566      *
1567      * The output is calculated using this formula:
1568      *
1569      *     output = min(6, max(0, input))
1570      *
1571      * Supported tensor {@link OperandCode}:
1572      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1573      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1574      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1575      *
1576      * Supported tensor rank: up to 4.
1577      *
1578      * Inputs:
1579      * * 0: A tensor, specifying the input. Since API level 29, this tensor may
1580      *      be zero-sized.
1581      *
1582      * Outputs:
1583      * * 0: The output tensor of same shape as input0.
1584      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
1585      *      the scale and zeroPoint must be the same as input0.
1586      *
1587      * Available since API level 27.
1588      */
1589     ANEURALNETWORKS_RELU6 = 21,
1590 
1591     /**
1592      * Reshapes a tensor.
1593      *
1594      * Given tensor, this operation returns a tensor that has the same values as
1595      * tensor, but with a newly specified shape.
1596      *
1597      * Supported tensor {@link OperandCode}:
1598      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1599      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1600      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1601      *
1602      * Supported tensor rank: up to 4.
1603      *
1604      * Inputs:
1605      * * 0: A tensor, specifying the tensor to be reshaped.
1606      * * 1: A 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}, defining the
1607      *      shape of the output tensor. The number of elements implied by shape
1608      *      must be the same as the number of elements in the input tensor.
1609      *
1610      *      If one component of shape is the special value -1, the size of that
1611      *      dimension is computed so that the total size remains constant. In
1612      *      particular, a shape of [-1] flattens into 1-D. At most one component
1613      *      of shape can be -1.
1614      *
1615      * Outputs:
1616      * * 0: The output tensor, of shape specified by the input shape.
1617      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
1618      *      the scale and zeroPoint must be the same as input0.
1619      *
1620      * Available since API level 27.
1621      */
1622     ANEURALNETWORKS_RESHAPE = 22,
1623 
1624     /**
1625      * Resizes images to given size using the bilinear interpretation.
1626      *
1627      * Resized images must be distorted if their output aspect ratio is not the
1628      * same as input aspect ratio. The corner pixels of output may not be the
1629      * same as corner pixels of input.
1630      *
1631      * Supported tensor {@link OperandCode}:
1632      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1633      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1634      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} (since API level 29)
1635      *
1636      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
1637      * With the default data layout NHWC, the data is stored in the order of:
1638      * [batch, height, width, channels]. Alternatively, the data layout could
1639      * be NCHW, the data storage order of: [batch, channels, height, width].
1640      *
1641      * Both resizing by shape and resizing by scale are supported.
1642      *
1643      * Inputs (resizing by shape):
1644      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
1645      *      the input. Since API level 29, zero batches is supported for this
1646      *      tensor.
1647      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the output
1648      *      width of the output tensor.
1649      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, specifying the output
1650      *      height of the output tensor.
1651      * * 3: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
1652      *      Set to true to specify NCHW data layout for input0 and output0.
1653      *      Available since API level 29.
1654      *
1655      * Inputs (resizing by scale, since API level 29):
1656      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
1657      *      the input. Zero batches is supported for this tensor.
1658      * * 1: A scalar, specifying width_scale, the scaling factor of the width
1659      *      dimension from the input tensor to the output tensor. The output
1660      *      width is calculated as new_width = floor(width * width_scale).
1661      *      The scalar must be of {@link ANEURALNETWORKS_FLOAT16} if input0 is
1662      *      of {@link ANEURALNETWORKS_TENSOR_FLOAT16} and of
1663      *      {@link ANEURALNETWORKS_FLOAT32} otherwise.
1664      * * 2: A scalar, specifying height_scale, the scaling factor of the height
1665      *      dimension from the input tensor to the output tensor. The output
1666      *      height is calculated as new_height = floor(height * height_scale).
1667      *      The scalar must be of {@link ANEURALNETWORKS_FLOAT16} if input0 is
1668      *      of {@link ANEURALNETWORKS_TENSOR_FLOAT16} and of
1669      *      {@link ANEURALNETWORKS_FLOAT32} otherwise.
1670      * * 3: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
1671      *      Set to true to specify NCHW data layout for input0 and output0.
1672      *
1673      * Outputs:
1674      * * 0: The output 4-D tensor, of shape
1675      *      [batches, new_height, new_width, depth].
1676      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
1677      *      the scale and zeroPoint must be the same as input0.
1678      *
1679      * Available since API level 27.
1680      */
1681     ANEURALNETWORKS_RESIZE_BILINEAR = 23,
1682 
1683     /**
1684      * A basic recurrent neural network layer.
1685      *
1686      * This layer implements the operation:
1687      * outputs = state = activation(inputs * input_weights +
1688      *                              state * recurrent_weights + bias)
1689      *
1690      * Where:
1691      * * “input_weights” is a weight matrix that multiplies the inputs;
1692      * * “recurrent_weights” is a weight matrix that multiplies the current
1693      *    “state” which itself is the output from the previous time step
1694      *    computation;
1695      * * “bias” is a bias vector (added to each output vector in the batch);
1696      * * “activation” is the function passed as the “fused_activation_function”
1697      *   argument (if not “NONE”).
1698      *
1699      * Supported tensor {@link OperandCode}:
1700      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1701      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1702      *
1703      * The input tensors must all be the same type.
1704      *
1705      * Inputs:
1706      * * 0: input.
1707      *      A 2-D tensor of shape [batch_size, input_size], where “batch_size”
1708      *      corresponds to the batching dimension, and “input_size” is the size
1709      *      of the input.
1710      * * 1: weights.
1711      *      A 2-D tensor of shape [num_units, input_size], where “num_units”
1712      *      corresponds to the number of units.
1713      * * 2: recurrent_weights.
1714      *      A 2-D tensor of shape [num_units, num_units], with columns
1715      *      corresponding to the weights from each unit.
1716      * * 3: bias.
1717      *      A 1-D tensor of shape [num_units].
1718      * * 4: hidden state (in).
1719      *      A 2-D tensor of shape [batch_size, num_units].
1720      * * 5: fused_activation_function.
1721      *      An optional {@link FuseCode} value indicating the
1722      *      activation function. If “NONE” is specified then it results in a
1723      *      linear activation.
1724      *
1725      * Outputs:
1726      * * 0: hidden state (out).
1727      *      A 2-D tensor of shape [batch_size, num_units].
1728      *
1729      * * 1: output.
1730      *      A 2-D tensor of shape [batch_size, num_units]. This is effectively
1731      *      the same as the current state value.
1732      *
1733      * Available since API level 27.
1734      */
1735     ANEURALNETWORKS_RNN = 24,
1736 
1737     /**
1738      * Computes the softmax activation on the input tensor element-wise, per
1739      * batch, by normalizing the input vector so the maximum coefficient is
1740      * zero.
1741      *
1742      * The output is calculated using this formula:
1743      *
1744      *     output[batch, i] =
1745      *         exp((input[batch, i] - max(input[batch, :])) * beta) /
1746      *         sum_{k}{exp((input[batch, k] - max(input[batch, :])) * beta)}
1747      *
1748      * For input tensor with rank other than 2, the activation will be applied
1749      * independently on each 1-D slice along specified dimension.
1750      *
1751      * Supported tensor {@link OperandCode}:
1752      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1753      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1754      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1755      *
1756      * Supported tensor rank: up to 4.
1757      * Tensors with rank other than 2 or 4 are only supported since API level 29.
1758      *
1759      * Inputs:
1760      * * 0: A 2-D or 4-D tensor, specifying the tensor to be reshaped. Since
1761      *      API level 29, this tensor may be zero-sized.
1762      * * 1: A scalar, specifying the positive scaling factor for the exponent,
1763      *      beta. If input0 is of {@link ANEURALNETWORKS_TENSOR_FLOAT32} or
1764      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}, the scalar must be of
1765      *      {@link ANEURALNETWORKS_FLOAT32}. If input0 is of {@link
1766      *      ANEURALNETWORKS_TENSOR_FLOAT16}, then the scalar must be of {@link
1767      *      ANEURALNETWORKS_FLOAT16}.
1768      * * 2: An optional {@link ANEURALNETWORKS_INT32} scalar, default to -1,
1769      *      specifying the dimension the activation would be performed on.
1770      *      Negative index is used to specify axis from the end (e.g. -1 for
1771      *      the last axis). Must be in the range [-n, n).
1772      *      Available since API level 29.
1773      *
1774      * Outputs:
1775      * * 0: The output tensor of same shape as input0.
1776      *      For {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
1777      *      the scale must be 1.f / 256 and the zeroPoint must be 0.
1778      *
1779      * Available since API level 27.
1780      */
1781     ANEURALNETWORKS_SOFTMAX = 25,
1782 
1783     /**
1784      * Rearranges blocks of spatial data, into depth.
1785      *
1786      * More specifically, this op outputs a copy of the input tensor where
1787      * values from the height and width dimensions are moved to the depth
1788      * dimension. The value block_size indicates the input block size and how
1789      * the data is moved.
1790      *
1791      * Chunks of data of size block_size * block_size from depth are rearranged
1792      * into non-overlapping blocks of size block_size x block_size.
1793      *
1794      * The depth of the output tensor is input_depth * block_size * block_size.
1795      * The input tensor's height and width must be divisible by block_size.
1796      *
1797      * Supported tensor {@link OperandCode}:
1798      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1799      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1800      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1801      *
1802      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
1803      * With the default data layout NHWC, the data is stored in the order of:
1804      * [batch, height, width, channels]. Alternatively, the data layout could
1805      * be NCHW, the data storage order of: [batch, channels, height, width].
1806      *
1807      * Inputs:
1808      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
1809      *      specifying the input.
1810      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the block_size.
1811      *      block_size must be >=1 and block_size must be a divisor of both the
1812      *      input height and width.
1813      * * 2: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
1814      *      Set to true to specify NCHW data layout for input0 and output0.
1815      *      Available since API level 29.
1816      *
1817      * Outputs:
1818      * * 0: The output 4-D tensor, of shape [batches, height/block_size,
1819      *      width/block_size, depth_in*block_size*block_size].
1820      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
1821      *      the scale and zeroPoint must be the same as input0.
1822      *
1823      * Available since API level 27.
1824      */
1825     ANEURALNETWORKS_SPACE_TO_DEPTH = 26,
1826 
1827     /**
1828      * SVDF op is a kind of stateful layer derived from the notion that a
1829      * densely connected layer that's processing a sequence of input frames can
1830      * be approximated by using a singular value decomposition of each of its
1831      * nodes. The implementation is based on:
1832      *
1833      * https://research.google.com/pubs/archive/43813.pdf
1834      *
1835      * P. Nakkiran, R. Alvarez, R. Prabhavalkar, C. Parada.
1836      * “Compressing Deep Neural Networks using a Rank-Constrained Topology”.
1837      * INTERSPEECH, 2015.
1838      *
1839      * It processes the incoming input using a 2-stage filtering mechanism:
1840      * * stage 1 performs filtering on the "features" dimension, whose outputs
1841      *   get pushed into a memory of fixed-size memory_size.
1842      * * stage 2 performs filtering on the "time" dimension of the memory_size
1843      *   memoized outputs of stage 1.
1844      *
1845      * Specifically, for rank 1, this layer implements the operation:
1846      *
1847      *     memory = push(conv1d(inputs, weights_feature, feature_dim,
1848      *                          "ANEURALNETWORKS_PADDING_VALID"));
1849      *     outputs = activation(memory * weights_time + bias);
1850      *
1851      * Where:
1852      * * “weights_feature” is a weights matrix that processes the inputs (by
1853      *   convolving the input with every “feature filter”), and whose outputs
1854      *   get pushed, stacked in order, into the fixed-size “memory” (the oldest
1855      *   entry gets dropped);
1856      * * “weights_time” is a weights matrix that processes the “memory” (by a
1857      *   batched matrix multiplication on the num_units);
1858      * * “bias” is an optional bias vector (added to each output vector in the
1859      *   batch); and
1860      * * “activation” is the function passed as the “fused_activation_function”
1861      *   argument (if not “NONE”).
1862      *
1863      * Each rank adds a dimension to the weights matrices by means of stacking
1864      * the filters.
1865      *
1866      * Supported tensor {@link OperandCode}:
1867      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1868      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1869      *
1870      * All input tensors must be the same type.
1871      *
1872      * Inputs:
1873      * * 0: input.
1874      *      A 2-D tensor of shape [batch_size, input_size], where “batch_size”
1875      *      corresponds to the batching dimension, and “input_size” is the size
1876      *      of the input.
1877      * * 1: weights_feature.
1878      *      A 2-D tensor of shape [num_units, input_size], where “num_units”
1879      *      corresponds to the number of units.
1880      * * 2: weights_time.
1881      *      A 2-D tensor of shape [num_units, memory_size], where “memory_size”
1882      *      corresponds to the fixed-size of the memory.
1883      * * 3: bias.
1884      *      An optional 1-D tensor of shape [num_units].
1885      * * 4: state (in).
1886      *      A 2-D tensor of shape [batch_size, (memory_size - 1) * num_units * rank].
1887      * * 5: rank.
1888      *      The rank of the SVD approximation.
1889      * * 6: fused_activation_function.
1890      *      An optional {@link FuseCode} value indicating the
1891      *      activation function. If “NONE” is specified then it results in a
1892      *      linear activation.
1893      *
1894      * Outputs:
1895      * * 0: state (out).
1896      *      A 2-D tensor of the same {@link OperandCode} as the inputs, with shape
1897      *      [batch_size, (memory_size - 1) * num_units * rank].
1898      * * 1: output.
1899      *      A 2-D tensor of the same {@link OperandCode} as the inputs, with shape
1900      *      [batch_size, num_units].
1901      *
1902      * Available since API level 27.
1903      */
1904     ANEURALNETWORKS_SVDF = 27,
1905 
1906     /**
1907      * Computes hyperbolic tangent of input tensor element-wise.
1908      *
1909      * The output is calculated using this formula:
1910      *
1911      *     output = tanh(input)
1912      *
1913      * Supported tensor {@link OperandCode}:
1914      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1915      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1916      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} (since API level 29)
1917      *
1918      * Supported tensor rank: up to 4.
1919      *
1920      * Inputs:
1921      * * 0: A tensor, specifying the input. Since API level 29, this tensor may
1922      *      be zero-sized.
1923      *
1924      * Outputs:
1925      * * 0: The output tensor of same shape as input0.
1926      *      For {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
1927      *      the scale must be 1.f / 128 and the zeroPoint must be 128.
1928      *
1929      * Available since API level 27.
1930      */
1931     ANEURALNETWORKS_TANH = 28,
1932 
1933     // Operations below are available since API level 28.
1934 
1935     // TODO: make the description easier to understand.
1936     /**
1937      * BatchToSpace for N-dimensional tensors.
1938      *
1939      * This operation reshapes the batch dimension (dimension 0) into M + 1
1940      * dimensions of shape block_shape + [batch], interleaves these blocks back
1941      * into the grid defined by the spatial dimensions [1, ..., M], to obtain a
1942      * result with the same rank as the input.
1943      *
1944      * This is the reverse of SpaceToBatch.
1945      *
1946      * Supported tensor {@link OperandCode}:
1947      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1948      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1949      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1950      *
1951      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
1952      * With the default data layout NHWC, the data is stored in the order of:
1953      * [batch, height, width, channels]. Alternatively, the data layout could
1954      * be NCHW, the data storage order of: [batch, channels, height, width].
1955      *
1956      * Inputs:
1957      * * 0: An n-D tensor, specifying the tensor to be reshaped
1958      * * 1: A 1-D Tensor of {@link ANEURALNETWORKS_TENSOR_INT32}, the block
1959      *      sizes for each spatial dimension of the input tensor. All values
1960      *      must be >= 1.
1961      * * 2: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
1962      *      Set to true to specify NCHW data layout for input0 and output0.
1963      *      Available since API level 29.
1964      *
1965      * Outputs:
1966      * * 0: A tensor of the same {@link OperandCode} as input0.
1967      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
1968      *      the scale and zeroPoint must be the same as input0.
1969      *
1970      * Available since API level 28.
1971      */
1972     ANEURALNETWORKS_BATCH_TO_SPACE_ND = 29,
1973 
1974     /**
1975      * Element-wise division of two tensors.
1976      *
1977      * Takes two input tensors of identical {@link OperandCode} and compatible
1978      * dimensions. The output is the result of dividing the first input tensor
1979      * by the second, optionally modified by an activation function.
1980      *
1981      * Two dimensions are compatible when:
1982      *     1. they are equal, or
1983      *     2. one of them is 1
1984      *
1985      * The size of the output is the maximum size along each dimension of the
1986      * input operands. It starts with the trailing dimensions, and works its way
1987      * forward.
1988      *
1989      * Example:
1990      *     input1.dimension =    {4, 1, 2}
1991      *     input2.dimension = {5, 4, 3, 1}
1992      *     output.dimension = {5, 4, 3, 2}
1993      *
1994      * Since API level 29, generic zero-sized input tensor is supported. Zero
1995      * dimension is only compatible with 0 or 1. The size of the output
1996      * dimension is zero if either of corresponding input dimension is zero.
1997      *
1998      * Supported tensor {@link OperandCode}:
1999      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
2000      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2001      *
2002      * Supported tensor rank: up to 4
2003      *
2004      * Inputs:
2005      * * 0: An n-D tensor, specifying the first input.
2006      * * 1: A tensor of the same {@link OperandCode}, and compatible dimensions
2007      *      as input0.
2008      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
2009      *      {@link FuseCode} values. Specifies the activation to
2010      *      invoke on the result.
2011      *
2012      * Outputs:
2013      * * 0: A tensor of the same {@link OperandCode} as input0.
2014      *
2015      * Available since API level 28.
2016      */
2017     ANEURALNETWORKS_DIV = 30,
2018 
2019     /**
2020      * Computes the mean of elements across dimensions of a tensor.
2021      *
2022      * Reduces the input tensor along the given dimensions to reduce. Unless
2023      * keep_dims is true, the rank of the tensor is reduced by 1 for each entry
2024      * in axis. If keep_dims is true, the reduced dimensions are retained with
2025      * length 1.
2026      *
2027      * Supported tensor {@link OperandCode}:
2028      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
2029      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2030      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
2031      *
2032      * Supported tensor rank: up to 4
2033      *
2034      * Inputs:
2035      * * 0: A tensor, specifying the input.
2036      * * 1: A 1-D Tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The dimensions
2037      *      to reduce. Must be in the range
2038      *      [-rank(input_tensor), rank(input_tensor)).
2039      *
2040      *      NOTE: When the operation was introduced, the documentation
2041      *      incorrectly stated that if dimensions were empty, the operation
2042      *      would reduce across all dimensions. This behavior was never
2043      *      implemented.
2044      *
2045      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, keep_dims. If positive,
2046      *      retains reduced dimensions with length 1.
2047      *
2048      * Outputs:
2049      * * 0: A tensor of the same {@link OperandCode} as input0.
2050      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
2051      *      the scale and zeroPoint must be same as input0.
2052      *
2053      * Available since API level 28.
2054      */
2055     ANEURALNETWORKS_MEAN = 31,
2056 
2057     /**
2058      * Pads a tensor with zeros.
2059      *
2060      * This operation pads a tensor according to the specified paddings.
2061      *
2062      * Supported tensor {@link OperandCode}:
2063      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
2064      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2065      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} (full support since API
2066      *   level 29, see the output section)
2067      *
2068      * Supported tensor rank: up to 4
2069      *
2070      * Inputs:
2071      * * 0: An n-D tensor, specifying the tensor to be padded.
2072      * * 1: A 2-D Tensor of {@link ANEURALNETWORKS_TENSOR_INT32}, the paddings
2073      *      for each spatial dimension of the input tensor. The shape of the
2074      *      tensor must be {rank(input0), 2}.
2075      *      padding[i, 0] specifies the number of elements to be padded in the
2076      *      front of dimension i.
2077      *      padding[i, 1] specifies the number of elements to be padded after the
2078      *      end of dimension i.
2079      *
2080      * Outputs:
2081      * * 0: A tensor of the same {@link OperandCode} as input0. The
2082      *      output tensor has the same rank as input0, and each
2083      *      dimension of the output tensor has the same size as the
2084      *      corresponding dimension of the input tensor plus the size
2085      *      of the padding:
2086      *          output0.dimension[i] =
2087      *              padding[i, 0] + input0.dimension[i] + padding[i, 1]
2088      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
2089      *      the scale and zeroPoint must be the same as input0.
2090      *
2091      *      NOTE: Before API level 29, the pad value for
2092      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} is undefined.
2093      *      Since API level 29, the pad value is always the logical zero.
2094      *
2095      * Available since API level 28.
2096      */
2097     ANEURALNETWORKS_PAD = 32,
2098 
2099     // TODO: make the description easier to understand.
2100     /**
2101      * SpaceToBatch for N-Dimensional tensors.
2102      *
2103      * This operation divides "spatial" dimensions [1, ..., M] of the input into
2104      * a grid of blocks of shape block_shape, and interleaves these blocks with
2105      * the "batch" dimension (0) such that in the output, the spatial dimensions
2106      * [1, ..., M] correspond to the position within the grid, and the batch
2107      * dimension combines both the position within a spatial block and the
2108      * original batch position. Prior to division into blocks, the spatial
2109      * dimensions of the input are optionally zero padded according to paddings.
2110      *
2111      * Supported tensor {@link OperandCode}:
2112      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
2113      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2114      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} (full support since API
2115      *   level 29, see the output section)
2116      *
2117      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
2118      * With the default data layout NHWC, the data is stored in the order of:
2119      * [batch, height, width, channels]. Alternatively, the data layout could
2120      * be NCHW, the data storage order of: [batch, channels, height, width].
2121      *
2122      * Inputs:
2123      * * 0: An n-D tensor, specifying the input.
2124      * * 1: A 1-D Tensor of {@link ANEURALNETWORKS_TENSOR_INT32}, the block
2125      *      sizes for each spatial dimension of the input tensor. All values
2126      *      must be >= 1.
2127      * * 2: A 2-D Tensor of {@link ANEURALNETWORKS_TENSOR_INT32}, the paddings
2128      *      for each spatial dimension of the input tensor. All values must be
2129      *      >= 0. The shape of the tensor must be {M, 2}, where M is the number
2130      *      of spatial dimensions.
2131      *      padding[i, 0] specifies the number of element to be padded in the
2132      *      front of dimension i.
2133      *      padding[i, 1] specifies the number of element to be padded after the
2134      *      end of dimension i.
2135      * * 3: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
2136      *      Set to true to specify NCHW data layout for input0 and output0.
2137      *      Available since API level 29.
2138      *
2139      * Outputs:
2140      * * 0: A tensor of the same {@link OperandCode} as input0.
2141      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
2142      *      the scale and zeroPoint must be the same as input0.
2143      *
2144      *      NOTE: Before API level 29, the pad value for
2145      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} is undefined.
2146      *      Since API level 29, the pad value is always the logical zero.
2147      *
2148      * Available since API level 28.
2149      */
2150     ANEURALNETWORKS_SPACE_TO_BATCH_ND = 33,
2151 
2152     /**
2153      * Removes dimensions of size 1 from the shape of a tensor.
2154      *
2155      * Given a tensor input, this operation returns a tensor of the same
2156      * {@link OperandCode} with all dimensions of size 1 removed. If you don't
2157      * want to remove all size 1 dimensions, you can remove specific size 1
2158      * dimensions by specifying the axes (input1).
2159      *
2160      * Supported tensor {@link OperandCode}:
2161      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
2162      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2163      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
2164      *
2165      * Supported tensor rank: up to 4
2166      *
2167      * Inputs:
2168      * * 0: An n-D tensor, the tensor to be squeezed.
2169      * * 1: An optional 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The
2170      *      dimensions to squeeze. If specified only squeezes the dimensions
2171      *      listed. Otherwise, squeezes all dimensions. The dimension index
2172      *      starts at 0. An error must be reported if squeezing a dimension that
2173      *      is not 1.
2174      *
2175      * Outputs:
2176      * * 0: A tensor of the same {@link OperandCode} as input0. Contains the
2177      *      same data as input, but has one or more dimensions of size 1
2178      *      removed.
2179      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
2180      *      the scale and zeroPoint must be the same as input0.
2181      *
2182      * Available since API level 28.
2183      */
2184     ANEURALNETWORKS_SQUEEZE = 34,
2185 
2186     /**
2187      * Extracts a strided slice of a tensor.
2188      *
2189      * Roughly speaking, this op extracts a slice of size (end - begin) / stride
2190      * from the given input tensor. Starting at the location specified by begin
2191      * the slice continues by adding stride to the index until all dimensions
2192      * are not less than end. Note that a stride can be negative, which causes a
2193      * reverse slice.
2194      *
2195      * Supported tensor {@link OperandCode}:
2196      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
2197      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2198      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
2199      *
2200      * Supported tensor rank: up to 4
2201      *
2202      * Inputs:
2203      * * 0: An n-D tensor, specifying the tensor to be sliced.
2204      * * 1: begin, a 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The
2205      *      starts of the dimensions of the input tensor to be sliced. The
2206      *      length must be of rank(input0).
2207      * * 2: end, a 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The
2208      *      ends of the dimensions of the input tensor to be sliced. The length
2209      *      must be of rank(input0).
2210      * * 3: strides, a 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The
2211      *      strides of the dimensions of the input tensor to be sliced. The
2212      *      length must be of rank(input0). The entries must be non-zero.
2213      * * 4: begin_mask, an {@link ANEURALNETWORKS_INT32} scalar. If the ith bit
2214      *      of begin_mask is set, begin[i] is ignored and the fullest possible
2215      *      range in that dimension is used instead.
