• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/CodeGen/SwiftCallingConv.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>    // std::sort
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 // Helper for coercing an aggregate argument or return value into an integer
35 // array of the same size (including padding) and alignment.  This alternate
36 // coercion happens only for the RenderScript ABI and can be removed after
37 // runtimes that rely on it are no longer supported.
38 //
39 // RenderScript assumes that the size of the argument / return value in the IR
40 // is the same as the size of the corresponding qualified type. This helper
41 // coerces the aggregate type into an array of the same size (including
42 // padding).  This coercion is used in lieu of expansion of struct members or
43 // other canonical coercions that return a coerced-type of larger size.
44 //
45 // Ty          - The argument / return value type
46 // Context     - The associated ASTContext
47 // LLVMContext - The associated LLVMContext
coerceToIntArray(QualType Ty,ASTContext & Context,llvm::LLVMContext & LLVMContext)48 static ABIArgInfo coerceToIntArray(QualType Ty,
49                                    ASTContext &Context,
50                                    llvm::LLVMContext &LLVMContext) {
51   // Alignment and Size are measured in bits.
52   const uint64_t Size = Context.getTypeSize(Ty);
53   const uint64_t Alignment = Context.getTypeAlign(Ty);
54   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
55   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
56   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
57 }
58 
AssignToArrayRange(CodeGen::CGBuilderTy & Builder,llvm::Value * Array,llvm::Value * Value,unsigned FirstIndex,unsigned LastIndex)59 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
60                                llvm::Value *Array,
61                                llvm::Value *Value,
62                                unsigned FirstIndex,
63                                unsigned LastIndex) {
64   // Alternatively, we could emit this as a loop in the source.
65   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
66     llvm::Value *Cell =
67         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
68     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
69   }
70 }
71 
isAggregateTypeForABI(QualType T)72 static bool isAggregateTypeForABI(QualType T) {
73   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
74          T->isMemberFunctionPointerType();
75 }
76 
77 ABIArgInfo
getNaturalAlignIndirect(QualType Ty,bool ByRef,bool Realign,llvm::Type * Padding) const78 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
79                                  llvm::Type *Padding) const {
80   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
81                                  ByRef, Realign, Padding);
82 }
83 
84 ABIArgInfo
getNaturalAlignIndirectInReg(QualType Ty,bool Realign) const85 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
86   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
87                                       /*ByRef*/ false, Realign);
88 }
89 
EmitMSVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const90 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
91                              QualType Ty) const {
92   return Address::invalid();
93 }
94 
~ABIInfo()95 ABIInfo::~ABIInfo() {}
96 
97 /// Does the given lowering require more than the given number of
98 /// registers when expanded?
99 ///
100 /// This is intended to be the basis of a reasonable basic implementation
101 /// of should{Pass,Return}IndirectlyForSwift.
102 ///
103 /// For most targets, a limit of four total registers is reasonable; this
104 /// limits the amount of code required in order to move around the value
105 /// in case it wasn't produced immediately prior to the call by the caller
106 /// (or wasn't produced in exactly the right registers) or isn't used
107 /// immediately within the callee.  But some targets may need to further
108 /// limit the register count due to an inability to support that many
109 /// return registers.
occupiesMoreThan(CodeGenTypes & cgt,ArrayRef<llvm::Type * > scalarTypes,unsigned maxAllRegisters)110 static bool occupiesMoreThan(CodeGenTypes &cgt,
111                              ArrayRef<llvm::Type*> scalarTypes,
112                              unsigned maxAllRegisters) {
113   unsigned intCount = 0, fpCount = 0;
114   for (llvm::Type *type : scalarTypes) {
115     if (type->isPointerTy()) {
116       intCount++;
117     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
118       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
119       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
120     } else {
121       assert(type->isVectorTy() || type->isFloatingPointTy());
122       fpCount++;
123     }
124   }
125 
126   return (intCount + fpCount > maxAllRegisters);
127 }
128 
isLegalVectorTypeForSwift(CharUnits vectorSize,llvm::Type * eltTy,unsigned numElts) const129 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
130                                              llvm::Type *eltTy,
131                                              unsigned numElts) const {
132   // The default implementation of this assumes that the target guarantees
133   // 128-bit SIMD support but nothing more.
134   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
135 }
136 
getRecordArgABI(const RecordType * RT,CGCXXABI & CXXABI)137 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
138                                               CGCXXABI &CXXABI) {
139   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
140   if (!RD)
141     return CGCXXABI::RAA_Default;
142   return CXXABI.getRecordArgABI(RD);
143 }
144 
getRecordArgABI(QualType T,CGCXXABI & CXXABI)145 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
146                                               CGCXXABI &CXXABI) {
147   const RecordType *RT = T->getAs<RecordType>();
148   if (!RT)
149     return CGCXXABI::RAA_Default;
150   return getRecordArgABI(RT, CXXABI);
151 }
152 
153 /// Pass transparent unions as if they were the type of the first element. Sema
154 /// should ensure that all elements of the union have the same "machine type".
useFirstFieldIfTransparentUnion(QualType Ty)155 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
156   if (const RecordType *UT = Ty->getAsUnionType()) {
157     const RecordDecl *UD = UT->getDecl();
158     if (UD->hasAttr<TransparentUnionAttr>()) {
159       assert(!UD->field_empty() && "sema created an empty transparent union");
160       return UD->field_begin()->getType();
161     }
162   }
163   return Ty;
164 }
165 
getCXXABI() const166 CGCXXABI &ABIInfo::getCXXABI() const {
167   return CGT.getCXXABI();
168 }
169 
getContext() const170 ASTContext &ABIInfo::getContext() const {
171   return CGT.getContext();
172 }
173 
getVMContext() const174 llvm::LLVMContext &ABIInfo::getVMContext() const {
175   return CGT.getLLVMContext();
176 }
177 
getDataLayout() const178 const llvm::DataLayout &ABIInfo::getDataLayout() const {
179   return CGT.getDataLayout();
180 }
181 
getTarget() const182 const TargetInfo &ABIInfo::getTarget() const {
183   return CGT.getTarget();
184 }
185 
isAndroid() const186 bool ABIInfo:: isAndroid() const {
187   return getTarget().getTriple().isAndroid() ||
188          getContext().getLangOpts().RenderScript;
189 }
190 
isHomogeneousAggregateBaseType(QualType Ty) const191 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
192   return false;
193 }
194 
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const195 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
196                                                 uint64_t Members) const {
197   return false;
198 }
199 
shouldSignExtUnsignedType(QualType Ty) const200 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
201   return false;
202 }
203 
dump() const204 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
205   raw_ostream &OS = llvm::errs();
206   OS << "(ABIArgInfo Kind=";
207   switch (TheKind) {
208   case Direct:
209     OS << "Direct Type=";
210     if (llvm::Type *Ty = getCoerceToType())
211       Ty->print(OS);
212     else
213       OS << "null";
214     break;
215   case Extend:
216     OS << "Extend";
217     break;
218   case Ignore:
219     OS << "Ignore";
220     break;
221   case InAlloca:
222     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
223     break;
224   case Indirect:
225     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
226        << " ByVal=" << getIndirectByVal()
227        << " Realign=" << getIndirectRealign();
228     break;
229   case Expand:
230     OS << "Expand";
231     break;
232   case CoerceAndExpand:
233     OS << "CoerceAndExpand Type=";
234     getCoerceAndExpandType()->print(OS);
235     break;
236   }
237   OS << ")\n";
238 }
239 
240 // Dynamically round a pointer up to a multiple of the given alignment.
emitRoundPointerUpToAlignment(CodeGenFunction & CGF,llvm::Value * Ptr,CharUnits Align)241 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
242                                                   llvm::Value *Ptr,
243                                                   CharUnits Align) {
244   llvm::Value *PtrAsInt = Ptr;
245   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
246   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
247   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
248         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
249   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
250            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
251   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
252                                         Ptr->getType(),
253                                         Ptr->getName() + ".aligned");
254   return PtrAsInt;
255 }
256 
257 /// Emit va_arg for a platform using the common void* representation,
258 /// where arguments are simply emitted in an array of slots on the stack.
259 ///
260 /// This version implements the core direct-value passing rules.
261 ///
262 /// \param SlotSize - The size and alignment of a stack slot.
263 ///   Each argument will be allocated to a multiple of this number of
264 ///   slots, and all the slots will be aligned to this value.
265 /// \param AllowHigherAlign - The slot alignment is not a cap;
266 ///   an argument type with an alignment greater than the slot size
267 ///   will be emitted on a higher-alignment address, potentially
268 ///   leaving one or more empty slots behind as padding.  If this
269 ///   is false, the returned address might be less-aligned than
270 ///   DirectAlign.
emitVoidPtrDirectVAArg(CodeGenFunction & CGF,Address VAListAddr,llvm::Type * DirectTy,CharUnits DirectSize,CharUnits DirectAlign,CharUnits SlotSize,bool AllowHigherAlign)271 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
272                                       Address VAListAddr,
273                                       llvm::Type *DirectTy,
274                                       CharUnits DirectSize,
275                                       CharUnits DirectAlign,
276                                       CharUnits SlotSize,
277                                       bool AllowHigherAlign) {
278   // Cast the element type to i8* if necessary.  Some platforms define
279   // va_list as a struct containing an i8* instead of just an i8*.
280   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
281     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
282 
283   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
284 
285   // If the CC aligns values higher than the slot size, do so if needed.
286   Address Addr = Address::invalid();
287   if (AllowHigherAlign && DirectAlign > SlotSize) {
288     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
289                                                  DirectAlign);
290   } else {
291     Addr = Address(Ptr, SlotSize);
292   }
293 
294   // Advance the pointer past the argument, then store that back.
295   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
296   llvm::Value *NextPtr =
297     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
298                                            "argp.next");
299   CGF.Builder.CreateStore(NextPtr, VAListAddr);
300 
301   // If the argument is smaller than a slot, and this is a big-endian
302   // target, the argument will be right-adjusted in its slot.
303   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
304       !DirectTy->isStructTy()) {
305     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
306   }
307 
308   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
309   return Addr;
310 }
311 
312 /// Emit va_arg for a platform using the common void* representation,
313 /// where arguments are simply emitted in an array of slots on the stack.
314 ///
315 /// \param IsIndirect - Values of this type are passed indirectly.
316 /// \param ValueInfo - The size and alignment of this type, generally
317 ///   computed with getContext().getTypeInfoInChars(ValueTy).
318 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
319 ///   Each argument will be allocated to a multiple of this number of
320 ///   slots, and all the slots will be aligned to this value.
321 /// \param AllowHigherAlign - The slot alignment is not a cap;
322 ///   an argument type with an alignment greater than the slot size
323 ///   will be emitted on a higher-alignment address, potentially
324 ///   leaving one or more empty slots behind as padding.
emitVoidPtrVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType ValueTy,bool IsIndirect,std::pair<CharUnits,CharUnits> ValueInfo,CharUnits SlotSizeAndAlign,bool AllowHigherAlign)325 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
326                                 QualType ValueTy, bool IsIndirect,
327                                 std::pair<CharUnits, CharUnits> ValueInfo,
328                                 CharUnits SlotSizeAndAlign,
329                                 bool AllowHigherAlign) {
330   // The size and alignment of the value that was passed directly.
331   CharUnits DirectSize, DirectAlign;
332   if (IsIndirect) {
333     DirectSize = CGF.getPointerSize();
334     DirectAlign = CGF.getPointerAlign();
335   } else {
336     DirectSize = ValueInfo.first;
337     DirectAlign = ValueInfo.second;
338   }
339 
340   // Cast the address we've calculated to the right type.
341   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
342   if (IsIndirect)
343     DirectTy = DirectTy->getPointerTo(0);
344 
345   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
346                                         DirectSize, DirectAlign,
347                                         SlotSizeAndAlign,
348                                         AllowHigherAlign);
349 
350   if (IsIndirect) {
351     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
352   }
353 
354   return Addr;
355 
356 }
357 
emitMergePHI(CodeGenFunction & CGF,Address Addr1,llvm::BasicBlock * Block1,Address Addr2,llvm::BasicBlock * Block2,const llvm::Twine & Name="")358 static Address emitMergePHI(CodeGenFunction &CGF,
359                             Address Addr1, llvm::BasicBlock *Block1,
360                             Address Addr2, llvm::BasicBlock *Block2,
361                             const llvm::Twine &Name = "") {
362   assert(Addr1.getType() == Addr2.getType());
363   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
364   PHI->addIncoming(Addr1.getPointer(), Block1);
365   PHI->addIncoming(Addr2.getPointer(), Block2);
366   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
367   return Address(PHI, Align);
368 }
369 
~TargetCodeGenInfo()370 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
371 
372 // If someone can figure out a general rule for this, that would be great.
373 // It's probably just doomed to be platform-dependent, though.
getSizeOfUnwindException() const374 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
375   // Verified for:
376   //   x86-64     FreeBSD, Linux, Darwin
377   //   x86-32     FreeBSD, Linux, Darwin
378   //   PowerPC    Linux, Darwin
379   //   ARM        Darwin (*not* EABI)
380   //   AArch64    Linux
381   return 32;
382 }
383 
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const384 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
385                                      const FunctionNoProtoType *fnType) const {
386   // The following conventions are known to require this to be false:
387   //   x86_stdcall
388   //   MIPS
389   // For everything else, we just prefer false unless we opt out.
390   return false;
391 }
392 
393 void
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const394 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
395                                              llvm::SmallString<24> &Opt) const {
396   // This assumes the user is passing a library name like "rt" instead of a
397   // filename like "librt.a/so", and that they don't care whether it's static or
398   // dynamic.
399   Opt = "-l";
400   Opt += Lib;
401 }
402 
getOpenCLKernelCallingConv() const403 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
404   return llvm::CallingConv::C;
405 }
406 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
407 
408 /// isEmptyField - Return true iff a the field is "empty", that is it
409 /// is an unnamed bit-field or an (array of) empty record(s).
isEmptyField(ASTContext & Context,const FieldDecl * FD,bool AllowArrays)410 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
411                          bool AllowArrays) {
412   if (FD->isUnnamedBitfield())
413     return true;
414 
415   QualType FT = FD->getType();
416 
417   // Constant arrays of empty records count as empty, strip them off.
418   // Constant arrays of zero length always count as empty.
419   if (AllowArrays)
420     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
421       if (AT->getSize() == 0)
422         return true;
423       FT = AT->getElementType();
424     }
425 
426   const RecordType *RT = FT->getAs<RecordType>();
427   if (!RT)
428     return false;
429 
430   // C++ record fields are never empty, at least in the Itanium ABI.
431   //
432   // FIXME: We should use a predicate for whether this behavior is true in the
433   // current ABI.
434   if (isa<CXXRecordDecl>(RT->getDecl()))
435     return false;
436 
437   return isEmptyRecord(Context, FT, AllowArrays);
438 }
439 
440 /// isEmptyRecord - Return true iff a structure contains only empty
441 /// fields. Note that a structure with a flexible array member is not
442 /// considered empty.
isEmptyRecord(ASTContext & Context,QualType T,bool AllowArrays)443 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
444   const RecordType *RT = T->getAs<RecordType>();
445   if (!RT)
446     return false;
447   const RecordDecl *RD = RT->getDecl();
448   if (RD->hasFlexibleArrayMember())
449     return false;
450 
451   // If this is a C++ record, check the bases first.
452   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
453     for (const auto &I : CXXRD->bases())
454       if (!isEmptyRecord(Context, I.getType(), true))
455         return false;
456 
457   for (const auto *I : RD->fields())
458     if (!isEmptyField(Context, I, AllowArrays))
459       return false;
460   return true;
461 }
462 
463 /// isSingleElementStruct - Determine if a structure is a "single
464 /// element struct", i.e. it has exactly one non-empty field or
465 /// exactly one field which is itself a single element
466 /// struct. Structures with flexible array members are never
467 /// considered single element structs.
468 ///
469 /// \return The field declaration for the single non-empty field, if
470 /// it exists.
isSingleElementStruct(QualType T,ASTContext & Context)471 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
472   const RecordType *RT = T->getAs<RecordType>();
473   if (!RT)
474     return nullptr;
475 
476   const RecordDecl *RD = RT->getDecl();
477   if (RD->hasFlexibleArrayMember())
478     return nullptr;
479 
480   const Type *Found = nullptr;
481 
482   // If this is a C++ record, check the bases first.
483   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
484     for (const auto &I : CXXRD->bases()) {
485       // Ignore empty records.
486       if (isEmptyRecord(Context, I.getType(), true))
487         continue;
488 
489       // If we already found an element then this isn't a single-element struct.
490       if (Found)
491         return nullptr;
492 
493       // If this is non-empty and not a single element struct, the composite
494       // cannot be a single element struct.
495       Found = isSingleElementStruct(I.getType(), Context);
496       if (!Found)
497         return nullptr;
498     }
499   }
500 
501   // Check for single element.
502   for (const auto *FD : RD->fields()) {
503     QualType FT = FD->getType();
504 
505     // Ignore empty fields.
506     if (isEmptyField(Context, FD, true))
507       continue;
508 
509     // If we already found an element then this isn't a single-element
510     // struct.
511     if (Found)
512       return nullptr;
513 
514     // Treat single element arrays as the element.
515     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
516       if (AT->getSize().getZExtValue() != 1)
517         break;
518       FT = AT->getElementType();
519     }
520 
521     if (!isAggregateTypeForABI(FT)) {
522       Found = FT.getTypePtr();
523     } else {
524       Found = isSingleElementStruct(FT, Context);
525       if (!Found)
526         return nullptr;
527     }
528   }
529 
530   // We don't consider a struct a single-element struct if it has
531   // padding beyond the element type.
532   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
533     return nullptr;
534 
535   return Found;
536 }
537 
538 namespace {
EmitVAArgInstr(CodeGenFunction & CGF,Address VAListAddr,QualType Ty,const ABIArgInfo & AI)539 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
540                        const ABIArgInfo &AI) {
541   // This default implementation defers to the llvm backend's va_arg
542   // instruction. It can handle only passing arguments directly
543   // (typically only handled in the backend for primitive types), or
544   // aggregates passed indirectly by pointer (NOTE: if the "byval"
545   // flag has ABI impact in the callee, this implementation cannot
546   // work.)
547 
548   // Only a few cases are covered here at the moment -- those needed
549   // by the default abi.
550   llvm::Value *Val;
551 
552   if (AI.isIndirect()) {
553     assert(!AI.getPaddingType() &&
554            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
555     assert(
556         !AI.getIndirectRealign() &&
557         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
558 
559     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
560     CharUnits TyAlignForABI = TyInfo.second;
561 
562     llvm::Type *BaseTy =
563         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
564     llvm::Value *Addr =
565         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
566     return Address(Addr, TyAlignForABI);
567   } else {
568     assert((AI.isDirect() || AI.isExtend()) &&
569            "Unexpected ArgInfo Kind in generic VAArg emitter!");
570 
571     assert(!AI.getInReg() &&
572            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
573     assert(!AI.getPaddingType() &&
574            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
575     assert(!AI.getDirectOffset() &&
576            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
577     assert(!AI.getCoerceToType() &&
578            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
579 
580     Address Temp = CGF.CreateMemTemp(Ty, "varet");
581     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
582     CGF.Builder.CreateStore(Val, Temp);
583     return Temp;
584   }
585 }
586 
587 /// DefaultABIInfo - The default implementation for ABI specific
588 /// details. This implementation provides information which results in
589 /// self-consistent and sensible LLVM IR generation, but does not
590 /// conform to any particular ABI.
591 class DefaultABIInfo : public ABIInfo {
592 public:
DefaultABIInfo(CodeGen::CodeGenTypes & CGT)593   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
594 
595   ABIArgInfo classifyReturnType(QualType RetTy) const;
596   ABIArgInfo classifyArgumentType(QualType RetTy) const;
597 
computeInfo(CGFunctionInfo & FI) const598   void computeInfo(CGFunctionInfo &FI) const override {
599     if (!getCXXABI().classifyReturnType(FI))
600       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
601     for (auto &I : FI.arguments())
602       I.info = classifyArgumentType(I.type);
603   }
604 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const605   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
606                     QualType Ty) const override {
607     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
608   }
609 };
610 
611 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
612 public:
DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)613   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
614     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
615 };
616 
classifyArgumentType(QualType Ty) const617 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
618   Ty = useFirstFieldIfTransparentUnion(Ty);
619 
620   if (isAggregateTypeForABI(Ty)) {
621     // Records with non-trivial destructors/copy-constructors should not be
622     // passed by value.