2216      * * 5: end_mask, an {@link ANEURALNETWORKS_INT32} scalar. If the ith bit of
2217      *      end_mask is set, end[i] is ignored and the fullest possible range in
2218      *      that dimension is used instead.
2219      * * 6: shrink_axis_mask, an {@link ANEURALNETWORKS_INT32} scalar. If the
2220      *      ith bit of shrink_axis_mask is set, the ith dimension specification
2221      *      shrinks the dimensionality by 1, taking on the value at index
2222      *      begin[i]. In this case, the ith specification must define a
2223      *      slice of size 1, e.g. begin[i] = x, end[i] = x + 1.
2224      *
2225      * Outputs:
2226      * * 0: A tensor of the same {@link OperandCode} as input0 and rank (n - k),
2227      *      where k is the number of bits set in shrink_axis_mask.
2228      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
2229      *      the scale and zeroPoint must be the same as input0.
2230      *
2231      * Available since API level 28.
2232      */
2233     ANEURALNETWORKS_STRIDED_SLICE = 35,
2234 
2235     /**
2236      * Element-wise subtraction of two tensors.
2237      *
2238      * Takes two input tensors of identical {@link OperandCode} and compatible
2239      * dimensions. The output is the result of subtracting the second input
2240      * tensor from the first one, optionally modified by an activation function.
2241      *
2242      * Two dimensions are compatible when:
2243      *     1. they are equal, or
2244      *     2. one of them is 1
2245      *
2246      * The size of the output is the maximum size along each dimension of the
2247      * input operands. It starts with the trailing dimensions, and works its way
2248      * forward.
2249      *
2250      * Example:
2251      *     input1.dimension =    {4, 1, 2}
2252      *     input2.dimension = {5, 4, 3, 1}
2253      *     output.dimension = {5, 4, 3, 2}
2254      *
2255      * Since API level 29, generic zero-sized input tensor is supported. Zero
2256      * dimension is only compatible with 0 or 1. The size of the output
2257      * dimension is zero if either of corresponding input dimension is zero.
2258      *
2259      * Supported tensor {@link OperandCode}:
2260      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
2261      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2262      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} (since API level 29)
2263      *
2264      * Supported tensor rank: up to 4
2265      *
2266      * Inputs:
2267      * * 0: An n-D tensor, specifying the first input.
2268      * * 1: A tensor of the same {@link OperandCode}, and compatible dimensions
2269      *      as input0.
2270      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
2271      *      {@link FuseCode} values. Specifies the activation to
2272      *      invoke on the result.
2273      *
2274      * Outputs:
2275      * * 0: A tensor of the same {@link OperandCode} as input0.
2276      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
2277      *      the scale and zeroPoint can be different from inputs' scale and zeroPoint.
2278      *
2279      * Available since API level 28.
2280      */
2281     ANEURALNETWORKS_SUB = 36,
2282 
2283     /**
2284      * Transposes the input tensor, permuting the dimensions according to the
2285      * perm tensor.
2286      *
2287      * The returned tensor's dimension i corresponds to the input dimension
2288      * perm[i]. If perm is not given, it is set to (n-1...0), where n is the
2289      * rank of the input tensor. Hence by default, this operation performs a
2290      * regular matrix transpose on 2-D input Tensors.
2291      *
2292      * Supported tensor {@link OperandCode}:
2293      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
2294      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2295      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
2296      *
2297      * Supported tensor rank: up to 4
2298      *
2299      * Inputs:
2300      * * 0: An n-D tensor, specifying the tensor to be transposed.
2301      *      Since API level 29, this tensor may be zero-sized.
2302      * * 1: An optional 1-D Tensor of {@link ANEURALNETWORKS_TENSOR_INT32},
2303      *      the permutation of the dimensions of the input tensor.
2304      *
2305      * Outputs:
2306      * * 0: A tensor of the same {@link OperandCode} as input0.
2307      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
2308      *      the scale and zeroPoint must be the same as input0.
2309      *
2310      * Available since API level 28.
2311      */
2312     ANEURALNETWORKS_TRANSPOSE = 37,
2313 
2314     // Operations below are available since API level 29.
2315 
2316     /**
2317      * Computes the absolute value of a tensor, element-wise.
2318      *
2319      * Supported tensor {@link OperandCode}:
2320      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
2321      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2322      *
2323      * Supported tensor rank: from 1.
2324      *
2325      * Inputs:
2326      * * 0: A tensor.
2327      *
2328      * Outputs:
2329      * * 0: The output tensor of same shape as input0.
2330      *
2331      * Available since API level 29.
2332      */
2333     ANEURALNETWORKS_ABS = 38,
2334 
2335     /**
2336      * Returns the index of the largest element along an axis.
2337      *
2338      * Supported tensor {@link OperandCode}:
2339      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
2340      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2341      * * {@link ANEURALNETWORKS_TENSOR_INT32}
2342      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
2343      *
2344      * Supported tensor rank: from 1
2345      *
2346      * Inputs:
2347      * * 0: An n-D tensor specifying the input. Must be non-empty.
2348      * * 1: An {@link ANEURALNETWORKS_INT32} scalar specifying the axis to
2349      *      reduce across. Negative index is used to specify axis from the
2350      *      end (e.g. -1 for the last axis). Must be in the range [-n, n).
2351      *
2352      * Outputs:
2353      * * 0: An (n - 1)-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor.
2354      *
2355      * Available since API level 29.
2356      */
2357     // There is no underscore in ARG_MAX to avoid name conflict with
2358     // the macro defined in libc/kernel/uapi/linux/limits.h.
2359     ANEURALNETWORKS_ARGMAX = 39,
2360 
2361     /**
2362      * Returns the index of the smallest element along an axis.
2363      *
2364      * Supported tensor {@link OperandCode}:
2365      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
2366      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2367      * * {@link ANEURALNETWORKS_TENSOR_INT32}
2368      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
2369      *
2370      * Supported tensor rank: from 1
2371      *
2372      * Inputs:
2373      * * 0: An n-D tensor specifying the input. Must be non-empty.
2374      * * 1: An {@link ANEURALNETWORKS_INT32} scalar specifying the axis to
2375      *      reduce across. Negative index is used to specify axis from the
2376      *      end (e.g. -1 for the last axis). Must be in the range [-n, n).
2377      *
2378      * Outputs:
2379      * * 0: An (n - 1)-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor.
2380      *
2381      * Available since API level 29.
2382      */
2383     ANEURALNETWORKS_ARGMIN = 40,  // See ARGMAX for naming discussion.
2384 
2385     /**
2386      * Transform axis-aligned bounding box proposals using bounding box deltas.
2387      *
2388      * Given the positions of bounding box proposals and the corresponding
2389      * bounding box deltas for each class, return the refined bounding box
2390      * regions. The resulting bounding boxes are cliped against the edges of
2391      * the image.
2392      *
2393      * Supported tensor {@link OperandCode}:
2394      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
2395      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2396      * * {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM}
2397      *
2398      * Inputs:
2399      * * 0: A 2-D Tensor of shape [num_rois, 4], specifying the locations of the
2400      *      bounding box proposals, each line with format [x1, y1, x2, y2].
2401      *      For tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM},
2402      *      the zeroPoint must be 0 and the scale must be 0.125. Zero num_rois
2403      *      is supported for this tensor.
2404      * * 1: A 2-D Tensor of shape [num_rois, num_classes * 4], specifying the
2405      *      bounding box delta for each region of interest and each class. The
2406      *      bounding box deltas are organized in the following order
2407      *      [dx, dy, dw, dh], where dx and dy is the relative correction factor
2408      *      for the center position of the bounding box with respect to the width
2409      *      and height, dw and dh is the log-scale relative correction factor
2410      *      for the width and height. For input0 of type
2411      *      {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM}, this tensor should be
2412      *      of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}. Zero num_rois is
2413      *      supported for this tensor.
2414      * * 2: An 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor, of shape
2415      *      [num_rois], specifying the batch index of each box. Boxes with
2416      *      the same batch index are grouped together. Zero num_rois is
2417      *      supported for this tensor.
2418      * * 3: A 2-D Tensor of shape [batches, 2], specifying the information of
2419      *      each image in the batch, each line with format
2420      *      [image_height, image_width].
2421      *
2422      * Outputs:
2423      * * 0: A tensor of the same {@link OperandCode} as input0, with shape
2424      *      [num_rois, num_classes * 4], specifying the coordinates of each
2425      *      output bounding box for each class, with format [x1, y1, x2, y2].
2426      *      For type of {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM}, the
2427      *      scale must be 0.125 and the zero point must be 0.
2428      *
2429      * Available since API level 29.
2430      */
2431     ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM = 41,
2432 
2433     /**
2434      * Performs a forward LSTM on the input followed by a backward LSTM.
2435      *
2436      * Supported tensor {@link OperandCode}:
2437      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
2438      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2439      *
2440      * Supported tensor rank: 3, either time-major or batch-major.
2441      *
2442      * All input and output tensors must be of the same type.
2443      *
2444      *
2445      * Inputs:
2446      * * 0: The input.
2447      *      A 3-D tensor of shape:
2448      *        If time-major: [max_time, batch_size, input_size]
2449      *        If batch-major: [batch_size, max_time, input_size]
2450      *      where "max_time" is the number of timesteps (sequence length),
2451      *      "batch_size" corresponds to the batching dimension, and
2452      *      "input_size" is the size of the input.
2453      * * 1: The forward input-to-input weights. Optional.
2454      *      A 2-D tensor of shape [fw_num_units, input_size], where “fw_num_units”
2455      *      corresponds to the number of forward cell units.
2456      * * 2: The forward input-to-forget weights.
2457      *      A 2-D tensor of shape [fw_num_units, input_size].
2458      * * 3: The forward input-to-cell weights.
2459      *      A 2-D tensor of shape [fw_num_units, input_size].
2460      * * 4: The forward input-to-output weights.
2461      *      A 2-D tensor of shape [fw_num_units, input_size].
2462      * * 5: The forward recurrent-to-input weights. Optional.
2463      *      A 2-D tensor of shape [fw_num_units, fw_output_size], where “fw_output_size”
2464      *      corresponds to either the number of cell units (i.e., fw_num_units),
2465      *      or the second dimension of the “fw_projection_weights”, if defined.
2466      * * 6: The forward recurrent-to-forget weights.
2467      *      A 2-D tensor of shape [fw_num_units, fw_output_size].
2468      * * 7: The forward recurrent-to-cell weights.
2469      *      A 2-D tensor of shape [fw_num_units, fw_output_size].
2470      * * 8: The forward recurrent-to-output weights.
2471      *      A 2-D tensor of shape [fw_num_units, fw_output_size].
2472      * * 9: The forward cell-to-input weights. Optional.
2473      *      A 1-D tensor of shape [fw_num_units].
2474      * * 10: The forward cell-to-forget weights. Optional.
2475      *       A 1-D tensor of shape [fw_num_units].
2476      * * 11: The forward cell-to-output weights. Optional.
2477      *       A 1-D tensor of shape [fw_num_units].
2478      * * 12: The forward input gate bias. Optional.
2479      *       A 1-D tensor of shape [fw_num_units].
2480      * * 13: The forward forget gate bias.
2481      *       A 1-D tensor of shape [fw_num_units].
2482      * * 14: The forward cell gate bias.
2483      *       A 1-D tensor of shape [fw_num_units].
2484      * * 15: The forward output gate bias.
2485      *       A 1-D tensor of shape [fw_num_units].
2486      * * 16: The forward projection weights. Optional.
2487      *       A 2-D tensor of shape [fw_output_size, fw_num_units].
2488      * * 17: The forward projection bias. Optional.
2489      *       A 1-D tensor of shape [fw_output_size].
2490      * * 18: The backward input-to-input weights. Optional.
2491      *       A 2-D tensor of shape [bw_num_units, input_size], where “bw_num_units”
2492      *       corresponds to the number of backward cell units.
2493      * * 19: The backward input-to-forget weights.
2494      *       A 2-D tensor of shape [bw_num_units, input_size].
2495      * * 20: The backward input-to-cell weights.
2496      *       A 2-D tensor of shape [bw_num_units, input_size].
2497      * * 21: The backward input-to-output weights.
2498      *       A 2-D tensor of shape [bw_num_units, input_size].
2499      * * 22: The backward recurrent-to-input weights. Optional.
2500      *       A 2-D tensor of shape [bw_num_units, bw_output_size], where “bw_output_size”
2501      *       corresponds to either the number of cell units (i.e., “bw_num_units”),
2502      *       or the second dimension of the “bw_projection_weights”, if defined.
2503      * * 23: The backward recurrent-to-forget weights.
2504      *       A 2-D tensor of shape [bw_num_units, bw_output_size].
2505      * * 24: The backward recurrent-to-cell weights.
2506      *       A 2-D tensor of shape [bw_num_units, bw_output_size].
2507      * * 25: The backward recurrent-to-output weights.
2508      *       A 2-D tensor of shape [bw_num_units, bw_output_size].
2509      * * 26: The backward cell-to-input weights. Optional.
2510      *       A 1-D tensor of shape [bw_num_units].
2511      * * 27: The backward cell-to-forget weights. Optional.
2512      *       A 1-D tensor of shape [bw_num_units].
2513      * * 28: The backward cell-to-output weights. Optional.
2514      *       A 1-D tensor of shape [bw_num_units].
2515      * * 29: The backward input gate bias. Optional.
2516      *       A 1-D tensor of shape [bw_num_units].
2517      * * 30: The backward forget gate bias.
2518      *       A 1-D tensor of shape [bw_num_units].
2519      * * 31: The backward cell gate bias.
2520      *       A 1-D tensor of shape [bw_num_units].
2521      * * 32: The backward output gate bias.
2522      *       A 1-D tensor of shape [bw_num_units].
2523      * * 33: The backward projection weights. Optional.
2524      *       A 2-D tensor of shape [bw_output_size, bw_num_units].
2525      * * 34: The backward projection bias. Optional.
2526      *       A 1-D tensor of shape [bw_output_size].
2527      * * 35: The forward input activation state.
2528      *       A 2-D tensor of shape [batch_size, bw_output_size].
2529      * * 36: The forward input cell state.
2530      *       A 2-D tensor of shape [batch_size, bw_num_units].
2531      * * 37: The backward input activation state.
2532      *       A 2-D tensor of shape [batch_size, bw_output_size].
2533      * * 38: The backward input cell state.
2534      *       A 2-D tensor of shape [batch_size, bw_num_units].
2535      * * 39: The auxiliary input. Optional.
2536      *       A 3-D tensor of shape [max_time, batch_size, input_size], where “batch_size”
2537      *       corresponds to the batching dimension, and “input_size” is the size
2538      *       of the input.
2539      * * 40: The forward auxiliary input-to-input weights. Optional.
2540      *       A 2-D tensor of shape [fw_num_units, input_size].
2541      * * 41: The forward auxiliary input-to-forget weights. Optional.
2542      *       A 2-D tensor of shape [fw_num_units, input_size].
2543      * * 42: The forward auxiliary input-to-cell weights. Optional.
2544      *       A 2-D tensor of shape [fw_num_units, input_size].
2545      * * 43: The forward auxiliary input-to-output weights. Optional.
2546      *       A 2-D tensor of shape [fw_num_units, input_size].
2547      * * 44: The backward auxiliary input-to-input weights. Optional.
2548      *       A 2-D tensor of shape [bw_num_units, input_size].
2549      * * 45: The backward auxiliary input-to-forget weights. Optional.
2550      *       A 2-D tensor of shape [bw_num_units, input_size].
2551      * * 46: The backward auxiliary input-to-cell weights. Optional.
2552      *       A 2-D tensor of shape [bw_num_units, input_size].
2553      * * 47: The backward auxiliary input-to-output weights. Optional.
2554      *       A 2-D tensor of shape [bw_num_units, input_size].
2555      * * 48: The activation function.
2556      *       A value indicating the activation function:
2557      *       <ul>
2558      *       <li>0: None;
2559      *       <li>1: Relu;
2560      *       <li>3: Relu6;
2561      *       <li>4: Tanh;
2562      *       <li>6: Sigmoid.
2563      *       </ul>
2564      * * 49: The clipping threshold for the cell state, such
2565      *       that values are bound within [-cell_clip, cell_clip]. If set to 0.0
2566      *       then clipping is disabled.
2567      *       If all the input tensors have type {@link ANEURALNETWORKS_TENSOR_FLOAT32},
2568      *       this scalar must be of the type {@link ANEURALNETWORKS_FLOAT32},
2569      *       otherwise if all the input tensors have the type {@link
2570      *       ANEURALNETWORKS_TENSOR_FLOAT16}, this scalar must be of type {@link
2571      *       ANEURALNETWORKS_FLOAT16}.
2572      * * 50: The clipping threshold for the output from the
2573      *       projection layer, such that values are bound within
2574      *       [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
2575      *       If all the input tensors have type {@link ANEURALNETWORKS_TENSOR_FLOAT32},
2576      *       this scalar must be of the type {@link ANEURALNETWORKS_FLOAT32},
2577      *       otherwise if all the input tensors have the type {@link
2578      *       ANEURALNETWORKS_TENSOR_FLOAT16}, this scalar must be of type {@link
2579      *       ANEURALNETWORKS_FLOAT16}.
2580      * * 51: merge_outputs
2581      *       An {@link ANEURALNETWORKS_BOOL} scalar specifying if the outputs
2582      *       from forward and backward cells should be merged.
2583      * * 52: time_major
2584      *       An {@link ANEURALNETWORKS_BOOL} scalar specifying the shape format
2585      *       of input and output tensors.
2586      * * 53: The forward input layer normalization weights. Optional.
2587      *       A 1-D tensor of shape [fw_num_units]. Used to rescale normalized inputs
2588      *       to activation at input gate.
2589      * * 54: The forward forget layer normalization weights. Optional.
2590      *       A 1-D tensor of shape [fw_num_units]. Used to rescale normalized inputs
2591      *       to activation at forget gate.
2592      * * 55: The forward cell layer normalization weights. Optional.
2593      *       A 1-D tensor of shape [fw_num_units]. Used to rescale normalized inputs
2594      *       to activation at cell gate.
2595      * * 56: The forward output layer normalization weights. Optional.
2596      *       A 1-D tensor of shape [fw_num_units]. Used to rescale normalized inputs
2597      *       to activation at output gate.
2598      * * 57: The backward input layer normalization weights. Optional.
2599      *       A 1-D tensor of shape [bw_num_units]. Used to rescale normalized inputs
2600      *       to activation at input gate.
2601      * * 58: The backward forget layer normalization weights. Optional.
2602      *       A 1-D tensor of shape [bw_num_units]. Used to rescale normalized inputs
2603      *       to activation at forget gate.
2604      * * 59: The backward cell layer normalization weights. Optional.
2605      *       A 1-D tensor of shape [bw_num_units]. Used to rescale normalized inputs
2606      *       to activation at cell gate.
2607      * * 60: The backward output layer normalization weights. Optional.
2608      *       A 1-D tensor of shape [bw_num_units]. Used to rescale normalized inputs
2609      *       to activation at output gate.
2610      *
2611      * Outputs:
2612      * * 0: The forward output.
2613      *      A 3-D tensor of shape:
2614      *        If time-major and not merge_outputs:
2615      *          [max_time, batch_size, fw_output_size]
2616      *        If time-major and merge_outputs:
2617      *          [max_time, batch_size, fw_output_size + bw_output_size]
2618      *        If batch-major and not merge_outputs:
2619      *          [batch_size, max_time, fw_output_size]
2620      *        If batch-major and merge_outputs:
2621      *          [batch_size, max_time, fw_output_size + bw_output_size]
2622      * * 1: The backward output.  Unused if merge_outputs is true.
2623      *      A 3-D tensor of shape:
2624      *        If time-major: [max_time, batch_size, bw_output_size]
2625      *        If batch-major: [batch_size, max_time, bw_output_size]
2626      *
2627      * Available since API level 29.
2628      */
2629     ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_LSTM = 42,
2630 
2631     /**
2632      * A recurrent neural network layer that applies a basic RNN cell to a
2633      * sequence of inputs in forward and backward directions.
2634      *
2635      * This Op unrolls the input along the sequence dimension, and implements
2636      * the following operation for each element in the sequence s =
2637      * 1...sequence_length:
2638      *   fw_outputs[s] = fw_state = activation(inputs[s] * fw_input_weights’ +
2639      *          fw_state * fw_recurrent_weights’ + fw_bias)
2640      *
2641      * And for each element in sequence t = sequence_length : 1
2642      *   bw_outputs[t] = bw_state = activation(inputs[t] * bw_input_weights’ +
2643      *          bw_state * bw_recurrent_weights’ + bw_bias)
2644      *
2645      * Where:
2646      * * “{fw,bw}_input_weights” is a weight matrix that multiplies the inputs;
2647      * * “{fw,bw}_recurrent_weights” is a weight matrix that multiplies the
2648      *    current “state” which itself is the output from the previous time step
2649      *    computation;
2650      * * “{fw,bw}_bias” is a bias vector (added to each output vector in the
2651      *    batch);
2652      * * “activation” is the function passed as the “fused_activation_function”
2653      *   argument (if not “NONE”).
2654      *
2655      * The op also supports an auxiliary input. Regular cell feeds one input
2656      * into the two RNN cells in the following way:
2657      *
2658      *       INPUT  (INPUT_REVERSED)
2659      *         |         |
2660      *    ---------------------
2661      *    | FW_RNN     BW_RNN |
2662      *    ---------------------
2663      *         |         |
2664      *      FW_OUT     BW_OUT
2665      *
2666      * An op with an auxiliary input takes two inputs and feeds them into the
2667      * RNN cells in the following way:
2668      *
2669      *       AUX_INPUT   (AUX_INPUT_REVERSED)
2670      *           |             |
2671      *     INPUT | (INPUT_R'D.)|
2672      *       |   |       |     |
2673      *    -----------------------
2674      *    |  \  /        \    / |
2675      *    | FW_RNN       BW_RNN |
2676      *    -----------------------
2677      *         |           |
2678      *      FW_OUT      BW_OUT
2679      *
2680      * While stacking this op on top of itself, this allows to connect both
2681      * forward and backward outputs from previous cell to the next cell's
2682      * inputs.
2683      *
2684      * Supported tensor {@link OperandCode}:
2685      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
2686      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2687      *
2688      * The input tensors must all be the same type.
2689      *
2690      * Inputs:
2691      * * 0: input.
2692      *      A 3-D tensor. The shape is defined by the input 6 (timeMajor). If
2693      *      it is set to true, then the input has a shape [maxTime, batchSize,
2694      *      inputSize], otherwise the input has a shape [batchSize, maxTime,
2695      *      inputSize].
2696      * * 1: fwWeights.
2697      *      A 2-D tensor of shape [fwNumUnits, inputSize].
2698      * * 2: fwRecurrentWeights.
2699      *      A 2-D tensor of shape [fwNumUnits, fwNumUnits].
2700      * * 3: fwBias.
2701      *      A 1-D tensor of shape [fwNumUnits].
2702      * * 4: fwHiddenState.
2703      *      A 2-D tensor of shape [batchSize, fwNumUnits]. Specifies a hidden
2704      *      state input for the first time step of the computation.
2705      * * 5: bwWeights.
2706      *      A 2-D tensor of shape [bwNumUnits, inputSize].
2707      * * 6: bwRecurrentWeights.
2708      *      A 2-D tensor of shape [bwNumUnits, bwNumUnits].
2709      * * 7: bwBias.
2710      *      A 1-D tensor of shape [bwNumUnits].
2711      * * 8: bwHiddenState
2712      *      A 2-D tensor of shape [batchSize, bwNumUnits]. Specifies a hidden
2713      *      state input for the first time step of the computation.
2714      * * 9: auxInput.
2715      *      A 3-D tensor. The shape is the same as of the input 0.
2716      * * 10:fwAuxWeights.
2717      *      A 2-D tensor of shape [fwNumUnits, inputSize].
2718      * * 11:bwAuxWeights.
2719      *      A 2-D tensor of shape [bwNumUnits, inputSize].
2720      * * 12:fusedActivationFunction.
2721      *      A {@link FuseCode} value indicating the activation function. If
2722      *      “NONE” is specified then it results in a linear activation.
2723      * * 13:timeMajor
2724      *      An {@link ANEURALNETWORKS_BOOL} scalar specifying the shape format
2725      *      of input and output tensors.
2726      * * 14:mergeOutputs
2727      *      An {@link ANEURALNETWORKS_BOOL} scalar specifying if the outputs
2728      *      from forward and backward cells are separate (if set to false) or
2729      *      concatenated (if set to true).
2730      * Outputs:
2731      * * 0: fwOutput.
2732      *      A 3-D tensor. The first two dimensions of the shape are defined by
2733      *      the input 6 (timeMajor) and the third dimension is defined by the
2734      *      input 14 (mergeOutputs). If timeMajor is set to true, then the first
2735      *      two dimensions are [maxTime, batchSize], otherwise they are set to
2736      *      [batchSize, maxTime]. If mergeOutputs is set to true, then the third
2737      *      dimension is equal to (fwNumUnits + bwNumUnits), otherwise it is set
2738      *      to fwNumUnits.
2739      * * 1: bwOutput.
2740      *      A 3-D tensor. If the input 14 (mergeOutputs) is set to true, then
2741      *      this tensor is not produced. The shape is defined by the input 6
2742      *      (timeMajor). If it is set to true, then the shape is set to
2743      *      [maxTime, batchSize, bwNumUnits], otherwise the shape is set to
2744      *      [batchSize, maxTime, bwNumUnits].
2745      *
2746      * Available since API level 29.
2747      */
2748     ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_RNN = 43,
2749 
2750     /**
2751      * Greedily selects a subset of bounding boxes in descending order of score.
2752      *
2753      * This op applies NMS algorithm to each class. In each loop of execution,
2754      * the box with maximum score gets selected and removed from the pending set.
2755      * The scores of the rest of boxes are lowered according to the
2756      * intersection-over-union (IOU) overlapping with the previously selected
2757      * boxes and a specified NMS kernel method. Any boxes with score less
2758      * than a threshold are removed from the pending set.
2759      *
2760      * Three NMS kernels are supported:
2761      * * Hard:     score_new = score_old * (1 if IoU < threshold else 0)
2762      * * Linear:   score_new = score_old * (1 if IoU < threshold else 1 - IoU)
2763      * * Gaussian: score_new = score_old * exp(- IoU^2 / sigma)
2764      *
2765      * Axis-aligned bounding boxes are represented by its upper-left corner
2766      * coordinate (x1,y1) and lower-right corner coordinate (x2,y2). A valid
2767      * bounding box should satisfy x1 <= x2 and y1 <= y2.
2768      *
2769      * Supported tensor {@link OperandCode}:
2770      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
2771      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2772      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
2773      *
2774      * Inputs:
2775      * * 0: A 2-D Tensor of shape [num_rois, num_classes], specifying the score
2776      *      of each bounding box proposal. The boxes are grouped by batches in the
2777      *      first dimension. Zero num_rois is supported for this tensor.
2778      * * 1: A 2-D Tensor specifying the bounding boxes of shape
2779      *      [num_rois, num_classes * 4], organized in the order [x1, y1, x2, y2].
2780      *      The boxes are grouped by batches in the first dimension. The sequential
2781      *      order of the boxes corresponds with input0. For input0 of type
2782      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}, this tensor should be of
2783      *      {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM}, with zeroPoint of 0 and
2784      *      scale of 0.125. Zero num_rois is supported for this tensor.
2785      * * 2: A 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor, of shape
2786      *      [num_rois], specifying the batch index of each box. Boxes with
2787      *      the same batch index are grouped together.
2788      * * 3: An {@link ANEURALNETWORKS_FLOAT32} scalar, score_threshold. Boxes
2789      *      with scores lower than the threshold are filtered before sending
2790      *      to the NMS algorithm.
2791      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the maximum
2792      *      number of selected bounding boxes for each image. Set to a negative
2793      *      value for unlimited number of output bounding boxes.
2794      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the NMS
2795      *      kernel method, options are 0:hard, 1:linear, 2:gaussian.
2796      * * 6: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the IoU
2797      *      threshold in hard and linear NMS kernel. This field is ignored if
2798      *      gaussian kernel is selected.
2799      * * 7: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the sigma in
2800      *      gaussian NMS kernel. This field is ignored if gaussian kernel is
2801      *      not selected.
2802      * * 8: An {@link ANEURALNETWORKS_FLOAT32} scalar, nms_score_threshold.
2803      *      Boxes with scores lower than the threshold are dropped during the
2804      *      score updating phase in soft NMS.
2805      *
2806      * Outputs:
2807      * * 0: A 1-D Tensor of the same {@link OperandCode} as input0, with shape
2808      *      [num_output_rois], specifying the score of each output box. The boxes
2809      *      are grouped by batches, but the sequential order in each batch is not
2810      *      guaranteed. For type of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
2811      *      the scale and zero point must be the same as input0.
2812      * * 1: A 2-D Tensor of the same {@link OperandCode} as input1, with shape
2813      *      [num_output_rois, 4], specifying the coordinates of each
2814      *      output bounding box with the same format as input1. The sequential
2815      *      order of the boxes corresponds with output0. For type of
2816      *      {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM}, the scale must be
2817      *      0.125 and the zero point must be 0.
2818      * * 2: A 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor, of shape
2819      *      [num_output_rois], specifying the class of each output box. The
2820      *      sequential order of the boxes corresponds with output0.
2821      * * 3: A 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor, of shape
2822      *      [num_output_rois], specifying the batch index of each box. Boxes
2823      *      with the same batch index are grouped together.
2824      *
2825      * Available since API level 29.
2826      */
2827     ANEURALNETWORKS_BOX_WITH_NMS_LIMIT = 44,
2828 
2829     /**
2830      * Casts a tensor to a new type.
2831      *
2832      * This operation ignores the scale and zeroPoint of quanized tensors,
2833      * e.g. it treats a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} input
2834      * as a tensor of uint8 values.
2835      *
2836      * Supported tensor {@link OperandCode}:
2837      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
2838      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2839      * * {@link ANEURALNETWORKS_TENSOR_INT32}
2840      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
2841      *
2842      * Supported tensor rank: from 1
2843      *
2844      * Inputs:
2845      * * 0: A tensor.
2846      *
2847      * Outputs:
2848      * * 0: A tensor with the same shape as input0.
2849      *
2850      * Available since API level 29.
2851      */
2852     ANEURALNETWORKS_CAST = 45,
2853 
2854     /**
2855      * Shuffle the channels of the input tensor.
2856      *
2857      * Given an input tensor and a integer value of num_groups, CHANNEL_SHUFFLE
2858      * divide the channel dimension into num_groups groups, and reorganize the
2859      * channels by grouping channels with the same index in each group.
2860      *
2861      * Along the channel dimension, the output is calculated using this formula:
2862      *
2863      *     output_channel[k * num_groups + g] = input_channel[g * group_size + k]
2864      *
2865      * where group_size = num_channels / num_groups
2866      *
2867      * The number of channels must be divisible by num_groups.
2868      *
2869      * Supported tensor {@link OperandCode}:
2870      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
2871      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2872      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
2873      *
2874      * Supported tensor rank: up to 4
2875      *
2876      * Inputs:
2877      * * 0: An n-D tensor, specifying the tensor to be shuffled.
2878      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the number of
2879      *      groups.
2880      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, specifying the dimension
2881      *      channel shuffle would be performed on. Negative index is used to
2882      *      specify axis from the end (e.g. -1 for the last axis). Must be in
2883      *      the range [-n, n).
2884      *
2885      * Outputs:
2886      * * 0: A tensor of the same {@link OperandCode} and same shape as input0.
2887      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
2888      *      the scale and zeroPoint must be the same as input0.
2889      *
2890      * Available since API level 29.
2891      */
2892     ANEURALNETWORKS_CHANNEL_SHUFFLE = 46,
2893 
2894     /**
2895      * Apply postprocessing steps to bounding box detections.
2896      *
2897      * Bounding box detections are generated by applying transformation on a set
2898      * of predefined anchors with the bounding box deltas from bounding box
2899      * regression. A final step of hard NMS is applied to limit the number of
2900      * returned boxes.
2901      *
2902      * Supported tensor {@link OperandCode}:
2903      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
2904      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2905      *
2906      * Inputs:
2907      * * 0: A 3-D Tensor of shape [batches, num_anchors, num_classes], specifying
2908      *      the score of each anchor with each class. Class 0 for each
2909      *      [batches, num_anchors, 0] is background and will be ignored.
2910      * * 1: A 3-D Tensor of shape [batches, num_anchors, length_box_encoding], with
2911      *      the first four values in length_box_encoding specifying the bounding
2912      *      box deltas. The box deltas are encoded in the order of [dy, dx, dh, dw],
2913      *      where dy and dx is the linear-scale relative correction factor for the
2914      *      center position of the bounding box with respect to the width and height,
2915      *      dh and dw is the log-scale relative correction factor for the width and
2916      *      height. All the entries in length_box_encoding beyond the first four
2917      *      values are ignored in this operation.
2918      * * 2: A 2-D Tensor of shape [num_anchors, 4], specifying the shape of each
2919      *      predefined anchor, with format [ctr_y, ctr_x, h, w], where ctr_y and
2920      *      ctr_x are the center position of the box, and h and w are the height
2921      *      and the width.
2922      * * 3: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the scaling
2923      *      factor for dy in bounding box deltas.
2924      * * 4: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the scaling
2925      *      factor for dx in bounding box deltas.
2926      * * 5: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the scaling
2927      *      factor for dh in bounding box deltas.
2928      * * 6: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the scaling
2929      *      factor for dw in bounding box deltas.
2930      * * 7: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to use regular
2931      *      multi-class NMS algorithm that do NMS separately for each class,
2932      *      set to false for a faster algorithm that only do one single NMS
2933      *      using the highest class score..
2934      * * 8: An {@link ANEURALNETWORKS_INT32} scalar, max_num_detections, specifying
2935      *      the maximum number of boxes for the output. Boxes with the lowest
2936      *      scores are discarded to meet the limit.
2937      * * 9: An {@link ANEURALNETWORKS_INT32} scalar, only used when input7 is
2938      *      set to false, specifying the maximum number of classes per detection.
2939      * * 10: An {@link ANEURALNETWORKS_INT32} scalar, only used when input7 is
2940      *       set to true, specifying the maximum number of detections when
2941      *       applying NMS algorithm for each single class.
2942      * * 11: A scalar, score_threshold. Boxes with scores lower than the
2943      *       threshold are filtered before sending to the NMS algorithm. The
2944      *       scalar must be of {@link ANEURALNETWORKS_FLOAT16} if input0 is of
2945      *       {@link ANEURALNETWORKS_TENSOR_FLOAT16} and of {@link
2946      *       ANEURALNETWORKS_FLOAT32} if input0 is of {@link
2947      *       ANEURALNETWORKS_TENSOR_FLOAT32}.
2948      * * 12: A scalar, specifying the IoU threshold for hard NMS. The scalar
2949      *       must be of {@link ANEURALNETWORKS_FLOAT16} if input0 is of {@link
2950      *       ANEURALNETWORKS_TENSOR_FLOAT16} and of {@link
2951      *       ANEURALNETWORKS_FLOAT32} if input0 is of {@link
2952      *       ANEURALNETWORKS_TENSOR_FLOAT32}.
2953      * * 13: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to include
2954      *       background class in the list of label map for the output, set
2955      *       to false to not include the background. When the background
2956      *       class is included, it has label 0 and the output classes start
2957      *       at 1 in the label map, otherwise, the output classes start at 0.
2958      *
2959      * Outputs:
2960      * * 0: A 2-D tensor of the same {@link OperandCode} as input0, with shape
2961      *      [batches, max_num_detections], specifying the score of each output
2962      *      detections.
2963      * * 1: A 3-D tensor of shape [batches, max_num_detections, 4], specifying the
2964      *      coordinates of each output bounding box, with format
2965      *      [y1, x1, y2, x2].
2966      * * 2: A 2-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor, of shape
2967      *      [batches, max_num_detections], specifying the class label for each
2968      *      output detection.
2969      * * 3: An 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor, of shape [batches],
2970      *      specifying the number of valid output detections for each batch.
2971      *
2972      * Available since API level 29.
2973      */
2974     ANEURALNETWORKS_DETECTION_POSTPROCESSING = 47,
2975 
2976     /**
2977      * For input tensors x and y, computes x == y elementwise.
2978      *
2979      * Supported tensor {@link OperandCode}:
2980      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
2981      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
2982      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2983      * * {@link ANEURALNETWORKS_TENSOR_INT32}
2984      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
2985      *
2986      * Supported tensor rank: from 1
2987      *
2988      * This operation supports broadcasting.
2989      *
2990      * Inputs:
2991      * * 0: A tensor.
2992      * * 1: A tensor of the same {@link OperandCode} and dimensions compatible
2993      *      with input0.
2994      *
2995      * Outputs:
2996      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
2997      *
2998      * Available since API level 29.
2999      */
3000     ANEURALNETWORKS_EQUAL = 48,
3001 
3002     /**
3003      * Computes exponential of x element-wise.
3004      *
3005      * Supported tensor {@link OperandCode}:
3006      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3007      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3008      *
3009      * Supported tensor rank: from 1.
3010      *
3011      * Inputs:
3012      * * 0: A tensor.
3013      *
3014      * Outputs:
3015      * * 0: The output tensor of same shape as input0.
3016      *
3017      * Available since API level 29.
3018      */
3019     ANEURALNETWORKS_EXP = 49,
3020 
3021     /**
3022      * Inserts a dimension of 1 into a tensor's shape.
3023      *
3024      * Given a tensor input, this operation inserts a dimension of 1 at the
3025      * given dimension index of input's shape. The dimension index starts at
3026      * zero; if you specify a negative dimension index, it is counted backward
3027      * from the end.
3028      *
3029      * Supported tensor {@link OperandCode}:
3030      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3031      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3032      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3033      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3034      *
3035      * Supported tensor rank: from 1
3036      *
3037      * Inputs:
3038      * * 0: An n-D tensor.
3039      * * 1: An {@link ANEURALNETWORKS_INT32} scalar specifying the dimension
3040      *      index to expand. Must be in the range [-(n + 1), (n + 1)).
3041      *
3042      * Outputs:
3043      * * 0: An (n + 1)-D tensor with the same {@link OperandCode} and data as
3044      *      input0.
3045      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
3046      *      the scale and zeroPoint must be the same as input0.
3047      *
3048      * Available since API level 29.
3049      */
3050     ANEURALNETWORKS_EXPAND_DIMS = 50,
3051 
3052     /**
3053      * Gathers values along an axis.
3054      *
3055      * Produces an output tensor with shape
3056      *     input0.dimension[:axis] + indices.dimension + input0.dimension[axis + 1:]
3057      * where:
3058      *     # Vector indices (output is rank(input0)).
3059      *     output[a_0, ..., a_n, i, b_0, ..., b_n] =
3060      *       input0[a_0, ..., a_n, indices[i], b_0, ..., b_n]
3061      *
3062      *     # Higher rank indices (output is rank(input0) + rank(indices) - 1).
3063      *     output[a_0, ..., a_n, i, ..., j, b_0, ... b_n] =
3064      *       input0[a_0, ..., a_n, indices[i, ..., j], b_0, ..., b_n]
3065      *
3066      * Supported tensor {@link OperandCode}:
3067      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3068      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3069      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3070      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3071      *
3072      * Supported tensor rank: from 1
3073      *
3074      * Inputs:
3075      * * 0: An n-D tensor from which to gather values.
3076      * * 1: An {@link ANEURALNETWORKS_INT32} scalar specifying the axis.
3077      *      Negative index is used to specify axis from the end
3078      *      (e.g. -1 for the last axis). Must be in the range [-n, n).
3079      * * 2: A k-D tensor {@link ANEURALNETWORKS_TENSOR_INT32} of indices.
3080      *      The values must be in the bounds of the corresponding dimensions
3081      *      of input0.
3082      *
3083      * Outputs:
3084      * * 0: An (n + k - 1)-D tensor with the same {@link OperandCode} as input0.
3085      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
3086      *      the scale and zeroPoint must be the same as input0.
3087      *
3088      * Available since API level 29.
3089      */
3090     ANEURALNETWORKS_GATHER = 51,
3091 
3092     /**
3093      * Generate aixs-aligned bounding box proposals.
3094      *
3095      * Bounding box proposals are generated by applying transformation on a set
3096      * of predefined anchors with the bounding box deltas from bounding box
3097      * regression. A final step of hard NMS is applied to limit the number of
3098      * returned boxes.
3099      *
3100      * Axis-aligned bounding boxes are represented by its upper-left corner
3101      * coordinate (x1,y1) and lower-right corner coordinate (x2,y2). A valid
3102      * bounding box should satisfy x1 <= x2 and y1 <= y2.
3103      *
3104      * Supported tensor {@link OperandCode}:
3105      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3106      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3107      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3108      *
3109      * Inputs:
3110      * * 0: A 4-D Tensor specifying the score of each anchor at each
3111      *      location. With "NHWC" data layout, the tensor shape is
3112      *      [batches, height, width, num_anchors]. With "NCHW" data layout,
3113      *      the tensor shape is [batches, num_anchors, height, width].
3114      * * 1: A 4-D Tensor specifying the bounding box deltas. With "NHWC" data
3115      *      layout, the tensor shape is [batches, height, width, num_anchors * 4].
3116      *      With "NCHW" data layout, the tensor shape is
3117      *      [batches, num_anchors * 4, height, width]. The box deltas are encoded
3118      *      in the order of [dx, dy, dw, dh], where dx and dy is the linear-scale
3119      *      relative correction factor for the center position of the bounding box
3120      *      with respect to the width and height, dw and dh is the log-scale
3121      *      relative correction factor for the width and height. The last
3122      *      dimensions is the channel dimension.
3123      * * 2: A 2-D Tensor of shape [num_anchors, 4], specifying the shape of each
3124      *      predefined anchor, with format [x1, y1, x2, y2]. For input0 of type
3125      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}, this tensor should be of
3126      *      {@link ANEURALNETWORKS_TENSOR_QUANT16_SYMM}, with scale of 0.125.
3127      * * 3: A 2-D Tensor of shape [batches, 2], specifying the size of
3128      *      each image in the batch, with format [image_height, image_width].
3129      *      For input0 of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}, this
3130      *      tensor should be of {@link ANEURALNETWORKS_TENSOR_QUANT16_SYMM}, with
3131      *      scale of 0.125.
3132      * * 4: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the ratio
3133      *      from the height of original image to the height of feature map.
3134      * * 5: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the ratio
3135      *      from the width of original image to the width of feature map.
3136      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the maximum
3137      *      number of boxes before going into the hard NMS algorithm. Boxes
3138      *      with the lowest scores are discarded to meet the limit. Set to
3139      *      a non-positive value for unlimited number.
3140      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, specifying the maximum
3141      *      number of boxes returning from the hard NMS algorithm. Boxes
3142      *      with the lowest scores are discarded to meet the limit. Set to
3143      *      a non-positive value for unlimited number.
3144      * * 8: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the IoU
3145      *      threshold for hard NMS.
3146      * * 9: An {@link ANEURALNETWORKS_FLOAT32} scalar, min_size. Boxes with
3147      *      height or width lower than the absolute threshold are filtered out.
3148      * * 10: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to specify
3149      *       NCHW data layout for input0 and input1. Set to false for NHWC.
3150      *
3151      * Outputs:
3152      * * 0: A tensor of the same {@link OperandCode} as input0, of shape
3153      *      [num_output_rois], specifying the score of each output box.
3154      *      The boxes are grouped by batches, but the sequential order in
3155      *      each batch is not guaranteed. For type of
3156      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}, the scale and zero
3157      *      point must be the same as input0.
3158      * * 1: A tensor of the same {@link OperandCode} as input3, of shape
3159      *      [num_output_rois, 4], specifying the coordinates of each output
3160      *      bounding box for each class, with format [x1, y1, x2, y2].
3161      *      The sequential order of the boxes corresponds with output0.
3162      *      For type of {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM}, the
3163      *      scale must be 0.125 and the zero point must be 0.
3164      * * 2: A 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor, of shape
3165      *      [num_output_rois], specifying the batch index of each box. Boxes
3166      *      with the same batch index are grouped together.
3167      *
3168      * Available since API level 29.
3169      */
3170     ANEURALNETWORKS_GENERATE_PROPOSALS = 52,
3171 
3172     /**
3173      * For input tensors x and y, computes x > y elementwise.
3174      *
3175      * Supported tensor {@link OperandCode}:
3176      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
3177      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3178      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3179      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3180      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3181      *
3182      * Supported tensor rank: from 1
3183      *
3184      * This operation supports broadcasting.
3185      *
3186      * Inputs:
3187      * * 0: A tensor.
3188      * * 1: A tensor of the same {@link OperandCode} and dimensions compatible
3189      *      with input0.
3190      *
3191      * Outputs:
3192      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
3193      *
3194      * Available since API level 29.
3195      */
3196     ANEURALNETWORKS_GREATER = 53,
3197     /**
3198      * For input tensors x and y, computes x >= y elementwise.
3199      *
3200      * Supported tensor {@link OperandCode}:
3201      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
3202      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3203      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3204      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3205      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3206      *
3207      * Supported tensor rank: from 1
3208      *
3209      * This operation supports broadcasting.
3210      *
3211      * Inputs:
3212      * * 0: A tensor.
3213      * * 1: A tensor of the same {@link OperandCode} and dimensions compatible
3214      *      with input0.
3215      *
3216      * Outputs:
3217      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
3218      *
3219      * Available since API level 29.
3220      */
3221     ANEURALNETWORKS_GREATER_EQUAL = 54,
3222 
3223     /**
3224      * Performs a grouped 2-D convolution operation.
3225      *
3226      * Given an input tensor of shape [batches, height, width, depth_in] and a
3227      * filter tensor of shape [depth_out, filter_height, filter_width, depth_group]
3228      * containing depth_out convolutional filters of depth depth_group, GROUPED_CONV
3229      * applies a group of different filters to each input channel group, then
3230      * concatenates the results together.
3231      *
3232      * Specifically, the input channels are divided into num_groups groups, each with
3233      * depth depth_group, i.e. depth_in = num_groups * depth_group. The convolutional
3234      * filters are also divided into num_groups groups, i.e. depth_out is divisible
3235      * by num_groups. GROUPED_CONV applies each group of filters to the corresponding
3236      * input channel group, and the result are concatenated together.
3237      *
3238      * The output dimensions are functions of the filter dimensions, stride, and
3239      * padding.
3240      *
3241      * The values in the output tensor are computed as:
3242      *
3243      *     output[b, i, j, g * channel_multiplier + q] =
3244      *         sum_{di, dj, dk} (
3245      *             input[b, strides[1] * i + di, strides[2] * j + dj,
3246      *                   g * depth_group + dk] *
3247      *             filter[g * channel_multiplier + q, di, dj, dk]
3248      *         ) + bias[channel]
3249      *
3250      * where channel_multiplier = depth_out / num_groups
3251      *
3252      * Supported tensor {@link OperandCode} configurations:
3253      * * 16 bit floating point:
3254      * * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} for input, filter, output, and bias.
3255      *
3256      * * 32 bit floating point:
3257      * * * {@link ANEURALNETWORKS_TENSOR_FLOAT32} for input, filter, output, and bias.
3258      *
3259      * * Quantized:
3260      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} for input, filter, and output.
3261      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (with scale set to
3262      * * * input.scale * filter.scale).
3263      *
3264      * * Quantized with symmetric per channel quantization for the filter:
3265      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} for input, and output.
3266      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
3267      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (scale set to 0.0,
3268      * * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
3269      *
3270      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
3271      * With the default data layout NHWC, the data is stored in the order of:
3272      * [batch, height, width, channels]. Alternatively, the data layout could
3273      * be NCHW, the data storage order of: [batch, channels, height, width].
3274      *
3275      * Both explicit padding and implicit padding are supported.
3276      *
3277      * Inputs (explicit padding):
3278      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
3279      *      specifying the input, where depth_in = num_groups * depth_group.
3280      * * 1: A 4-D tensor, of shape
3281      *      [depth_out, filter_height, filter_width, depth_group], specifying
3282      *      the filter, where depth_out must be divisible by num_groups.  For
3283      *      tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}
3284      *      the channel dimension (channelDim at
3285      *      {@link ANeuralNetworksSymmPerChannelQuantParams}) must be set to 0.
3286      * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
3287      *      tensor of type {@link ANEURALNETWORKS_TENSOR_FLOAT32} or
3288      *      {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the bias must be of the same
3289      *      type. For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
3290      *      the bias should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint
3291      *      of 0 and bias_scale == input_scale * filter_scale. For filter tensor
3292      *      of {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
3293      *      should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint of
3294      *      0 and bias_scale of 0. The actual scale of each value 'i' is equal to
3295      *      bias_scale[i] = input_scale * filter_scale[i].
3296      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
3297      *      the left, in the ‘width’ dimension.
3298      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
3299      *      the right, in the ‘width’ dimension.
3300      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
3301      *      the top, in the ‘height’ dimension.
3302      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
3303      *      the bottom, in the ‘height’ dimension.
3304      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
3305      *      walking through input in the ‘width’ dimension.
3306      * * 8: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
3307      *      walking through input in the ‘height’ dimension.
3308      * * 9: An {@link ANEURALNETWORKS_INT32} scalar, specifying the number of
3309             groups.
3310      * * 10: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
3311      *       {@link FuseCode} values. Specifies the activation to
3312      *       invoke on the result.
3313      * * 11: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to specify
3314      *       NCHW data layout for input0 and output0. Set to false for NHWC.
3315      *
3316      * Inputs (implicit padding):
3317      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
3318      *      specifying the input, where depth_in = num_groups * depth_group.
3319      * * 1: A 4-D tensor, of shape
3320      *      [depth_out, filter_height, filter_width, depth_group], specifying
3321      *      the filter, where depth_out must be divisible by num_groups.  For
3322      *      tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}
3323      *      the channel dimension (channelDim at
3324      *      {@link ANeuralNetworksSymmPerChannelQuantParams}) must be set to 0.
3325      * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
3326      *      tensor of type {@link ANEURALNETWORKS_TENSOR_FLOAT32} or
3327      *      {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the bias must be of the same
3328      *      type. For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
3329      *      the bias should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint
3330      *      of 0 and bias_scale == input_scale * filter_scale. For filter tensor
3331      *      of {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
3332      *      should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint of
3333      *      0 and bias_scale of 0. The actual scale of each value 'i' is equal to
3334      *      bias_scale[i] = input_scale * filter_scale[i].
3335      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the implicit
3336      *      padding scheme, has to be one of the
3337      *      {@link PaddingCode} values.
3338      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
3339      *      walking through input in the ‘width’ dimension.
3340      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
3341      *      walking through input in the ‘height’ dimension.
3342      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the number of
3343      *      groups.
3344      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
3345      *      {@link FuseCode} values. Specifies the activation to
3346      *      invoke on the result.
3347      * * 8: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to specify
3348      *      NCHW data layout for input0 and output0. Set to false for NHWC.
3349      *
3350      * Outputs:
3351      * * 0: The output 4-D tensor, of shape
3352      *      [batches, out_height, out_width, depth_out].
3353      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
3354      *      the scale and zeroPoint can be different from inputs' scale and zeroPoint.