623     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
624       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
625 
626     return getNaturalAlignIndirect(Ty);
627   }
628 
629   // Treat an enum type as its underlying type.
630   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
631     Ty = EnumTy->getDecl()->getIntegerType();
632 
633   return (Ty->isPromotableIntegerType() ?
634           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
635 }
636 
classifyReturnType(QualType RetTy) const637 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
638   if (RetTy->isVoidType())
639     return ABIArgInfo::getIgnore();
640 
641   if (isAggregateTypeForABI(RetTy))
642     return getNaturalAlignIndirect(RetTy);
643 
644   // Treat an enum type as its underlying type.
645   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
646     RetTy = EnumTy->getDecl()->getIntegerType();
647 
648   return (RetTy->isPromotableIntegerType() ?
649           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
650 }
651 
652 //===----------------------------------------------------------------------===//
653 // WebAssembly ABI Implementation
654 //
655 // This is a very simple ABI that relies a lot on DefaultABIInfo.
656 //===----------------------------------------------------------------------===//
657 
658 class WebAssemblyABIInfo final : public DefaultABIInfo {
659 public:
WebAssemblyABIInfo(CodeGen::CodeGenTypes & CGT)660   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
661       : DefaultABIInfo(CGT) {}
662 
663 private:
664   ABIArgInfo classifyReturnType(QualType RetTy) const;
665   ABIArgInfo classifyArgumentType(QualType Ty) const;
666 
667   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
668   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
669   // overload them.
computeInfo(CGFunctionInfo & FI) const670   void computeInfo(CGFunctionInfo &FI) const override {
671     if (!getCXXABI().classifyReturnType(FI))
672       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
673     for (auto &Arg : FI.arguments())
674       Arg.info = classifyArgumentType(Arg.type);
675   }
676 
677   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
678                     QualType Ty) const override;
679 };
680 
681 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
682 public:
WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)683   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
684       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
685 };
686 
687 /// \brief Classify argument of given type \p Ty.
classifyArgumentType(QualType Ty) const688 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
689   Ty = useFirstFieldIfTransparentUnion(Ty);
690 
691   if (isAggregateTypeForABI(Ty)) {
692     // Records with non-trivial destructors/copy-constructors should not be
693     // passed by value.
694     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
695       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
696     // Ignore empty structs/unions.
697     if (isEmptyRecord(getContext(), Ty, true))
698       return ABIArgInfo::getIgnore();
699     // Lower single-element structs to just pass a regular value. TODO: We
700     // could do reasonable-size multiple-element structs too, using getExpand(),
701     // though watch out for things like bitfields.
702     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
703       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
704   }
705 
706   // Otherwise just do the default thing.
707   return DefaultABIInfo::classifyArgumentType(Ty);
708 }
709 
classifyReturnType(QualType RetTy) const710 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
711   if (isAggregateTypeForABI(RetTy)) {
712     // Records with non-trivial destructors/copy-constructors should not be
713     // returned by value.
714     if (!getRecordArgABI(RetTy, getCXXABI())) {
715       // Ignore empty structs/unions.
716       if (isEmptyRecord(getContext(), RetTy, true))
717         return ABIArgInfo::getIgnore();
718       // Lower single-element structs to just return a regular value. TODO: We
719       // could do reasonable-size multiple-element structs too, using
720       // ABIArgInfo::getDirect().
721       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
722         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
723     }
724   }
725 
726   // Otherwise just do the default thing.
727   return DefaultABIInfo::classifyReturnType(RetTy);
728 }
729 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const730 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
731                                       QualType Ty) const {
732   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
733                           getContext().getTypeInfoInChars(Ty),
734                           CharUnits::fromQuantity(4),
735                           /*AllowHigherAlign=*/ true);
736 }
737 
738 //===----------------------------------------------------------------------===//
739 // le32/PNaCl bitcode ABI Implementation
740 //
741 // This is a simplified version of the x86_32 ABI.  Arguments and return values
742 // are always passed on the stack.
743 //===----------------------------------------------------------------------===//
744 
745 class PNaClABIInfo : public ABIInfo {
746  public:
PNaClABIInfo(CodeGen::CodeGenTypes & CGT)747   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
748 
749   ABIArgInfo classifyReturnType(QualType RetTy) const;
750   ABIArgInfo classifyArgumentType(QualType RetTy) const;
751 
752   void computeInfo(CGFunctionInfo &FI) const override;
753   Address EmitVAArg(CodeGenFunction &CGF,
754                     Address VAListAddr, QualType Ty) const override;
755 };
756 
757 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
758  public:
PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)759   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
760     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
761 };
762 
computeInfo(CGFunctionInfo & FI) const763 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
764   if (!getCXXABI().classifyReturnType(FI))
765     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
766 
767   for (auto &I : FI.arguments())
768     I.info = classifyArgumentType(I.type);
769 }
770 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const771 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
772                                 QualType Ty) const {
773   // The PNaCL ABI is a bit odd, in that varargs don't use normal
774   // function classification. Structs get passed directly for varargs
775   // functions, through a rewriting transform in
776   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
777   // this target to actually support a va_arg instructions with an
778   // aggregate type, unlike other targets.
779   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
780 }
781 
782 /// \brief Classify argument of given type \p Ty.
classifyArgumentType(QualType Ty) const783 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
784   if (isAggregateTypeForABI(Ty)) {
785     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
786       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
787     return getNaturalAlignIndirect(Ty);
788   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
789     // Treat an enum type as its underlying type.
790     Ty = EnumTy->getDecl()->getIntegerType();
791   } else if (Ty->isFloatingType()) {
792     // Floating-point types don't go inreg.
793     return ABIArgInfo::getDirect();
794   }
795 
796   return (Ty->isPromotableIntegerType() ?
797           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
798 }
799 
classifyReturnType(QualType RetTy) const800 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
801   if (RetTy->isVoidType())
802     return ABIArgInfo::getIgnore();
803 
804   // In the PNaCl ABI we always return records/structures on the stack.
805   if (isAggregateTypeForABI(RetTy))
806     return getNaturalAlignIndirect(RetTy);
807 
808   // Treat an enum type as its underlying type.
809   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
810     RetTy = EnumTy->getDecl()->getIntegerType();
811 
812   return (RetTy->isPromotableIntegerType() ?
813           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
814 }
815 
816 /// IsX86_MMXType - Return true if this is an MMX type.
IsX86_MMXType(llvm::Type * IRType)817 bool IsX86_MMXType(llvm::Type *IRType) {
818   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
819   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
820     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
821     IRType->getScalarSizeInBits() != 64;
822 }
823 
X86AdjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty)824 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
825                                           StringRef Constraint,
826                                           llvm::Type* Ty) {
827   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
828     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
829       // Invalid MMX constraint
830       return nullptr;
831     }
832 
833     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
834   }
835 
836   // No operation needed
837   return Ty;
838 }
839 
840 /// Returns true if this type can be passed in SSE registers with the
841 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
isX86VectorTypeForVectorCall(ASTContext & Context,QualType Ty)842 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
843   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
844     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
845       return true;
846   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
847     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
848     // registers specially.
849     unsigned VecSize = Context.getTypeSize(VT);
850     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
851       return true;
852   }
853   return false;
854 }
855 
856 /// Returns true if this aggregate is small enough to be passed in SSE registers
857 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
isX86VectorCallAggregateSmallEnough(uint64_t NumMembers)858 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
859   return NumMembers <= 4;
860 }
861 
862 //===----------------------------------------------------------------------===//
863 // X86-32 ABI Implementation
864 //===----------------------------------------------------------------------===//
865 
866 /// \brief Similar to llvm::CCState, but for Clang.
867 struct CCState {
CCState__anoncb30615c0111::CCState868   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
869 
870   unsigned CC;
871   unsigned FreeRegs;
872   unsigned FreeSSERegs;
873 };
874 
875 /// X86_32ABIInfo - The X86-32 ABI information.
876 class X86_32ABIInfo : public SwiftABIInfo {
877   enum Class {
878     Integer,
879     Float
880   };
881 
882   static const unsigned MinABIStackAlignInBytes = 4;
883 
884   bool IsDarwinVectorABI;
885   bool IsRetSmallStructInRegABI;
886   bool IsWin32StructABI;
887   bool IsSoftFloatABI;
888   bool IsMCUABI;
889   unsigned DefaultNumRegisterParameters;
890 
isRegisterSize(unsigned Size)891   static bool isRegisterSize(unsigned Size) {
892     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
893   }
894 
isHomogeneousAggregateBaseType(QualType Ty) const895   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
896     // FIXME: Assumes vectorcall is in use.
897     return isX86VectorTypeForVectorCall(getContext(), Ty);
898   }
899 
isHomogeneousAggregateSmallEnough(const Type * Ty,uint64_t NumMembers) const900   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
901                                          uint64_t NumMembers) const override {
902     // FIXME: Assumes vectorcall is in use.
903     return isX86VectorCallAggregateSmallEnough(NumMembers);
904   }
905 
906   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
907 
908   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
909   /// such that the argument will be passed in memory.
910   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
911 
912   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
913 
914   /// \brief Return the alignment to use for the given type on the stack.
915   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
916 
917   Class classify(QualType Ty) const;
918   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
919   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
920   /// \brief Updates the number of available free registers, returns
921   /// true if any registers were allocated.
922   bool updateFreeRegs(QualType Ty, CCState &State) const;
923 
924   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
925                                 bool &NeedsPadding) const;
926   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
927 
928   bool canExpandIndirectArgument(QualType Ty) const;
929 
930   /// \brief Rewrite the function info so that all memory arguments use
931   /// inalloca.
932   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
933 
934   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
935                            CharUnits &StackOffset, ABIArgInfo &Info,
936                            QualType Type) const;
937 
938 public:
939 
940   void computeInfo(CGFunctionInfo &FI) const override;
941   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
942                     QualType Ty) const override;
943 
X86_32ABIInfo(CodeGen::CodeGenTypes & CGT,bool DarwinVectorABI,bool RetSmallStructInRegABI,bool Win32StructABI,unsigned NumRegisterParameters,bool SoftFloatABI)944   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
945                 bool RetSmallStructInRegABI, bool Win32StructABI,
946                 unsigned NumRegisterParameters, bool SoftFloatABI)
947     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
948       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
949       IsWin32StructABI(Win32StructABI),
950       IsSoftFloatABI(SoftFloatABI),
951       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
952       DefaultNumRegisterParameters(NumRegisterParameters) {}
953 
shouldPassIndirectlyForSwift(CharUnits totalSize,ArrayRef<llvm::Type * > scalars,bool asReturnValue) const954   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
955                                     ArrayRef<llvm::Type*> scalars,
956                                     bool asReturnValue) const override {
957     // LLVM's x86-32 lowering currently only assigns up to three
958     // integer registers and three fp registers.  Oddly, it'll use up to
959     // four vector registers for vectors, but those can overlap with the
960     // scalar registers.
961     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
962   }
963 };
964 
965 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
966 public:
X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool DarwinVectorABI,bool RetSmallStructInRegABI,bool Win32StructABI,unsigned NumRegisterParameters,bool SoftFloatABI)967   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
968                           bool RetSmallStructInRegABI, bool Win32StructABI,
969                           unsigned NumRegisterParameters, bool SoftFloatABI)
970       : TargetCodeGenInfo(new X86_32ABIInfo(
971             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
972             NumRegisterParameters, SoftFloatABI)) {}
973 
974   static bool isStructReturnInRegABI(
975       const llvm::Triple &Triple, const CodeGenOptions &Opts);
976 
977   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
978                            CodeGen::CodeGenModule &CGM) const override;
979 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const980   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
981     // Darwin uses different dwarf register numbers for EH.
982     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
983     return 4;
984   }
985 
986   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
987                                llvm::Value *Address) const override;
988 
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const989   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
990                                   StringRef Constraint,
991                                   llvm::Type* Ty) const override {
992     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
993   }
994 
995   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
996                                 std::string &Constraints,
997                                 std::vector<llvm::Type *> &ResultRegTypes,
998                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
999                                 std::vector<LValue> &ResultRegDests,
1000                                 std::string &AsmString,
1001                                 unsigned NumOutputs) const override;
1002 
1003   llvm::Constant *
getUBSanFunctionSignature(CodeGen::CodeGenModule & CGM) const1004   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1005     unsigned Sig = (0xeb << 0) |  // jmp rel8
1006                    (0x06 << 8) |  //           .+0x08
1007                    ('F' << 16) |
1008                    ('T' << 24);
1009     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1010   }
1011 
getARCRetainAutoreleasedReturnValueMarker() const1012   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1013     return "movl\t%ebp, %ebp"
1014            "\t\t## marker for objc_retainAutoreleaseReturnValue";
1015   }
1016 };
1017 
1018 }
1019 
1020 /// Rewrite input constraint references after adding some output constraints.
1021 /// In the case where there is one output and one input and we add one output,
1022 /// we need to replace all operand references greater than or equal to 1:
1023 ///     mov $0, $1
1024 ///     mov eax, $1
1025 /// The result will be:
1026 ///     mov $0, $2
1027 ///     mov eax, $2
rewriteInputConstraintReferences(unsigned FirstIn,unsigned NumNewOuts,std::string & AsmString)1028 static void rewriteInputConstraintReferences(unsigned FirstIn,
1029                                              unsigned NumNewOuts,
1030                                              std::string &AsmString) {
1031   std::string Buf;
1032   llvm::raw_string_ostream OS(Buf);
1033   size_t Pos = 0;
1034   while (Pos < AsmString.size()) {
1035     size_t DollarStart = AsmString.find('$', Pos);
1036     if (DollarStart == std::string::npos)
1037       DollarStart = AsmString.size();
1038     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1039     if (DollarEnd == std::string::npos)
1040       DollarEnd = AsmString.size();
1041     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1042     Pos = DollarEnd;
1043     size_t NumDollars = DollarEnd - DollarStart;
1044     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1045       // We have an operand reference.
1046       size_t DigitStart = Pos;
1047       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1048       if (DigitEnd == std::string::npos)
1049         DigitEnd = AsmString.size();
1050       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1051       unsigned OperandIndex;
1052       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1053         if (OperandIndex >= FirstIn)
1054           OperandIndex += NumNewOuts;
1055         OS << OperandIndex;
1056       } else {
1057         OS << OperandStr;
1058       }
1059       Pos = DigitEnd;
1060     }
1061   }
1062   AsmString = std::move(OS.str());
1063 }
1064 
1065 /// Add output constraints for EAX:EDX because they are return registers.
addReturnRegisterOutputs(CodeGenFunction & CGF,LValue ReturnSlot,std::string & Constraints,std::vector<llvm::Type * > & ResultRegTypes,std::vector<llvm::Type * > & ResultTruncRegTypes,std::vector<LValue> & ResultRegDests,std::string & AsmString,unsigned NumOutputs) const1066 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1067     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1068     std::vector<llvm::Type *> &ResultRegTypes,
1069     std::vector<llvm::Type *> &ResultTruncRegTypes,
1070     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1071     unsigned NumOutputs) const {
1072   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1073 
1074   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1075   // larger.
1076   if (!Constraints.empty())
1077     Constraints += ',';
1078   if (RetWidth <= 32) {
1079     Constraints += "={eax}";
1080     ResultRegTypes.push_back(CGF.Int32Ty);
1081   } else {
1082     // Use the 'A' constraint for EAX:EDX.
1083     Constraints += "=A";
1084     ResultRegTypes.push_back(CGF.Int64Ty);
1085   }
1086 
1087   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1088   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1089   ResultTruncRegTypes.push_back(CoerceTy);
1090 
1091   // Coerce the integer by bitcasting the return slot pointer.
1092   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1093                                                   CoerceTy->getPointerTo()));
1094   ResultRegDests.push_back(ReturnSlot);
1095 
1096   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1097 }
1098 
1099 /// shouldReturnTypeInRegister - Determine if the given type should be
1100 /// returned in a register (for the Darwin and MCU ABI).
shouldReturnTypeInRegister(QualType Ty,ASTContext & Context) const1101 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1102                                                ASTContext &Context) const {
1103   uint64_t Size = Context.getTypeSize(Ty);
1104 
1105   // For i386, type must be register sized.
1106   // For the MCU ABI, it only needs to be <= 8-byte
1107   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1108    return false;
1109 
1110   if (Ty->isVectorType()) {
1111     // 64- and 128- bit vectors inside structures are not returned in
1112     // registers.
1113     if (Size == 64 || Size == 128)
1114       return false;
1115 
1116     return true;
1117   }
1118 
1119   // If this is a builtin, pointer, enum, complex type, member pointer, or
1120   // member function pointer it is ok.
1121   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1122       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1123       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1124     return true;
1125 
1126   // Arrays are treated like records.
1127   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1128     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1129 
1130   // Otherwise, it must be a record type.
1131   const RecordType *RT = Ty->getAs<RecordType>();
1132   if (!RT) return false;
1133 
1134   // FIXME: Traverse bases here too.
1135 
1136   // Structure types are passed in register if all fields would be
1137   // passed in a register.
1138   for (const auto *FD : RT->getDecl()->fields()) {
1139     // Empty fields are ignored.
1140     if (isEmptyField(Context, FD, true))
1141       continue;
1142 
1143     // Check fields recursively.
1144     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1145       return false;
1146   }
1147   return true;
1148 }
1149 
is32Or64BitBasicType(QualType Ty,ASTContext & Context)1150 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1151   // Treat complex types as the element type.
1152   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1153     Ty = CTy->getElementType();
1154 
1155   // Check for a type which we know has a simple scalar argument-passing
1156   // convention without any padding.  (We're specifically looking for 32
1157   // and 64-bit integer and integer-equivalents, float, and double.)
1158   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1159       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1160     return false;
1161 
1162   uint64_t Size = Context.getTypeSize(Ty);
1163   return Size == 32 || Size == 64;
1164 }
1165 
1166 /// Test whether an argument type which is to be passed indirectly (on the
1167 /// stack) would have the equivalent layout if it was expanded into separate
1168 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1169 /// optimizations.
canExpandIndirectArgument(QualType Ty) const1170 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1171   // We can only expand structure types.
1172   const RecordType *RT = Ty->getAs<RecordType>();
1173   if (!RT)
1174     return false;
1175   const RecordDecl *RD = RT->getDecl();
1176   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1177     if (!IsWin32StructABI ) {
1178       // On non-Windows, we have to conservatively match our old bitcode
1179       // prototypes in order to be ABI-compatible at the bitcode level.
1180       if (!CXXRD->isCLike())
1181         return false;
1182     } else {
1183       // Don't do this for dynamic classes.
1184       if (CXXRD->isDynamicClass())
1185         return false;
1186       // Don't do this if there are any non-empty bases.
1187       for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
1188         if (!isEmptyRecord(getContext(), Base.getType(), /*AllowArrays=*/true))
1189           return false;
1190       }
1191     }
1192   }
1193 
1194   uint64_t Size = 0;
1195 
1196   for (const auto *FD : RD->fields()) {
1197     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1198     // argument is smaller than 32-bits, expanding the struct will create
1199     // alignment padding.
1200     if (!is32Or64BitBasicType(FD->getType(), getContext()))
1201       return false;
1202 
1203     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1204     // how to expand them yet, and the predicate for telling if a bitfield still
1205     // counts as "basic" is more complicated than what we were doing previously.
1206     if (FD->isBitField())
1207       return false;
1208 
1209     Size += getContext().getTypeSize(FD->getType());
1210   }
1211 
1212   // We can do this if there was no alignment padding.
1213   return Size == getContext().getTypeSize(Ty);
1214 }
1215 
getIndirectReturnResult(QualType RetTy,CCState & State) const1216 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1217   // If the return value is indirect, then the hidden argument is consuming one
1218   // integer register.
1219   if (State.FreeRegs) {
1220     --State.FreeRegs;
1221     if (!IsMCUABI)
1222       return getNaturalAlignIndirectInReg(RetTy);
1223   }
1224   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1225 }
1226 
classifyReturnType(QualType RetTy,CCState & State) const1227 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1228                                              CCState &State) const {
1229   if (RetTy->isVoidType())
1230     return ABIArgInfo::getIgnore();
1231 
1232   const Type *Base = nullptr;
1233   uint64_t NumElts = 0;
1234   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1235       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1236     // The LLVM struct type for such an aggregate should lower properly.
1237     return ABIArgInfo::getDirect();
1238   }
1239 
1240   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1241     // On Darwin, some vectors are returned in registers.
1242     if (IsDarwinVectorABI) {
1243       uint64_t Size = getContext().getTypeSize(RetTy);
1244 
1245       // 128-bit vectors are a special case; they are returned in
1246       // registers and we need to make sure to pick a type the LLVM
1247       // backend will like.
1248       if (Size == 128)
1249         return ABIArgInfo::getDirect(llvm::VectorType::get(
1250                   llvm::Type::getInt64Ty(getVMContext()), 2));
1251 
1252       // Always return in register if it fits in a general purpose
1253       // register, or if it is 64 bits and has a single element.
1254       if ((Size == 8 || Size == 16 || Size == 32) ||
1255           (Size == 64 && VT->getNumElements() == 1))
1256         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1257                                                             Size));
1258 
1259       return getIndirectReturnResult(RetTy, State);
1260     }
1261 
1262     return ABIArgInfo::getDirect();
1263   }
1264 
1265   if (isAggregateTypeForABI(RetTy)) {
1266     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1267       // Structures with flexible arrays are always indirect.
1268       if (RT->getDecl()->hasFlexibleArrayMember())
1269         return getIndirectReturnResult(RetTy, State);
1270     }
1271 
1272     // If specified, structs and unions are always indirect.
1273     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1274       return getIndirectReturnResult(RetTy, State);
1275 
1276     // Ignore empty structs/unions.
1277     if (isEmptyRecord(getContext(), RetTy, true))
1278       return ABIArgInfo::getIgnore();
1279 
1280     // Small structures which are register sized are generally returned
1281     // in a register.
1282     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1283       uint64_t Size = getContext().getTypeSize(RetTy);
1284 
1285       // As a special-case, if the struct is a "single-element" struct, and
1286       // the field is of type "float" or "double", return it in a
1287       // floating-point register. (MSVC does not apply this special case.)
1288       // We apply a similar transformation for pointer types to improve the
1289       // quality of the generated IR.
1290       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1291         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1292             || SeltTy->hasPointerRepresentation())
1293           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1294 
1295       // FIXME: We should be able to narrow this integer in cases with dead
1296       // padding.
1297       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1298     }
1299 
1300     return getIndirectReturnResult(RetTy, State);
1301   }
1302 
1303   // Treat an enum type as its underlying type.
1304   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1305     RetTy = EnumTy->getDecl()->getIntegerType();
1306 
1307   return (RetTy->isPromotableIntegerType() ?
1308           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1309 }
1310 
isSSEVectorType(ASTContext & Context,QualType Ty)1311 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1312   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1313 }
1314 
isRecordWithSSEVectorType(ASTContext & Context,QualType Ty)1315 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1316   const RecordType *RT = Ty->getAs<RecordType>();
1317   if (!RT)
1318     return 0;
1319   const RecordDecl *RD = RT->getDecl();
1320 
1321   // If this is a C++ record, check the bases first.
1322   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1323     for (const auto &I : CXXRD->bases())
1324       if (!isRecordWithSSEVectorType(Context, I.getType()))
1325         return false;
1326 
1327   for (const auto *i : RD->fields()) {
1328     QualType FT = i->getType();
1329 
1330     if (isSSEVectorType(Context, FT))
1331       return true;
1332 
1333     if (isRecordWithSSEVectorType(Context, FT))
1334       return true;
1335   }
1336 
1337   return false;
1338 }
1339 
getTypeStackAlignInBytes(QualType Ty,unsigned Align) const1340 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1341                                                  unsigned Align) const {
1342   // Otherwise, if the alignment is less than or equal to the minimum ABI
1343   // alignment, just use the default; the backend will handle this.
1344   if (Align <= MinABIStackAlignInBytes)
1345     return 0; // Use default alignment.
1346 
1347   // On non-Darwin, the stack type alignment is always 4.
1348   if (!IsDarwinVectorABI) {
1349     // Set explicit alignment, since we may need to realign the top.
1350     return MinABIStackAlignInBytes;
1351   }
1352 
1353   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1354   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1355                       isRecordWithSSEVectorType(getContext(), Ty)))
1356     return 16;
1357 
1358   return MinABIStackAlignInBytes;
1359 }
1360 
getIndirectResult(QualType Ty,bool ByVal,CCState & State) const1361 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1362                                             CCState &State) const {
1363   if (!ByVal) {
1364     if (State.FreeRegs) {
1365       --State.FreeRegs; // Non-byval indirects just use one pointer.
1366       if (!IsMCUABI)
1367         return getNaturalAlignIndirectInReg(Ty);
1368     }
1369     return getNaturalAlignIndirect(Ty, false);
1370   }
1371 
1372   // Compute the byval alignment.
1373   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1374   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1375   if (StackAlign == 0)
1376     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1377 
1378   // If the stack alignment is less than the type alignment, realign the
1379   // argument.
1380   bool Realign = TypeAlign > StackAlign;
1381   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1382                                  /*ByVal=*/true, Realign);
1383 }
1384 
classify(QualType Ty) const1385 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1386   const Type *T = isSingleElementStruct(Ty, getContext());
1387   if (!T)
1388     T = Ty.getTypePtr();
1389 
1390   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1391     BuiltinType::Kind K = BT->getKind();
1392     if (K == BuiltinType::Float || K == BuiltinType::Double)
1393       return Float;
1394   }
1395   return Integer;
1396 }
1397 
updateFreeRegs(QualType Ty,CCState & State) const1398 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1399   if (!IsSoftFloatABI) {
1400     Class C = classify(Ty);
1401     if (C == Float)
1402       return false;
1403   }
1404 
1405   unsigned Size = getContext().getTypeSize(Ty);
1406   unsigned SizeInRegs = (Size + 31) / 32;
1407 
1408   if (SizeInRegs == 0)
1409     return false;
1410 
1411   if (!IsMCUABI) {
1412     if (SizeInRegs > State.FreeRegs) {
1413       State.FreeRegs = 0;
1414       return false;
1415     }
1416   } else {
1417     // The MCU psABI allows passing parameters in-reg even if there are
1418     // earlier parameters that are passed on the stack. Also,
1419     // it does not allow passing >8-byte structs in-register,
1420     // even if there are 3 free registers available.
1421     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1422       return false;
1423   }
1424 
1425   State.FreeRegs -= SizeInRegs;
1426   return true;
1427 }
1428 
shouldAggregateUseDirect(QualType Ty,CCState & State,bool & InReg,bool & NeedsPadding) const1429 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1430                                              bool &InReg,
1431                                              bool &NeedsPadding) const {
1432   // On Windows, aggregates other than HFAs are never passed in registers, and
1433   // they do not consume register slots. Homogenous floating-point aggregates
1434   // (HFAs) have already been dealt with at this point.
1435   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1436     return false;
1437 
1438   NeedsPadding = false;
1439   InReg = !IsMCUABI;
1440 
1441   if (!updateFreeRegs(Ty, State))
1442     return false;
1443 
1444   if (IsMCUABI)
1445     return true;
1446 
1447   if (State.CC == llvm::CallingConv::X86_FastCall ||
1448       State.CC == llvm::CallingConv::X86_VectorCall) {
1449     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1450       NeedsPadding = true;
1451 
1452     return false;
1453   }
1454 
1455   return true;
1456 }
1457 
shouldPrimitiveUseInReg(QualType Ty,CCState & State) const1458 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1459   if (!updateFreeRegs(Ty, State))
1460     return false;
1461 
1462   if (IsMCUABI)
1463     return false;
1464 
1465   if (State.CC == llvm::CallingConv::X86_FastCall ||
1466       State.CC == llvm::CallingConv::X86_VectorCall) {
1467     if (getContext().getTypeSize(Ty) > 32)
1468       return false;
1469 
1470     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1471         Ty->isReferenceType());
1472   }
1473 
1474   return true;
1475 }
1476 
classifyArgumentType(QualType Ty,CCState & State) const1477 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1478                                                CCState &State) const {
1479   // FIXME: Set alignment on indirect arguments.
1480 
1481   Ty = useFirstFieldIfTransparentUnion(Ty);
1482 
1483   // Check with the C++ ABI first.
1484   const RecordType *RT = Ty->getAs<RecordType>();
1485   if (RT) {
1486     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1487     if (RAA == CGCXXABI::RAA_Indirect) {
1488       return getIndirectResult(Ty, false, State);
1489     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1490       // The field index doesn't matter, we'll fix it up later.
1491       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1492     }
1493   }
1494 
1495   // vectorcall adds the concept of a homogenous vector aggregate, similar
1496   // to other targets.
1497   const Type *Base = nullptr;
1498   uint64_t NumElts = 0;
1499   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1500       isHomogeneousAggregate(Ty, Base, NumElts)) {
1501     if (State.FreeSSERegs >= NumElts) {
1502       State.FreeSSERegs -= NumElts;
1503       if (Ty->isBuiltinType() || Ty->isVectorType())
1504         return ABIArgInfo::getDirect();
1505       return ABIArgInfo::getExpand();
1506     }
1507     return getIndirectResult(Ty, /*ByVal=*/false, State);
1508   }
1509 
1510   if (isAggregateTypeForABI(Ty)) {
1511     // Structures with flexible arrays are always indirect.
1512     // FIXME: This should not be byval!
1513     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1514       return getIndirectResult(Ty, true, State);
1515 
1516     // Ignore empty structs/unions on non-Windows.
1517     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1518       return ABIArgInfo::getIgnore();
1519 
1520     llvm::LLVMContext &LLVMContext = getVMContext();
1521     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1522     bool NeedsPadding = false;
1523     bool InReg;
1524     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1525       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1526       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1527       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1528       if (InReg)
1529         return ABIArgInfo::getDirectInReg(Result);
1530       else
1531         return ABIArgInfo::getDirect(Result);
1532     }
1533     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1534 
1535     // Expand small (<= 128-bit) record types when we know that the stack layout
1536     // of those arguments will match the struct. This is important because the
1537     // LLVM backend isn't smart enough to remove byval, which inhibits many
1538     // optimizations.
1539     // Don't do this for the MCU if there are still free integer registers
1540     // (see X86_64 ABI for full explanation).
1541     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1542         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1543       return ABIArgInfo::getExpandWithPadding(
1544           State.CC == llvm::CallingConv::X86_FastCall ||
1545               State.CC == llvm::CallingConv::X86_VectorCall,
1546           PaddingType);
1547 
1548     return getIndirectResult(Ty, true, State);
1549   }
1550 
1551   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1552     // On Darwin, some vectors are passed in memory, we handle this by passing
1553     // it as an i8/i16/i32/i64.
1554     if (IsDarwinVectorABI) {
1555       uint64_t Size = getContext().getTypeSize(Ty);
1556       if ((Size == 8 || Size == 16 || Size == 32) ||
1557           (Size == 64 && VT->getNumElements() == 1))
1558         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1559                                                             Size));
1560     }
1561 
1562     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1563       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1564 
1565     return ABIArgInfo::getDirect();
1566   }
1567 
1568 
1569   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1570     Ty = EnumTy->getDecl()->getIntegerType();
1571 
1572   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1573 
1574   if (Ty->isPromotableIntegerType()) {
1575     if (InReg)
1576       return ABIArgInfo::getExtendInReg();
1577     return ABIArgInfo::getExtend();
1578   }
1579 
1580   if (InReg)
1581     return ABIArgInfo::getDirectInReg();
1582   return ABIArgInfo::getDirect();
1583 }
1584 
computeInfo(CGFunctionInfo & FI) const1585 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1586   CCState State(FI.getCallingConvention());
1587   if (IsMCUABI)
1588     State.FreeRegs = 3;
1589   else if (State.CC == llvm::CallingConv::X86_FastCall)
1590     State.FreeRegs = 2;
1591   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1592     State.FreeRegs = 2;
1593     State.FreeSSERegs = 6;
1594   } else if (FI.getHasRegParm())
1595     State.FreeRegs = FI.getRegParm();
1596   else
1597     State.FreeRegs = DefaultNumRegisterParameters;
1598 
1599   if (!getCXXABI().classifyReturnType(FI)) {
1600     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1601   } else if (FI.getReturnInfo().isIndirect()) {
1602     // The C++ ABI is not aware of register usage, so we have to check if the
1603     // return value was sret and put it in a register ourselves if appropriate.
1604     if (State.FreeRegs) {
1605       --State.FreeRegs;  // The sret parameter consumes a register.
1606       if (!IsMCUABI)
1607         FI.getReturnInfo().setInReg(true);
1608     }
1609   }
1610 
1611   // The chain argument effectively gives us another free register.
1612   if (FI.isChainCall())
1613     ++State.FreeRegs;
1614 
1615   bool UsedInAlloca = false;
1616   for (auto &I : FI.arguments()) {
1617     I.info = classifyArgumentType(I.type, State);
1618     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1619   }
1620 
1621   // If we needed to use inalloca for any argument, do a second pass and rewrite
1622   // all the memory arguments to use inalloca.
1623   if (UsedInAlloca)
1624     rewriteWithInAlloca(FI);
1625 }
1626 
1627 void
addFieldToArgStruct(SmallVector<llvm::Type *,6> & FrameFields,CharUnits & StackOffset,ABIArgInfo & Info,QualType Type) const1628 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1629                                    CharUnits &StackOffset, ABIArgInfo &Info,
1630                                    QualType Type) const {
1631   // Arguments are always 4-byte-aligned.
1632   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1633 
1634   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1635   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1636   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1637   StackOffset += getContext().getTypeSizeInChars(Type);
1638 
1639   // Insert padding bytes to respect alignment.
1640   CharUnits FieldEnd = StackOffset;
1641   StackOffset = FieldEnd.alignTo(FieldAlign);
1642   if (StackOffset != FieldEnd) {
1643     CharUnits NumBytes = StackOffset - FieldEnd;
1644     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1645     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1646     FrameFields.push_back(Ty);
1647   }
1648 }
1649 
isArgInAlloca(const ABIArgInfo & Info)1650 static bool isArgInAlloca(const ABIArgInfo &Info) {
1651   // Leave ignored and inreg arguments alone.
1652   switch (Info.getKind()) {
1653   case ABIArgInfo::InAlloca:
1654     return true;
1655   case ABIArgInfo::Indirect:
1656     assert(Info.getIndirectByVal());
1657     return true;
1658   case ABIArgInfo::Ignore:
1659     return false;
1660   case ABIArgInfo::Direct:
1661   case ABIArgInfo::Extend:
1662     if (Info.getInReg())
1663       return false;
1664     return true;
1665   case ABIArgInfo::Expand:
1666   case ABIArgInfo::CoerceAndExpand:
1667     // These are aggregate types which are never passed in registers when
1668     // inalloca is involved.
1669     return true;
1670   }
1671   llvm_unreachable("invalid enum");
1672 }
1673 
rewriteWithInAlloca(CGFunctionInfo & FI) const1674 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1675   assert(IsWin32StructABI && "inalloca only supported on win32");
1676 
1677   // Build a packed struct type for all of the arguments in memory.
1678   SmallVector<llvm::Type *, 6> FrameFields;
1679 
1680   // The stack alignment is always 4.
1681   CharUnits StackAlign = CharUnits::fromQuantity(4);
1682 
1683   CharUnits StackOffset;
1684   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1685 
1686   // Put 'this' into the struct before 'sret', if necessary.
1687   bool IsThisCall =
1688       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1689   ABIArgInfo &Ret = FI.getReturnInfo();
1690   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1691       isArgInAlloca(I->info)) {
1692     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1693     ++I;
1694   }
1695 
1696   // Put the sret parameter into the inalloca struct if it's in memory.
1697   if (Ret.isIndirect() && !Ret.getInReg()) {
1698     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1699     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1700     // On Windows, the hidden sret parameter is always returned in eax.
1701     Ret.setInAllocaSRet(IsWin32StructABI);
1702   }
1703 
1704   // Skip the 'this' parameter in ecx.
1705   if (IsThisCall)
1706     ++I;
1707 
1708   // Put arguments passed in memory into the struct.
1709   for (; I != E; ++I) {
1710     if (isArgInAlloca(I->info))
1711       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1712   }
1713 
1714   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1715                                         /*isPacked=*/true),
1716                   StackAlign);
1717 }
1718 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const1719 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1720                                  Address VAListAddr, QualType Ty) const {
1721 
1722   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1723 
1724   // x86-32 changes the alignment of certain arguments on the stack.
1725   //
1726   // Just messing with TypeInfo like this works because we never pass
1727   // anything indirectly.
1728   TypeInfo.second = CharUnits::fromQuantity(
1729                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1730 
1731   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1732                           TypeInfo, CharUnits::fromQuantity(4),
1733                           /*AllowHigherAlign*/ true);
1734 }
1735 
isStructReturnInRegABI(const llvm::Triple & Triple,const CodeGenOptions & Opts)1736 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1737     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1738   assert(Triple.getArch() == llvm::Triple::x86);
1739 
1740   switch (Opts.getStructReturnConvention()) {
1741   case CodeGenOptions::SRCK_Default:
1742     break;
1743   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1744     return false;
1745   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1746     return true;
1747   }
1748 
1749   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1750     return true;
1751 
1752   switch (Triple.getOS()) {
1753   case llvm::Triple::DragonFly:
1754   case llvm::Triple::FreeBSD:
1755   case llvm::Triple::OpenBSD:
1756   case llvm::Triple::Bitrig:
1757   case llvm::Triple::Win32:
1758     return true;
1759   default:
1760     return false;
1761   }
1762 }
1763 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const1764 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1765                                                   llvm::GlobalValue *GV,
1766                                             CodeGen::CodeGenModule &CGM) const {
1767   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1768     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1769       // Get the LLVM function.
1770       llvm::Function *Fn = cast<llvm::Function>(GV);
1771 
1772       // Now add the 'alignstack' attribute with a value of 16.
1773       llvm::AttrBuilder B;
1774       B.addStackAlignmentAttr(16);
1775       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1776                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1777                                               llvm::AttributeSet::FunctionIndex,
1778                                               B));
1779     }
1780     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1781       llvm::Function *Fn = cast<llvm::Function>(GV);
1782       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1783     }
1784   }
1785 }
1786 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1787 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1788                                                CodeGen::CodeGenFunction &CGF,
1789                                                llvm::Value *Address) const {
1790   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1791 
1792   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1793 
1794   // 0-7 are the eight integer registers;  the order is different
1795   //   on Darwin (for EH), but the range is the same.
1796   // 8 is %eip.
1797   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1798 
1799   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1800     // 12-16 are st(0..4).  Not sure why we stop at 4.
1801     // These have size 16, which is sizeof(long double) on
1802     // platforms with 8-byte alignment for that type.
1803     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1804     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1805 
1806   } else {
1807     // 9 is %eflags, which doesn't get a size on Darwin for some
1808     // reason.
1809     Builder.CreateAlignedStore(
1810         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1811                                CharUnits::One());
1812 
1813     // 11-16 are st(0..5).  Not sure why we stop at 5.
1814     // These have size 12, which is sizeof(long double) on
1815     // platforms with 4-byte alignment for that type.
1816     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1817     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1818   }
1819 
1820   return false;
1821 }
1822 
1823 //===----------------------------------------------------------------------===//
1824 // X86-64 ABI Implementation
1825 //===----------------------------------------------------------------------===//
1826 
1827 
1828 namespace {
1829 /// The AVX ABI level for X86 targets.