3355      *
3356      * Available since API level 29.
3357      */
3358     ANEURALNETWORKS_GROUPED_CONV_2D = 55,
3359 
3360     /**
3361      * Localize the maximum keypoints from heatmaps.
3362      *
3363      * This operation approximates the accurate maximum keypoint scores and
3364      * indices after bicubic upscaling by using Taylor expansion up to the
3365      * quadratic term.
3366      *
3367      * The bounding box is represented by its upper-left corner coordinate
3368      * (x1,y1) and lower-right corner coordinate (x2,y2) in the original image.
3369      * A valid bounding box should satisfy x1 <= x2 and y1 <= y2.
3370      *
3371      * Supported tensor {@link OperandCode}:
3372      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3373      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3374      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3375      *
3376      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
3377      * With the default data layout NHWC, the data is stored in the order of:
3378      * [batch, height, width, channels]. Alternatively, the data layout could
3379      * be NCHW, the data storage order of: [batch, channels, height, width].
3380      *
3381      * Inputs:
3382      * * 0: A 4-D Tensor of shape
3383      *      [num_boxes, heatmap_size, heatmap_size, num_keypoints],
3384      *      specifying the heatmaps, the height and width of heatmaps should
3385      *      be the same, and must be greater than or equal to 2.
3386      * * 1: A 2-D Tensor of shape [num_boxes, 4], specifying the bounding boxes,
3387      *      each with format [x1, y1, x2, y2]. For input0 of type
3388      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}, this tensor should
3389      *      be of {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM}, with zeroPoint
3390      *      of 0 and scale of 0.125.
3391      * * 2: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to specify
3392      *      NCHW data layout for input0. Set to false for NHWC.
3393      *
3394      * Outputs:
3395      * * 0: A tensor of the same {@link OperandCode} as input0, with shape
3396      *      [num_boxes, num_keypoints], specifying score of the keypoints.
3397      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
3398      *      the scale and zeroPoint can be different from input0 scale and zeroPoint.
3399      * * 1: A tensor of the same {@link OperandCode} as input1, with shape
3400      *      [num_boxes, num_keypoints, 2], specifying the location of
3401      *      the keypoints, the second dimension is organized as
3402      *      [keypoint_x, keypoint_y].
3403      *      For type of {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM}, the
3404      *      scale must be 0.125 and the zero point must be 0.
3405      *
3406      * Available since API level 29.
3407      */
3408     ANEURALNETWORKS_HEATMAP_MAX_KEYPOINT = 56,
3409 
3410     /**
3411      * Applies instance normalization to the input tensor.
3412      *
3413      * The values in the output tensor are computed as:
3414      *
3415      *     output[b, h, w, c] =
3416      *         (input[b, h, w, c] - mean[b, c]) * gamma /
3417      *         sqrt(var[b, c] + epsilon) + beta
3418      *
3419      * Where the mean and variance are computed across the spatial dimensions:
3420      *
3421      *     mean[b, c] =
3422      *         sum_{h, w}(input[b, h, w, c]) / sum(1)
3423      *
3424      *     var[b, c] =
3425      *         sum_{h, w}(pow(input[b, h, w, c] - mean[b, c], 2)) / sum(1)
3426      *
3427      * Supported tensor {@link OperandCode}:
3428      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3429      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3430      *
3431      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
3432      * With the default data layout NHWC, the data is stored in the order of:
3433      * [batch, height, width, channels]. Alternatively, the data layout could
3434      * be NCHW, the data storage order of: [batch, channels, height, width].
3435      *
3436      * Inputs:
3437      * * 0: An n-D tensor, specifying the tensor to be normalized.
3438      * * 1: A scalar, specifying gamma, the scale applied to the normalized
3439      *      tensor. The scalar must be of {@link ANEURALNETWORKS_FLOAT16} if
3440      *      input0 is of {@link ANEURALNETWORKS_TENSOR_FLOAT16} and of {@link
3441      *      ANEURALNETWORKS_FLOAT32} if input0 is of {@link
3442      *      ANEURALNETWORKS_TENSOR_FLOAT32}.
3443      * * 2: A scalar, specifying beta, the offset applied to the normalized
3444      *      tensor. The scalar must be of {@link ANEURALNETWORKS_FLOAT16} if
3445      *      input0 is of {@link ANEURALNETWORKS_TENSOR_FLOAT16} and of {@link
3446      *      ANEURALNETWORKS_FLOAT32} if input0 is of {@link
3447      *      ANEURALNETWORKS_TENSOR_FLOAT32}.
3448      * * 3: A scalar, specifying epsilon, the small value added to variance to
3449      *      avoid dividing by zero. The scalar must be of {@link ANEURALNETWORKS_FLOAT16} if
3450      *      input0 is of {@link ANEURALNETWORKS_TENSOR_FLOAT16} and of {@link
3451      *      ANEURALNETWORKS_FLOAT32} if input0 is of {@link
3452      *      ANEURALNETWORKS_TENSOR_FLOAT32}.
3453      * * 4: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to specify
3454      *      NCHW data layout for input0 and output0. Set to false for NHWC.
3455      *
3456      * Outputs:
3457      * * 0: A tensor of the same {@link OperandCode} and same shape as input0.
3458      *
3459      * Available since API level 29.
3460      */
3461     ANEURALNETWORKS_INSTANCE_NORMALIZATION = 57,
3462 
3463     /**
3464      * For input tensors x and y, computes x < y elementwise.
3465      *
3466      * Supported tensor {@link OperandCode}:
3467      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
3468      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3469      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3470      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3471      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3472      *
3473      * Supported tensor rank: from 1
3474      *
3475      * This operation supports broadcasting.
3476      *
3477      * Inputs:
3478      * * 0: A tensor.
3479      * * 1: A tensor of the same {@link OperandCode} and dimensions compatible
3480      *      with input0.
3481      *
3482      * Outputs:
3483      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
3484      *
3485      * Available since API level 29.
3486      */
3487     ANEURALNETWORKS_LESS = 58,
3488 
3489     /**
3490      * For input tensors x and y, computes x <= y elementwise.
3491      *
3492      * Supported tensor {@link OperandCode}:
3493      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
3494      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3495      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3496      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3497      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3498      *
3499      * Supported tensor rank: from 1
3500      *
3501      * This operation supports broadcasting.
3502      *
3503      * Inputs:
3504      * * 0: A tensor.
3505      * * 1: A tensor of the same {@link OperandCode} and dimensions compatible
3506      *      with input0.
3507      *
3508      * Outputs:
3509      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
3510      *
3511      * Available since API level 29.
3512      */
3513     ANEURALNETWORKS_LESS_EQUAL = 59,
3514 
3515     /**
3516      * Computes natural logarithm of x element-wise.
3517      *
3518      * Supported tensor {@link OperandCode}:
3519      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3520      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3521      *
3522      * Supported tensor rank: from 1.
3523      *
3524      * Inputs:
3525      * * 0: A tensor.
3526      *
3527      * Outputs:
3528      * * 0: The output tensor of same shape as input0.
3529      *
3530      * Available since API level 29.
3531      */
3532     ANEURALNETWORKS_LOG = 60,
3533 
3534     /**
3535      * Returns the truth value of x AND y element-wise.
3536      *
3537      * Supported tensor {@link OperandCode}:
3538      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
3539      *
3540      * Supported tensor rank: from 1
3541      *
3542      * This operation supports broadcasting.
3543      *
3544      * Inputs:
3545      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
3546      * * 1: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8} and dimensions
3547      *      compatible with input0.
3548      *
3549      * Outputs:
3550      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
3551      *
3552      * Available since API level 29.
3553      */
3554     ANEURALNETWORKS_LOGICAL_AND = 61,
3555 
3556     /**
3557      * Computes the truth value of NOT x element-wise.
3558      *
3559      * Supported tensor {@link OperandCode}:
3560      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
3561      *
3562      * Supported tensor rank: from 1.
3563      *
3564      * Inputs:
3565      * * 0: A tensor.
3566      *
3567      * Outputs:
3568      * * 0: The output tensor of same shape as input0.
3569      *
3570      * Available since API level 29.
3571      */
3572     ANEURALNETWORKS_LOGICAL_NOT = 62,
3573 
3574     /**
3575      * Returns the truth value of x OR y element-wise.
3576      *
3577      * Supported tensor {@link OperandCode}:
3578      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
3579      *
3580      * Supported tensor rank: from 1
3581      *
3582      * This operation supports broadcasting.
3583      *
3584      * Inputs:
3585      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
3586      * * 1: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8} and dimensions
3587      *      compatible with input0.
3588      *
3589      * Outputs:
3590      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
3591      *
3592      * Available since API level 29.
3593      */
3594     ANEURALNETWORKS_LOGICAL_OR = 63,
3595 
3596     /**
3597      * Computes the log softmax activations given logits.
3598      *
3599      * The output is calculated using this formula:
3600      *
3601      *     output = logits * beta - log(reduce_sum(exp(logits * beta), axis))
3602      *
3603      * Supported tensor {@link OperandCode}:
3604      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3605      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3606      *
3607      * Supported tensor rank: from 1.
3608      *
3609      * Inputs:
3610      * * 0: A tensor specifying the input logits.
3611      * * 1: A scalar, specifying the positive scaling factor for the exponent,
3612      *      beta.
3613      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the beta
3614      *      value must be of {@link ANEURALNETWORKS_FLOAT16}.
3615      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT32}, the beta
3616      *      value must be of {@link ANEURALNETWORKS_FLOAT32}.
3617      * * 2: An {@link ANEURALNETWORKS_INT32} scalar specifying the axis to
3618      *      reduce across. Negative index is used to specify axis from the
3619      *      end (e.g. -1 for the last axis). Must be in the range [-n, n).
3620      *
3621      * Outputs:
3622      * * 0: The output tensor of the same {@link OperandCode} and shape as
3623      *      input0.
3624      *
3625      * Available since API level 29.
3626      */
3627     ANEURALNETWORKS_LOG_SOFTMAX = 64,
3628 
3629     /**
3630      * Returns the element-wise maximum of two tensors.
3631      *
3632      * Supported tensor {@link OperandCode}:
3633      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3634      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3635      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3636      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3637      *
3638      * Supported tensor rank: from 1.
3639      *
3640      * Inputs:
3641      * * 0: A tensor.
3642      * * 1: A tensor of the same {@link OperandCode} and compatible dimensions
3643      *      with input0.
3644      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
3645      *      the scales and zeroPoint can be different from input0 scale and zeroPoint.
3646      *
3647      * Outputs:
3648      * * 0: A tensor of the same {@link OperandCode} as input0.
3649      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
3650      *      the scale and zeroPoint can be different from inputs' scale and zeroPoint.
3651      *
3652      * Available since API level 29.
3653      */
3654     ANEURALNETWORKS_MAXIMUM = 65,
3655 
3656     /**
3657      * Returns the element-wise minimum of two tensors.
3658      *
3659      * Supported tensor {@link OperandCode}:
3660      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3661      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3662      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3663      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3664      *
3665      * Supported tensor rank: from 1.
3666      *
3667      * Inputs:
3668      * * 0: A tensor.
3669      * * 1: A tensor of the same {@link OperandCode} and compatible dimensions
3670      *      with input0.
3671      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
3672      *      the scales and zeroPoint can be different from input0 scale and zeroPoint.
3673      *
3674      * Outputs:
3675      * * 0: A tensor of the same {@link OperandCode} as input0.
3676      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
3677      *      the scale and zeroPoint can be different from inputs' scale and zeroPoint.
3678      *
3679      * Available since API level 29.
3680      */
3681     ANEURALNETWORKS_MINIMUM = 66,
3682 
3683     /**
3684      * Computes numerical negative value element-wise.
3685      *
3686      * Supported tensor {@link OperandCode}:
3687      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3688      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3689      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3690      *
3691      * Supported tensor rank: from 1.
3692      *
3693      * Inputs:
3694      * * 0: A tensor.
3695      *
3696      * Outputs:
3697      * * 0: The output tensor of same shape as input0.
3698      *
3699      * Available since API level 29.
3700      */
3701     ANEURALNETWORKS_NEG = 67,
3702 
3703     /**
3704      * For input tensors x and y, computes x != y elementwise.
3705      *
3706      * Supported tensor {@link OperandCode}:
3707      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
3708      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3709      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3710      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3711      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3712      *
3713      * Supported tensor rank: from 1
3714      *
3715      * This operation supports broadcasting.
3716      *
3717      * Inputs:
3718      * * 0: A tensor.
3719      * * 1: A tensor of the same {@link OperandCode} and dimensions compatible
3720      *      with input0.
3721      *
3722      * Outputs:
3723      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
3724      *
3725      * Available since API level 29.
3726      */
3727     ANEURALNETWORKS_NOT_EQUAL = 68,
3728 
3729     /**
3730      * Pads a tensor with the given constant value according to the specified
3731      * paddings.
3732      *
3733      * Supported tensor {@link OperandCode}:
3734      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3735      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3736      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3737      *
3738      * Supported tensor rank: up to 4
3739      *
3740      * Inputs:
3741      * * 0: An n-D tensor, specifying the tensor to be padded.
3742      * * 1: A 2-D Tensor of {@link ANEURALNETWORKS_TENSOR_INT32}, the paddings
3743      *      for each spatial dimension of the input tensor. The shape of the
3744      *      tensor must be {rank(input0), 2}.
3745      *      padding[i, 0] specifies the number of elements to be padded in the
3746      *      front of dimension i.
3747      *      padding[i, 1] specifies the number of elements to be padded after
3748      *      the end of dimension i.
3749      * * 2: An scalar specifying the value to use for padding input0.
3750      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the
3751      *      pad value must be of {@link ANEURALNETWORKS_FLOAT16}.
3752      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT32}, the
3753      *      pad value must be of {@link ANEURALNETWORKS_FLOAT32}.
3754      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
3755      *      the pad value must be of {@link ANEURALNETWORKS_INT32}. The
3756      *      scale and zeroPoint are assumed to be the same as in input0.
3757      *
3758      * Outputs:
3759      * * 0: A tensor of the same {@link OperandCode} as input0. The
3760      *      output tensor has the same rank as input0, and each
3761      *      dimension of the output tensor has the same size as the
3762      *      corresponding dimension of the input tensor plus the size
3763      *      of the padding:
3764      *          output0.dimension[i] =
3765      *              padding[i, 0] + input0.dimension[i] + padding[i, 1]
3766      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
3767      *      the scale and zeroPoint must be the same as input0.
3768      *
3769      * Available since API level 29.
3770      */
3771     ANEURALNETWORKS_PAD_V2 = 69,
3772 
3773     /**
3774      * Computes the power of one value to another.
3775      *
3776      * Given a tensor base and a tensor exponent, this operation computes
3777      * base^exponent elementwise.
3778      *
3779      * This operations supports broadcasting. The size of the output is the
3780      * maximum size along each dimension of the input operands. It starts with
3781      * the trailing dimensions, and works its way forward.
3782      *
3783      * For example:
3784      *     base.dimension     =    {4, 1, 2}
3785      *     exponent.dimension = {5, 4, 3, 1}
3786      *     output.dimension   = {5, 4, 3, 2}
3787      *
3788      * Supported tensor {@link OperandCode}:
3789      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3790      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3791      *
3792      * Supported tensor rank: from 1
3793      *
3794      * Inputs:
3795      * * 0: A tensor specifying the base.
3796      * * 1: A tensor specifying the exponent.
3797      *
3798      * Outputs:
3799      * * 0: An output tensor.
3800      *
3801      * Available since API level 29.
3802      */
3803     ANEURALNETWORKS_POW = 70,
3804 
3805     /**
3806      * Parametric Rectified Linear Unit.
3807      *
3808      * It follows: f(x) = alpha * x for x < 0, f(x) = x for x >= 0, where alpha
3809      * is a learned array with the same {@link OperandCode} and compatible
3810      * dimensions as input x.
3811      *
3812      * Two dimensions are compatible when:
3813      *     1. they are equal, or
3814      *     2. one of them is 1
3815      *
3816      * The size of the output is the maximum size along each dimension of the
3817      * input operands. It starts with the trailing dimensions, and works its way
3818      * forward.
3819      *
3820      * Example:
3821      *     input.dimension  =    {4, 1, 2}
3822      *     alpha.dimension  = {5, 4, 3, 1}
3823      *     output.dimension = {5, 4, 3, 2}
3824      *
3825      * Supported tensor {@link OperandCode}:
3826      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3827      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3828      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3829      *
3830      * Supported tensor rank: from 1
3831      *
3832      * Inputs:
3833      * * 0: A tensor, specifying the input.
3834      * * 1: A tensor of the same {@link OperandCode}, and compatible dimensions
3835      *      as input0, specifying the alpha.
3836      *
3837      * Outputs:
3838      * * 0: A tensor of the same {@link OperandCode} as input0.
3839      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
3840      *      the scale and zeroPoint can be diffent from the input0 scale and zeroPoint.
3841      *
3842      * Available since API level 29.
3843      */
3844     ANEURALNETWORKS_PRELU = 71,
3845 
3846     /**
3847      * Quantizes the input tensor.
3848      *
3849      * The formula is:
3850      *
3851      *     output = max(0, min(255, round(input / scale) + zeroPoint)
3852      *
3853      * Supported tensor {@link OperandCode}:
3854      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3855      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3856      *
3857      * Supported tensor rank: from 1
3858      *
3859      * Inputs:
3860      * * 0: A tensor, may be zero-sized.
3861      *
3862      * Outputs:
3863      * * 0: The output tensor of same shape as input0, but with
3864      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}.
3865      *
3866      * Available since API level 29.
3867      */
3868     ANEURALNETWORKS_QUANTIZE = 72,
3869 
3870     /**
3871      * A version of quantized LSTM, using 16 bit quantization for internal
3872      * state.
3873      *
3874      * There is no projection layer, so cell state size is equal to the output
3875      * size.
3876      *
3877      * Inputs:
3878      * * 0: A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3879      *      and shape [numBatches, inputSize] specifying the input to the LSTM
3880      *      cell. Tensor is quantized with a fixed quantization range of
3881      *      [-1, 127/128] (scale = 1/128, zeroPoint = 128).
3882      * * 1: The input-to-input weights.
3883      *      A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3884      *      and shape [outputSize, inputSize] specifying input-to-input part of
3885      *      weights for fully-connected layer inside the LSTM cell.
3886      *      Quantization zero point and scale must be the same across all the
3887      *      weights.
3888      * * 2: The input-to-forget weights.
3889      *      A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3890      *      and shape [outputSize, inputSize] specifying input-to-forget part of
3891      *      weights for fully-connected layer inside the LSTM cell.
3892      *      Quantization zero point and scale must be the same across all the
3893      *      weights.
3894      * * 3: The input-to-cell weights.
3895      *      A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3896      *      and shape [outputSize, inputSize] specifying input-to-cell part of
3897      *      weights for fully-connected layer inside the LSTM cell.
3898      *      Quantization zero point and scale must be the same across all the
3899      *      weights.
3900      * * 4: The input-to-output weights.
3901      *      A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3902      *      and shape [outputSize, inputSize] specifying input-to-output part of
3903      *      weights for fully-connected layer inside the LSTM cell.
3904      *      Quantization zero point and scale must be the same across all the
3905      *      weights.
3906      * * 5: The recurrent-to-input weights.
3907      *      A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3908      *      and shape [outputSize, outputSize] specifying recurrent-to-input part
3909      *      of weights for fully-connected layer inside the LSTM cell.
3910      *      Quantization zero point and scale must be the same across all the
3911      *      weights.
3912      * * 6: The recurrent-to-forget weights.
3913      *      A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3914      *      and shape [outputSize, outputSize] specifying recurrent-to-forget
3915      *      part of weights for fully-connected layer inside the LSTM cell.
3916      *      Quantization zero point and scale must be the same across all the
3917      *      weights.
3918      * * 7: The recurrent-to-cell weights.
3919      *      A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3920      *      and shape [outputSize, outputSize] specifying recurrent-to-cell part
3921      *      of weights for fully-connected layer inside the LSTM cell.
3922      *      Quantization zero point and scale must be the same across all the
3923      *      weights.
3924      * * 8: The recurrent-to-output weights.
3925      *      A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3926      *      and shape [outputSize, outputSize] specifying recurrent-to-output
3927      *      part of weights for fully-connected layer inside the LSTM cell.
3928      *      Quantization zero point and scale must be the same across all the
3929      *      weights.
3930      * * 9: The input gate bias.
3931      *      A 1-D tensor of type {@link ANEURALNETWORKS_TENSOR_INT32} and shape
3932      *      [outputSize] specifying the bias for the fully-connected layer
3933      *      inside the LSTM cell. Bias is quantized with scale being a product
3934      *      of input and weights scales and zeroPoint equal to 0.
3935      * * 10:The forget gate bias.
3936      *      A 1-D tensor of type {@link ANEURALNETWORKS_TENSOR_INT32} and shape
3937      *      [outputSize] specifying the bias for the fully-connected layer
3938      *      inside the LSTM cell. Bias is quantized with scale being a product
3939      *      of input and weights scales and zeroPoint equal to 0.
3940      * * 11:The cell bias.
3941      *      A 1-D tensor of type {@link ANEURALNETWORKS_TENSOR_INT32} and shape
3942      *      [outputSize] specifying the bias for the fully-connected layer
3943      *      inside the LSTM cell. Bias is quantized with scale being a product
3944      *      of input and weights scales and zeroPoint equal to 0.
3945      * * 12:The output gate bias.
3946      *      A 1-D tensor of type {@link ANEURALNETWORKS_TENSOR_INT32} and shape
3947      *      [outputSize] specifying the bias for the fully-connected layer
3948      *      inside the LSTM cell. Bias is quantized with scale being a product
3949      *      of input and weights scales and zeroPoint equal to 0.
3950      * * 13: A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT16_SYMM}
3951      *       and shape [numBatches, outputSize] specifying the cell state from the
3952      *       previous time step of the LSTM cell. It is quantized using a
3953      *       quantization range of [-2^4, 2^4 * 32767/32768] (scale = 2^4 /
3954      *       32768, zeroPoint = 0).
3955      * * 14: A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3956      *       and shape [numBathes, outputSize] specifying the output of the LSTM
3957      *       cell from previous time-step. Tensor is quantized with a fixed
3958      *       quantization range of [-1, 127/128] (scale = 1/128, zeroPoint =
3959      *       128).
3960      *
3961      *
3962      * Outputs:
3963      * * 0: A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT16_SYMM}
3964      *      and shape [numBatches, outputSize] which contains a cell state from
3965      *      the current time step. Tensor is quantized using a quantization
3966      *      range of [-2^4, 2^4 * 32767/32768] (scale = 2^4 / 32768, zeroPoint =
3967      *      0).
3968      * * 1: A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3969      *      and shape [numBathes, outputSize] which contains the output value.
3970      *      Tensor is quantized with a fixed quantization range of [-1, 127/128]
3971      *      (scale = 1/128, zeroPoint = 128).
3972      */
3973     ANEURALNETWORKS_QUANTIZED_16BIT_LSTM = 73,
3974 
3975     /**
3976      * Draws samples from a multinomial distribution.
3977      *
3978      * Supported tensor {@link OperandCode}:
3979      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3980      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3981      *
3982      * Inputs:
3983      * * 0: A 2-D tensor with shape [batches, classes], specifying the
3984      *      unnormalized log-probabilities for all classes.
3985      * * 1: A scalar {@link ANEURALNETWORKS_INT32}, specifying the number of
3986      *      independent samples to draw for each row slice.
3987      * * 2: A 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor with shape [2],
3988      *      specifying seeds used to initialize the random distribution.
3989      * Outputs:
3990      * * 0: A 2-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor with shape
3991      *      [batches, samples], containing the drawn samples.
3992      *
3993      * Available since API level 29.
3994      */
3995     ANEURALNETWORKS_RANDOM_MULTINOMIAL = 74,
3996 
3997     /**
3998      * Reduces a tensor by computing the "logical and" of elements along given
3999      * dimensions.
4000      *
4001      * If keep_dims is true, the reduced dimensions are
4002      * retained with length 1. Otherwise, the rank of the tensor is reduced by
4003      * 1 for each entry in dimensions.
4004      *
4005      * Supported tensor {@link OperandCode}:
4006      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
4007      *
4008      * Supported tensor rank: up to 4
4009      *
4010      * Inputs:
4011      * * 0: An n-D tensor.
4012      * * 1: A 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The dimensions
4013      *      to reduce. Dimension values must be in the range [-n, n).
4014      * * 2: An {@link ANEURALNETWORKS_BOOL} scalar, keep_dims. If true,
4015      *      retains reduced dimensions with length 1.
4016      *
4017      * Outputs:
4018      * * 0: A tensor of the same {@link OperandCode} as input0.
4019      *
4020      * Available since API level 29.
4021      */
4022     ANEURALNETWORKS_REDUCE_ALL = 75,
4023 
4024     /**
4025      * Reduces a tensor by computing the "logical or" of elements along given
4026      * dimensions.
4027      *
4028      * If keep_dims is true, the reduced dimensions are
4029      * retained with length 1. Otherwise, the rank of the tensor is reduced by
4030      * 1 for each entry in dimensions.
4031      *
4032      * Supported tensor {@link OperandCode}:
4033      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
4034      *
4035      * Supported tensor rank: up to 4
4036      *
4037      * Inputs:
4038      * * 0: An n-D tensor.
4039      * * 1: A 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The dimensions
4040      *      to reduce. Dimension values must be in the range [-n, n).
4041      * * 2: An {@link ANEURALNETWORKS_BOOL} scalar, keep_dims. If true,
4042      *      retains reduced dimensions with length 1.
4043      *
4044      * Outputs:
4045      * * 0: A tensor of the same {@link OperandCode} as input0.
4046      *
4047      * Available since API level 29.
4048      */
4049     ANEURALNETWORKS_REDUCE_ANY = 76,
4050 
4051     /**
4052      * Reduces a tensor by computing the maximum of elements along given
4053      * dimensions.
4054      *
4055      * If keep_dims is true, the reduced dimensions are
4056      * retained with length 1. Otherwise, the rank of the tensor is reduced by
4057      * 1 for each entry in dimensions.
4058      *
4059      * Supported tensor {@link OperandCode}:
4060      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4061      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4062      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4063      *
4064      * Supported tensor rank: up to 4
4065      *
4066      * Inputs:
4067      * * 0: An n-D tensor.
4068      * * 1: A 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The dimensions
4069      *      to reduce. Dimension values must be in the range [-n, n).
4070      * * 2: An {@link ANEURALNETWORKS_BOOL} scalar, keep_dims. If true,
4071      *      retains reduced dimensions with length 1.
4072      *
4073      * Outputs:
4074      * * 0: A tensor of the same {@link OperandCode} as input0.
4075      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
4076      *      the scale and zeroPoint must be the same as input0.
4077      *
4078      * Available since API level 29.
4079      */
4080     ANEURALNETWORKS_REDUCE_MAX = 77,
4081 
4082     /**
4083      * Reduces a tensor by computing the minimum of elements along given
4084      * dimensions.
4085      *
4086      * If keep_dims is true, the reduced dimensions are
4087      * retained with length 1. Otherwise, the rank of the tensor is reduced by
4088      * 1 for each entry in dimensions.
4089      *
4090      * Supported tensor {@link OperandCode}:
4091      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4092      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4093      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4094      *
4095      * Supported tensor rank: up to 4
4096      *
4097      * Inputs:
4098      * * 0: An n-D tensor.
4099      * * 1: A 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The dimensions
4100      *      to reduce. Dimension values must be in the range [-n, n).
4101      * * 2: An {@link ANEURALNETWORKS_BOOL} scalar, keep_dims. If true,
4102      *      retains reduced dimensions with length 1.
4103      *
4104      * Outputs:
4105      * * 0: A tensor of the same {@link OperandCode} as input0.
4106      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
4107      *      the scale and zeroPoint must be the same as input0.
4108      *
4109      * Available since API level 29.
4110      */
4111     ANEURALNETWORKS_REDUCE_MIN = 78,
4112 
4113     /**
4114      * Reduces a tensor by multiplying elements along given dimensions.
4115      *
4116      * If keep_dims is true, the reduced dimensions are
4117      * retained with length 1. Otherwise, the rank of the tensor is reduced by
4118      * 1 for each entry in dimensions.
4119      *
4120      * Supported tensor {@link OperandCode}:
4121      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4122      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4123      *
4124      * Supported tensor rank: up to 4
4125      *
4126      * Inputs:
4127      * * 0: An n-D tensor.
4128      * * 1: A 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The dimensions
4129      *      to reduce. Dimension values must be in the range [-n, n).
4130      * * 2: An {@link ANEURALNETWORKS_BOOL} scalar, keep_dims. If true,
4131      *      retains reduced dimensions with length 1.
4132      *
4133      * Outputs:
4134      * * 0: A tensor of the same {@link OperandCode} as input0.
4135      *
4136      * Available since API level 29.
4137      */
4138     ANEURALNETWORKS_REDUCE_PROD = 79,
4139 
4140     /**
4141      * Reduces a tensor by summing elements along given dimensions.
4142      *
4143      * If keep_dims is true, the reduced dimensions are
4144      * retained with length 1. Otherwise, the rank of the tensor is reduced by
4145      * 1 for each entry in dimensions.
4146      *
4147      * Supported tensor {@link OperandCode}:
4148      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4149      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4150      *
4151      * Supported tensor rank: up to 4
4152      *
4153      * Inputs:
4154      * * 0: An n-D tensor.
4155      * * 1: A 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The dimensions
4156      *      to reduce. Dimension values must be in the range [-n, n).
4157      * * 2: An {@link ANEURALNETWORKS_BOOL} scalar, keep_dims. If true,
4158      *      retains reduced dimensions with length 1.
4159      *
4160      * Outputs:
4161      * * 0: A tensor of the same {@link OperandCode} as input0.
4162      *
4163      * Available since API level 29.
4164      */
4165     ANEURALNETWORKS_REDUCE_SUM = 80,
4166 
4167     /**
4168      * Select and scale the feature map of each region of interest to a unified
4169      * output size by average pooling sampling points from bilinear interpolation.
4170      *
4171      * The region of interest is represented by its upper-left corner coordinate
4172      * (x1,y1) and lower-right corner coordinate (x2,y2) in the original image.
4173      * A spatial scaling factor is applied to map into feature map coordinate.
4174      * A valid region of interest should satisfy x1 <= x2 and y1 <= y2.
4175      *
4176      * No rounding is applied in this operation. The sampling points are unified
4177      * distributed in the pooling bin and their values are calculated by bilinear
4178      * interpolation.
4179      *
4180      * Supported tensor {@link OperandCode}:
4181      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
4182      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4183      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4184      *
4185      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
4186      * With the default data layout NHWC, the data is stored in the order of:
4187      * [batch, height, width, channels]. Alternatively, the data layout could
4188      * be NCHW, the data storage order of: [batch, channels, height, width].
4189      *
4190      * Inputs:
4191      * * 0: A 4-D tensor, specifying the feature map.
4192      * * 1: A 2-D Tensor of shape [num_rois, 4], specifying the locations of
4193      *      the regions of interest, each line with format [x1, y1, x2, y2].
4194      *      For input0 of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
4195      *      this tensor should be of {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM},
4196      *      with zeroPoint of 0 and scale of 0.125. Zero num_rois is
4197      *      supported for this tensor.
4198      * * 2: An 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor, of shape
4199      *      [num_rois], specifying the batch index of each box. Boxes with
4200      *      the same batch index are grouped together. Zero num_rois is
4201      *      supported for this tensor.
4202      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the output
4203      *      height of the output tensor.
4204      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the output
4205      *      width of the output tensor.
4206      * * 5: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the ratio
4207      *      from the height of original image to the height of feature map.
4208      * * 6: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the ratio
4209      *      from the width of original image to the width of feature map.
4210      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, specifying the number of
4211      *      sampling points in height dimension used to compute the output.
4212      *      Set to 0 for adaptive value of ceil(roi_height/out_height).
4213      * * 8: An {@link ANEURALNETWORKS_INT32} scalar, specifying the number of
4214      *      sampling points in width dimension used to compute the output.
4215      *      Set to 0 for adaptive value of ceil(roi_width/out_width).
4216      * * 9: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to specify
4217      *      NCHW data layout for input0 and output0. Set to false for NHWC.
4218      *
4219      * Outputs:
4220      * * 0: A tensor of the same {@link OperandCode} as input0. The output
4221      *      shape is [num_rois, out_height, out_width, depth].
4222      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
4223      *      the scale and zeroPoint can be different from the input0 scale and zeroPoint.
4224      *
4225      * Available since API level 29.
4226      */
4227     ANEURALNETWORKS_ROI_ALIGN = 81,
4228 
4229     /**
4230      * Select and scale the feature map of each region of interest to a unified
4231      * output size by max-pooling.
4232      *
4233      * The region of interest is represented by its upper-left corner coordinate
4234      * (x1,y1) and lower-right corner coordinate (x2,y2) in the original image.
4235      * A spatial scaling factor is applied to map into feature map coordinate.
4236      * A valid region of interest should satisfy x1 <= x2 and y1 <= y2.
4237      *
4238      * Rounding is applied in this operation to ensure integer boundary for
4239      * regions of interest and pooling bins.
4240      *
4241      * Supported tensor {@link OperandCode}:
4242      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4243      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4244      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4245      *
4246      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
4247      * With the default data layout NHWC, the data is stored in the order of:
4248      * [batch, height, width, channels]. Alternatively, the data layout could
4249      * be NCHW, the data storage order of: [batch, channels, height, width].
4250      *
4251      * Inputs:
4252      * * 0: A 4-D tensor, specifying the feature map.
4253      * * 1: A 2-D Tensor of shape [num_rois, 4], specifying the locations of
4254      *      the regions of interest, each line with format [x1, y1, x2, y2].
4255      *      For input0 of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
4256      *      this tensor should be of {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM},
4257      *      with zeroPoint of 0 and scale of 0.125.
4258      * * 2: An 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor, of shape
4259      *      [num_rois], specifying the batch index of each box. Boxes with
4260      *      the same batch index are grouped together.
4261      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the output
4262      *      height of the output tensor.
4263      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the output
4264      *      width of the output tensor.
4265      * * 5: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the ratio
4266      *      from the height of original image to the height of feature map.
4267      * * 6: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the ratio
4268      *      from the width of original image to the width of feature map.
4269      * * 7: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to specify
4270      *      NCHW data layout for input0 and output0. Set to false for NHWC.
4271      *
4272      * Outputs:
4273      * * 0: A tensor of the same {@link OperandCode} as input0. The output
4274      *      shape is [num_rois, out_height, out_width, depth].
4275      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
4276      *      the scale and zeroPoint must be the same as input0.
4277      *
4278      * Available since API level 29.
4279      */
4280     ANEURALNETWORKS_ROI_POOLING = 82,
4281 
4282     /**
4283      * Computes reciprocal of square root of x element-wise.
4284      *
4285      * Supported tensor {@link OperandCode}:
4286      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4287      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4288      *
4289      * Supported tensor rank: from 1.
4290      *
4291      * Inputs:
4292      * * 0: A tensor.
4293      *
4294      * Outputs:
4295      * * 0: The output tensor of same shape as input0.
4296      *
4297      * Available since API level 29.
4298      */
4299     ANEURALNETWORKS_RSQRT = 83,
4300 
4301     /**
4302      * Using a tensor of booleans c and input tensors x and y select values
4303      * elementwise from both input tensors:
4304      *
4305      * O[i] = C[i] ? x[i] : y[i].
4306      *
4307      * Supported tensor {@link OperandCode}:
4308      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4309      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4310      * * {@link ANEURALNETWORKS_TENSOR_INT32}
4311      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4312      *
4313      * Supported tensor rank: from 1
4314      *
4315      * Inputs:
4316      * * 0: A tensor of type {@link ANEURALNETWORKS_TENSOR_BOOL8} acting as a
4317      *      mask that chooses, based on the value at each element, whether the
4318      *      corresponding element in the output should be taken from input1 (if
4319      *      true) or input2 (if false).
4320      * * 1: An input tensor of the same shape as input0.
4321      * * 2: An input tensor of the same shape and type as input1.
4322      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
4323      *      the scales and zeroPoint can be different from input1 scale and zeroPoint.
4324      *
4325      * Outputs:
4326      * * 0: A tensor of the same type and shape as input1 and input2.
4327      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
4328      *      the scale and zeroPoint can be different from inputs' scale and zeroPoint.
4329      *
4330      */
4331     ANEURALNETWORKS_SELECT = 84,
4332 
4333     /**
4334      * Computes sin of x element-wise.
4335      *
4336      * Supported tensor {@link OperandCode}:
4337      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4338      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4339      *
4340      * Supported tensor rank: from 1.
4341      *
4342      * Inputs:
4343      * * 0: A tensor.
4344      *
4345      * Outputs:
4346      * * 0: The output tensor of same shape as input0.
4347      *
4348      * Available since API level 29.
4349      */
4350     ANEURALNETWORKS_SIN = 85,
4351 
4352     /**
4353      * Extracts a slice of specified size from the input tensor starting at a
4354      * specified location.
4355      *
4356      * The starting location is specified as a 1-D tensor containing offsets
4357      * for each dimension. The size is specified as a 1-D tensor containing
4358      * either size of a slice along corresponding dimension or -1. In the latter
4359      * case, all the remaining elements in dimension are included in the slice.
4360      *
4361      * A sum of begin offset and a size of a slice must not exceed size of a
4362      * corresponding dimension.
4363      *
4364      * Supported tensor {@link OperandCode}:
4365      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4366      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4367      * * {@link ANEURALNETWORKS_TENSOR_INT32}
4368      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4369      *
4370      * Supported tensor rank: from 1
4371      *
4372      * Inputs:
4373      * * 0: An n-D tensor to take slice from, may be zero-sized.
4374      * * 1: A 1-D tensor of type {@link ANEURALNETWORKS_TENSOR_INT32} specifying
4375      *      the beginning indices of the slice in each dimension.
4376      * * 2: A 1-D tensor of type {@link ANEURALNETWORKS_TENSOR_INT32} specifying
4377      *      the size of the slice in each dimension.
4378      *
4379      * Outputs:
4380      * * 0: An n-D tensor of the same type as the input containing the slice.
4381      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
4382      *      its scale and zeroPoint has to be same as the input0 scale and zeroPoint.
4383      *
4384      * Available since API level 29.
4385      */
4386     ANEURALNETWORKS_SLICE = 86,
4387 
4388     /**
4389      * Splits a tensor along a given axis into num_splits subtensors.
4390      *
4391      * Supported tensor {@link OperandCode}:
4392      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4393      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4394      * * {@link ANEURALNETWORKS_TENSOR_INT32}
4395      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4396      *
4397      * Supported tensor rank: from 1
4398      *
4399      * Inputs:
4400      * * 0: An n-D tensor to split.
4401      * * 1: An {@link ANEURALNETWORKS_INT32} scalar specifying the axis along
4402      *      which to split.
4403      * * 2: An {@link ANEURALNETWORKS_INT32} scalar indicating the number of
4404      *      splits along given axis. Must evenly divide axis size.
4405      *
4406      * Outputs:
4407      * * 0 ~ (num_splits - 1): Resulting subtensors.
4408      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
4409      *      the scale and zeroPoint must be the same as input0.
4410      *
4411      * Available since API level 29.
4412      */
4413     ANEURALNETWORKS_SPLIT = 87,
4414 
4415     /**
4416      * Computes square root of x element-wise.
4417      *
4418      * Supported tensor {@link OperandCode}:
4419      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4420      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4421      *
4422      * Supported tensor rank: from 1.
4423      *
4424      * Inputs:
4425      * * 0: A tensor.
4426      *
4427      * Outputs:
4428      * * 0: The output tensor of same shape as input0.
4429      *
4430      * Available since API level 29.
4431      */
4432     ANEURALNETWORKS_SQRT = 88,
4433 
4434     /**
4435      * Constructs a tensor by tiling a given tensor.
4436      *
4437      * This operation creates a new tensor by replicating `input` `multiples`
4438      * times. The output tensor's i-th dimension has `input.dims(i) * multiples[i]`
4439      * elements, and the values of `input` are replicated `multiples[i]` times
4440      * along the i-th dimension.
4441      * For example, tiling `[a b c d]` by `[2]` produces `[a b c d a b c d]`.
4442      *
4443      * Supported tensor {@link OperandCode}:
4444      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4445      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4446      * * {@link ANEURALNETWORKS_TENSOR_INT32}
4447      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4448      *
4449      * Supported tensor rank: from 1
4450      *
4451      * Inputs:
4452      * * 0: input, an n-D tensor specifying the input.
4453      * * 1: multiples, a 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}.
4454      *      The length of multiples must be n.
4455      *
4456      * Outputs:
4457      * * 0: A tiled tensor of the same {@link OperandCode} and rank as `input`.
4458      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
4459      *      the scale and zeroPoint must be the same as input0.
4460      *
4461      * Available since API level 29.
4462      */
4463     ANEURALNETWORKS_TILE = 89,
4464 
4465     /**
4466      * Finds values and indices of the k largest entries for the last dimension.
4467      *
4468      * Resulting values in each dimensions are sorted in descending order. If
4469      * two values are equal, the one with larger index appears first.
4470      *
4471      * Supported tensor {@link OperandCode}:
4472      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4473      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4474      * * {@link ANEURALNETWORKS_TENSOR_INT32}
4475      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4476      *
4477      * Supported tensor rank: from 1
4478      *
4479      * Inputs:
4480      * * 0: input, an n-D tensor specifying the input.
4481      * * 1: k, an {@link ANEURALNETWORKS_INT32} scalar, specifying the number of
4482      *      top elements to look for along the last dimension.
4483      *
4484      * Outputs:
4485      * * 0: An n-D tensor of the same type as the input, containing the k
4486      *      largest elements along each last dimensional slice.
4487      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
4488      *      the scale and zeroPoint must be the same as input0.
4489      * * 1: An n-D tensor of type {@link ANEURALNETWORKS_TENSOR_INT32}
4490      *      containing the indices of values within the last dimension of input.
4491      *
4492      * Available since API level 29.
4493      */
4494     ANEURALNETWORKS_TOPK_V2 = 90,
4495 
4496     /**
4497      * Performs the transpose of 2-D convolution operation.
4498      *
4499      * This operation is sometimes called "deconvolution" after Deconvolutional
4500      * Networks, but is actually the transpose (gradient) of
4501      * {@link ANEURALNETWORKS_CONV_2D} rather than an actual deconvolution.
4502      *
4503      * The output dimensions are functions of the filter dimensions, stride, and
4504      * padding.
4505      *
4506      * Supported tensor {@link OperandCode} configurations:
4507      * * 16 bit floating point:
4508      * * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} for input, filter, output, and bias.
4509      *
4510      * * 32 bit floating point:
4511      * * * {@link ANEURALNETWORKS_TENSOR_FLOAT32} for input, filter, output, and bias.
4512      *
4513      * * Quantized:
4514      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} for input, filter, and output.
4515      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (with scale set to
4516      * * * input.scale * filter.scale).
4517      *
4518      * * Quantized with symmetric per channel quantization for the filter:
4519      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} for input, and output.
4520      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
4521      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (scale set to 0.0,
4522      * * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
4523      *
4524      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
4525      * With the default data layout NHWC, the data is stored in the order of:
4526      * [batch, height, width, channels]. Alternatively, the data layout could
4527      * be NCHW, the data storage order of: [batch, channels, height, width].
4528      *
4529      * Both explicit padding and implicit padding are supported.
4530      *
4531      * Inputs (explicit padding):
4532      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
4533      *      specifying the input. Since API level 29, zero batches is supported
4534      *      for this tensor.
4535      * * 1: A 4-D tensor, of shape
4536      *      [depth_out, filter_height, filter_width, depth_in], specifying the
4537      *      filter. For tensor of type
4538      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} the channel
4539      *      dimension (extraParams.channelQuant.channelDim) must be set to 0.
4540      * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
4541      *      tensor of type {@link ANEURALNETWORKS_TENSOR_FLOAT32} or
4542      *      {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the bias should be of the
4543      *      same type. For input tensor of type
4544      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}, the bias should be
4545      *      of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint of 0 and
4546      *      bias_scale == input_scale * filter_scale. For filter tensor of
4547      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
4548      *      must be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint of
4549      *      0 and bias_scale of 0. The actual scale of each value 'i' is equal
4550      *      to bias_scale[i] = input_scale * filter_scale[i].
4551      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
4552      *      the left, in the ‘width’ dimension.
4553      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
4554      *      the right, in the ‘width’ dimension.
4555      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
4556      *      the top, in the ‘height’ dimension.
4557      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
4558      *      the bottom, in the ‘height’ dimension.
4559      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
4560      *      walking through input in the ‘width’ dimension.
4561      * * 8: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
4562      *      walking through input in the ‘height’ dimension.
4563      * * 9: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
4564      *      {@link FuseCode} values. Specifies the activation to
4565      *      invoke on the result.
4566      * * 10: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to specify
4567      *       NCHW data layout for input0 and output0. Set to false for NHWC.
4568      *
4569      * Inputs (implicit padding):
4570      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
4571      *      specifying the input. Since API level 29, zero batches is supported
4572      *      for this tensor.
4573      * * 1: A 4-D tensor, of shape
4574      *      [depth_out, filter_height, filter_width, depth_in], specifying the
4575      *      filter. For tensor of type
4576      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} the channel
4577      *      dimension (extraParams.channelQuant.channelDim) must be set to 0.
4578      * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
4579      *      tensor of type {@link ANEURALNETWORKS_TENSOR_FLOAT32} or
4580      *      {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the bias should be of the
4581      *      same type. For input tensor of type
4582      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}, the bias should be
4583      *      of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint of 0 and
4584      *      bias_scale == input_scale * filter_scale. For filter tensor of
4585      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
4586      *      must be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint of
4587      *      0 and bias_scale of 0. The actual scale of each value 'i' is equal
4588      *      to bias_scale[i] = input_scale * filter_scale[i].
4589      * * 3: An {@link ANEURALNETWORKS_TENSOR_INT32} tensor, specifying the output
4590      *      tensor shape.
4591      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the implicit
4592      *      padding scheme, has to be one of the
4593      *      {@link PaddingCode} values.
4594      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
4595      *      walking through input in the ‘width’ dimension.
4596      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
4597      *      walking through input in the ‘height’ dimension.
4598      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
4599      *      {@link FuseCode} values. Specifies the activation to
4600      *      invoke on the result.
4601      * * 8: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to specify
4602      *      NCHW data layout for input0 and output0. Set to false for NHWC.
4603      *
4604      * Outputs:
4605      * * 0: The output 4-D tensor, of shape
4606      *      [batches, out_height, out_width, depth_out].
4607      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
4608      *      the scale and zeroPoint can be different from inputs' scale and zeroPoint.
4609      *
4610      * Available since API level 29.
4611      */
4612     ANEURALNETWORKS_TRANSPOSE_CONV_2D = 91,
4613 
4614     /**
4615      * A recurrent neural network specified by an LSTM cell.
4616      *
4617      * Performs (fully) dynamic unrolling of input.
4618      *
4619      * This Op unrolls the input along the time dimension, and implements the
4620      * following operation for each element in the sequence
4621      * s = 1...sequence_length:
4622      *   outputs[s] = projection(state = activation(LSTMOp(inputs[s])))
4623      *
4624      * Where LSTMOp is the LSTM op as in {@link ANEURALNETWORKS_LSTM},
4625      * the "projection" is an optional projection layer from state and output
4626      * and the “activation” is the function passed as the
4627      * “fused_activation_function” argument (if not “NONE”).
4628      *
4629      * Supported tensor {@link OperandCode}:
4630      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4631      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4632      *
4633      * Supported tensor rank: 3, either time-major or batch-major.
4634      *
4635      * All input and output tensors must be of the same type.
4636      *
4637      * Inputs:
4638      * * 0: The input (\f$x_t\f$).
4639      *      A 3-D tensor of shape:
4640      *        If time-major: [max_time, batch_size, input_size]
4641      *        If batch-major: [batch_size, max_time, input_size]
4642      *      where “max_time” is the number of timesteps (sequence length),
4643      *      “batch_size” corresponds to the batching dimension, and
4644      *      “input_size” is the size of the input.
4645      * * 1: The input-to-input weights (\f$W_{xi}\f$). Optional.
4646      *      A 2-D tensor of shape [num_units, input_size], where “num_units”
4647      *      corresponds to the number of cell units.
4648      * * 2: The input-to-forget weights (\f$W_{xf}\f$).
4649      *      A 2-D tensor of shape [num_units, input_size].
4650      * * 3: The input-to-cell weights (\f$W_{xc}\f$).
4651      *      A 2-D tensor of shape [num_units, input_size].
4652      * * 4: The input-to-output weights (\f$W_{xo}\f$).
4653      *      A 2-D tensor of shape [num_units, input_size].
4654      * * 5: The recurrent-to-input weights (\f$W_{hi}\f$). Optional.
4655      *      A 2-D tensor of shape [num_units, output_size], where “output_size”
4656      *      corresponds to either the number of cell units (i.e., “num_units”),
4657      *      or the second dimension of the “projection_weights”, if defined.
4658      * * 6: The recurrent-to-forget weights (\f$W_{hf}\f$).
4659      *      A 2-D tensor of shape [num_units, output_size].
4660      * * 7: The recurrent-to-cell weights (\f$W_{hc}\f$).
4661      *      A 2-D tensor of shape [num_units, output_size].
4662      * * 8: The recurrent-to-output weights (\f$W_{ho}\f$).
4663      *      A 2-D tensor of shape [num_units, output_size].
4664      * * 9: The cell-to-input weights (\f$W_{ci}\f$). Optional.
4665      *      A 1-D tensor of shape [num_units].
4666      * * 10:The cell-to-forget weights (\f$W_{cf}\f$). Optional.
4667      *      A 1-D tensor of shape [num_units].
4668      * * 11:The cell-to-output weights (\f$W_{co}\f$). Optional.
4669      *      A 1-D tensor of shape [num_units].
4670      * * 12:The input gate bias (\f$b_i\f$). Optional.
4671      *      A 1-D tensor of shape [num_units].
4672      * * 13:The forget gate bias (\f$b_f\f$).
4673      *      A 1-D tensor of shape [num_units].
4674      * * 14:The cell bias (\f$b_c\f$).
4675      *      A 1-D tensor of shape [num_units].
4676      * * 15:The output gate bias (\f$b_o\f$).
4677      *      A 1-D tensor of shape [num_units].
4678      * * 16:The projection weights (\f$W_{proj}\f$). Optional.
4679      *      A 2-D tensor of shape [output_size, num_units].
4680      * * 17:The projection bias (\f$b_{proj}\f$). Optional.
4681      *      A 1-D tensor of shape [output_size].
4682      * * 18:The output state (in) (\f$h_{t-1}\f$).
4683      *      A 2-D tensor of shape [batch_size, output_size].
4684      * * 19:The cell state (in) (\f$C_{t-1}\f$).
4685      *      A 2-D tensor of shape [batch_size, num_units].
4686      * * 20:The activation function (\f$g\f$).
4687      *      A value indicating the activation function:
4688      *      <ul>
4689      *      <li>0: None;
4690      *      <li>1: Relu;
4691      *      <li>3: Relu6;
4692      *      <li>4: Tanh;
4693      *      <li>6: Sigmoid.