1830 enum class X86AVXABILevel {
1831   None,
1832   AVX,
1833   AVX512
1834 };
1835 
1836 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel)1837 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1838   switch (AVXLevel) {
1839   case X86AVXABILevel::AVX512:
1840     return 512;
1841   case X86AVXABILevel::AVX:
1842     return 256;
1843   case X86AVXABILevel::None:
1844     return 128;
1845   }
1846   llvm_unreachable("Unknown AVXLevel");
1847 }
1848 
1849 /// X86_64ABIInfo - The X86_64 ABI information.
1850 class X86_64ABIInfo : public SwiftABIInfo {
1851   enum Class {
1852     Integer = 0,
1853     SSE,
1854     SSEUp,
1855     X87,
1856     X87Up,
1857     ComplexX87,
1858     NoClass,
1859     Memory
1860   };
1861 
1862   /// merge - Implement the X86_64 ABI merging algorithm.
1863   ///
1864   /// Merge an accumulating classification \arg Accum with a field
1865   /// classification \arg Field.
1866   ///
1867   /// \param Accum - The accumulating classification. This should
1868   /// always be either NoClass or the result of a previous merge
1869   /// call. In addition, this should never be Memory (the caller
1870   /// should just return Memory for the aggregate).
1871   static Class merge(Class Accum, Class Field);
1872 
1873   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1874   ///
1875   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1876   /// final MEMORY or SSE classes when necessary.
1877   ///
1878   /// \param AggregateSize - The size of the current aggregate in
1879   /// the classification process.
1880   ///
1881   /// \param Lo - The classification for the parts of the type
1882   /// residing in the low word of the containing object.
1883   ///
1884   /// \param Hi - The classification for the parts of the type
1885   /// residing in the higher words of the containing object.
1886   ///
1887   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1888 
1889   /// classify - Determine the x86_64 register classes in which the
1890   /// given type T should be passed.
1891   ///
1892   /// \param Lo - The classification for the parts of the type
1893   /// residing in the low word of the containing object.
1894   ///
1895   /// \param Hi - The classification for the parts of the type
1896   /// residing in the high word of the containing object.
1897   ///
1898   /// \param OffsetBase - The bit offset of this type in the
1899   /// containing object.  Some parameters are classified different
1900   /// depending on whether they straddle an eightbyte boundary.
1901   ///
1902   /// \param isNamedArg - Whether the argument in question is a "named"
1903   /// argument, as used in AMD64-ABI 3.5.7.
1904   ///
1905   /// If a word is unused its result will be NoClass; if a type should
1906   /// be passed in Memory then at least the classification of \arg Lo
1907   /// will be Memory.
1908   ///
1909   /// The \arg Lo class will be NoClass iff the argument is ignored.
1910   ///
1911   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1912   /// also be ComplexX87.
1913   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1914                 bool isNamedArg) const;
1915 
1916   llvm::Type *GetByteVectorType(QualType Ty) const;
1917   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1918                                  unsigned IROffset, QualType SourceTy,
1919                                  unsigned SourceOffset) const;
1920   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1921                                      unsigned IROffset, QualType SourceTy,
1922                                      unsigned SourceOffset) const;
1923 
1924   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1925   /// such that the argument will be returned in memory.
1926   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1927 
1928   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1929   /// such that the argument will be passed in memory.
1930   ///
1931   /// \param freeIntRegs - The number of free integer registers remaining
1932   /// available.
1933   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1934 
1935   ABIArgInfo classifyReturnType(QualType RetTy) const;
1936 
1937   ABIArgInfo classifyArgumentType(QualType Ty,
1938                                   unsigned freeIntRegs,
1939                                   unsigned &neededInt,
1940                                   unsigned &neededSSE,
1941                                   bool isNamedArg) const;
1942 
1943   bool IsIllegalVectorType(QualType Ty) const;
1944 
1945   /// The 0.98 ABI revision clarified a lot of ambiguities,
1946   /// unfortunately in ways that were not always consistent with
1947   /// certain previous compilers.  In particular, platforms which
1948   /// required strict binary compatibility with older versions of GCC
1949   /// may need to exempt themselves.
honorsRevision0_98() const1950   bool honorsRevision0_98() const {
1951     return !getTarget().getTriple().isOSDarwin();
1952   }
1953 
1954   /// GCC classifies <1 x long long> as SSE but compatibility with older clang
1955   // compilers require us to classify it as INTEGER.
classifyIntegerMMXAsSSE() const1956   bool classifyIntegerMMXAsSSE() const {
1957     const llvm::Triple &Triple = getTarget().getTriple();
1958     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
1959       return false;
1960     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
1961       return false;
1962     return true;
1963   }
1964 
1965   X86AVXABILevel AVXLevel;
1966   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1967   // 64-bit hardware.
1968   bool Has64BitPointers;
1969 
1970 public:
X86_64ABIInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)1971   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
1972       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
1973       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1974   }
1975 
isPassedUsingAVXType(QualType type) const1976   bool isPassedUsingAVXType(QualType type) const {
1977     unsigned neededInt, neededSSE;
1978     // The freeIntRegs argument doesn't matter here.
1979     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1980                                            /*isNamedArg*/true);
1981     if (info.isDirect()) {
1982       llvm::Type *ty = info.getCoerceToType();
1983       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1984         return (vectorTy->getBitWidth() > 128);
1985     }
1986     return false;
1987   }
1988 
1989   void computeInfo(CGFunctionInfo &FI) const override;
1990 
1991   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1992                     QualType Ty) const override;
1993   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
1994                       QualType Ty) const override;
1995 
has64BitPointers() const1996   bool has64BitPointers() const {
1997     return Has64BitPointers;
1998   }
1999 
shouldPassIndirectlyForSwift(CharUnits totalSize,ArrayRef<llvm::Type * > scalars,bool asReturnValue) const2000   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
2001                                     ArrayRef<llvm::Type*> scalars,
2002                                     bool asReturnValue) const override {
2003     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2004   }
2005 };
2006 
2007 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2008 class WinX86_64ABIInfo : public ABIInfo {
2009 public:
WinX86_64ABIInfo(CodeGen::CodeGenTypes & CGT)2010   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
2011       : ABIInfo(CGT),
2012         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2013 
2014   void computeInfo(CGFunctionInfo &FI) const override;
2015 
2016   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2017                     QualType Ty) const override;
2018 
isHomogeneousAggregateBaseType(QualType Ty) const2019   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2020     // FIXME: Assumes vectorcall is in use.
2021     return isX86VectorTypeForVectorCall(getContext(), Ty);
2022   }
2023 
isHomogeneousAggregateSmallEnough(const Type * Ty,uint64_t NumMembers) const2024   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2025                                          uint64_t NumMembers) const override {
2026     // FIXME: Assumes vectorcall is in use.
2027     return isX86VectorCallAggregateSmallEnough(NumMembers);
2028   }
2029 
2030 private:
2031   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
2032                       bool IsReturnType) const;
2033 
2034   bool IsMingw64;
2035 };
2036 
2037 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2038 public:
X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)2039   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2040       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2041 
getABIInfo() const2042   const X86_64ABIInfo &getABIInfo() const {
2043     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2044   }
2045 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const2046   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2047     return 7;
2048   }
2049 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const2050   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2051                                llvm::Value *Address) const override {
2052     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2053 
2054     // 0-15 are the 16 integer registers.
2055     // 16 is %rip.
2056     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2057     return false;
2058   }
2059 
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const2060   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2061                                   StringRef Constraint,
2062                                   llvm::Type* Ty) const override {
2063     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2064   }
2065 
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const2066   bool isNoProtoCallVariadic(const CallArgList &args,
2067                              const FunctionNoProtoType *fnType) const override {
2068     // The default CC on x86-64 sets %al to the number of SSA
2069     // registers used, and GCC sets this when calling an unprototyped
2070     // function, so we override the default behavior.  However, don't do
2071     // that when AVX types are involved: the ABI explicitly states it is
2072     // undefined, and it doesn't work in practice because of how the ABI
2073     // defines varargs anyway.
2074     if (fnType->getCallConv() == CC_C) {
2075       bool HasAVXType = false;
2076       for (CallArgList::const_iterator
2077              it = args.begin(), ie = args.end(); it != ie; ++it) {
2078         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2079           HasAVXType = true;
2080           break;
2081         }
2082       }
2083 
2084       if (!HasAVXType)
2085         return true;
2086     }
2087 
2088     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2089   }
2090 
2091   llvm::Constant *
getUBSanFunctionSignature(CodeGen::CodeGenModule & CGM) const2092   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2093     unsigned Sig;
2094     if (getABIInfo().has64BitPointers())
2095       Sig = (0xeb << 0) |  // jmp rel8
2096             (0x0a << 8) |  //           .+0x0c
2097             ('F' << 16) |
2098             ('T' << 24);
2099     else
2100       Sig = (0xeb << 0) |  // jmp rel8
2101             (0x06 << 8) |  //           .+0x08
2102             ('F' << 16) |
2103             ('T' << 24);
2104     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2105   }
2106 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const2107   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2108                            CodeGen::CodeGenModule &CGM) const override {
2109     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2110       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2111         llvm::Function *Fn = cast<llvm::Function>(GV);
2112         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2113       }
2114     }
2115   }
2116 };
2117 
2118 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
2119 public:
PS4TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)2120   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2121     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
2122 
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const2123   void getDependentLibraryOption(llvm::StringRef Lib,
2124                                  llvm::SmallString<24> &Opt) const override {
2125     Opt = "\01";
2126     // If the argument contains a space, enclose it in quotes.
2127     if (Lib.find(" ") != StringRef::npos)
2128       Opt += "\"" + Lib.str() + "\"";
2129     else
2130       Opt += Lib;
2131   }
2132 };
2133 
qualifyWindowsLibrary(llvm::StringRef Lib)2134 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2135   // If the argument does not end in .lib, automatically add the suffix.
2136   // If the argument contains a space, enclose it in quotes.
2137   // This matches the behavior of MSVC.
2138   bool Quote = (Lib.find(" ") != StringRef::npos);
2139   std::string ArgStr = Quote ? "\"" : "";
2140   ArgStr += Lib;
2141   if (!Lib.endswith_lower(".lib"))
2142     ArgStr += ".lib";
2143   ArgStr += Quote ? "\"" : "";
2144   return ArgStr;
2145 }
2146 
2147 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2148 public:
WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool DarwinVectorABI,bool RetSmallStructInRegABI,bool Win32StructABI,unsigned NumRegisterParameters)2149   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2150         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2151         unsigned NumRegisterParameters)
2152     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2153         Win32StructABI, NumRegisterParameters, false) {}
2154 
2155   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2156                            CodeGen::CodeGenModule &CGM) const override;
2157 
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const2158   void getDependentLibraryOption(llvm::StringRef Lib,
2159                                  llvm::SmallString<24> &Opt) const override {
2160     Opt = "/DEFAULTLIB:";
2161     Opt += qualifyWindowsLibrary(Lib);
2162   }
2163 
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const2164   void getDetectMismatchOption(llvm::StringRef Name,
2165                                llvm::StringRef Value,
2166                                llvm::SmallString<32> &Opt) const override {
2167     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2168   }
2169 };
2170 
addStackProbeSizeTargetAttribute(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM)2171 static void addStackProbeSizeTargetAttribute(const Decl *D,
2172                                              llvm::GlobalValue *GV,
2173                                              CodeGen::CodeGenModule &CGM) {
2174   if (D && isa<FunctionDecl>(D)) {
2175     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
2176       llvm::Function *Fn = cast<llvm::Function>(GV);
2177 
2178       Fn->addFnAttr("stack-probe-size",
2179                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2180     }
2181   }
2182 }
2183 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const2184 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
2185                                                      llvm::GlobalValue *GV,
2186                                             CodeGen::CodeGenModule &CGM) const {
2187   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2188 
2189   addStackProbeSizeTargetAttribute(D, GV, CGM);
2190 }
2191 
2192 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2193 public:
WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)2194   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2195                              X86AVXABILevel AVXLevel)
2196       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2197 
2198   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2199                            CodeGen::CodeGenModule &CGM) const override;
2200 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const2201   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2202     return 7;
2203   }
2204 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const2205   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2206                                llvm::Value *Address) const override {
2207     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2208 
2209     // 0-15 are the 16 integer registers.
2210     // 16 is %rip.
2211     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2212     return false;
2213   }
2214 
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const2215   void getDependentLibraryOption(llvm::StringRef Lib,
2216                                  llvm::SmallString<24> &Opt) const override {
2217     Opt = "/DEFAULTLIB:";
2218     Opt += qualifyWindowsLibrary(Lib);
2219   }
2220 
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const2221   void getDetectMismatchOption(llvm::StringRef Name,
2222                                llvm::StringRef Value,
2223                                llvm::SmallString<32> &Opt) const override {
2224     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2225   }
2226 };
2227 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const2228 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D,
2229                                                      llvm::GlobalValue *GV,
2230                                             CodeGen::CodeGenModule &CGM) const {
2231   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2232 
2233   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2234     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2235       llvm::Function *Fn = cast<llvm::Function>(GV);
2236       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2237     }
2238   }
2239 
2240   addStackProbeSizeTargetAttribute(D, GV, CGM);
2241 }
2242 }
2243 
postMerge(unsigned AggregateSize,Class & Lo,Class & Hi) const2244 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2245                               Class &Hi) const {
2246   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2247   //
2248   // (a) If one of the classes is Memory, the whole argument is passed in
2249   //     memory.
2250   //
2251   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2252   //     memory.
2253   //
2254   // (c) If the size of the aggregate exceeds two eightbytes and the first
2255   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2256   //     argument is passed in memory. NOTE: This is necessary to keep the
2257   //     ABI working for processors that don't support the __m256 type.
2258   //
2259   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2260   //
2261   // Some of these are enforced by the merging logic.  Others can arise
2262   // only with unions; for example:
2263   //   union { _Complex double; unsigned; }
2264   //
2265   // Note that clauses (b) and (c) were added in 0.98.
2266   //
2267   if (Hi == Memory)
2268     Lo = Memory;
2269   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2270     Lo = Memory;
2271   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2272     Lo = Memory;
2273   if (Hi == SSEUp && Lo != SSE)
2274     Hi = SSE;
2275 }
2276 
merge(Class Accum,Class Field)2277 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2278   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2279   // classified recursively so that always two fields are
2280   // considered. The resulting class is calculated according to
2281   // the classes of the fields in the eightbyte:
2282   //
2283   // (a) If both classes are equal, this is the resulting class.
2284   //
2285   // (b) If one of the classes is NO_CLASS, the resulting class is
2286   // the other class.
2287   //
2288   // (c) If one of the classes is MEMORY, the result is the MEMORY
2289   // class.
2290   //
2291   // (d) If one of the classes is INTEGER, the result is the
2292   // INTEGER.
2293   //
2294   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2295   // MEMORY is used as class.
2296   //
2297   // (f) Otherwise class SSE is used.
2298 
2299   // Accum should never be memory (we should have returned) or
2300   // ComplexX87 (because this cannot be passed in a structure).
2301   assert((Accum != Memory && Accum != ComplexX87) &&
2302          "Invalid accumulated classification during merge.");
2303   if (Accum == Field || Field == NoClass)
2304     return Accum;
2305   if (Field == Memory)
2306     return Memory;
2307   if (Accum == NoClass)
2308     return Field;
2309   if (Accum == Integer || Field == Integer)
2310     return Integer;
2311   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2312       Accum == X87 || Accum == X87Up)
2313     return Memory;
2314   return SSE;
2315 }
2316 
classify(QualType Ty,uint64_t OffsetBase,Class & Lo,Class & Hi,bool isNamedArg) const2317 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2318                              Class &Lo, Class &Hi, bool isNamedArg) const {
2319   // FIXME: This code can be simplified by introducing a simple value class for
2320   // Class pairs with appropriate constructor methods for the various
2321   // situations.
2322 
2323   // FIXME: Some of the split computations are wrong; unaligned vectors
2324   // shouldn't be passed in registers for example, so there is no chance they
2325   // can straddle an eightbyte. Verify & simplify.
2326 
2327   Lo = Hi = NoClass;
2328 
2329   Class &Current = OffsetBase < 64 ? Lo : Hi;
2330   Current = Memory;
2331 
2332   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2333     BuiltinType::Kind k = BT->getKind();
2334 
2335     if (k == BuiltinType::Void) {
2336       Current = NoClass;
2337     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2338       Lo = Integer;
2339       Hi = Integer;
2340     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2341       Current = Integer;
2342     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2343       Current = SSE;
2344     } else if (k == BuiltinType::LongDouble) {
2345       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2346       if (LDF == &llvm::APFloat::IEEEquad) {
2347         Lo = SSE;
2348         Hi = SSEUp;
2349       } else if (LDF == &llvm::APFloat::x87DoubleExtended) {
2350         Lo = X87;
2351         Hi = X87Up;
2352       } else if (LDF == &llvm::APFloat::IEEEdouble) {
2353         Current = SSE;
2354       } else
2355         llvm_unreachable("unexpected long double representation!");
2356     }
2357     // FIXME: _Decimal32 and _Decimal64 are SSE.
2358     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2359     return;
2360   }
2361 
2362   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2363     // Classify the underlying integer type.
2364     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2365     return;
2366   }
2367 
2368   if (Ty->hasPointerRepresentation()) {
2369     Current = Integer;
2370     return;
2371   }
2372 
2373   if (Ty->isMemberPointerType()) {
2374     if (Ty->isMemberFunctionPointerType()) {
2375       if (Has64BitPointers) {
2376         // If Has64BitPointers, this is an {i64, i64}, so classify both
2377         // Lo and Hi now.
2378         Lo = Hi = Integer;
2379       } else {
2380         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2381         // straddles an eightbyte boundary, Hi should be classified as well.
2382         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2383         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2384         if (EB_FuncPtr != EB_ThisAdj) {
2385           Lo = Hi = Integer;
2386         } else {
2387           Current = Integer;
2388         }
2389       }
2390     } else {
2391       Current = Integer;
2392     }
2393     return;
2394   }
2395 
2396   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2397     uint64_t Size = getContext().getTypeSize(VT);
2398     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2399       // gcc passes the following as integer:
2400       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2401       // 2 bytes - <2 x char>, <1 x short>
2402       // 1 byte  - <1 x char>
2403       Current = Integer;
2404 
2405       // If this type crosses an eightbyte boundary, it should be
2406       // split.
2407       uint64_t EB_Lo = (OffsetBase) / 64;
2408       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2409       if (EB_Lo != EB_Hi)
2410         Hi = Lo;
2411     } else if (Size == 64) {
2412       QualType ElementType = VT->getElementType();
2413 
2414       // gcc passes <1 x double> in memory. :(
2415       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2416         return;
2417 
2418       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2419       // pass them as integer.  For platforms where clang is the de facto
2420       // platform compiler, we must continue to use integer.
2421       if (!classifyIntegerMMXAsSSE() &&
2422           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2423            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2424            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2425            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2426         Current = Integer;
2427       else
2428         Current = SSE;
2429 
2430       // If this type crosses an eightbyte boundary, it should be
2431       // split.
2432       if (OffsetBase && OffsetBase != 64)
2433         Hi = Lo;
2434     } else if (Size == 128 ||
2435                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2436       // Arguments of 256-bits are split into four eightbyte chunks. The
2437       // least significant one belongs to class SSE and all the others to class
2438       // SSEUP. The original Lo and Hi design considers that types can't be
2439       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2440       // This design isn't correct for 256-bits, but since there're no cases
2441       // where the upper parts would need to be inspected, avoid adding
2442       // complexity and just consider Hi to match the 64-256 part.
2443       //
2444       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2445       // registers if they are "named", i.e. not part of the "..." of a
2446       // variadic function.