4694      *      </ul>
4695      * * 21:The clipping threshold (\f$t_{cell}\f$) for the cell state, such
4696      *      that values are bound within [-cell_clip, cell_clip]. If set to 0.0
4697      *      then clipping is disabled.
4698      * * 22:The clipping threshold (\f$t_{proj}\f$) for the output from the
4699      *      projection layer, such that values are bound within
4700      *      [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
4701      * * 23:Time-major if true, batch-major if false.
4702      * * 24:The input layer normalization weights. Optional.
4703      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
4704      *      to activation at input gate.
4705      * * 25:The forget layer normalization weights. Optional.
4706      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
4707      *      to activation at forget gate.
4708      * * 26:The cell layer normalization weights. Optional.
4709      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
4710      *      to activation at cell gate.
4711      * * 27:The output layer normalization weights. Optional.
4712      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
4713      *      to activation at output gate.
4714      *
4715      * Outputs:
4716      * * 0: The output (\f$o_t\f$).
4717      *      A 3-D tensor of shape:
4718      *        If time-major: [max_time, batch_size, output_size]
4719      *        If batch-major: [batch_size, max_time, output_size]
4720      *
4721      * Available since API level 29.
4722      */
4723     ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_LSTM = 92,
4724 
4725     /**
4726      * A recurrent neural network layer that applies a basic RNN cell to a
4727      * sequence of inputs.
4728      *
4729      * This layer unrolls the input along the sequence dimension, and implements
4730      * the following operation
4731      * for each element in the sequence s = 1...sequence_length:
4732      *   outputs[s] = state = activation(inputs[s] * input_weights’ + state *
4733      *   recurrent_weights’ + bias)
4734      *
4735      * Where:
4736      * * “input_weights” is a weight matrix that multiplies the inputs;
4737      * * “recurrent_weights” is a weight matrix that multiplies the current
4738      *    “state” which itself is the output from the previous time step
4739      *    computation;
4740      * * “bias” is a bias vector (added to each output vector in the batch);
4741      * * “activation” is the function passed as the “fused_activation_function”
4742      *   argument (if not “NONE”).
4743      *
4744      * Supported tensor {@link OperandCode}:
4745      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4746      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4747      *
4748      * The input tensors must all be the same type.
4749      *
4750      * Inputs:
4751      * * 0: input.
4752      *      A 3-D tensor. The shape is defined by the input 6 (timeMajor). If
4753      *      it is set to 1, then the input has a shape [maxTime, batchSize,
4754      *      inputSize], otherwise the input has a shape [batchSize, maxTime,
4755      *      inputSize].
4756      * * 1: weights.
4757      *      A 2-D tensor of shape [numUnits, inputSize].
4758      * * 2: recurrent_weights.
4759      *      A 2-D tensor of shape [numUnits, numUnits].
4760      * * 3: bias.
4761      *      A 1-D tensor of shape [numUnits].
4762      * * 4: hidden state
4763      *      A 2-D tensor of shape [batchSize, numUnits]. Specifies a hidden
4764      *      state input for the first time step of the computation.
4765      * * 5: fusedActivationFunction.
4766      *      A {@link FuseCode} value indicating the activation function. If
4767      *      “NONE” is specified then it results in a linear activation.
4768      * * 6: timeMajor
4769      *      An {@link ANEURALNETWORKS_INT32} scalar specifying the shape format
4770      *      of input and output tensors. Must be set to either 0 or 1.
4771      * Outputs:
4772      * * 0: output.
4773      *      A 3-D tensor. The shape is defined by the input 6 (timeMajor). If
4774      *      it is set to 1, then the output has a shape [maxTime, batchSize,
4775      *      numUnits], otherwise the output has a shape [batchSize, maxTime,
4776      *      numUnits].
4777      *
4778      * Available since API level 29.
4779      */
4780     ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN = 93,
4781 
4782     /**
4783      * Resizes images to given size using the nearest neighbor interpretation.
4784      *
4785      * Resized images must be distorted if their output aspect ratio is not the
4786      * same as input aspect ratio. The corner pixels of output may not be the
4787      * same as corner pixels of input.
4788      *
4789      * Supported tensor {@link OperandCode}:
4790      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4791      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4792      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4793      *
4794      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
4795      * With the default data layout NHWC, the data is stored in the order of:
4796      * [batch, height, width, channels]. Alternatively, the data layout could
4797      * be NCHW, the data storage order of: [batch, channels, height, width].
4798      *
4799      * Both resizing by shape and resizing by scale are supported.
4800      *
4801      * Inputs (resizing by shape):
4802      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
4803      *      the input. Zero batches is supported for this tensor.
4804      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the output
4805      *      width of the output tensor.
4806      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, specifying the output
4807      *      height of the output tensor.
4808      * * 3: An {@link ANEURALNETWORKS_BOOL} scalar, default to false.
4809      *      Set to true to specify NCHW data layout for input0 and output0.
4810      *
4811      * Inputs (resizing by scale):
4812      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
4813      *      the input. Zero batches is supported for this tensor.
4814      * * 1: A scalar, specifying width_scale, the scaling factor of the width
4815      *      dimension from the input tensor to the output tensor. The output
4816      *      width is calculated as new_width = floor(width * width_scale).
4817      *      The scalar must be of {@link ANEURALNETWORKS_FLOAT16} if input0 is
4818      *      of {@link ANEURALNETWORKS_TENSOR_FLOAT16} and of
4819      *      {@link ANEURALNETWORKS_FLOAT32} otherwise.
4820      * * 2: A scalar, specifying height_scale, the scaling factor of the height
4821      *      dimension from the input tensor to the output tensor. The output
4822      *      height is calculated as new_height = floor(height * height_scale).
4823      *      The scalar must be of {@link ANEURALNETWORKS_FLOAT16} if input0 is
4824      *      of {@link ANEURALNETWORKS_TENSOR_FLOAT16} and of
4825      *      {@link ANEURALNETWORKS_FLOAT32} otherwise.
4826      * * 3: An {@link ANEURALNETWORKS_BOOL} scalar, default to false.
4827      *      Set to true to specify NCHW data layout for input0 and output0.
4828      *
4829      * Outputs:
4830      * * 0: The output 4-D tensor, of shape
4831      *      [batches, new_height, new_width, depth].
4832      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
4833      *      the scale and zeroPoint must be the same as input0.
4834      *
4835      * Available since API level 29.
4836      */
4837     ANEURALNETWORKS_RESIZE_NEAREST_NEIGHBOR = 94,
4838 } OperationCode;
4839 
4840 /**
4841  * Fused activation function types.
4842  *
4843  *
4844  * Available since API level 27.
4845  */
4846 typedef enum {
4847     /** NO fused activation function. */
4848     ANEURALNETWORKS_FUSED_NONE = 0,
4849     /** Fused ReLU activation function. */
4850     ANEURALNETWORKS_FUSED_RELU = 1,
4851     /** Fused ReLU1 activation function. */
4852     ANEURALNETWORKS_FUSED_RELU1 = 2,
4853     /** Fused ReLU6 activation function. */
4854     ANEURALNETWORKS_FUSED_RELU6 = 3,
4855 } FuseCode;
4856 
4857 /**
4858  * Implicit padding algorithms.
4859  *
4860  *
4861  * Available since API level 27.
4862  */
4863 typedef enum {
4864     /**
4865      * SAME padding.
4866      * Padding on both ends are the "same":
4867      *     padding_to_beginning =  total_padding / 2
4868      *     padding_to_end       = (total_padding + 1)/2.
4869      * i.e., for even number of padding, padding to both ends are exactly
4870      * the same; for odd number of padding, padding to the ending is bigger
4871      * than the padding to the beginning by 1.
4872      *
4873      * total_padding is a function of input, stride and filter size.
4874      * It could be computed as follows:
4875      *    out_size = (input + stride - 1) / stride;
4876      *    needed_input = (out_size - 1) * stride + filter_size
4877      *    total_padding = max(0, needed_input - input_size)
4878      *  The computation is the same for the horizontal and vertical directions.
4879      */
4880     ANEURALNETWORKS_PADDING_SAME = 1,
4881 
4882     /**
4883      * VALID padding.
4884      * No padding. When the input size is not evenly divisible by
4885      * the filter size, the input at the end that could not fill
4886      * the whole filter tile will simply be ignored.
4887      */
4888     ANEURALNETWORKS_PADDING_VALID = 2,
4889 } PaddingCode;
4890 
4891 /**
4892  * Execution preferences.
4893  *
4894  * Available since API level 27.
4895  */
4896 typedef enum {
4897     /**
4898      * Prefer executing in a way that minimizes battery drain.
4899      * This is desirable for compilations that will be executed often.
4900      */
4901     ANEURALNETWORKS_PREFER_LOW_POWER = 0,
4902     /**
4903      * Prefer returning a single answer as fast as possible, even if this causes
4904      * more power consumption.
4905      */
4906     ANEURALNETWORKS_PREFER_FAST_SINGLE_ANSWER = 1,
4907     /**
4908      * Prefer maximizing the throughput of successive frames, for example when
4909      * processing successive frames coming from the camera.
4910      */
4911     ANEURALNETWORKS_PREFER_SUSTAINED_SPEED = 2,
4912 } PreferenceCode;
4913 
4914 /**
4915  * Device types.
4916  *
4917  * The type of NNAPI device.
4918  */
4919 typedef enum {
4920     /** The device type cannot be provided. */
4921     ANEURALNETWORKS_DEVICE_UNKNOWN = 0,
4922     /** The device does not fall into any category below. */
4923     ANEURALNETWORKS_DEVICE_OTHER = 1,
4924     /** The device runs NNAPI models on single or multi-core CPU. */
4925     ANEURALNETWORKS_DEVICE_CPU = 2,
4926     /** The device can run NNAPI models and also accelerate graphics APIs such
4927      * as OpenGL ES and Vulkan. */
4928     ANEURALNETWORKS_DEVICE_GPU = 3,
4929     /** Dedicated accelerator for Machine Learning workloads. */
4930     ANEURALNETWORKS_DEVICE_ACCELERATOR = 4,
4931 } DeviceTypeCode;
4932 
4933 /**
4934  * Result codes.
4935  *
4936  * <p>Any NNAPI function can return any result code, including result codes not
4937  * currently documented. Any value other than {@link ANEURALNETWORKS_NO_ERROR}
4938  * indicates a failure of some kind.</p>
4939  *
4940  * <p>Additional information about the nature of a failure can be obtained from
4941  * the device log after enabling NNAPI debugging by setting the debug.nn.vlog
4942  * property to 1, e.g., by calling "adb shell setprop debug.nn.vlog 1".</p>
4943  *
4944  * Available since API level 27.
4945  */
4946 typedef enum {
4947     /**
4948      * Operation was succesful.
4949      */
4950     ANEURALNETWORKS_NO_ERROR = 0,
4951 
4952     /**
4953      * Failure caused by not enough available memory.
4954      */
4955     ANEURALNETWORKS_OUT_OF_MEMORY = 1,
4956 
4957     ANEURALNETWORKS_INCOMPLETE = 2,
4958 
4959     /**
4960      * Failure caused by unexpected null argument.
4961      */
4962     ANEURALNETWORKS_UNEXPECTED_NULL = 3,
4963 
4964     /**
4965      * Failure caused by invalid function arguments, invalid model definition,
4966      * invalid execution definition or invalid data at execution time.
4967      */
4968     ANEURALNETWORKS_BAD_DATA = 4,
4969 
4970     /**
4971      * Failure caused by failed model execution.
4972      */
4973     ANEURALNETWORKS_OP_FAILED = 5,
4974 
4975     /**
4976      * Failure caused by object being in the wrong state.
4977      */
4978     ANEURALNETWORKS_BAD_STATE = 6,
4979 
4980     /**
4981      * Failure caused by not being able to map a file into memory.
4982      * This may be caused by a file descriptor not being mappable, or an AHardwareBuffer
4983      * not supported by the device.
4984      * Mitigate by reading its content into memory.
4985      */
4986     ANEURALNETWORKS_UNMAPPABLE = 7,
4987 
4988     /**
4989      * Failure caused by insufficient buffer size provided to a model output.
4990      */
4991     ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE = 8,
4992 
4993     /**
4994      * Failure caused by a device not being available.
4995      */
4996     ANEURALNETWORKS_UNAVAILABLE_DEVICE = 9,
4997 } ResultCode;
4998 
4999 /**
5000  * For {@link ANeuralNetworksModel_setOperandValue}, values with a
5001  * length smaller or equal to this will be immediately copied into
5002  * the model. The size is in bytes.
5003  *
5004  * Available since API level 27.
5005  */
5006 enum { ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES = 128 };
5007 
5008 /**
5009  * For {@link ANeuralNetworksCompilation_setCaching}, specify the size
5010  * of the cache token required from the application. The size is in bytes.
5011  *
5012  * Available since API level 29.
5013  */
5014 enum { ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN = 32 };
5015 
5016 /**
5017  * ANeuralNetworksMemory is an opaque type that represents memory.
5018  *
5019  * This type is used to represent shared memory, memory mapped files,
5020  * and similar memories.
5021  *
5022  * By using shared memory, a program can efficiently communicate to the
5023  * runtime and drivers the tensors that define a model. See
5024  * {@link ANeuralNetworksModel_setOperandValueFromMemory}. An application
5025  * should typically create one shared memory object that contains every constant tensor
5026  * needed to define a model. {@link ANeuralNetworksMemory_createFromFd} can be used to
5027  * create shared memory from a file handle.
5028  * {@link ANeuralNetworksMemory_createFromAHardwareBuffer} can be used to
5029  * create shared memory from an AHardwareBuffer handle.
5030  *
5031  * Memory objects can also be used to specify the input and output arguments of
5032  * an execution. See {@link ANeuralNetworksExecution_setInputFromMemory}
5033  * and {@link ANeuralNetworksExecution_setOutputFromMemory}.
5034  *
5035  * When calling {@link ANeuralNetworksModel_setOperandValueFromMemory},
5036  * {@link ANeuralNetworksExecution_setInputFromMemory} and
5037  * {@link ANeuralNetworksExecution_setOutputFromMemory}, each operand in the shared
5038  * memory object must be aligned on a boundary of a byte size that is a multiple
5039  * of the element type byte size, e.g., a tensor with
5040  * {@link ANEURALNETWORKS_TENSOR_FLOAT32} type must be aligned on 4-byte boundary.
5041  *
5042  * Available since API level 27.
5043  */
5044 typedef struct ANeuralNetworksMemory ANeuralNetworksMemory;
5045 
5046 /**
5047  * ANeuralNetworksModel is an opaque type that contains a description of the
5048  * mathematical operations that constitute the model.
5049  *
5050  * <p>Build the model by calling<ul>
5051  * <li>{@link ANeuralNetworksModel_create}</li>
5052  * <li>{@link ANeuralNetworksModel_addOperation}</li>
5053  * <li>{@link ANeuralNetworksModel_addOperand}</li>
5054  * </ul>
5055  *
5056  * This forms a graph in which each operation and operand is a node, a
5057  * directed edge from an operand to an operation indicates that the
5058  * operand is an input to the operation, and a directed edge from an
5059  * operation to an operand indicates that the operand is an output
5060  * from the operation. This graph must be acyclic.
5061  *
5062  * A model is completed by calling {@link ANeuralNetworksModel_finish}.
5063  * A model is destroyed by calling {@link ANeuralNetworksModel_free}.
5064  *
5065  * <p>A model cannot be modified once {@link ANeuralNetworksModel_finish}
5066  * has been called on it.</p>
5067  *
5068  * <p>It is the application's responsibility to make sure that only one thread
5069  * modifies a model at a given time. It is however safe for more than one
5070  * thread to use the model once {@link ANeuralNetworksModel_finish} has returned.</p>
5071  *
5072  * <p>It is also the application's responsibility to ensure that there are no other
5073  * uses of the model after calling {@link ANeuralNetworksModel_free}.
5074  * This includes any compilation or execution object created using the model.</p>
5075  *
5076  * Available since API level 27.
5077  */
5078 typedef struct ANeuralNetworksModel ANeuralNetworksModel;
5079 
5080 /**
5081  * ANeuralNetworksCompilation is an opaque type that can be used to compile
5082  * a machine learning model.
5083  *
5084  * <p>To use:<ul>
5085  *    <li>Create a new compilation instance by calling the
5086  *        {@link ANeuralNetworksCompilation_create} function or
5087  *        {@link ANeuralNetworksCompilation_createForDevices}.</li>
5088  *    <li>Set any desired properties on the compilation (for example,
5089  *        {@link ANeuralNetworksCompilation_setPreference}).</li>
5090  *    <li>Optionally, set the caching signature and the cache directory on the
5091  *        compilation by calling {@link ANeuralNetworksCompilation_setCaching}.</li>
5092  *    <li>Complete the compilation with {@link ANeuralNetworksCompilation_finish}.</li>
5093  *    <li>Use the compilation as many times as needed
5094  *        with {@link ANeuralNetworksExecution_create} and
5095  *        {@link ANeuralNetworksBurst_create}.</li>
5096  *    <li>Destroy the compilation with {@link ANeuralNetworksCompilation_free}
5097  *        once all executions using the compilation have completed.</li></ul></p>
5098  *
5099  * A compilation is completed by calling {@link ANeuralNetworksCompilation_finish}.
5100  * A compilation is destroyed by calling {@link ANeuralNetworksCompilation_free}.
5101  *
5102  * <p>A compilation cannot be modified once {@link ANeuralNetworksCompilation_finish}
5103  * has been called on it.</p>
5104  *
5105  * <p>It is the application's responsibility to make sure that only
5106  * one thread modifies a compilation at a given time. It is however
5107  * safe for more than one thread to use the compilation once
5108  * {@link ANeuralNetworksCompilation_finish} has returned.</p>
5109  *
5110  * <p>It is also the application's responsibility to ensure that there are no other
5111  * uses of the compilation after calling {@link ANeuralNetworksCompilation_free}.
5112  * This includes any execution object created using the compilation.</p>
5113  *
5114  * Available since API level 27.
5115  */
5116 typedef struct ANeuralNetworksCompilation ANeuralNetworksCompilation;
5117 
5118 /**
5119  * ANeuralNetworksExecution is an opaque type that can be used to apply a machine
5120  * learning model to a set of inputs.
5121  *
5122  * <p>To use:<ul>
5123  *    <li>Create a new execution instance by calling the
5124  *        {@link ANeuralNetworksExecution_create} function.</li>
5125  *    <li>Associate input buffers or memory regions to the model inputs with
5126  *        {@link ANeuralNetworksExecution_setInput} or
5127  *        {@link ANeuralNetworksExecution_setInputFromMemory}.</li>
5128  *    <li>Associate output buffers or memory regions to the model outputs with
5129  *        {@link ANeuralNetworksExecution_setOutput} or
5130  *        {@link ANeuralNetworksExecution_setOutputFromMemory}.</li>
5131  *    <li>Apply the model with one of the following:</li><ul>
5132  *        <li>Asynchronously with {@link ANeuralNetworksExecution_startCompute},
5133  *            waiting for the execution to complete with
5134  *            {@link ANeuralNetworksEvent_wait}.</li>
5135  *        <li>Synchronously with {@link ANeuralNetworksExecution_compute}.</li>
5136  *        <li>Synchronously as part of an execution burst with
5137  *            {@link ANeuralNetworksExecution_burstCompute}.</li></ul>
5138  *    <li>Destroy the execution with
5139  *        {@link ANeuralNetworksExecution_free}.</li></ul></p>
5140  *
5141  * <p>An output buffer or memory region must not overlap with any
5142  * other output buffer or memory region, with an input buffer or
5143  * memory region, or with an operand value in a memory object
5144  * ({@link ANeuralNetworksModel_setOperandValueFromMemory}).</p>
5145  *
5146  * <p>An execution cannot be modified once
5147  * {@link ANeuralNetworksExecution_compute} or
5148  * {@link ANeuralNetworksExecution_startCompute} has been called on it.</p>
5149  *
5150  * <p>An execution can be applied to a model with
5151  * {@link ANeuralNetworksExecution_compute} or
5152  * {@link ANeuralNetworksExecution_startCompute} only once. Create new
5153  * executions to do new evaluations of the model.</p>
5154  *
5155  * <p>It is the application's responsibility to make sure that only one thread
5156  * modifies an execution at a given time. It is however safe for more than one
5157  * thread to use {@link ANeuralNetworksEvent_wait} at the same time.</p>
5158  *
5159  * <p>It is also the application's responsibility to ensure that there are no other
5160  * uses of the execution after calling {@link ANeuralNetworksExecution_free}.</p>
5161  *
5162  * <p>Multiple executions can be scheduled and evaluated concurrently, either by
5163  * means of {@link ANeuralNetworksExecution_compute} (which is synchronous) in
5164  * different threads or by means of
5165  * {@link ANeuralNetworksExecution_startCompute} (which is asynchronous). The
5166  * runtime makes no guarantee on the ordering of completion of executions. If
5167  * it's important to the application, the application should enforce the
5168  * ordering by ensuring that one execution completes before the next is
5169  * scheduled (for example, by scheduling all executions synchronously within a
5170  * single thread, or by scheduling all executions asynchronously and using
5171  * {@link ANeuralNetworksEvent_wait} between calls to
5172  * {@link ANeuralNetworksExecution_startCompute}).</p>
5173  *
5174  * Available since API level 27.
5175  */
5176 typedef struct ANeuralNetworksExecution ANeuralNetworksExecution;
5177 
5178 #if __ANDROID_API__ >= __ANDROID_API_Q__
5179 /**
5180  * Parameters for ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL operand.
5181  */
5182 typedef struct ANeuralNetworksSymmPerChannelQuantParams {
5183     /* The index of the channel dimension. */
5184     uint32_t channelDim;
5185     /** The size of the scale array. Should be equal to dimension[channelDim] of the Operand. */
5186     uint32_t scaleCount;
5187     /** The array of scaling values for each channel. Each value must be greater than zero. */
5188     const float* scales;
5189 } ANeuralNetworksSymmPerChannelQuantParams;
5190 
5191 /**
5192  * ANeuralNetworksBurst is an opaque type that can be used to reduce the latency
5193  * of a rapid sequence of executions. It will likely cause overhead if only used
5194  * for a single execution.
5195  *
5196  * ANeuralNetworksBurst serves as a context object for any number of inferences
5197  * using {@link ANeuralNetworksExecution} objects. An ANeuralNetworksBurst
5198  * object and the {@link ANeuralNetworksExecution} objects used with it must all
5199  * have been created from the same {@link ANeuralNetworksCompilation} object.
5200  *
5201  * This object is also used as a hint to drivers, providing insight to the
5202  * lifetime of a rapid sequence of executions. For example, a driver may choose
5203  * to increase the clock frequency of its accelerator for the lifetime of a
5204  * burst object.
5205  *
5206  * <p>To use:<ul>
5207  *    <li>Create a new burst object by calling the
5208  *        {@link ANeuralNetworksBurst_create} function.</li>
5209  *    <li>For each execution:</li><ul>
5210  *        <li>Create {@link ANeuralNetworksExecution} and configure its
5211  *            properties (see {@link ANeuralNetworksExecution} for details).</li>
5212  *        <li>Apply the model synchronously with
5213  *            {@link ANeuralNetworksExecution_burstCompute}, reusing the same
5214  *            {@link ANeuralNetworksBurst} with the new
5215  *            {@link ANeuralNetworksExecution}.</li>
5216  *        <li>Use and free the {@link ANeuralNetworksExecution}.</li></ul>
5217  *    <li>Destroy the burst with
5218  *        {@link ANeuralNetworksBurst_free}.</li></ul></p>
5219  *
5220  * Available since API level 29.
5221  */
5222 typedef struct ANeuralNetworksBurst ANeuralNetworksBurst;
5223 #endif  //  __ANDROID_API__ >= __ANDROID_API_Q__
5224 
5225 /**
5226  * ANeuralNetworksOperandType describes the type of an operand.
5227  *
5228  * This structure is used to describe both scalars and tensors.
5229  *
5230  * A tensor operand type with all dimensions specified is "fully
5231  * specified".  Whenever possible (i.e., whenever the dimensions are
5232  * known at model construction time), a tensor operand type should be
5233  * (but is not required to be) fully specified, in order to enable the
5234  * best possible performance.
5235  *
5236  * If a tensor operand's type is not fully specified, the dimensions
5237  * of the operand are deduced from the operand types and values of the
5238  * operation for which that operand is an output.
5239  *
5240  * <p>In the following situations, a tensor operand type must be fully
5241  * specified:<ul>
5242  *     <li>The operand has a constant value, set by
5243  *         {@link ANeuralNetworksModel_setOperandValue} (with a
5244  *         non-nullptr buffer) or
5245  *         {@link ANeuralNetworksModel_setOperandValueFromMemory}.</li>
5246  *     <li>The operand is a model input (see
5247  *         {@link ANeuralNetworksModel_identifyInputsAndOutputs}).  A
5248  *         fully specified tensor operand type must either be provided
5249  *         to {@link ANeuralNetworksModel_addOperand}; or it must be
5250  *         provided to the corresponding
5251  *         {@link ANeuralNetworksExecution_setInput}, or
5252  *         {@link ANeuralNetworksExecution_setInputFromMemory}.
5253  *         EXCEPTION: If the input is optional and omitted
5254  *         (by passing nullptr for buffer to
5255  *         {@link ANeuralNetworksExecution_setInput}) then it need
5256  *         not have a fully specified tensor operand type.</li></ul>
5257  *
5258  * A tensor operand type of specified rank but some number of
5259  * unspecified dimensions is represented by setting dimensionCount to
5260  * the rank and each unspecified dimension to 0.