2447       //
2448       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2449       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2450       Lo = SSE;
2451       Hi = SSEUp;
2452     }
2453     return;
2454   }
2455 
2456   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2457     QualType ET = getContext().getCanonicalType(CT->getElementType());
2458 
2459     uint64_t Size = getContext().getTypeSize(Ty);
2460     if (ET->isIntegralOrEnumerationType()) {
2461       if (Size <= 64)
2462         Current = Integer;
2463       else if (Size <= 128)
2464         Lo = Hi = Integer;
2465     } else if (ET == getContext().FloatTy) {
2466       Current = SSE;
2467     } else if (ET == getContext().DoubleTy) {
2468       Lo = Hi = SSE;
2469     } else if (ET == getContext().LongDoubleTy) {
2470       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2471       if (LDF == &llvm::APFloat::IEEEquad)
2472         Current = Memory;
2473       else if (LDF == &llvm::APFloat::x87DoubleExtended)
2474         Current = ComplexX87;
2475       else if (LDF == &llvm::APFloat::IEEEdouble)
2476         Lo = Hi = SSE;
2477       else
2478         llvm_unreachable("unexpected long double representation!");
2479     }
2480 
2481     // If this complex type crosses an eightbyte boundary then it
2482     // should be split.
2483     uint64_t EB_Real = (OffsetBase) / 64;
2484     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2485     if (Hi == NoClass && EB_Real != EB_Imag)
2486       Hi = Lo;
2487 
2488     return;
2489   }
2490 
2491   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2492     // Arrays are treated like structures.
2493 
2494     uint64_t Size = getContext().getTypeSize(Ty);
2495 
2496     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2497     // than four eightbytes, ..., it has class MEMORY.
2498     if (Size > 256)
2499       return;
2500 
2501     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2502     // fields, it has class MEMORY.
2503     //
2504     // Only need to check alignment of array base.
2505     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2506       return;
2507 
2508     // Otherwise implement simplified merge. We could be smarter about
2509     // this, but it isn't worth it and would be harder to verify.
2510     Current = NoClass;
2511     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2512     uint64_t ArraySize = AT->getSize().getZExtValue();
2513 
2514     // The only case a 256-bit wide vector could be used is when the array
2515     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2516     // to work for sizes wider than 128, early check and fallback to memory.
2517     if (Size > 128 && EltSize != 256)
2518       return;
2519 
2520     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2521       Class FieldLo, FieldHi;
2522       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2523       Lo = merge(Lo, FieldLo);
2524       Hi = merge(Hi, FieldHi);
2525       if (Lo == Memory || Hi == Memory)
2526         break;
2527     }
2528 
2529     postMerge(Size, Lo, Hi);
2530     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2531     return;
2532   }
2533 
2534   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2535     uint64_t Size = getContext().getTypeSize(Ty);
2536 
2537     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2538     // than four eightbytes, ..., it has class MEMORY.
2539     if (Size > 256)
2540       return;
2541 
2542     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2543     // copy constructor or a non-trivial destructor, it is passed by invisible
2544     // reference.
2545     if (getRecordArgABI(RT, getCXXABI()))
2546       return;
2547 
2548     const RecordDecl *RD = RT->getDecl();
2549 
2550     // Assume variable sized types are passed in memory.
2551     if (RD->hasFlexibleArrayMember())
2552       return;
2553 
2554     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2555 
2556     // Reset Lo class, this will be recomputed.
2557     Current = NoClass;
2558 
2559     // If this is a C++ record, classify the bases first.
2560     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2561       for (const auto &I : CXXRD->bases()) {
2562         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2563                "Unexpected base class!");
2564         const CXXRecordDecl *Base =
2565           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2566 
2567         // Classify this field.
2568         //
2569         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2570         // single eightbyte, each is classified separately. Each eightbyte gets
2571         // initialized to class NO_CLASS.
2572         Class FieldLo, FieldHi;
2573         uint64_t Offset =
2574           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2575         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2576         Lo = merge(Lo, FieldLo);
2577         Hi = merge(Hi, FieldHi);
2578         if (Lo == Memory || Hi == Memory) {
2579           postMerge(Size, Lo, Hi);
2580           return;
2581         }
2582       }
2583     }
2584 
2585     // Classify the fields one at a time, merging the results.
2586     unsigned idx = 0;
2587     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2588            i != e; ++i, ++idx) {
2589       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2590       bool BitField = i->isBitField();
2591 
2592       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2593       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2594       //
2595       // The only case a 256-bit wide vector could be used is when the struct
2596       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2597       // to work for sizes wider than 128, early check and fallback to memory.
2598       //
2599       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2600         Lo = Memory;
2601         postMerge(Size, Lo, Hi);
2602         return;
2603       }
2604       // Note, skip this test for bit-fields, see below.
2605       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2606         Lo = Memory;
2607         postMerge(Size, Lo, Hi);
2608         return;
2609       }
2610 
2611       // Classify this field.
2612       //
2613       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2614       // exceeds a single eightbyte, each is classified
2615       // separately. Each eightbyte gets initialized to class
2616       // NO_CLASS.
2617       Class FieldLo, FieldHi;
2618 
2619       // Bit-fields require special handling, they do not force the
2620       // structure to be passed in memory even if unaligned, and
2621       // therefore they can straddle an eightbyte.
2622       if (BitField) {
2623         // Ignore padding bit-fields.
2624         if (i->isUnnamedBitfield())
2625           continue;
2626 
2627         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2628         uint64_t Size = i->getBitWidthValue(getContext());
2629 
2630         uint64_t EB_Lo = Offset / 64;
2631         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2632 
2633         if (EB_Lo) {
2634           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2635           FieldLo = NoClass;
2636           FieldHi = Integer;
2637         } else {
2638           FieldLo = Integer;
2639           FieldHi = EB_Hi ? Integer : NoClass;
2640         }
2641       } else
2642         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2643       Lo = merge(Lo, FieldLo);
2644       Hi = merge(Hi, FieldHi);
2645       if (Lo == Memory || Hi == Memory)
2646         break;
2647     }
2648 
2649     postMerge(Size, Lo, Hi);
2650   }
2651 }
2652 
getIndirectReturnResult(QualType Ty) const2653 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2654   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2655   // place naturally.
2656   if (!isAggregateTypeForABI(Ty)) {
2657     // Treat an enum type as its underlying type.
2658     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2659       Ty = EnumTy->getDecl()->getIntegerType();
2660 
2661     return (Ty->isPromotableIntegerType() ?
2662             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2663   }
2664 
2665   return getNaturalAlignIndirect(Ty);
2666 }
2667 
IsIllegalVectorType(QualType Ty) const2668 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2669   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2670     uint64_t Size = getContext().getTypeSize(VecTy);
2671     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2672     if (Size <= 64 || Size > LargestVector)
2673       return true;
2674   }
2675 
2676   return false;
2677 }
2678 
getIndirectResult(QualType Ty,unsigned freeIntRegs) const2679 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2680                                             unsigned freeIntRegs) const {
2681   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2682   // place naturally.
2683   //
2684   // This assumption is optimistic, as there could be free registers available
2685   // when we need to pass this argument in memory, and LLVM could try to pass
2686   // the argument in the free register. This does not seem to happen currently,
2687   // but this code would be much safer if we could mark the argument with
2688   // 'onstack'. See PR12193.
2689   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2690     // Treat an enum type as its underlying type.
2691     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2692       Ty = EnumTy->getDecl()->getIntegerType();
2693 
2694     return (Ty->isPromotableIntegerType() ?
2695             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2696   }
2697 
2698   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2699     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2700 
2701   // Compute the byval alignment. We specify the alignment of the byval in all
2702   // cases so that the mid-level optimizer knows the alignment of the byval.
2703   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2704 
2705   // Attempt to avoid passing indirect results using byval when possible. This
2706   // is important for good codegen.
2707   //
2708   // We do this by coercing the value into a scalar type which the backend can
2709   // handle naturally (i.e., without using byval).
2710   //
2711   // For simplicity, we currently only do this when we have exhausted all of the
2712   // free integer registers. Doing this when there are free integer registers
2713   // would require more care, as we would have to ensure that the coerced value
2714   // did not claim the unused register. That would require either reording the
2715   // arguments to the function (so that any subsequent inreg values came first),
2716   // or only doing this optimization when there were no following arguments that
2717   // might be inreg.
2718   //
2719   // We currently expect it to be rare (particularly in well written code) for
2720   // arguments to be passed on the stack when there are still free integer
2721   // registers available (this would typically imply large structs being passed
2722   // by value), so this seems like a fair tradeoff for now.
2723   //
2724   // We can revisit this if the backend grows support for 'onstack' parameter
2725   // attributes. See PR12193.
2726   if (freeIntRegs == 0) {
2727     uint64_t Size = getContext().getTypeSize(Ty);
2728 
2729     // If this type fits in an eightbyte, coerce it into the matching integral
2730     // type, which will end up on the stack (with alignment 8).
2731     if (Align == 8 && Size <= 64)
2732       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2733                                                           Size));
2734   }
2735 
2736   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2737 }
2738 
2739 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2740 /// register. Pick an LLVM IR type that will be passed as a vector register.
GetByteVectorType(QualType Ty) const2741 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2742   // Wrapper structs/arrays that only contain vectors are passed just like
2743   // vectors; strip them off if present.
2744   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2745     Ty = QualType(InnerTy, 0);
2746 
2747   llvm::Type *IRType = CGT.ConvertType(Ty);
2748   if (isa<llvm::VectorType>(IRType) ||
2749       IRType->getTypeID() == llvm::Type::FP128TyID)
2750     return IRType;
2751 
2752   // We couldn't find the preferred IR vector type for 'Ty'.
2753   uint64_t Size = getContext().getTypeSize(Ty);
2754   assert((Size == 128 || Size == 256) && "Invalid type found!");
2755 
2756   // Return a LLVM IR vector type based on the size of 'Ty'.
2757   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2758                                Size / 64);
2759 }
2760 
2761 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2762 /// is known to either be off the end of the specified type or being in
2763 /// alignment padding.  The user type specified is known to be at most 128 bits
2764 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2765 /// classification that put one of the two halves in the INTEGER class.
2766 ///
2767 /// It is conservatively correct to return false.
BitsContainNoUserData(QualType Ty,unsigned StartBit,unsigned EndBit,ASTContext & Context)2768 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2769                                   unsigned EndBit, ASTContext &Context) {
2770   // If the bytes being queried are off the end of the type, there is no user
2771   // data hiding here.  This handles analysis of builtins, vectors and other
2772   // types that don't contain interesting padding.
2773   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2774   if (TySize <= StartBit)
2775     return true;
2776 
2777   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2778     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2779     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2780 
2781     // Check each element to see if the element overlaps with the queried range.
2782     for (unsigned i = 0; i != NumElts; ++i) {
2783       // If the element is after the span we care about, then we're done..
2784       unsigned EltOffset = i*EltSize;
2785       if (EltOffset >= EndBit) break;
2786 
2787       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2788       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2789                                  EndBit-EltOffset, Context))
2790         return false;
2791     }
2792     // If it overlaps no elements, then it is safe to process as padding.
2793     return true;
2794   }
2795 
2796   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2797     const RecordDecl *RD = RT->getDecl();
2798     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2799 
2800     // If this is a C++ record, check the bases first.
2801     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2802       for (const auto &I : CXXRD->bases()) {
2803         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2804                "Unexpected base class!");
2805         const CXXRecordDecl *Base =
2806           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2807 
2808         // If the base is after the span we care about, ignore it.
2809         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2810         if (BaseOffset >= EndBit) continue;
2811 
2812         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2813         if (!BitsContainNoUserData(I.getType(), BaseStart,
2814                                    EndBit-BaseOffset, Context))
2815           return false;
2816       }
2817     }
2818 
2819     // Verify that no field has data that overlaps the region of interest.  Yes
2820     // this could be sped up a lot by being smarter about queried fields,
2821     // however we're only looking at structs up to 16 bytes, so we don't care
2822     // much.
2823     unsigned idx = 0;
2824     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2825          i != e; ++i, ++idx) {
2826       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2827 
2828       // If we found a field after the region we care about, then we're done.
2829       if (FieldOffset >= EndBit) break;
2830 
2831       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2832       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2833                                  Context))
2834         return false;
2835     }
2836 
2837     // If nothing in this record overlapped the area of interest, then we're
2838     // clean.
2839     return true;
2840   }
2841 
2842   return false;
2843 }
2844 
2845 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2846 /// float member at the specified offset.  For example, {int,{float}} has a
2847 /// float at offset 4.  It is conservatively correct for this routine to return
2848 /// false.
ContainsFloatAtOffset(llvm::Type * IRType,unsigned IROffset,const llvm::DataLayout & TD)2849 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2850                                   const llvm::DataLayout &TD) {
2851   // Base case if we find a float.
2852   if (IROffset == 0 && IRType->isFloatTy())
2853     return true;
2854 
2855   // If this is a struct, recurse into the field at the specified offset.
2856   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2857     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2858     unsigned Elt = SL->getElementContainingOffset(IROffset);
2859     IROffset -= SL->getElementOffset(Elt);
2860     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2861   }
2862 
2863   // If this is an array, recurse into the field at the specified offset.
2864   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2865     llvm::Type *EltTy = ATy->getElementType();
2866     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2867     IROffset -= IROffset/EltSize*EltSize;
2868     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2869   }
2870 
2871   return false;
2872 }
2873 
2874 
2875 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2876 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2877 llvm::Type *X86_64ABIInfo::
GetSSETypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const2878 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2879                    QualType SourceTy, unsigned SourceOffset) const {
2880   // The only three choices we have are either double, <2 x float>, or float. We
2881   // pass as float if the last 4 bytes is just padding.  This happens for
2882   // structs that contain 3 floats.
2883   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2884                             SourceOffset*8+64, getContext()))
2885     return llvm::Type::getFloatTy(getVMContext());
2886 
2887   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2888   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2889   // case.
2890   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2891       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2892     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2893 
2894   return llvm::Type::getDoubleTy(getVMContext());
2895 }
2896 
2897 
2898 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2899 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2900 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2901 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2902 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2903 /// etc).
2904 ///
2905 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2906 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2907 /// the 8-byte value references.  PrefType may be null.
2908 ///
2909 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2910 /// an offset into this that we're processing (which is always either 0 or 8).
2911 ///
2912 llvm::Type *X86_64ABIInfo::
GetINTEGERTypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const2913 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2914                        QualType SourceTy, unsigned SourceOffset) const {
2915   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2916   // returning an 8-byte unit starting with it.  See if we can safely use it.
2917   if (IROffset == 0) {
2918     // Pointers and int64's always fill the 8-byte unit.
2919     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2920         IRType->isIntegerTy(64))
2921       return IRType;
2922 
2923     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2924     // goodness in the source type is just tail padding.  This is allowed to
2925     // kick in for struct {double,int} on the int, but not on
2926     // struct{double,int,int} because we wouldn't return the second int.  We
2927     // have to do this analysis on the source type because we can't depend on
2928     // unions being lowered a specific way etc.
2929     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2930         IRType->isIntegerTy(32) ||
2931         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2932       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2933           cast<llvm::IntegerType>(IRType)->getBitWidth();
2934 
2935       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2936                                 SourceOffset*8+64, getContext()))
2937         return IRType;
2938     }
2939   }
2940 
2941   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2942     // If this is a struct, recurse into the field at the specified offset.
2943     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2944     if (IROffset < SL->getSizeInBytes()) {
2945       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2946       IROffset -= SL->getElementOffset(FieldIdx);
2947 
2948       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2949                                     SourceTy, SourceOffset);
2950     }
2951   }
2952 
2953   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2954     llvm::Type *EltTy = ATy->getElementType();
2955     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2956     unsigned EltOffset = IROffset/EltSize*EltSize;
2957     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2958                                   SourceOffset);
2959   }
2960 
2961   // Okay, we don't have any better idea of what to pass, so we pass this in an
2962   // integer register that isn't too big to fit the rest of the struct.
2963   unsigned TySizeInBytes =
2964     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2965 
2966   assert(TySizeInBytes != SourceOffset && "Empty field?");
2967 
2968   // It is always safe to classify this as an integer type up to i64 that
2969   // isn't larger than the structure.
2970   return llvm::IntegerType::get(getVMContext(),
2971                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2972 }
2973 
2974 
2975 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2976 /// be used as elements of a two register pair to pass or return, return a
2977 /// first class aggregate to represent them.  For example, if the low part of
2978 /// a by-value argument should be passed as i32* and the high part as float,
2979 /// return {i32*, float}.
2980 static llvm::Type *
GetX86_64ByValArgumentPair(llvm::Type * Lo,llvm::Type * Hi,const llvm::DataLayout & TD)2981 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2982                            const llvm::DataLayout &TD) {
2983   // In order to correctly satisfy the ABI, we need to the high part to start
2984   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2985   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2986   // the second element at offset 8.  Check for this:
2987   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2988   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2989   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
2990   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2991 
2992   // To handle this, we have to increase the size of the low part so that the
2993   // second element will start at an 8 byte offset.  We can't increase the size
2994   // of the second element because it might make us access off the end of the
2995   // struct.
2996   if (HiStart != 8) {
2997     // There are usually two sorts of types the ABI generation code can produce
2998     // for the low part of a pair that aren't 8 bytes in size: float or
2999     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3000     // NaCl).
3001     // Promote these to a larger type.
3002     if (Lo->isFloatTy())
3003       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3004     else {
3005       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3006              && "Invalid/unknown lo type");
3007       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3008     }
3009   }
3010 
3011   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
3012 
3013 
3014   // Verify that the second element is at an 8-byte offset.
3015   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3016          "Invalid x86-64 argument pair!");
3017   return Result;
3018 }
3019 
3020 ABIArgInfo X86_64ABIInfo::
classifyReturnType(QualType RetTy) const3021 classifyReturnType(QualType RetTy) const {
3022   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3023   // classification algorithm.
3024   X86_64ABIInfo::Class Lo, Hi;
3025   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3026 
3027   // Check some invariants.
3028   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3029   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3030 
3031   llvm::Type *ResType = nullptr;
3032   switch (Lo) {
3033   case NoClass:
3034     if (Hi == NoClass)
3035       return ABIArgInfo::getIgnore();
3036     // If the low part is just padding, it takes no register, leave ResType
3037     // null.
3038     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3039            "Unknown missing lo part");
3040     break;
3041 
3042   case SSEUp:
3043   case X87Up:
3044     llvm_unreachable("Invalid classification for lo word.");
3045 
3046     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3047     // hidden argument.
3048   case Memory:
3049     return getIndirectReturnResult(RetTy);
3050 
3051     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3052     // available register of the sequence %rax, %rdx is used.
3053   case Integer:
3054     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3055 
3056     // If we have a sign or zero extended integer, make sure to return Extend
3057     // so that the parameter gets the right LLVM IR attributes.
3058     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3059       // Treat an enum type as its underlying type.
3060       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3061         RetTy = EnumTy->getDecl()->getIntegerType();
3062 
3063       if (RetTy->isIntegralOrEnumerationType() &&
3064           RetTy->isPromotableIntegerType())
3065         return ABIArgInfo::getExtend();
3066     }
3067     break;
3068 
3069     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3070     // available SSE register of the sequence %xmm0, %xmm1 is used.
3071   case SSE:
3072     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3073     break;
3074 
3075     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3076     // returned on the X87 stack in %st0 as 80-bit x87 number.
3077   case X87:
3078     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3079     break;
3080 
3081     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3082     // part of the value is returned in %st0 and the imaginary part in
3083     // %st1.
3084   case ComplexX87:
3085     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3086     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3087                                     llvm::Type::getX86_FP80Ty(getVMContext()),
3088                                     nullptr);
3089     break;
3090   }
3091 
3092   llvm::Type *HighPart = nullptr;
3093   switch (Hi) {
3094     // Memory was handled previously and X87 should
3095     // never occur as a hi class.
3096   case Memory:
3097   case X87:
3098     llvm_unreachable("Invalid classification for hi word.");
3099 
3100   case ComplexX87: // Previously handled.
3101   case NoClass:
3102     break;
3103 
3104   case Integer:
3105     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3106     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3107       return ABIArgInfo::getDirect(HighPart, 8);
3108     break;
3109   case SSE:
3110     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3111     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3112       return ABIArgInfo::getDirect(HighPart, 8);
3113     break;
3114 
3115     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3116     // is passed in the next available eightbyte chunk if the last used
3117     // vector register.
3118     //
3119     // SSEUP should always be preceded by SSE, just widen.