5261  *
5262  * Available since API level 27.
5263  *
5264  * Starting at API level 29, a tensor operand type of unspecified rank is
5265  * represented by setting dimensionCount to 0 and dimensions to NULL (just as if
5266  * it were a scalar operand type).
5267  */
5268 typedef struct ANeuralNetworksOperandType {
5269     /**
5270      * The data type, e.g ANEURALNETWORKS_FLOAT32.
5271      */
5272     int32_t type;
5273 
5274     /**
5275      * The number of dimensions (rank).
5276      *
5277      * Must be 0 for scalars.
5278      */
5279     uint32_t dimensionCount;
5280 
5281     /**
5282      * The dimensions of the tensor.
5283      *
5284      * Must be nullptr for scalars.
5285      */
5286     const uint32_t* dimensions;
5287 
5288     /**
5289      * These two fields are only used for quantized tensors.
5290      * They must be zero for all other types.
5291      * The dequantized value of each entry is (value - zeroPoint) * scale.
5292      */
5293     float scale;
5294     int32_t zeroPoint;
5295 } ANeuralNetworksOperandType;
5296 
5297 typedef int32_t ANeuralNetworksOperationType;
5298 
5299 /**
5300  * ANeuralNetworksEvent is an opaque type that represents an event
5301  * that will be signaled once an execution completes.
5302  *
5303  * Available since API level 27.
5304  */
5305 typedef struct ANeuralNetworksEvent ANeuralNetworksEvent;
5306 
5307 #if __ANDROID_API__ >= __ANDROID_API_Q__
5308 
5309 /**
5310  * ANeuralNetworksDevice is an opaque type that represents a device.
5311  *
5312  * This type is used to query basic properties and supported operations of the corresponding
5313  * device, and control which device(s) a model is to be run on.
5314  *
5315  * Available since API level 29.
5316  */
5317 typedef struct ANeuralNetworksDevice ANeuralNetworksDevice;
5318 
5319 /**
5320  * Get the number of available devices.
5321  *
5322  * @param numDevices Used to return the number of devices.
5323  *
5324  * @return ANEURALNETWORKS_NO_ERROR if successful.
5325  *
5326  * Available since API level 29.
5327  */
5328 int ANeuralNetworks_getDeviceCount(uint32_t* numDevices) __INTRODUCED_IN(29);
5329 
5330 /**
5331  * Get the representation of the specified device.
5332  *
5333  * @param devIndex The index of the specified device. Must be less than the
5334                    number of available devices.
5335  * @param device The representation of the specified device.
5336  *               The same representation will always be returned for the specified
5337  *               device.
5338  *
5339  * @return ANEURALNETWORKS_NO_ERROR if successful.
5340  *
5341  * Available since API level 29.
5342  */
5343 int ANeuralNetworks_getDevice(uint32_t devIndex, ANeuralNetworksDevice** device)
5344         __INTRODUCED_IN(29);
5345 
5346 /**
5347  * Get the name of the specified device.
5348  *
5349  * @param device The representation of the specified device.
5350  * @param name   The returned name of the specified device. The name will be in UTF-8
5351  *               and will be null-terminated. It will be recognizable as a known device name
5352  *               rather than a cryptic string. For devices with feature level 29 and above, the
5353  *               format of the name is {VENDOR}-{DEVICE}. For devices with feature level 28
5354  *               or lower, the format of the name is undefined.
5355  *               The name will remain valid for the duration of the application.
5356  *
5357  * @return ANEURALNETWORKS_NO_ERROR if successful.
5358  *
5359  * Available since API level 29.
5360  */
5361 int ANeuralNetworksDevice_getName(const ANeuralNetworksDevice* device, const char** name)
5362         __INTRODUCED_IN(29);
5363 
5364 /**
5365  * Get the type of a given device.
5366  *
5367  * The device type can be used to help application developers to distribute Machine Learning
5368  * workloads and other workloads such as graphical rendering.
5369  * E.g., for an app which renders AR scenes based on real time object detection results,
5370  * the developer could choose an ACCELERATOR type device for ML workloads, and reserve GPU
5371  * for graphical rendering.
5372  *
5373  * @param device The representation of the specified device.
5374  * @param type The returned {@link DeviceTypeCode} of the specified device.
5375  *
5376  * @return ANEURALNETWORKS_NO_ERROR if successful.
5377  *
5378  * Available since API level 29.
5379  */
5380 int ANeuralNetworksDevice_getType(const ANeuralNetworksDevice* device, int32_t* type)
5381         __INTRODUCED_IN(29);
5382 
5383 /**
5384  * Get the version of the driver implementation of the specified device.
5385  *
5386  * It’s the responsibility of the driver implementor to insure that this version string
5387  * uniquely distinguishes this implementation from all previous implementations.
5388  *
5389  * This version string must not be confused with the feature level which is solely defined
5390  * by {@link ANeuralNetworksDevice_getFeatureLevel}. There is no implicit ordering of the versions.
5391  * For example, it is not possible to filter all drivers older than a certain version.
5392  *
5393  * Application developers may use this version string to avoid or prefer specific driver
5394  * implementations. For example, an application may want to do so because:
5395  *     - A specific version of the driver does not provide the required performance,
5396  *       perhaps because of a performance regression.
5397  *     - A specific version of the driver has a bug or returns results that don’t match
5398  *       the minimum precision requirement for the application.
5399  *
5400  * @param device The representation of the specified device.
5401  * @param version The returned version string of the driver for the specified device. The
5402  *                string will be in UTF-8 and will be null-terminated. For devices with feature
5403  *                level 28 or lower, "UNKNOWN" will be returned. The version string will remain
5404  *                valid for the duration of the application.
5405  *
5406  * @return ANEURALNETWORKS_NO_ERROR if successful.
5407  *
5408  * Available since API level 29.
5409  */
5410 int ANeuralNetworksDevice_getVersion(const ANeuralNetworksDevice* device, const char** version)
5411         __INTRODUCED_IN(29);
5412 
5413 /**
5414  * Get the supported NNAPI version of the specified device.
5415  *
5416  * Each device has a supported feature level, which is the most advanced feature this driver
5417  * implements. For example, if the driver implements the features introduced in Android P,
5418  * but does not implement the features introduced after Android P, the value would be 28.
5419  * Developers could decide whether or not the specified device should be used for a Model that
5420  * has certain feature requirements.
5421  *
5422  * @param device The representation of the specified device.
5423  * @param featureLevel The API level of the most advanced feature this driver implements.
5424  *
5425  * @return ANEURALNETWORKS_NO_ERROR if successful.
5426  *
5427  * Available since API level 29.
5428  */
5429 int ANeuralNetworksDevice_getFeatureLevel(const ANeuralNetworksDevice* device,
5430                                           int64_t* featureLevel) __INTRODUCED_IN(29);
5431 
5432 /**
5433  * Get the supported operations for a specified set of devices. If multiple devices
5434  * are selected, the supported operation list is a union of supported operations of all
5435  * selected devices.
5436  *
5437  * @param model The model to be queried.
5438  * @param devices The set of devices. Must not contain duplicates.
5439  * @param numDevices The number of devices in the set.
5440  * @param supportedOps The boolean array to be filled. True means supported. The size of the
5441  *                     boolean array must be at least as large as the number of operations
5442  *                     in the model. The order of elements in the supportedOps array matches
5443  *                     the order in which the corresponding operations were added to the model.
5444  *
5445  * @return ANEURALNETWORKS_NO_ERROR if successful.
5446  *
5447  * Available since API level 29.
5448  */
5449 int ANeuralNetworksModel_getSupportedOperationsForDevices(
5450         const ANeuralNetworksModel* model, const ANeuralNetworksDevice* const* devices,
5451         uint32_t numDevices, bool* supportedOps) __INTRODUCED_IN(29);
5452 
5453 /**
5454  * Create a {@link ANeuralNetworksCompilation} to compile the given model for a specified set
5455  * of devices. If more than one device is specified, the compilation will
5456  * distribute the workload automatically across the devices. The model must be fully
5457  * supported by the specified set of devices. This means that
5458  * ANeuralNetworksModel_getSupportedOperationsForDevices() must have returned true for every
5459  * operation for that model/devices pair.
5460  *
5461  * The user must handle all compilation and execution failures from the
5462  * specified set of devices. This is in contrast to a use of {@link
5463  * ANeuralNetworksCompilation_create}, where the runtime will attempt to recover
5464  * from such failures.
5465  *
5466  * @param model The {@link ANeuralNetworksModel} to be compiled.
5467  * @param devices The set of devices. Must not contain duplicates.
5468  * @param numDevices The number of devices in the set.
5469  * @param compilation The newly created object or NULL if unsuccessful.
5470  *
5471  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_BAD_DATA
5472  *         if the model is invalid.
5473  *
5474  * Available since API level 29.
5475  */
5476 int ANeuralNetworksCompilation_createForDevices(ANeuralNetworksModel* model,
5477                                                 const ANeuralNetworksDevice* const* devices,
5478                                                 uint32_t numDevices,
5479                                                 ANeuralNetworksCompilation** compilation)
5480         __INTRODUCED_IN(29);
5481 
5482 /**
5483  * Sets the compilation caching signature and the cache directory.
5484  *
5485  * Provides optional caching information to the runtime for faster repeated
5486  * compilation.
5487  *
5488  * See {@link ANeuralNetworksCompilation} for information on multithreaded usage.
5489  *
5490  * @param compilation The compilation to be modified.
5491  * @param cacheDir The cache directory for the runtime to store and retrieve caching
5492  *                 data. It is recommended to use the code cache directory provided
5493  *                 by the Android runtime. If not using the code cache directory, the
5494  *                 user should choose a directory local to the application, and is
5495  *                 responsible to managing the cache entries.
5496  * @param token The token provided by the user to specify a model must be of length
5497  *              ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN. The user should ensure that
5498  *              the token is unique to a model within the application. The NNAPI
5499  *              runtime cannot detect token collisions; a collision will result in a
5500  *              failed execution or in a successful execution that produces incorrect
5501  *              output values.
5502  *
5503  * @return ANEURALNETWORKS_NO_ERROR if successful.
5504  *
5505  * Available since API level 29.
5506  */
5507 int ANeuralNetworksCompilation_setCaching(ANeuralNetworksCompilation* compilation,
5508                                           const char* cacheDir, const uint8_t* token)
5509         __INTRODUCED_IN(29);
5510 
5511 /**
5512  * Schedule synchronous evaluation of the execution.
5513  *
5514  * <p>Schedules synchronous evaluation of the execution. Returns once the
5515  * execution has completed and the outputs are ready to be consumed.
5516  * </p>
5517  *
5518  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
5519  *
5520  * See {@link ANeuralNetworksExecution_startCompute} for asynchronous execution.
5521  * Synchronous execution incurs lower overhead than asynchronous execution.
5522  *
5523  * Available since API level 29.
5524  *
5525  * @param execution The execution to be scheduled and executed.
5526  *
5527  * @return ANEURALNETWORKS_NO_ERROR if the execution completed normally.
5528  *         ANEURALNETWORKS_UNMAPPABLE if the execution input or output memory cannot
5529  *         be properly mapped.
5530  */
5531 int ANeuralNetworksExecution_compute(ANeuralNetworksExecution* execution) __INTRODUCED_IN(29);
5532 
5533 /**
5534  * Get the dimensional information of the specified output operand of the model of the
5535  * {@link ANeuralNetworksExecution}.
5536  *
5537  * On asynchronous execution initiated by {@link ANeuralNetworksExecution_startCompute},
5538  * {@link ANeuralNetworksEvent_wait} must be called prior to this function to recuperate
5539  * the resources used by the execution.
5540  *
5541  * @param execution The execution to be queried.
5542  * @param index The index of the output argument we are querying. It is
5543  *              an index into the lists passed to
5544  *              {@link ANeuralNetworksModel_identifyInputsAndOutputs}. It is not
5545  *              the index associated with {@link ANeuralNetworksModel_addOperand}.
5546  * @param rank The rank of the output operand.
5547  *
5548  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE
5549  *         if the target output is provided an insufficient buffer at execution time,
5550  *         ANEURALNETWORKS_BAD_DATA if the index is invalid.
5551  *
5552  * Available since API level 29.
5553  */
5554 int ANeuralNetworksExecution_getOutputOperandRank(ANeuralNetworksExecution* execution,
5555                                                   int32_t index, uint32_t* rank)
5556         __INTRODUCED_IN(29);
5557 
5558 /**
5559  * Get the dimensional information of the specified output operand of the model of the
5560  * {@link ANeuralNetworksExecution}. The target output operand cannot be a scalar.
5561  *
5562  * On asynchronous execution initiated by {@link ANeuralNetworksExecution_startCompute},
5563  * {@link ANeuralNetworksEvent_wait} must be called prior to this function to recuperate
5564  * the resources used by the execution.
5565  *
5566  * @param execution The execution to be queried.
5567  * @param index The index of the output argument we are querying. It is an index into the lists
5568  *              passed to {@link ANeuralNetworksModel_identifyInputsAndOutputs}. It is not
5569  *              the index associated with {@link ANeuralNetworksModel_addOperand}.
5570  * @param dimensions The dimension array to be filled. The size of the array must be exactly as
5571  *                   large as the rank of the output operand to be queried in the model.
5572  *
5573  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE
5574  *         if the target output is provided an insufficient buffer at execution time,
5575  *         ANEURALNETWORKS_BAD_DATA if the index is invalid or if the target is a scalar.
5576  *
5577  * Available since API level 29.
5578  */
5579 int ANeuralNetworksExecution_getOutputOperandDimensions(ANeuralNetworksExecution* execution,
5580                                                         int32_t index, uint32_t* dimensions)
5581         __INTRODUCED_IN(29);
5582 
5583 /**
5584  * Create a {@link ANeuralNetworksBurst} to apply the given compilation.
5585  * This only creates the burst object. Computation is only performed once
5586  * {@link ANeuralNetworksExecution_burstCompute} is invoked with a valid
5587  * {@link ANeuralNetworksExecution} and {@link ANeuralNetworksBurst}.
5588  *
5589  * <p>The provided compilation must outlive the burst object.</p>
5590  *
5591  * Available since API level 29.
5592  *
5593  * @param compilation The {@link ANeuralNetworksCompilation} to be evaluated.
5594  * @param burst The newly created object or NULL if unsuccessful.
5595  *
5596  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_BAD_DATA
5597  *         if the compilation is invalid.
5598  */
5599 int ANeuralNetworksBurst_create(ANeuralNetworksCompilation* compilation,
5600                                 ANeuralNetworksBurst** burst) __INTRODUCED_IN(29);
5601 
5602 /**
5603  * Destroys the burst object.
5604  *
5605  * Available since API level 29.
5606  *
5607  * @param burst The burst object to be destroyed. Passing NULL is acceptable and
5608  *              results in no operation.
5609  */
5610 void ANeuralNetworksBurst_free(ANeuralNetworksBurst* burst) __INTRODUCED_IN(29);
5611 
5612 /**
5613  * Schedule synchronous evaluation of the execution on a burst object.
5614  *
5615  * <p>Schedules synchronous evaluation of the execution. Returns once the
5616  * execution has completed and the outputs are ready to be consumed.</p>
5617  *
5618  * <p>There must be at most one {@link ANeuralNetworksExecution} processing at
5619  * any given time for any given burst object. Any
5620  * {@link ANeuralNetworksExecution} launched before the previous has finished
5621  * will result in ANEURALNETWORKS_BAD_STATE.</p>
5622  *
5623  * Available since API level 29.
5624  *
5625  * @param burst The burst object to execute on.
5626  * @param execution The execution to be scheduled and executed. The execution
5627  *                  must be created from the same {@link
5628  *                  ANeuralNetworksCompilation} as the burst object.
5629  *
5630  * @return ANEURALNETWORKS_NO_ERROR if the execution completed normally.
5631  */
5632 int ANeuralNetworksExecution_burstCompute(ANeuralNetworksExecution* execution,
5633                                           ANeuralNetworksBurst* burst) __INTRODUCED_IN(29);
5634 
5635 /**
5636  * Creates a shared memory object from an AHardwareBuffer handle.
5637  *
5638  * If the shared memory is backed by an AHardwareBuffer of AHARDWAREBUFFER_FORMAT_BLOB
5639  * format, it can be used the same way as shared memory created from a file handle. See
5640  * {@link ANeuralNetworksMemory} for a description on how to use this shared memory.
5641  *
5642  * If the shared memory is backed by an AHardwareBuffer of a format other than
5643  * AHARDWAREBUFFER_FORMAT_BLOB, it can only be used for Model inputs and outputs.
5644  * When calling {@link ANeuralNetworksExecution_setInputFromMemory} or
5645  * {@link ANeuralNetworksExecution_setOutputFromMemory} with the shared memory, both
5646  * offset and length must be set to zero and the entire memory region will be
5647  * associated with the specified input or output operand. There is no guarantee
5648  * that an arbitrary AHardwareBuffer_Format and AHardwareBuffer_UsageFlags combination
5649  * can be used by arbitrary devices. The execution will fail if selected set of devices
5650  * cannot consume the buffer.
5651  *
5652  * Calling {@link ANeuralNetworksModel_setOperandValueFromMemory} with shared memory
5653  * backed by an AHardwareBuffer of a format other than AHARDWAREBUFFER_FORMAT_BLOB is
5654  * disallowed.
5655  *
5656  * TODO(miaowang): add documentation about intended usage with introspection API.
5657  *
5658  * Available since API level 29.
5659  *
5660  * @param ahwb The AHardwareBuffer handle.
5661  * @param memory The memory object to be created.
5662  *               Set to NULL if unsuccessful.
5663  *
5664  * @return ANEURALNETWORKS_NO_ERROR if the request completed normally.
5665  *
5666  * @see AHardwareBuffer
5667  */
5668 int ANeuralNetworksMemory_createFromAHardwareBuffer(const AHardwareBuffer* ahwb,
5669                                                     ANeuralNetworksMemory** memory)
5670         __INTRODUCED_IN(29);
5671 
5672 /**
5673 
5674  * Specifies whether duration of the {@link ANeuralNetworksExecution} is to be
5675  * measured. Evaluation of the execution must not have been scheduled.
5676  *
5677  * By default, duration is not measured.
5678  *
5679  * The {@link ANeuralNetworksExecution} must have been created with
5680  * {@link ANeuralNetworksCompilation_createForDevices} with numDevices = 1.
5681  *
5682  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
5683  *
5684  * Available since API level 29.
5685  *
5686  * @param execution The execution to be modified.
5687  * @param measure 'true' if duration is to be measured, 'false' if not.
5688  *
5689  * @return ANEURALNETWORKS_NO_ERROR if successful.
5690  */
5691 int ANeuralNetworksExecution_setMeasureTiming(ANeuralNetworksExecution* execution, bool measure)
5692         __INTRODUCED_IN(29);
5693 
5694 /**
5695  * Different duration measurements.
5696  *
5697  * Durations are measured in nanoseconds.
5698  *
5699  * Available since API level 29.
5700  */
5701 typedef enum {
5702     // Execution time on hardware (not driver, which runs on host processor).
5703     ANEURALNETWORKS_DURATION_ON_HARDWARE = 0,
5704     // Execution time in driver (including time on hardware).  Excludes overhead
5705     // such as that of the runtime itself and the IPC needed for the runtime to
5706     // communicate with the driver.
5707     ANEURALNETWORKS_DURATION_IN_DRIVER = 1,
5708 } DurationCode;
5709 
5710 /**
5711  * Get the time spent in the specified {@link ANeuralNetworksExecution}, in nanoseconds.
5712  * The execution must have completed.
5713  *
5714  * Available since API level 29.
5715  *
5716  * @param execution The execution to be queried.
5717  * @param durationCode The measurement to be queried, specified by {@link DurationCode}.
5718  * @param duration The returned duration. If no measurement was requested by
5719  *                 {@link ANeuralNetworksExecution_setMeasureTiming}, or for some other
5720  *                 reason the duration is not available, UINT64_MAX will be returned.
5721  *                 A particular device need not support any given measurement.
5722  *
5723  * @return ANEURALNETWORKS_NO_ERROR if successful.
5724  */
5725 int ANeuralNetworksExecution_getDuration(const ANeuralNetworksExecution* execution,
5726                                          int32_t durationCode, uint64_t* duration)
5727         __INTRODUCED_IN(29);
5728 
5729 #endif  // __ANDROID_API__ >= __ANDROID_API_Q__
5730 
5731 #if __ANDROID_API__ >= 27
5732 
5733 /**
5734  * Creates a shared memory object from a file descriptor.
5735  *
5736  * The shared memory is backed by a file descriptor via mmap.
5737  * See {@link ANeuralNetworksMemory} for a description on how to use
5738  * this shared memory.
5739  *
5740  * Available since API level 27.
5741  *
5742  * @param size The requested size in bytes.
5743  *             Must not be larger than the file size.
5744  * @param prot The desired memory protection for the mapping.
5745  *             It is either PROT_NONE or the bitwise OR of one or
5746  *             more of the following flags: PROT_READ, PROT_WRITE.
5747  * @param fd The requested file descriptor.
5748  *           The file descriptor has to be mmap-able. The file
5749  *           descriptor will be duplicated.
5750  * @param offset The offset to the beginning of the file of the area to map.
5751  *               The offset has to be aligned to a page size.
5752  * @param memory The memory object to be created.
5753  *               Set to NULL if unsuccessful.
5754  *
5755  * @return ANEURALNETWORKS_NO_ERROR if the request completed normally.
5756  */
5757 int ANeuralNetworksMemory_createFromFd(size_t size, int protect, int fd, size_t offset,
5758                                        ANeuralNetworksMemory** memory) __INTRODUCED_IN(27);
5759 
5760 /**
5761  * Delete a memory object.
5762  *
5763  * Destroys the object used by the run time to keep track of the memory.
5764  * This will free the underlying actual memory if no other code has open
5765  * handles to this memory.
5766  *
5767  * Available since API level 27.
5768  *
5769  * @param memory The memory object to be freed.
5770  */
5771 void ANeuralNetworksMemory_free(ANeuralNetworksMemory* memory) __INTRODUCED_IN(27);
5772 
5773 /**
5774  * Create an empty {@link ANeuralNetworksModel}.
5775  *
5776  * <p>This only creates the object. Computation is performed once
5777  * {@link ANeuralNetworksExecution_compute} or
5778  * {@link ANeuralNetworksExecution_startCompute} is invoked.
5779  *
5780  * The model should be constructed with calls to
5781  * {@link ANeuralNetworksModel_addOperation} and
5782  * {@link ANeuralNetworksModel_addOperand}
5783  *
5784  * <p>{@link ANeuralNetworksModel_finish} should be called once the model
5785  * has been fully constructed.</p>
5786  *
5787  * <p>{@link ANeuralNetworksModel_free} should be called once the model
5788  * is no longer needed.</p>
5789  *
5790  * Available since API level 27.
5791  *
5792  * @param model The {@link ANeuralNetworksModel} to be created.
5793  *              Set to NULL if unsuccessful.
5794  *
5795  * @return ANEURALNETWORKS_NO_ERROR if successful.
5796  */
5797 int ANeuralNetworksModel_create(ANeuralNetworksModel** model) __INTRODUCED_IN(27);
5798 
5799 /**
5800  * Destroy a model.
5801  *
5802  * The model need not have been finished by a call to
5803  * {@link ANeuralNetworksModel_finish}.
5804  *
5805  * See {@link ANeuralNetworksModel} for information on multithreaded usage.
5806  *
5807  * Available since API level 27.
5808  *
5809  * @param model The model to be destroyed. Passing NULL is acceptable and
5810  *              results in no operation.
5811  */
5812 void ANeuralNetworksModel_free(ANeuralNetworksModel* model) __INTRODUCED_IN(27);
5813 
5814 /**
5815  * Indicate that we have finished modifying a model. Required before
5816  * calling {@link ANeuralNetworksCompilation_create} and
5817  * {@link ANeuralNetworksCompilation_createForDevices}.
5818  *
5819  * An application is responsible to make sure that no other thread uses
5820  * the model at the same time.
5821  *
5822  * This function must only be called once for a given model.
5823  *
5824  * See {@link ANeuralNetworksModel} for information on multithreaded usage.
5825  *
5826  * Available since API level 27.
5827  *
5828  * @param model The model to be finished.
5829  *
5830  * @return ANEURALNETWORKS_NO_ERROR if successful.
5831  */
5832 int ANeuralNetworksModel_finish(ANeuralNetworksModel* model) __INTRODUCED_IN(27);
5833 
5834 /**
5835  * Add an operand to a model.
5836  *
5837  * The order in which the operands are added is important. The first one added
5838  * to a model will have the index value 0, the second 1, etc. These indexes are
5839  * used as operand identifiers in
5840  * {@link ANeuralNetworksModel_addOperation},
5841  * {@link ANeuralNetworksModel_identifyInputsAndOutputs},
5842  * {@link ANeuralNetworksModel_setOperandValue},
5843  * {@link ANeuralNetworksModel_setOperandValueFromMemory},
5844  * {@link ANeuralNetworksExecution_setInput},
5845  * {@link ANeuralNetworksExecution_setInputFromMemory},
5846  * {@link ANeuralNetworksExecution_setOutput},
5847  * {@link ANeuralNetworksExecution_setOutputFromMemory} and
5848  * {@link ANeuralNetworksExecution_setOperandValue}.