3120   case SSEUp:
3121     assert(Lo == SSE && "Unexpected SSEUp classification.");
3122     ResType = GetByteVectorType(RetTy);
3123     break;
3124 
3125     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3126     // returned together with the previous X87 value in %st0.
3127   case X87Up:
3128     // If X87Up is preceded by X87, we don't need to do
3129     // anything. However, in some cases with unions it may not be
3130     // preceded by X87. In such situations we follow gcc and pass the
3131     // extra bits in an SSE reg.
3132     if (Lo != X87) {
3133       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3134       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3135         return ABIArgInfo::getDirect(HighPart, 8);
3136     }
3137     break;
3138   }
3139 
3140   // If a high part was specified, merge it together with the low part.  It is
3141   // known to pass in the high eightbyte of the result.  We do this by forming a
3142   // first class struct aggregate with the high and low part: {low, high}
3143   if (HighPart)
3144     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3145 
3146   return ABIArgInfo::getDirect(ResType);
3147 }
3148 
classifyArgumentType(QualType Ty,unsigned freeIntRegs,unsigned & neededInt,unsigned & neededSSE,bool isNamedArg) const3149 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3150   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3151   bool isNamedArg)
3152   const
3153 {
3154   Ty = useFirstFieldIfTransparentUnion(Ty);
3155 
3156   X86_64ABIInfo::Class Lo, Hi;
3157   classify(Ty, 0, Lo, Hi, isNamedArg);
3158 
3159   // Check some invariants.
3160   // FIXME: Enforce these by construction.
3161   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3162   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3163 
3164   neededInt = 0;
3165   neededSSE = 0;
3166   llvm::Type *ResType = nullptr;
3167   switch (Lo) {
3168   case NoClass:
3169     if (Hi == NoClass)
3170       return ABIArgInfo::getIgnore();
3171     // If the low part is just padding, it takes no register, leave ResType
3172     // null.
3173     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3174            "Unknown missing lo part");
3175     break;
3176 
3177     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3178     // on the stack.
3179   case Memory:
3180 
3181     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3182     // COMPLEX_X87, it is passed in memory.
3183   case X87:
3184   case ComplexX87:
3185     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3186       ++neededInt;
3187     return getIndirectResult(Ty, freeIntRegs);
3188 
3189   case SSEUp:
3190   case X87Up:
3191     llvm_unreachable("Invalid classification for lo word.");
3192 
3193     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3194     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3195     // and %r9 is used.
3196   case Integer:
3197     ++neededInt;
3198 
3199     // Pick an 8-byte type based on the preferred type.
3200     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3201 
3202     // If we have a sign or zero extended integer, make sure to return Extend
3203     // so that the parameter gets the right LLVM IR attributes.
3204     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3205       // Treat an enum type as its underlying type.
3206       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3207         Ty = EnumTy->getDecl()->getIntegerType();
3208 
3209       if (Ty->isIntegralOrEnumerationType() &&
3210           Ty->isPromotableIntegerType())
3211         return ABIArgInfo::getExtend();
3212     }
3213 
3214     break;
3215 
3216     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3217     // available SSE register is used, the registers are taken in the
3218     // order from %xmm0 to %xmm7.
3219   case SSE: {
3220     llvm::Type *IRType = CGT.ConvertType(Ty);
3221     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3222     ++neededSSE;
3223     break;
3224   }
3225   }
3226 
3227   llvm::Type *HighPart = nullptr;
3228   switch (Hi) {
3229     // Memory was handled previously, ComplexX87 and X87 should
3230     // never occur as hi classes, and X87Up must be preceded by X87,
3231     // which is passed in memory.
3232   case Memory:
3233   case X87:
3234   case ComplexX87:
3235     llvm_unreachable("Invalid classification for hi word.");
3236 
3237   case NoClass: break;
3238 
3239   case Integer:
3240     ++neededInt;
3241     // Pick an 8-byte type based on the preferred type.
3242     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3243 
3244     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3245       return ABIArgInfo::getDirect(HighPart, 8);
3246     break;
3247 
3248     // X87Up generally doesn't occur here (long double is passed in
3249     // memory), except in situations involving unions.
3250   case X87Up:
3251   case SSE:
3252     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3253 
3254     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3255       return ABIArgInfo::getDirect(HighPart, 8);
3256 
3257     ++neededSSE;
3258     break;
3259 
3260     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3261     // eightbyte is passed in the upper half of the last used SSE
3262     // register.  This only happens when 128-bit vectors are passed.
3263   case SSEUp:
3264     assert(Lo == SSE && "Unexpected SSEUp classification");
3265     ResType = GetByteVectorType(Ty);
3266     break;
3267   }
3268 
3269   // If a high part was specified, merge it together with the low part.  It is
3270   // known to pass in the high eightbyte of the result.  We do this by forming a
3271   // first class struct aggregate with the high and low part: {low, high}
3272   if (HighPart)
3273     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3274 
3275   return ABIArgInfo::getDirect(ResType);
3276 }
3277 
computeInfo(CGFunctionInfo & FI) const3278 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3279 
3280   if (!getCXXABI().classifyReturnType(FI))
3281     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3282 
3283   // Keep track of the number of assigned registers.
3284   unsigned freeIntRegs = 6, freeSSERegs = 8;
3285 
3286   // If the return value is indirect, then the hidden argument is consuming one
3287   // integer register.
3288   if (FI.getReturnInfo().isIndirect())
3289     --freeIntRegs;
3290 
3291   // The chain argument effectively gives us another free register.
3292   if (FI.isChainCall())
3293     ++freeIntRegs;
3294 
3295   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3296   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3297   // get assigned (in left-to-right order) for passing as follows...
3298   unsigned ArgNo = 0;
3299   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3300        it != ie; ++it, ++ArgNo) {
3301     bool IsNamedArg = ArgNo < NumRequiredArgs;
3302 
3303     unsigned neededInt, neededSSE;
3304     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
3305                                     neededSSE, IsNamedArg);
3306 
3307     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3308     // eightbyte of an argument, the whole argument is passed on the
3309     // stack. If registers have already been assigned for some
3310     // eightbytes of such an argument, the assignments get reverted.
3311     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
3312       freeIntRegs -= neededInt;
3313       freeSSERegs -= neededSSE;
3314     } else {
3315       it->info = getIndirectResult(it->type, freeIntRegs);
3316     }
3317   }
3318 }
3319 
EmitX86_64VAArgFromMemory(CodeGenFunction & CGF,Address VAListAddr,QualType Ty)3320 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3321                                          Address VAListAddr, QualType Ty) {
3322   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3323       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3324   llvm::Value *overflow_arg_area =
3325     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3326 
3327   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3328   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3329   // It isn't stated explicitly in the standard, but in practice we use
3330   // alignment greater than 16 where necessary.
3331   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3332   if (Align > CharUnits::fromQuantity(8)) {
3333     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3334                                                       Align);
3335   }
3336 
3337   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3338   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3339   llvm::Value *Res =
3340     CGF.Builder.CreateBitCast(overflow_arg_area,
3341                               llvm::PointerType::getUnqual(LTy));
3342 
3343   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3344   // l->overflow_arg_area + sizeof(type).
3345   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3346   // an 8 byte boundary.
3347 
3348   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3349   llvm::Value *Offset =
3350       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3351   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3352                                             "overflow_arg_area.next");
3353   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3354 
3355   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3356   return Address(Res, Align);
3357 }
3358 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const3359 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3360                                  QualType Ty) const {
3361   // Assume that va_list type is correct; should be pointer to LLVM type:
3362   // struct {
3363   //   i32 gp_offset;
3364   //   i32 fp_offset;
3365   //   i8* overflow_arg_area;
3366   //   i8* reg_save_area;
3367   // };
3368   unsigned neededInt, neededSSE;
3369 
3370   Ty = getContext().getCanonicalType(Ty);
3371   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3372                                        /*isNamedArg*/false);
3373 
3374   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3375   // in the registers. If not go to step 7.
3376   if (!neededInt && !neededSSE)
3377     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3378 
3379   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3380   // general purpose registers needed to pass type and num_fp to hold
3381   // the number of floating point registers needed.
3382 
3383   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3384   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3385   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3386   //
3387   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3388   // register save space).
3389 
3390   llvm::Value *InRegs = nullptr;
3391   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3392   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3393   if (neededInt) {
3394     gp_offset_p =
3395         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3396                                     "gp_offset_p");
3397     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3398     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3399     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3400   }
3401 
3402   if (neededSSE) {
3403     fp_offset_p =
3404         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3405                                     "fp_offset_p");
3406     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3407     llvm::Value *FitsInFP =
3408       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3409     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3410     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3411   }
3412 
3413   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3414   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3415   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3416   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3417 
3418   // Emit code to load the value if it was passed in registers.
3419 
3420   CGF.EmitBlock(InRegBlock);
3421 
3422   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3423   // an offset of l->gp_offset and/or l->fp_offset. This may require
3424   // copying to a temporary location in case the parameter is passed
3425   // in different register classes or requires an alignment greater
3426   // than 8 for general purpose registers and 16 for XMM registers.
3427   //
3428   // FIXME: This really results in shameful code when we end up needing to
3429   // collect arguments from different places; often what should result in a
3430   // simple assembling of a structure from scattered addresses has many more
3431   // loads than necessary. Can we clean this up?
3432   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3433   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3434       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3435                                   "reg_save_area");
3436 
3437   Address RegAddr = Address::invalid();
3438   if (neededInt && neededSSE) {
3439     // FIXME: Cleanup.
3440     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3441     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3442     Address Tmp = CGF.CreateMemTemp(Ty);
3443     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3444     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3445     llvm::Type *TyLo = ST->getElementType(0);
3446     llvm::Type *TyHi = ST->getElementType(1);
3447     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3448            "Unexpected ABI info for mixed regs");
3449     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3450     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3451     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3452     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3453     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3454     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3455 
3456     // Copy the first element.
3457     llvm::Value *V =
3458       CGF.Builder.CreateDefaultAlignedLoad(
3459                                CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
3460     CGF.Builder.CreateStore(V,
3461                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3462 
3463     // Copy the second element.
3464     V = CGF.Builder.CreateDefaultAlignedLoad(
3465                                CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
3466     CharUnits Offset = CharUnits::fromQuantity(
3467                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3468     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3469 
3470     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3471   } else if (neededInt) {
3472     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3473                       CharUnits::fromQuantity(8));
3474     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3475 
3476     // Copy to a temporary if necessary to ensure the appropriate alignment.
3477     std::pair<CharUnits, CharUnits> SizeAlign =
3478         getContext().getTypeInfoInChars(Ty);
3479     uint64_t TySize = SizeAlign.first.getQuantity();
3480     CharUnits TyAlign = SizeAlign.second;
3481 
3482     // Copy into a temporary if the type is more aligned than the
3483     // register save area.
3484     if (TyAlign.getQuantity() > 8) {
3485       Address Tmp = CGF.CreateMemTemp(Ty);
3486       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3487       RegAddr = Tmp;
3488     }
3489 
3490   } else if (neededSSE == 1) {
3491     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3492                       CharUnits::fromQuantity(16));
3493     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3494   } else {
3495     assert(neededSSE == 2 && "Invalid number of needed registers!");
3496     // SSE registers are spaced 16 bytes apart in the register save
3497     // area, we need to collect the two eightbytes together.
3498     // The ABI isn't explicit about this, but it seems reasonable
3499     // to assume that the slots are 16-byte aligned, since the stack is
3500     // naturally 16-byte aligned and the prologue is expected to store
3501     // all the SSE registers to the RSA.
3502     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3503                                 CharUnits::fromQuantity(16));
3504     Address RegAddrHi =
3505       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3506                                              CharUnits::fromQuantity(16));
3507     llvm::Type *DoubleTy = CGF.DoubleTy;
3508     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
3509     llvm::Value *V;
3510     Address Tmp = CGF.CreateMemTemp(Ty);
3511     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3512     V = CGF.Builder.CreateLoad(
3513                    CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
3514     CGF.Builder.CreateStore(V,
3515                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3516     V = CGF.Builder.CreateLoad(
3517                    CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
3518     CGF.Builder.CreateStore(V,
3519           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3520 
3521     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3522   }
3523 
3524   // AMD64-ABI 3.5.7p5: Step 5. Set:
3525   // l->gp_offset = l->gp_offset + num_gp * 8
3526   // l->fp_offset = l->fp_offset + num_fp * 16.
3527   if (neededInt) {
3528     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3529     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3530                             gp_offset_p);
3531   }
3532   if (neededSSE) {
3533     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3534     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3535                             fp_offset_p);
3536   }
3537   CGF.EmitBranch(ContBlock);
3538 
3539   // Emit code to load the value if it was passed in memory.
3540 
3541   CGF.EmitBlock(InMemBlock);
3542   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3543 
3544   // Return the appropriate result.
3545 
3546   CGF.EmitBlock(ContBlock);
3547   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3548                                  "vaarg.addr");
3549   return ResAddr;
3550 }
3551 
EmitMSVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const3552 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3553                                    QualType Ty) const {
3554   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3555                           CGF.getContext().getTypeInfoInChars(Ty),
3556                           CharUnits::fromQuantity(8),
3557                           /*allowHigherAlign*/ false);
3558 }
3559 
classify(QualType Ty,unsigned & FreeSSERegs,bool IsReturnType) const3560 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3561                                       bool IsReturnType) const {
3562 
3563   if (Ty->isVoidType())
3564     return ABIArgInfo::getIgnore();
3565 
3566   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3567     Ty = EnumTy->getDecl()->getIntegerType();
3568 
3569   TypeInfo Info = getContext().getTypeInfo(Ty);
3570   uint64_t Width = Info.Width;
3571   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3572 
3573   const RecordType *RT = Ty->getAs<RecordType>();
3574   if (RT) {
3575     if (!IsReturnType) {
3576       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3577         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3578     }
3579 
3580     if (RT->getDecl()->hasFlexibleArrayMember())
3581       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3582 
3583   }
3584 
3585   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3586   // other targets.
3587   const Type *Base = nullptr;
3588   uint64_t NumElts = 0;
3589   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3590     if (FreeSSERegs >= NumElts) {
3591       FreeSSERegs -= NumElts;
3592       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3593         return ABIArgInfo::getDirect();
3594       return ABIArgInfo::getExpand();
3595     }
3596     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3597   }
3598 
3599 
3600   if (Ty->isMemberPointerType()) {
3601     // If the member pointer is represented by an LLVM int or ptr, pass it
3602     // directly.
3603     llvm::Type *LLTy = CGT.ConvertType(Ty);
3604     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3605       return ABIArgInfo::getDirect();
3606   }
3607 
3608   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3609     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3610     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3611     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3612       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3613 
3614     // Otherwise, coerce it to a small integer.
3615     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3616   }
3617 
3618   // Bool type is always extended to the ABI, other builtin types are not
3619   // extended.
3620   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3621   if (BT && BT->getKind() == BuiltinType::Bool)
3622     return ABIArgInfo::getExtend();
3623 
3624   // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
3625   // passes them indirectly through memory.
3626   if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
3627     const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3628     if (LDF == &llvm::APFloat::x87DoubleExtended)
3629       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3630   }
3631 
3632   return ABIArgInfo::getDirect();
3633 }
3634 
computeInfo(CGFunctionInfo & FI) const3635 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3636   bool IsVectorCall =
3637       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3638 
3639   // We can use up to 4 SSE return registers with vectorcall.
3640   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3641   if (!getCXXABI().classifyReturnType(FI))
3642     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3643 
3644   // We can use up to 6 SSE register parameters with vectorcall.
3645   FreeSSERegs = IsVectorCall ? 6 : 0;
3646   for (auto &I : FI.arguments())
3647     I.info = classify(I.type, FreeSSERegs, false);
3648 }
3649 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const3650 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3651                                     QualType Ty) const {
3652   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3653                           CGF.getContext().getTypeInfoInChars(Ty),
3654                           CharUnits::fromQuantity(8),
3655                           /*allowHigherAlign*/ false);
3656 }
3657 
3658 // PowerPC-32
3659 namespace {
3660 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3661 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3662 bool IsSoftFloatABI;
3663 public:
PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes & CGT,bool SoftFloatABI)3664   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
3665       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
3666 
3667   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3668                     QualType Ty) const override;
3669 };
3670 
3671 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3672 public:
PPC32TargetCodeGenInfo(CodeGenTypes & CGT,bool SoftFloatABI)3673   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
3674       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
3675 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3676   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3677     // This is recovered from gcc output.
3678     return 1; // r1 is the dedicated stack pointer
3679   }
3680 
3681   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3682                                llvm::Value *Address) const override;
3683 };
3684 
3685 }
3686 
3687 // TODO: this implementation is now likely redundant with
3688 // DefaultABIInfo::EmitVAArg.
EmitVAArg(CodeGenFunction & CGF,Address VAList,QualType Ty) const3689 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
3690                                       QualType Ty) const {
3691   const unsigned OverflowLimit = 8;
3692   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3693     // TODO: Implement this. For now ignore.
3694     (void)CTy;
3695     return Address::invalid(); // FIXME?
3696   }
3697 
3698   // struct __va_list_tag {
3699   //   unsigned char gpr;
3700   //   unsigned char fpr;
3701   //   unsigned short reserved;
3702   //   void *overflow_arg_area;
3703   //   void *reg_save_area;
3704   // };
3705 
3706   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3707   bool isInt =
3708       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3709   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
3710 
3711   // All aggregates are passed indirectly?  That doesn't seem consistent
3712   // with the argument-lowering code.
3713   bool isIndirect = Ty->isAggregateType();
3714 
3715   CGBuilderTy &Builder = CGF.Builder;
3716 
3717   // The calling convention either uses 1-2 GPRs or 1 FPR.
3718   Address NumRegsAddr = Address::invalid();
3719   if (isInt || IsSoftFloatABI) {
3720     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
3721   } else {
3722     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
3723   }
3724 
3725   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
3726 
3727   // "Align" the register count when TY is i64.
3728   if (isI64 || (isF64 && IsSoftFloatABI)) {
3729     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
3730     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
3731   }
3732 
3733   llvm::Value *CC =
3734       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
3735 
3736   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3737   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3738   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3739 
3740   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3741 
3742   llvm::Type *DirectTy = CGF.ConvertType(Ty);
3743   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
3744 
3745   // Case 1: consume registers.
3746   Address RegAddr = Address::invalid();
3747   {
3748     CGF.EmitBlock(UsingRegs);
3749 
3750     Address RegSaveAreaPtr =
3751       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
3752     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
3753                       CharUnits::fromQuantity(8));
3754     assert(RegAddr.getElementType() == CGF.Int8Ty);
3755 
3756     // Floating-point registers start after the general-purpose registers.
3757     if (!(isInt || IsSoftFloatABI)) {
3758       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
3759                                                    CharUnits::fromQuantity(32));
3760     }
3761 
3762     // Get the address of the saved value by scaling the number of
3763     // registers we've used by the number of
3764     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
3765     llvm::Value *RegOffset =
3766       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
3767     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
3768                                             RegAddr.getPointer(), RegOffset),
3769                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
3770     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
3771 
3772     // Increase the used-register count.
3773     NumRegs =
3774       Builder.CreateAdd(NumRegs,
3775                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
3776     Builder.CreateStore(NumRegs, NumRegsAddr);
3777 
3778     CGF.EmitBranch(Cont);
3779   }
3780 
3781   // Case 2: consume space in the overflow area.
3782   Address MemAddr = Address::invalid();
3783   {
3784     CGF.EmitBlock(UsingOverflow);
3785 
3786     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
3787 
3788     // Everything in the overflow area is rounded up to a size of at least 4.
3789     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
3790 
3791     CharUnits Size;
3792     if (!isIndirect) {
3793       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
3794       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
3795     } else {
3796       Size = CGF.getPointerSize();
3797     }
3798 
3799     Address OverflowAreaAddr =
3800       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
3801     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
3802                          OverflowAreaAlign);
3803     // Round up address of argument to alignment
3804     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3805     if (Align > OverflowAreaAlign) {
3806       llvm::Value *Ptr = OverflowArea.getPointer();
3807       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
3808                                                            Align);
3809     }
3810 
3811     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
3812 
3813     // Increase the overflow area.