5849  *
5850  * <p>Every operand must be referenced in exactly one of the following
5851  * ways:<ul>
5852  *    <li>It is identified as a model input with
5853  *        {@link ANeuralNetworksModel_identifyInputsAndOutputs}.</li>
5854  *    <li>It is identified as a constant with
5855  *        {@link ANeuralNetworksModel_setOperandValue} or
5856  *        {@link ANeuralNetworksModel_setOperandValueFromMemory}.</li>
5857  *    <li>It is identified as an output of exactly one operation with
5858  *        {@link ANeuralNetworksModel_addOperation}.</li></p>
5859  * <p>An operand that is identified as a model input or as a constant
5860  * must not also be identified as a model output with
5861  * {@link ANeuralNetworksModel_identifyInputsAndOutputs}.</p>
5862  *
5863  * To build a model that can accommodate inputs of various sizes, as
5864  * you may want to do for a CNN, leave unspecified the dimensions that
5865  * will vary at run time.  If you do so, fully specify dimensions
5866  * when calling {@link ANeuralNetworksExecution_setInput} or
5867  * {@link ANeuralNetworksExecution_setInputFromMemory}.
5868  *
5869  * Attempting to modify a model once {@link ANeuralNetworksModel_finish} has been
5870  * called will return an error.
5871  *
5872  * See {@link ANeuralNetworksModel} for information on multithreaded usage.
5873  *
5874  * Available since API level 27.
5875  *
5876  * @param model The model to be modified.
5877  * @param type The {@link ANeuralNetworksOperandType} that describes the shape
5878  *             of the operand.  Neither the {@link ANeuralNetworksOperandType}
5879  *             nor the dimensions it points to need to outlive the call to
5880  *             {@link ANeuralNetworksModel_addOperand}.
5881  *
5882  * @return ANEURALNETWORKS_NO_ERROR if successful.
5883  */
5884 int ANeuralNetworksModel_addOperand(ANeuralNetworksModel* model,
5885                                     const ANeuralNetworksOperandType* type) __INTRODUCED_IN(27);
5886 
5887 /**
5888  * Sets an operand to a constant value.
5889  *
5890  * Values of length smaller or equal to
5891  * {@link ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES}
5892  * are immediately copied into the model.
5893  *
5894  * For values of length greater than {@link ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES},
5895  * a pointer to the buffer is stored within the model. The application is responsible
5896  * for not changing the content of this region until all executions using this model
5897  * have completed. As the data may be copied during processing, modifying the data
5898  * after this call yields undefined results.
5899  *
5900  * For large tensors, using {@link ANeuralNetworksModel_setOperandValueFromMemory}
5901  * is likely to be more efficient.
5902  *
5903  * To indicate that an optional operand should be considered missing,
5904  * pass nullptr for buffer and 0 for length.
5905  *
5906  * Attempting to modify a model once {@link ANeuralNetworksModel_finish} has been
5907  * called will return an error.
5908  *
5909  * See {@link ANeuralNetworksModel} for information on multithreaded usage.
5910  *
5911  * Available since API level 27.
5912  *
5913  * @param model The model to be modified.
5914  * @param index The index of the model operand we're setting.
5915  * @param buffer A pointer to the data to use.
5916  * @param length The size in bytes of the data value.
5917  *
5918  * @return ANEURALNETWORKS_NO_ERROR if successful.
5919  */
5920 int ANeuralNetworksModel_setOperandValue(ANeuralNetworksModel* model, int32_t index,
5921                                          const void* buffer, size_t length) __INTRODUCED_IN(27);
5922 
5923 #if __ANDROID_API__ >= __ANDROID_API_Q__
5924 
5925 /**
5926  * Sets an operand's per channel quantization parameters.
5927  *
5928  * Sets parameters required by a tensor of type
5929  * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}.
5930  * This function must be called for every tensor of type
5931  * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} before
5932  * calling {@link ANeuralNetworksModel_finish}.
5933  *
5934  * Available since API level 29.
5935  *
5936  * @param model The model to be modified.
5937  * @param index The index of the model operand we're setting.
5938  * @param channelQuant The per channel quantization parameters for the operand.
5939  *                    No memory in this struct needs to outlive the call to
5940  *                    this function.
5941  *
5942  * @return ANEURALNETWORKS_NO_ERROR if successful.
5943  */
5944 int ANeuralNetworksModel_setOperandSymmPerChannelQuantParams(
5945         ANeuralNetworksModel* model, int32_t index,
5946         const ANeuralNetworksSymmPerChannelQuantParams* channelQuant) __INTRODUCED_IN(29);
5947 
5948 #endif  // __ANDROID_API__ >= __ANDROID_API_Q__
5949 
5950 /**
5951  * Sets an operand to a value stored in a memory object.
5952  *
5953  * The content of the memory is not copied. A reference to that memory is stored
5954  * inside the model. The application is responsible for not changing the content
5955  * of the memory region until all executions using this model have completed.
5956  * As the data may be copied during processing, modifying the data after this call
5957  * yields undefined results.
5958  *
5959  * To indicate that an optional operand should be considered missing,
5960  * use {@link ANeuralNetworksModel_setOperandValue} instead, passing nullptr for buffer.
5961  *
5962  * Is disallowed to set an operand value with shared memory backed by an AHardwareBuffer
5963  * of a format other than AHARDWAREBUFFER_FORMAT_BLOB.
5964  *
5965  * Attempting to modify a model once {@link ANeuralNetworksModel_finish} has been
5966  * called will return an error.
5967  *
5968  * See {@link ANeuralNetworksModel} for information on multithreaded usage.
5969  * See {@link ANeuralNetworksMemory_createFromAHardwarBuffer} for information on
5970  * AHardwareBuffer usage.
5971  *
5972  * Available since API level 27.
5973  *
5974  * @param model The model to be modified.
5975  * @param index The index of the model operand we're setting.
5976  * @param buffer A pointer to the data to use.
5977  * @param memory The memory containing the data.
5978  * @param offset This specifies the location of the data within the memory.
5979  *               The offset is in bytes from the start of memory.
5980  * @param length The size in bytes of the data value.
5981  *
5982  * @return ANEURALNETWORKS_NO_ERROR if successful.
5983  */
5984 int ANeuralNetworksModel_setOperandValueFromMemory(ANeuralNetworksModel* model, int32_t index,
5985                                                    const ANeuralNetworksMemory* memory,
5986                                                    size_t offset, size_t length)
5987         __INTRODUCED_IN(27);
5988 
5989 /**
5990  * Add an operation to a model.
5991  *
5992  * @param model The model to be modified.
5993  * @param type The {@link ANeuralNetworksOperationType} of the operation.
5994  * @param inputCount The number of entries in the inputs array.
5995  * @param inputs An array of indexes identifying each operand.
5996  * @param outputCount The number of entries in the outputs array.
5997  * @param outputs An array of indexes identifying each operand.
5998  *
5999  * The operands specified by inputs and outputs must have been
6000  * previously added by calls to {@link ANeuralNetworksModel_addOperand}.
6001  *
6002  * Attempting to modify a model once {@link ANeuralNetworksModel_finish} has been
6003  * called will return an error.
6004  *
6005  * See {@link ANeuralNetworksModel} for information on multithreaded usage.
6006  *
6007  * Available since API level 27.
6008  *
6009  * @return ANEURALNETWORKS_NO_ERROR if successful.
6010  */
6011 int ANeuralNetworksModel_addOperation(ANeuralNetworksModel* model,
6012                                       ANeuralNetworksOperationType type, uint32_t inputCount,
6013                                       const uint32_t* inputs, uint32_t outputCount,
6014                                       const uint32_t* outputs) __INTRODUCED_IN(27);
6015 
6016 /**
6017  * Specifies which operands will be the model's inputs and
6018  * outputs. Every model must have at least one input and one output.
6019  *
6020  * An operand cannot be used for both input and output. Doing so will
6021  * return an error.
6022  *
6023  * @param model The model to be modified.
6024  * @param inputCount The number of entries in the inputs array.
6025  * @param inputs An array of indexes identifying the input operands.
6026  * @param outputCount The number of entries in the outputs array.
6027  * @param outputs An array of indexes identifying the output operands.
6028  *
6029  * The operands specified by inputs and outputs must have been
6030  * previously added by calls to {@link ANeuralNetworksModel_addOperand}.
6031  *
6032  * Attempting to modify a model once {@link ANeuralNetworksModel_finish} has been
6033  * called will return an error.
6034  *
6035  * See {@link ANeuralNetworksModel} for information on multithreaded usage.
6036  *
6037  * Available since API level 27.
6038  *
6039  */
6040 int ANeuralNetworksModel_identifyInputsAndOutputs(ANeuralNetworksModel* model, uint32_t inputCount,
6041                                                   const uint32_t* inputs, uint32_t outputCount,
6042                                                   const uint32_t* outputs) __INTRODUCED_IN(27);
6043 
6044 #if __ANDROID_API__ >= 28
6045 
6046 /**
6047  * Specifies whether {@link ANEURALNETWORKS_TENSOR_FLOAT32} is allowed to be
6048  * calculated with range and/or precision as low as that of the IEEE 754 16-bit
6049  * floating-point format. By default, {@link ANEURALNETWORKS_TENSOR_FLOAT32}
6050  * must be calculated using at least the range and precision of the IEEE 754
6051  * 32-bit floating-point format.
6052  *
6053  * @param model The model to be modified.
6054  * @param allow 'true' indicates {@link ANEURALNETWORKS_TENSOR_FLOAT32} may be
6055  *              calculated with range and/or precision as low as that of the
6056  *              IEEE 754 16-bit floating point format. 'false' indicates
6057  *              {@link ANEURALNETWORKS_TENSOR_FLOAT32} must be calculated using
6058  *              at least the range and precision of the IEEE 754 32-bit floating
6059  *              point format.
6060  *
6061  * Attempting to modify a model once {@link ANeuralNetworksModel_finish} has been
6062  * called will return an error.
6063  *
6064  * Available since API level 28.
6065  *
6066  * See {@link ANeuralNetworksModel} for information on multithreaded usage.
6067  */
6068 int ANeuralNetworksModel_relaxComputationFloat32toFloat16(ANeuralNetworksModel* model, bool allow)
6069         __INTRODUCED_IN(28);
6070 
6071 #endif  // __ANDROID_API__ >= 28
6072 
6073 /**
6074  * Create a {@link ANeuralNetworksCompilation} to compile the given model.
6075  *
6076  * <p>This only creates the object. Compilation is only performed once
6077  * {@link ANeuralNetworksCompilation_finish} is invoked.</p>
6078  *
6079  * <p>{@link ANeuralNetworksCompilation_finish} should be called once
6080  * all desired properties have been set on the compilation.</p>
6081  *
6082  * <p>{@link ANeuralNetworksModel_free} should be called once the compilation
6083  * is no longer needed.</p>
6084  *
6085  * <p>The provided model must outlive the compilation.</p>
6086  *
6087  * The model must already have been finished by a call to
6088  * {@link ANeuralNetworksModel_finish}.
6089  *
6090  * See {@link ANeuralNetworksCompilation} for information on multithreaded usage.
6091  *
6092  * Available since API level 27.
6093  *
6094  * @param model The {@link ANeuralNetworksModel} to be compiled.
6095  * @param compilation The newly created object or NULL if unsuccessful.
6096  *
6097  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_BAD_DATA
6098  *         if the model is invalid.
6099  */
6100 int ANeuralNetworksCompilation_create(ANeuralNetworksModel* model,
6101                                       ANeuralNetworksCompilation** compilation) __INTRODUCED_IN(27);
6102 
6103 /**
6104  * Destroy a compilation.
6105  *
6106  * The compilation need not have been finished by a call to
6107  * {@link ANeuralNetworksModel_finish}.
6108  *
6109  * See {@link ANeuralNetworksCompilation} for information on multithreaded usage.
6110  *
6111  * Available since API level 27.
6112  *
6113  * @param compilation The compilation to be destroyed. Passing NULL is acceptable and
6114  *                    results in no operation.
6115  */
6116 void ANeuralNetworksCompilation_free(ANeuralNetworksCompilation* compilation) __INTRODUCED_IN(27);
6117 
6118 /**
6119  * Sets the execution preference.
6120  *
6121  * <p>Provides guidance to the runtime when trade-offs are possible.</p>
6122  *
6123  * See {@link ANeuralNetworksCompilation} for information on multithreaded usage.
6124  *
6125  * Available since API level 27.
6126  *
6127  * @param compilation The compilation to be modified.
6128  * @param preference Either {@link PREFER_LOW_POWER},
6129  *                  {@link PREFER_SINGLE_FAST_ANSWER}, or
6130  *                  {@link PREFER_SUSTAINED_SPEED}.
6131  *
6132  * @return ANEURALNETWORKS_NO_ERROR if successful.
6133  */
6134 int ANeuralNetworksCompilation_setPreference(ANeuralNetworksCompilation* compilation,
6135                                              int32_t preference) __INTRODUCED_IN(27);
6136 
6137 /**
6138  * Indicate that we have finished modifying a compilation. Required before
6139  * calling {@link ANeuralNetworksExecution_create}.
6140  *
6141  * An application is responsible to make sure that no other thread uses
6142  * the compilation at the same time.
6143  *
6144  * This function must only be called once for a given compilation.
6145  *
6146  * See {@link ANeuralNetworksCompilation} for information on multithreaded usage.
6147  *
6148  * Available since API level 27.
6149  *
6150  * @param compilation The compilation to be finished.
6151  *
6152  * @return ANEURALNETWORKS_NO_ERROR if successful.
6153  */
6154 int ANeuralNetworksCompilation_finish(ANeuralNetworksCompilation* compilation) __INTRODUCED_IN(27);
6155 
6156 /**
6157  * Create a {@link ANeuralNetworksExecution} to apply the given compilation.
6158  * This only creates the object. Computation is only performed once
6159  * {@link ANeuralNetworksExecution_compute} or
6160  * {@link ANeuralNetworksExecution_startCompute} is invoked.
6161  *
6162  * <p>The provided compilation must outlive the execution.</p>
6163  *
6164  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
6165  *
6166  * Available since API level 27.
6167  *
6168  * @param compilation The {@link ANeuralNetworksCompilation} to be evaluated.
6169  * @param execution The newly created object or NULL if unsuccessful.
6170  *
6171  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_BAD_DATA
6172  *         if the compilation is invalid.
6173  */
6174 int ANeuralNetworksExecution_create(ANeuralNetworksCompilation* compilation,
6175                                     ANeuralNetworksExecution** execution) __INTRODUCED_IN(27);
6176 
6177 /**
6178  * Destroy an execution.
6179  *
6180  * <p>If called on an execution for which
6181  * {@link ANeuralNetworksExecution_startCompute} has been called, the
6182  * function will return immediately but will mark the execution to be deleted
6183  * once the computation completes. The related {@link ANeuralNetworksEvent}
6184  * will be signaled and the {@link ANeuralNetworksEvent_wait} will return
6185  * ANEURALNETWORKS_ERROR_DELETED.
6186  *
6187  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
6188  *
6189  * Available since API level 27.
6190  *
6191  * @param execution The execution to be destroyed. Passing NULL is acceptable and
6192  *                  results in no operation.
6193  */
6194 void ANeuralNetworksExecution_free(ANeuralNetworksExecution* execution) __INTRODUCED_IN(27);
6195 
6196 /**
6197  * Associate a user buffer with an input of the model of the
6198  * {@link ANeuralNetworksExecution}. Evaluation of the execution must not have
6199  * been scheduled.
6200  *
6201  * <p>The provided buffer must outlive the execution.</p>
6202  *
6203  * If the input is optional, you can indicate that it is omitted by
6204  * passing nullptr for buffer and 0 for length.
6205  *
6206  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
6207  *
6208  * Available since API level 27.
6209  *
6210  * @param execution The execution to be modified.
6211  * @param index The index of the input argument we are setting. It is
6212  *              an index into the lists passed to
6213  *              {@link ANeuralNetworksModel_identifyInputsAndOutputs}. It is not
6214  *              the index associated with
6215  *              {@link ANeuralNetworksModel_addOperand}.
6216  * @param type The {@link ANeuralNetworksOperandType} of the
6217  *             operand. Unless the input is omitted, this should be
6218  *             used to specify the dimensions that were left
6219  *             unspecified when the operand was added to the
6220  *             model. All other properties of the type must be the
6221  *             same as specified in the model. If the type is the same
6222  *             as specified when the model was built, NULL can be
6223  *             passed. Neither the {@link ANeuralNetworksOperandType}
6224  *             nor the dimensions it points to need to outlive the call
6225  *             to {@link ANeuralNetworksExecution_setInput}.
6226  * @param buffer The buffer containing the data.
6227  * @param length The length in bytes of the buffer.
6228  *
6229  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_BAD_DATA if the
6230  *         name is not recognized or the buffer is too small for the input.
6231  */
6232 int ANeuralNetworksExecution_setInput(ANeuralNetworksExecution* execution, int32_t index,
6233                                       const ANeuralNetworksOperandType* type, const void* buffer,
6234                                       size_t length) __INTRODUCED_IN(27);
6235 
6236 /**
6237  * Associate part of a memory object with an input of the model of the
6238  * {@link ANeuralNetworksExecution}. Evaluation of the execution must not have
6239  * been scheduled.
6240  *
6241  * <p>The provided memory must outlive the execution.</p>
6242  *
6243  * If the input is optional, you can indicate that it is omitted by
6244  * using {@link ANeuralNetworksExecution_setInput} instead, passing nullptr for
6245  * buffer and 0 for length.
6246  *
6247  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
6248  * See {@link ANeuralNetworksMemory_createFromAHardwarBuffer} for information on
6249  * AHardwareBuffer usage.
6250  *
6251  * Available since API level 27.
6252  *
6253  * @param execution The execution to be modified.
6254  * @param index The index of the input argument we are setting. It is
6255  *              an index into the lists passed to
6256  *              {@link ANeuralNetworksModel_identifyInputsAndOutputs}. It is not
6257  *              the index associated with {@link ANeuralNetworksModel_addOperand}.
6258  * @param type The {@link ANeuralNetworksOperandType} of the
6259  *             operand. This should be used to specify the dimensions
6260  *             that were left unspecified when the operand was added
6261  *             to the model. All other properties of the type must be
6262  *             the same as specified in the model. If the type is the
6263  *             same as specified when the model was built, NULL can be
6264  *             passed. Neither the {@link ANeuralNetworksOperandType}
6265  *             nor the dimensions it points to need to outlive the call
6266  *             to {@link ANeuralNetworksExecution_setInputFromMemory}.
6267  * @param memory The memory containing the data.
6268  * @param offset This specifies the location of the data within the memory.
6269  *               The offset is in bytes from the start of memory.
6270  * @param length The size in bytes of the data value.
6271  *
6272  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_BAD_DATA if the
6273  *         name is not recognized or the buffer is too small for the input.
6274  */
6275 int ANeuralNetworksExecution_setInputFromMemory(ANeuralNetworksExecution* execution, int32_t index,
6276                                                 const ANeuralNetworksOperandType* type,
6277                                                 const ANeuralNetworksMemory* memory, size_t offset,
6278                                                 size_t length) __INTRODUCED_IN(27);
6279 
6280 /**
6281  * Associate a user buffer with an output of the model of the
6282  * {@link ANeuralNetworksExecution}. Evaluation of the execution must not have
6283  * been scheduled.
6284  *
6285  * If the output is optional, you can indicate that it is omitted by
6286  * passing nullptr for buffer and 0 for length.
6287  *
6288  * <p>The provided buffer must outlive the execution.</p>
6289  *
6290  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
6291  *
6292  * Available since API level 27.
6293  *
6294  * @param execution The execution to be modified.
6295  * @param index The index of the output argument we are setting. It is
6296  *              an index into the lists passed to
6297  *              {@link ANeuralNetworksModel_identifyInputsAndOutputs}. It is not
6298  *              the index associated with {@link ANeuralNetworksModel_addOperand}.
6299  * @param type The {@link ANeuralNetworksOperandType} of the
6300  *             operand. Unless the output is omitted, this should be
6301  *             used to specify the dimensions that were left
6302  *             unspecified when the operand was added to the
6303  *             model. All other properties of the type must be the
6304  *             same as specified in the model. If the type is the same
6305  *             as specified when the model was built, NULL can be
6306  *             passed. Neither the {@link ANeuralNetworksOperandType}
6307  *             nor the dimensions it points to need to outlive the call
6308  *             to {@link ANeuralNetworksExecution_setOutput}.
6309  *             Since API level 29, the output operand can have unspecified
6310  *             dimensions or rank to be deduced dynamically during the execution.
6311  *             However, the user must provide a large enough buffer. The user
6312  *             can retrieve the output dimensional information after the execution
6313  *             by {@link ANeuralNetworksExecution_getOutputOperandRank} and
6314  *             {@link ANeuralNetworksExecution_getOutputOperandDimensions}.
6315  * @param buffer The buffer where the data is to be written.
6316  * @param length The length in bytes of the buffer.
6317  *
6318  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_BAD_DATA if the
6319  *         name is not recognized or the buffer is too small for the output.
6320  */
6321 int ANeuralNetworksExecution_setOutput(ANeuralNetworksExecution* execution, int32_t index,
6322                                        const ANeuralNetworksOperandType* type, void* buffer,
6323                                        size_t length) __INTRODUCED_IN(27);
6324 
6325 /**
6326  * Associate part of a memory object with an output of the model of the
6327  * {@link ANeuralNetworksExecution}. Evaluation of the execution must not have
6328  * been scheduled.
6329  *
6330  * If the output is optional, you can indicate that it is omitted by
6331  * using {@link ANeuralNetworksExecution_setOutput} instead, passing nullptr for
6332  * buffer and 0 for length.
6333  *
6334  * <p>The provided memory must outlive the execution.</p>
6335  *
6336  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
6337  * See {@link ANeuralNetworksMemory_createFromAHardwarBuffer} for information on
6338  * AHardwareBuffer usage.
6339  *
6340  * Available since API level 27.
6341  *
6342  * @param execution The execution to be modified.
6343  * @param index The index of the output argument we are setting. It is
6344  *              an index into the lists passed to
6345  *              {@link ANeuralNetworksModel_identifyInputsAndOutputs}. It is not
6346  *              the index associated with {@link ANeuralNetworksModel_addOperand}.
6347  * @param type The {@link ANeuralNetworksOperandType} of the operand. This should be
6348  *             used to specify the dimensions that were left
6349  *             unspecified when the operand was added to the
6350  *             model. All other properties of the type must be the
6351  *             same as specified in the model. If the type is the same
6352  *             as specified when the model was built, NULL can be
6353  *             passed. Neither the {@link ANeuralNetworksOperandType}
6354  *             nor the dimensions it points to need to outlive the call
6355  *             to {@link ANeuralNetworksExecution_setOutputFromMemory}.
6356  *             Since API level 29, the output operand can have unspecified
6357  *             dimensions or rank to be deduced dynamically during the execution.
6358  *             However, the user must provide a large enough memory. The user
6359  *             can retrieve the output dimensional information after the execution
6360  *             by {@link ANeuralNetworksExecution_getOutputOperandRank} and
6361  *             {@link ANeuralNetworksExecution_getOutputOperandDimensions}.
6362  * @param memory The memory where the data is to be stored.
6363  * @param offset This specifies the location of the data within the memory.
6364  *               The offset is in bytes from the start of memory.
6365  * @param length The length in bytes of the data value.
6366  *
6367  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_BAD_DATA if the
6368  *         name is not recognized or the buffer is too small for the output.
6369  */
6370 int ANeuralNetworksExecution_setOutputFromMemory(ANeuralNetworksExecution* execution, int32_t index,
6371                                                  const ANeuralNetworksOperandType* type,
6372                                                  const ANeuralNetworksMemory* memory, size_t offset,
6373                                                  size_t length) __INTRODUCED_IN(27);
6374 
6375 /**
6376  * Schedule asynchronous evaluation of the execution.
6377  *
6378  * <p>Schedules asynchronous evaluation of the execution. Once the model has
6379  * been applied and the outputs are ready to be consumed, the returned event
6380  * will be signaled. Use {@link ANeuralNetworksEvent_wait} to wait for that
6381  * event.
6382  * </p>
6383  *
6384  * ANeuralNetworksEvent_wait must be called to recuperate the resources used
6385  * by the execution.
6386  *
6387  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
6388  *
6389  * See {@link ANeuralNetworksExecution_compute} for synchronous execution.
6390  * Synchronous execution incurs lower overhead than asynchronous execution.
6391  *
6392  * Available since API level 27.
6393  *
6394  * @param execution The execution to be scheduled and executed.
6395  * @param event The event that will be signaled on completion. event is set to
6396  *              NULL if there's an error.
6397  *
6398  * @return ANEURALNETWORKS_NO_ERROR if successful.
6399  */
6400 int ANeuralNetworksExecution_startCompute(ANeuralNetworksExecution* execution,
6401                                           ANeuralNetworksEvent** event) __INTRODUCED_IN(27);
6402 
6403 /**
6404  * Waits until the execution completes.
6405  *
6406  * More than one thread can wait on an event. When the execution completes,
6407  * all threads will be released.
6408  *
6409  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
6410  *
6411  * Available since API level 27.
6412  *
6413  * @return ANEURALNETWORKS_NO_ERROR if the execution completed normally.
6414  *         ANEURALNETWORKS_UNMAPPABLE if the execution input or output memory cannot
6415  *         be properly mapped.
6416  */
6417 int ANeuralNetworksEvent_wait(ANeuralNetworksEvent* event) __INTRODUCED_IN(27);
6418 
6419 /**
6420  * Destroys the event.
6421  *
6422  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
6423  *
6424  * Available since API level 27.
6425  */
6426 void ANeuralNetworksEvent_free(ANeuralNetworksEvent* event) __INTRODUCED_IN(27);
6427 
6428 #endif  // __ANDROID_API__ >= 27
6429 
6430 __END_DECLS
6431 
6432 #endif  // ANDROID_ML_NN_RUNTIME_NEURAL_NETWORKS_H
6433 
6434 /** @} */
6435