3814     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
3815     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
3816     CGF.EmitBranch(Cont);
3817   }
3818 
3819   CGF.EmitBlock(Cont);
3820 
3821   // Merge the cases with a phi.
3822   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
3823                                 "vaarg.addr");
3824 
3825   // Load the pointer if the argument was passed indirectly.
3826   if (isIndirect) {
3827     Result = Address(Builder.CreateLoad(Result, "aggr"),
3828                      getContext().getTypeAlignInChars(Ty));
3829   }
3830 
3831   return Result;
3832 }
3833 
3834 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const3835 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3836                                                 llvm::Value *Address) const {
3837   // This is calculated from the LLVM and GCC tables and verified
3838   // against gcc output.  AFAIK all ABIs use the same encoding.
3839 
3840   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3841 
3842   llvm::IntegerType *i8 = CGF.Int8Ty;
3843   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3844   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3845   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3846 
3847   // 0-31: r0-31, the 4-byte general-purpose registers
3848   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3849 
3850   // 32-63: fp0-31, the 8-byte floating-point registers
3851   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3852 
3853   // 64-76 are various 4-byte special-purpose registers:
3854   // 64: mq
3855   // 65: lr
3856   // 66: ctr
3857   // 67: ap
3858   // 68-75 cr0-7
3859   // 76: xer
3860   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3861 
3862   // 77-108: v0-31, the 16-byte vector registers
3863   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3864 
3865   // 109: vrsave
3866   // 110: vscr
3867   // 111: spe_acc
3868   // 112: spefscr
3869   // 113: sfp
3870   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3871 
3872   return false;
3873 }
3874 
3875 // PowerPC-64
3876 
3877 namespace {
3878 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3879 class PPC64_SVR4_ABIInfo : public ABIInfo {
3880 public:
3881   enum ABIKind {
3882     ELFv1 = 0,
3883     ELFv2
3884   };
3885 
3886 private:
3887   static const unsigned GPRBits = 64;
3888   ABIKind Kind;
3889   bool HasQPX;
3890 
3891   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
3892   // will be passed in a QPX register.
IsQPXVectorTy(const Type * Ty) const3893   bool IsQPXVectorTy(const Type *Ty) const {
3894     if (!HasQPX)
3895       return false;
3896 
3897     if (const VectorType *VT = Ty->getAs<VectorType>()) {
3898       unsigned NumElements = VT->getNumElements();
3899       if (NumElements == 1)
3900         return false;
3901 
3902       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
3903         if (getContext().getTypeSize(Ty) <= 256)
3904           return true;
3905       } else if (VT->getElementType()->
3906                    isSpecificBuiltinType(BuiltinType::Float)) {
3907         if (getContext().getTypeSize(Ty) <= 128)
3908           return true;
3909       }
3910     }
3911 
3912     return false;
3913   }
3914 
IsQPXVectorTy(QualType Ty) const3915   bool IsQPXVectorTy(QualType Ty) const {
3916     return IsQPXVectorTy(Ty.getTypePtr());
3917   }
3918 
3919 public:
PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes & CGT,ABIKind Kind,bool HasQPX)3920   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
3921       : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
3922 
3923   bool isPromotableTypeForABI(QualType Ty) const;
3924   CharUnits getParamTypeAlignment(QualType Ty) const;
3925 
3926   ABIArgInfo classifyReturnType(QualType RetTy) const;
3927   ABIArgInfo classifyArgumentType(QualType Ty) const;
3928 
3929   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3930   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3931                                          uint64_t Members) const override;
3932 
3933   // TODO: We can add more logic to computeInfo to improve performance.
3934   // Example: For aggregate arguments that fit in a register, we could
3935   // use getDirectInReg (as is done below for structs containing a single
3936   // floating-point value) to avoid pushing them to memory on function
3937   // entry.  This would require changing the logic in PPCISelLowering
3938   // when lowering the parameters in the caller and args in the callee.
computeInfo(CGFunctionInfo & FI) const3939   void computeInfo(CGFunctionInfo &FI) const override {
3940     if (!getCXXABI().classifyReturnType(FI))
3941       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3942     for (auto &I : FI.arguments()) {
3943       // We rely on the default argument classification for the most part.
3944       // One exception:  An aggregate containing a single floating-point
3945       // or vector item must be passed in a register if one is available.
3946       const Type *T = isSingleElementStruct(I.type, getContext());
3947       if (T) {
3948         const BuiltinType *BT = T->getAs<BuiltinType>();
3949         if (IsQPXVectorTy(T) ||
3950             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3951             (BT && BT->isFloatingPoint())) {
3952           QualType QT(T, 0);
3953           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3954           continue;
3955         }
3956       }
3957       I.info = classifyArgumentType(I.type);
3958     }
3959   }
3960 
3961   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3962                     QualType Ty) const override;
3963 };
3964 
3965 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3966 
3967 public:
PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes & CGT,PPC64_SVR4_ABIInfo::ABIKind Kind,bool HasQPX)3968   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3969                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
3970       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {}
3971 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3972   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3973     // This is recovered from gcc output.
3974     return 1; // r1 is the dedicated stack pointer
3975   }
3976 
3977   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3978                                llvm::Value *Address) const override;
3979 };
3980 
3981 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3982 public:
PPC64TargetCodeGenInfo(CodeGenTypes & CGT)3983   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3984 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3985   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3986     // This is recovered from gcc output.
3987     return 1; // r1 is the dedicated stack pointer
3988   }
3989 
3990   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3991                                llvm::Value *Address) const override;
3992 };
3993 
3994 }
3995 
3996 // Return true if the ABI requires Ty to be passed sign- or zero-
3997 // extended to 64 bits.
3998 bool
isPromotableTypeForABI(QualType Ty) const3999 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4000   // Treat an enum type as its underlying type.
4001   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4002     Ty = EnumTy->getDecl()->getIntegerType();
4003 
4004   // Promotable integer types are required to be promoted by the ABI.
4005   if (Ty->isPromotableIntegerType())
4006     return true;
4007 
4008   // In addition to the usual promotable integer types, we also need to
4009   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4010   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4011     switch (BT->getKind()) {
4012     case BuiltinType::Int:
4013     case BuiltinType::UInt:
4014       return true;
4015     default:
4016       break;
4017     }
4018 
4019   return false;
4020 }
4021 
4022 /// isAlignedParamType - Determine whether a type requires 16-byte or
4023 /// higher alignment in the parameter area.  Always returns at least 8.
getParamTypeAlignment(QualType Ty) const4024 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4025   // Complex types are passed just like their elements.
4026   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4027     Ty = CTy->getElementType();
4028 
4029   // Only vector types of size 16 bytes need alignment (larger types are
4030   // passed via reference, smaller types are not aligned).
4031   if (IsQPXVectorTy(Ty)) {
4032     if (getContext().getTypeSize(Ty) > 128)
4033       return CharUnits::fromQuantity(32);
4034 
4035     return CharUnits::fromQuantity(16);
4036   } else if (Ty->isVectorType()) {
4037     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4038   }
4039 
4040   // For single-element float/vector structs, we consider the whole type
4041   // to have the same alignment requirements as its single element.
4042   const Type *AlignAsType = nullptr;
4043   const Type *EltType = isSingleElementStruct(Ty, getContext());
4044   if (EltType) {
4045     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4046     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4047          getContext().getTypeSize(EltType) == 128) ||
4048         (BT && BT->isFloatingPoint()))
4049       AlignAsType = EltType;
4050   }
4051 
4052   // Likewise for ELFv2 homogeneous aggregates.
4053   const Type *Base = nullptr;
4054   uint64_t Members = 0;
4055   if (!AlignAsType && Kind == ELFv2 &&
4056       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4057     AlignAsType = Base;
4058 
4059   // With special case aggregates, only vector base types need alignment.
4060   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4061     if (getContext().getTypeSize(AlignAsType) > 128)
4062       return CharUnits::fromQuantity(32);
4063 
4064     return CharUnits::fromQuantity(16);
4065   } else if (AlignAsType) {
4066     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4067   }
4068 
4069   // Otherwise, we only need alignment for any aggregate type that
4070   // has an alignment requirement of >= 16 bytes.
4071   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4072     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4073       return CharUnits::fromQuantity(32);
4074     return CharUnits::fromQuantity(16);
4075   }
4076 
4077   return CharUnits::fromQuantity(8);
4078 }
4079 
4080 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4081 /// aggregate.  Base is set to the base element type, and Members is set
4082 /// to the number of base elements.
isHomogeneousAggregate(QualType Ty,const Type * & Base,uint64_t & Members) const4083 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4084                                      uint64_t &Members) const {
4085   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4086     uint64_t NElements = AT->getSize().getZExtValue();
4087     if (NElements == 0)
4088       return false;
4089     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4090       return false;
4091     Members *= NElements;
4092   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4093     const RecordDecl *RD = RT->getDecl();
4094     if (RD->hasFlexibleArrayMember())
4095       return false;
4096 
4097     Members = 0;
4098 
4099     // If this is a C++ record, check the bases first.
4100     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4101       for (const auto &I : CXXRD->bases()) {
4102         // Ignore empty records.
4103         if (isEmptyRecord(getContext(), I.getType(), true))
4104           continue;
4105 
4106         uint64_t FldMembers;
4107         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4108           return false;
4109 
4110         Members += FldMembers;
4111       }
4112     }
4113 
4114     for (const auto *FD : RD->fields()) {
4115       // Ignore (non-zero arrays of) empty records.
4116       QualType FT = FD->getType();
4117       while (const ConstantArrayType *AT =
4118              getContext().getAsConstantArrayType(FT)) {
4119         if (AT->getSize().getZExtValue() == 0)
4120           return false;
4121         FT = AT->getElementType();
4122       }
4123       if (isEmptyRecord(getContext(), FT, true))
4124         continue;
4125 
4126       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4127       if (getContext().getLangOpts().CPlusPlus &&
4128           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4129         continue;
4130 
4131       uint64_t FldMembers;
4132       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4133         return false;
4134 
4135       Members = (RD->isUnion() ?
4136                  std::max(Members, FldMembers) : Members + FldMembers);
4137     }
4138 
4139     if (!Base)
4140       return false;
4141 
4142     // Ensure there is no padding.
4143     if (getContext().getTypeSize(Base) * Members !=
4144         getContext().getTypeSize(Ty))
4145       return false;
4146   } else {
4147     Members = 1;
4148     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4149       Members = 2;
4150       Ty = CT->getElementType();
4151     }
4152 
4153     // Most ABIs only support float, double, and some vector type widths.
4154     if (!isHomogeneousAggregateBaseType(Ty))
4155       return false;
4156 
4157     // The base type must be the same for all members.  Types that
4158     // agree in both total size and mode (float vs. vector) are
4159     // treated as being equivalent here.
4160     const Type *TyPtr = Ty.getTypePtr();
4161     if (!Base) {
4162       Base = TyPtr;
4163       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4164       // so make sure to widen it explicitly.
4165       if (const VectorType *VT = Base->getAs<VectorType>()) {
4166         QualType EltTy = VT->getElementType();
4167         unsigned NumElements =
4168             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4169         Base = getContext()
4170                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4171                    .getTypePtr();
4172       }
4173     }
4174 
4175     if (Base->isVectorType() != TyPtr->isVectorType() ||
4176         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4177       return false;
4178   }
4179   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4180 }
4181 
isHomogeneousAggregateBaseType(QualType Ty) const4182 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4183   // Homogeneous aggregates for ELFv2 must have base types of float,
4184   // double, long double, or 128-bit vectors.
4185   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4186     if (BT->getKind() == BuiltinType::Float ||
4187         BT->getKind() == BuiltinType::Double ||
4188         BT->getKind() == BuiltinType::LongDouble)
4189       return true;
4190   }
4191   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4192     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4193       return true;
4194   }
4195   return false;
4196 }
4197 
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const4198 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4199     const Type *Base, uint64_t Members) const {
4200   // Vector types require one register, floating point types require one
4201   // or two registers depending on their size.
4202   uint32_t NumRegs =
4203       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
4204 
4205   // Homogeneous Aggregates may occupy at most 8 registers.
4206   return Members * NumRegs <= 8;
4207 }
4208 
4209 ABIArgInfo
classifyArgumentType(QualType Ty) const4210 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4211   Ty = useFirstFieldIfTransparentUnion(Ty);
4212 
4213   if (Ty->isAnyComplexType())
4214     return ABIArgInfo::getDirect();
4215 
4216   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4217   // or via reference (larger than 16 bytes).
4218   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4219     uint64_t Size = getContext().getTypeSize(Ty);
4220     if (Size > 128)
4221       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4222     else if (Size < 128) {
4223       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4224       return ABIArgInfo::getDirect(CoerceTy);
4225     }
4226   }
4227 
4228   if (isAggregateTypeForABI(Ty)) {
4229     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4230       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4231 
4232     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4233     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4234 
4235     // ELFv2 homogeneous aggregates are passed as array types.
4236     const Type *Base = nullptr;
4237     uint64_t Members = 0;
4238     if (Kind == ELFv2 &&
4239         isHomogeneousAggregate(Ty, Base, Members)) {
4240       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4241       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4242       return ABIArgInfo::getDirect(CoerceTy);
4243     }
4244 
4245     // If an aggregate may end up fully in registers, we do not
4246     // use the ByVal method, but pass the aggregate as array.
4247     // This is usually beneficial since we avoid forcing the
4248     // back-end to store the argument to memory.
4249     uint64_t Bits = getContext().getTypeSize(Ty);
4250     if (Bits > 0 && Bits <= 8 * GPRBits) {
4251       llvm::Type *CoerceTy;
4252 
4253       // Types up to 8 bytes are passed as integer type (which will be
4254       // properly aligned in the argument save area doubleword).
4255       if (Bits <= GPRBits)
4256         CoerceTy =
4257             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4258       // Larger types are passed as arrays, with the base type selected
4259       // according to the required alignment in the save area.
4260       else {
4261         uint64_t RegBits = ABIAlign * 8;
4262         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4263         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4264         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4265       }
4266 
4267       return ABIArgInfo::getDirect(CoerceTy);
4268     }
4269 
4270     // All other aggregates are passed ByVal.
4271     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4272                                    /*ByVal=*/true,
4273                                    /*Realign=*/TyAlign > ABIAlign);
4274   }
4275 
4276   return (isPromotableTypeForABI(Ty) ?
4277           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4278 }
4279 
4280 ABIArgInfo
classifyReturnType(QualType RetTy) const4281 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4282   if (RetTy->isVoidType())
4283     return ABIArgInfo::getIgnore();
4284 
4285   if (RetTy->isAnyComplexType())
4286     return ABIArgInfo::getDirect();
4287 
4288   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4289   // or via reference (larger than 16 bytes).
4290   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4291     uint64_t Size = getContext().getTypeSize(RetTy);
4292     if (Size > 128)
4293       return getNaturalAlignIndirect(RetTy);
4294     else if (Size < 128) {
4295       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4296       return ABIArgInfo::getDirect(CoerceTy);
4297     }
4298   }
4299 
4300   if (isAggregateTypeForABI(RetTy)) {
4301     // ELFv2 homogeneous aggregates are returned as array types.
4302     const Type *Base = nullptr;
4303     uint64_t Members = 0;
4304     if (Kind == ELFv2 &&
4305         isHomogeneousAggregate(RetTy, Base, Members)) {
4306       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4307       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4308       return ABIArgInfo::getDirect(CoerceTy);
4309     }
4310 
4311     // ELFv2 small aggregates are returned in up to two registers.
4312     uint64_t Bits = getContext().getTypeSize(RetTy);
4313     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4314       if (Bits == 0)
4315         return ABIArgInfo::getIgnore();
4316 
4317       llvm::Type *CoerceTy;
4318       if (Bits > GPRBits) {
4319         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4320         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
4321       } else
4322         CoerceTy =
4323             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4324       return ABIArgInfo::getDirect(CoerceTy);
4325     }
4326 
4327     // All other aggregates are returned indirectly.
4328     return getNaturalAlignIndirect(RetTy);
4329   }
4330 
4331   return (isPromotableTypeForABI(RetTy) ?
4332           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4333 }
4334 
4335 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const4336 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4337                                       QualType Ty) const {
4338   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4339   TypeInfo.second = getParamTypeAlignment(Ty);
4340 
4341   CharUnits SlotSize = CharUnits::fromQuantity(8);
4342 
4343   // If we have a complex type and the base type is smaller than 8 bytes,
4344   // the ABI calls for the real and imaginary parts to be right-adjusted
4345   // in separate doublewords.  However, Clang expects us to produce a
4346   // pointer to a structure with the two parts packed tightly.  So generate
4347   // loads of the real and imaginary parts relative to the va_list pointer,
4348   // and store them to a temporary structure.
4349   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4350     CharUnits EltSize = TypeInfo.first / 2;
4351     if (EltSize < SlotSize) {
4352       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4353                                             SlotSize * 2, SlotSize,
4354                                             SlotSize, /*AllowHigher*/ true);
4355 
4356       Address RealAddr = Addr;
4357       Address ImagAddr = RealAddr;
4358       if (CGF.CGM.getDataLayout().isBigEndian()) {
4359         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4360                                                           SlotSize - EltSize);
4361         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4362                                                       2 * SlotSize - EltSize);
4363       } else {
4364         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4365       }
4366 
4367       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4368       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4369       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4370       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4371       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4372 
4373       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4374       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4375                              /*init*/ true);
4376       return Temp;
4377     }
4378   }
4379 
4380   // Otherwise, just use the general rule.
4381   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4382                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4383 }
4384 
4385 static bool
PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address)4386 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4387                               llvm::Value *Address) {
4388   // This is calculated from the LLVM and GCC tables and verified
4389   // against gcc output.  AFAIK all ABIs use the same encoding.
4390 
4391   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4392 
4393   llvm::IntegerType *i8 = CGF.Int8Ty;
4394   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4395   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4396   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4397 
4398   // 0-31: r0-31, the 8-byte general-purpose registers
4399   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4400 
4401   // 32-63: fp0-31, the 8-byte floating-point registers
4402   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4403 
4404   // 64-76 are various 4-byte special-purpose registers:
4405   // 64: mq
4406   // 65: lr
4407   // 66: ctr
4408   // 67: ap
4409   // 68-75 cr0-7
4410   // 76: xer
4411   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4412 
4413   // 77-108: v0-31, the 16-byte vector registers
4414   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4415 
4416   // 109: vrsave
4417   // 110: vscr
4418   // 111: spe_acc
4419   // 112: spefscr
4420   // 113: sfp
4421   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4422 
4423   return false;
4424 }
4425 
4426 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const4427 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4428   CodeGen::CodeGenFunction &CGF,
4429   llvm::Value *Address) const {
4430 
4431   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4432 }
4433 
4434 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const4435 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4436                                                 llvm::Value *Address) const {
4437 
4438   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4439 }
4440 
4441 //===----------------------------------------------------------------------===//
4442 // AArch64 ABI Implementation
4443 //===----------------------------------------------------------------------===//
4444 
4445 namespace {
4446 
4447 class AArch64ABIInfo : public SwiftABIInfo {
4448 public:
4449   enum ABIKind {
4450     AAPCS = 0,
4451     DarwinPCS
4452   };
4453 
4454 private:
4455   ABIKind Kind;
4456 
4457 public:
AArch64ABIInfo(CodeGenTypes & CGT,ABIKind Kind)4458   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4459     : SwiftABIInfo(CGT), Kind(Kind) {}
4460 
4461 private:
getABIKind() const4462   ABIKind getABIKind() const { return Kind; }
isDarwinPCS() const4463   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4464 
4465   ABIArgInfo classifyReturnType(QualType RetTy) const;
4466   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4467   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4468   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4469                                          uint64_t Members) const override;
4470 
4471   bool isIllegalVectorType(QualType Ty) const;
4472 
computeInfo(CGFunctionInfo & FI) const4473   void computeInfo(CGFunctionInfo &FI) const override {
4474     if (!getCXXABI().classifyReturnType(FI))
4475       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4476 
4477     for (auto &it : FI.arguments())
4478       it.info = classifyArgumentType(it.type);
4479   }
4480 
4481   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4482                           CodeGenFunction &CGF) const;
4483 
4484   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4485                          CodeGenFunction &CGF) const;
4486 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const4487   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4488                     QualType Ty) const override {
4489     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4490                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4491   }
4492 
shouldPassIndirectlyForSwift(CharUnits totalSize,ArrayRef<llvm::Type * > scalars,bool asReturnValue) const4493   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
4494                                     ArrayRef<llvm::Type*> scalars,
4495                                     bool asReturnValue) const override {
4496     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4497   }
4498 };
4499 
4500 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4501 public:
AArch64TargetCodeGenInfo(CodeGenTypes & CGT,AArch64ABIInfo::ABIKind Kind)4502   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4503       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4504 
getARCRetainAutoreleasedReturnValueMarker() const4505   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4506     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
4507   }
4508 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const4509   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4510     return 31;
4511   }
4512 
doesReturnSlotInterfereWithArgs() const4513   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4514 };
4515 }
4516 
classifyArgumentType(QualType Ty) const4517 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4518   Ty = useFirstFieldIfTransparentUnion(Ty);
4519 
4520   // Handle illegal vector types here.
4521   if (isIllegalVectorType(Ty)) {
4522     uint64_t Size = getContext().getTypeSize(Ty);
4523     // Android promotes <2 x i8> to i16, not i32
4524     if (isAndroid() && (Size <= 16)) {
4525       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
4526       return ABIArgInfo::getDirect(ResType);
4527     }
4528     if (Size <= 32) {
4529       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4530       return ABIArgInfo::getDirect(ResType);
4531     }
4532     if (Size == 64) {
4533       llvm::Type *ResType =
4534           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4535       return ABIArgInfo::getDirect(ResType);
4536     }
4537     if (Size == 128) {
4538       llvm::Type *ResType =
4539           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4540       return ABIArgInfo::getDirect(ResType);
4541     }
4542     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4543   }
4544 
4545   if (!isAggregateTypeForABI(Ty)) {
4546     // Treat an enum type as its underlying type.
4547     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4548       Ty = EnumTy->getDecl()->getIntegerType();
4549 
4550     return (Ty->isPromotableIntegerType() && isDarwinPCS()
4551                 ? ABIArgInfo::getExtend()
4552                 : ABIArgInfo::getDirect());
4553   }
4554 
4555   // Structures with either a non-trivial destructor or a non-trivial
4556   // copy constructor are always indirect.
4557   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4558     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
4559                                      CGCXXABI::RAA_DirectInMemory);
4560   }
4561 
4562   // Empty records are always ignored on Darwin, but actually passed in C++ mode
4563   // elsewhere for GNU compatibility.
4564   if (isEmptyRecord(getContext(), Ty, true)) {
4565     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
4566       return ABIArgInfo::getIgnore();
4567 
4568     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4569   }
4570 
4571   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
4572   const Type *Base = nullptr;
4573   uint64_t Members = 0;
4574   if (isHomogeneousAggregate(Ty, Base, Members)) {
4575     return ABIArgInfo::getDirect(
4576         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4577   }
4578 
4579   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4580   uint64_t Size = getContext().getTypeSize(Ty);
4581   if (Size <= 128) {
4582     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
4583     // same size and alignment.
4584     if (getTarget().isRenderScriptTarget()) {
4585       return coerceToIntArray(Ty, getContext(), getVMContext());
4586     }
4587     unsigned Alignment = getContext().getTypeAlign(Ty);
4588     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4589 
4590     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4591     // For aggregates with 16-byte alignment, we use i128.
4592     if (Alignment < 128 && Size == 128) {
4593       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4594       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4595     }
4596     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4597   }
4598 
4599   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4600 }
4601 
classifyReturnType(QualType RetTy) const4602 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4603   if (RetTy->isVoidType())
4604     return ABIArgInfo::getIgnore();
4605 
4606   // Large vector types should be returned via memory.
4607   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
4608     return getNaturalAlignIndirect(RetTy);
4609 
4610   if (!isAggregateTypeForABI(RetTy)) {
4611     // Treat an enum type as its underlying type.
4612     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4613       RetTy = EnumTy->getDecl()->getIntegerType();
4614 
4615     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
4616                 ? ABIArgInfo::getExtend()
4617                 : ABIArgInfo::getDirect());
4618   }
4619 
4620   if (isEmptyRecord(getContext(), RetTy, true))
4621     return ABIArgInfo::getIgnore();
4622 
4623   const Type *Base = nullptr;
4624   uint64_t Members = 0;
4625   if (isHomogeneousAggregate(RetTy, Base, Members))
4626     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
4627     return ABIArgInfo::getDirect();
4628 
4629   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
4630   uint64_t Size = getContext().getTypeSize(RetTy);
4631   if (Size <= 128) {
4632     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
4633     // same size and alignment.
4634     if (getTarget().isRenderScriptTarget()) {
4635       return coerceToIntArray(RetTy, getContext(), getVMContext());
4636     }
4637     unsigned Alignment = getContext().getTypeAlign(RetTy);
4638     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4639 
4640     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4641     // For aggregates with 16-byte alignment, we use i128.
4642     if (Alignment < 128 && Size == 128) {
4643       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4644       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4645     }
4646     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4647   }
4648 
4649   return getNaturalAlignIndirect(RetTy);
4650 }
4651 
4652 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
isIllegalVectorType(QualType Ty) const4653 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4654   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4655     // Check whether VT is legal.
4656     unsigned NumElements = VT->getNumElements();
4657     uint64_t Size = getContext().getTypeSize(VT);
4658     // NumElements should be power of 2.
4659     if (!llvm::isPowerOf2_32(NumElements))
4660       return true;
4661     return Size != 64 && (Size != 128 || NumElements == 1);
4662   }
4663   return false;
4664 }
4665 
isHomogeneousAggregateBaseType(QualType Ty) const4666 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4667   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4668   // point type or a short-vector type. This is the same as the 32-bit ABI,
4669   // but with the difference that any floating-point type is allowed,
4670   // including __fp16.
4671   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4672     if (BT->isFloatingPoint())
4673       return true;
4674   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4675     unsigned VecSize = getContext().getTypeSize(VT);
4676     if (VecSize == 64 || VecSize == 128)
4677       return true;
4678   }
4679   return false;
4680 }
4681 
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const4682 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4683                                                        uint64_t Members) const {
4684   return Members <= 4;
4685 }
4686 
EmitAAPCSVAArg(Address VAListAddr,QualType Ty,CodeGenFunction & CGF) const4687 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
4688                                             QualType Ty,
4689                                             CodeGenFunction &CGF) const {
4690   ABIArgInfo AI = classifyArgumentType(Ty);
4691   bool IsIndirect = AI.isIndirect();
4692 
4693   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4694   if (IsIndirect)
4695     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4696   else if (AI.getCoerceToType())
4697     BaseTy = AI.getCoerceToType();
4698 
4699   unsigned NumRegs = 1;
4700   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4701     BaseTy = ArrTy->getElementType();
4702     NumRegs = ArrTy->getNumElements();
4703   }
4704   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4705 
4706   // The AArch64 va_list type and handling is specified in the Procedure Call
4707   // Standard, section B.4:
4708   //
4709   // struct {
4710   //   void *__stack;
4711   //   void *__gr_top;
4712   //   void *__vr_top;
4713   //   int __gr_offs;
4714   //   int __vr_offs;
4715   // };
4716 
4717   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4718   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4719   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4720   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4721 
4722   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4723   CharUnits TyAlign = TyInfo.second;
4724 
4725   Address reg_offs_p = Address::invalid();
4726   llvm::Value *reg_offs = nullptr;
4727   int reg_top_index;
4728   CharUnits reg_top_offset;
4729   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
4730   if (!IsFPR) {
4731     // 3 is the field number of __gr_offs
4732     reg_offs_p =
4733         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
4734                                     "gr_offs_p");
4735     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4736     reg_top_index = 1; // field number for __gr_top
4737     reg_top_offset = CharUnits::fromQuantity(8);
4738     RegSize = llvm::alignTo(RegSize, 8);
4739   } else {
4740     // 4 is the field number of __vr_offs.
4741     reg_offs_p =
4742         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
4743                                     "vr_offs_p");
4744     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4745     reg_top_index = 2; // field number for __vr_top
4746     reg_top_offset = CharUnits::fromQuantity(16);
4747     RegSize = 16 * NumRegs;
4748   }
4749 
4750   //=======================================
4751   // Find out where argument was passed
4752   //=======================================
4753 
4754   // If reg_offs >= 0 we're already using the stack for this type of
4755   // argument. We don't want to keep updating reg_offs (in case it overflows,
4756   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4757   // whatever they get).
4758   llvm::Value *UsingStack = nullptr;
4759   UsingStack = CGF.Builder.CreateICmpSGE(
4760       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4761 
4762   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4763 
4764   // Otherwise, at least some kind of argument could go in these registers, the
4765   // question is whether this particular type is too big.
4766   CGF.EmitBlock(MaybeRegBlock);
4767 
4768   // Integer arguments may need to correct register alignment (for example a
4769   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4770   // align __gr_offs to calculate the potential address.
4771   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
4772     int Align = TyAlign.getQuantity();
4773 
4774     reg_offs = CGF.Builder.CreateAdd(
4775         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4776         "align_regoffs");
4777     reg_offs = CGF.Builder.CreateAnd(
4778         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4779         "aligned_regoffs");
4780   }
4781 
4782   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4783   // The fact that this is done unconditionally reflects the fact that
4784   // allocating an argument to the stack also uses up all the remaining
4785   // registers of the appropriate kind.
4786   llvm::Value *NewOffset = nullptr;
4787   NewOffset = CGF.Builder.CreateAdd(
4788       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4789   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4790 
4791   // Now we're in a position to decide whether this argument really was in
4792   // registers or not.
4793   llvm::Value *InRegs = nullptr;
4794   InRegs = CGF.Builder.CreateICmpSLE(
4795       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4796 
4797   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4798 
4799   //=======================================
4800   // Argument was in registers
4801   //=======================================
4802 
4803   // Now we emit the code for if the argument was originally passed in
4804   // registers. First start the appropriate block:
4805   CGF.EmitBlock(InRegBlock);
4806 
4807   llvm::Value *reg_top = nullptr;
4808   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
4809                                                   reg_top_offset, "reg_top_p");
4810   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4811   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
4812                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
4813   Address RegAddr = Address::invalid();
4814   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
4815 
4816   if (IsIndirect) {
4817     // If it's been passed indirectly (actually a struct), whatever we find from
4818     // stored registers or on the stack will actually be a struct **.
4819     MemTy = llvm::PointerType::getUnqual(MemTy);
4820   }
4821 
4822   const Type *Base = nullptr;
4823   uint64_t NumMembers = 0;
4824   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4825   if (IsHFA && NumMembers > 1) {
4826     // Homogeneous aggregates passed in registers will have their elements split
4827     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4828     // qN+1, ...). We reload and store into a temporary local variable
4829     // contiguously.
4830     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4831     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
4832     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4833     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4834     Address Tmp = CGF.CreateTempAlloca(HFATy,
4835                                        std::max(TyAlign, BaseTyInfo.second));
4836 
4837     // On big-endian platforms, the value will be right-aligned in its slot.
4838     int Offset = 0;
4839     if (CGF.CGM.getDataLayout().isBigEndian() &&
4840         BaseTyInfo.first.getQuantity() < 16)
4841       Offset = 16 - BaseTyInfo.first.getQuantity();
4842 
4843     for (unsigned i = 0; i < NumMembers; ++i) {
4844       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
4845       Address LoadAddr =
4846         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
4847       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
4848 
4849       Address StoreAddr =
4850         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
4851 
4852       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4853       CGF.Builder.CreateStore(Elem, StoreAddr);
4854     }
4855 
4856     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
4857   } else {
4858     // Otherwise the object is contiguous in memory.
4859 
4860     // It might be right-aligned in its slot.
4861     CharUnits SlotSize = BaseAddr.getAlignment();
4862     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
4863         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4864         TyInfo.first < SlotSize) {
4865       CharUnits Offset = SlotSize - TyInfo.first;
4866       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
4867     }
4868 
4869     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
4870   }
4871 
4872   CGF.EmitBranch(ContBlock);
4873 
4874   //=======================================
4875   // Argument was on the stack
4876   //=======================================
4877   CGF.EmitBlock(OnStackBlock);
4878 
4879   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
4880                                                 CharUnits::Zero(), "stack_p");
4881   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
4882 
4883   // Again, stack arguments may need realignment. In this case both integer and
4884   // floating-point ones might be affected.
4885   if (!IsIndirect && TyAlign.getQuantity() > 8) {
4886     int Align = TyAlign.getQuantity();
4887 
4888     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
4889 
4890     OnStackPtr = CGF.Builder.CreateAdd(
4891         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4892         "align_stack");
4893     OnStackPtr = CGF.Builder.CreateAnd(
4894         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4895         "align_stack");
4896 
4897     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
4898   }
4899   Address OnStackAddr(OnStackPtr,
4900                       std::max(CharUnits::fromQuantity(8), TyAlign));
4901 
4902   // All stack slots are multiples of 8 bytes.
4903   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
4904   CharUnits StackSize;
4905   if (IsIndirect)
4906     StackSize = StackSlotSize;
4907   else
4908     StackSize = TyInfo.first.alignTo(StackSlotSize);
4909 
4910   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
4911   llvm::Value *NewStack =
4912       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
4913 
4914   // Write the new value of __stack for the next call to va_arg
4915   CGF.Builder.CreateStore(NewStack, stack_p);
4916 
4917   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4918       TyInfo.first < StackSlotSize) {
4919     CharUnits Offset = StackSlotSize - TyInfo.first;
4920     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
4921   }
4922 
4923   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
4924 
4925   CGF.EmitBranch(ContBlock);
4926 
4927   //=======================================
4928   // Tidy up
4929   //=======================================
4930   CGF.EmitBlock(ContBlock);
4931 
4932   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
4933                                  OnStackAddr, OnStackBlock, "vaargs.addr");
4934 
4935   if (IsIndirect)
4936     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
4937                    TyInfo.second);
4938 
4939   return ResAddr;
4940 }
4941 
EmitDarwinVAArg(Address VAListAddr,QualType Ty,CodeGenFunction & CGF) const4942 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4943                                         CodeGenFunction &CGF) const {
4944   // The backend's lowering doesn't support va_arg for aggregates or
4945   // illegal vector types.  Lower VAArg here for these cases and use
4946   // the LLVM va_arg instruction for everything else.
4947   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4948     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
4949 
4950   CharUnits SlotSize = CharUnits::fromQuantity(8);
4951 
4952   // Empty records are ignored for parameter passing purposes.
4953   if (isEmptyRecord(getContext(), Ty, true)) {
4954     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
4955     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
4956     return Addr;
4957   }
4958 
4959   // The size of the actual thing passed, which might end up just
4960   // being a pointer for indirect types.
4961   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4962 
4963   // Arguments bigger than 16 bytes which aren't homogeneous
4964   // aggregates should be passed indirectly.
4965   bool IsIndirect = false;
4966   if (TyInfo.first.getQuantity() > 16) {
4967     const Type *Base = nullptr;
4968     uint64_t Members = 0;
4969     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
4970   }
4971 
4972   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4973                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
4974 }
4975 
4976 //===----------------------------------------------------------------------===//
4977 // ARM ABI Implementation
4978 //===----------------------------------------------------------------------===//
4979 
4980 namespace {
4981 
4982 class ARMABIInfo : public SwiftABIInfo {
4983 public:
4984   enum ABIKind {
4985     APCS = 0,
4986     AAPCS = 1,
4987     AAPCS_VFP = 2,
4988     AAPCS16_VFP = 3,
4989   };
4990 
4991 private:
4992   ABIKind Kind;
4993 
4994 public:
ARMABIInfo(CodeGenTypes & CGT,ABIKind _Kind)4995   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
4996       : SwiftABIInfo(CGT), Kind(_Kind) {
4997     setCCs();
4998   }
4999 
isEABI() const5000   bool isEABI() const {
5001     switch (getTarget().getTriple().getEnvironment()) {
5002     case llvm::Triple::Android:
5003     case llvm::Triple::EABI:
5004     case llvm::Triple::EABIHF:
5005     case llvm::Triple::GNUEABI:
5006     case llvm::Triple::GNUEABIHF:
5007     case llvm::Triple::MuslEABI:
5008     case llvm::Triple::MuslEABIHF:
5009       return true;
5010     default:
5011       return false;
5012     }
5013   }
5014 
isEABIHF() const5015   bool isEABIHF() const {
5016     switch (getTarget().getTriple().getEnvironment()) {
5017     case llvm::Triple::EABIHF:
5018     case llvm::Triple::GNUEABIHF:
5019     case llvm::Triple::MuslEABIHF:
5020       return true;
5021     default:
5022       return false;
5023     }
5024   }
5025 
getABIKind() const5026   ABIKind getABIKind() const { return Kind; }
5027 
5028 private:
5029   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
5030   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
5031   bool isIllegalVectorType(QualType Ty) const;
5032 
5033   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5034   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5035                                          uint64_t Members) const override;
5036 
5037   void computeInfo(CGFunctionInfo &FI) const override;
5038 
5039   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5040                     QualType Ty) const override;
5041 
5042   llvm::CallingConv::ID getLLVMDefaultCC() const;
5043   llvm::CallingConv::ID getABIDefaultCC() const;
5044   void setCCs();
5045 
shouldPassIndirectlyForSwift(CharUnits totalSize,ArrayRef<llvm::Type * > scalars,bool asReturnValue) const5046   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
5047                                     ArrayRef<llvm::Type*> scalars,
5048                                     bool asReturnValue) const override {
5049     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5050   }
5051 };
5052 
5053 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5054 public:
ARMTargetCodeGenInfo(CodeGenTypes & CGT,ARMABIInfo::ABIKind K)5055   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5056     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5057 
getABIInfo() const5058   const ARMABIInfo &getABIInfo() const {
5059     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5060   }
5061 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const5062   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5063     return 13;
5064   }
5065 
getARCRetainAutoreleasedReturnValueMarker() const5066   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5067     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
5068   }
5069 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const5070   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5071                                llvm::Value *Address) const override {
5072     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5073 
5074     // 0-15 are the 16 integer registers.
5075     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5076     return false;
5077   }
5078 
getSizeOfUnwindException() const5079   unsigned getSizeOfUnwindException() const override {
5080     if (getABIInfo().isEABI()) return 88;
5081     return TargetCodeGenInfo::getSizeOfUnwindException();
5082   }
5083 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const5084   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5085                            CodeGen::CodeGenModule &CGM) const override {
5086     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5087     if (!FD)
5088       return;
5089 
5090     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5091     if (!Attr)
5092       return;
5093 
5094     const char *Kind;
5095     switch (Attr->getInterrupt()) {
5096     case ARMInterruptAttr::Generic: Kind = ""; break;
5097     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5098     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5099     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5100     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5101     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5102     }
5103 
5104     llvm::Function *Fn = cast<llvm::Function>(GV);
5105 
5106     Fn->addFnAttr("interrupt", Kind);
5107 
5108     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5109     if (ABI == ARMABIInfo::APCS)
5110       return;
5111 
5112     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5113     // however this is not necessarily true on taking any interrupt. Instruct
5114     // the backend to perform a realignment as part of the function prologue.
5115     llvm::AttrBuilder B;
5116     B.addStackAlignmentAttr(8);
5117     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
5118                       llvm::AttributeSet::get(CGM.getLLVMContext(),
5119                                               llvm::AttributeSet::FunctionIndex,
5120                                               B));
5121   }
5122 };
5123 
5124 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5125 public:
WindowsARMTargetCodeGenInfo(CodeGenTypes & CGT,ARMABIInfo::ABIKind K)5126   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5127       : ARMTargetCodeGenInfo(CGT, K) {}
5128 
5129   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5130                            CodeGen::CodeGenModule &CGM) const override;
5131 
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const5132   void getDependentLibraryOption(llvm::StringRef Lib,
5133                                  llvm::SmallString<24> &Opt) const override {
5134     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5135   }
5136 
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const5137   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5138                                llvm::SmallString<32> &Opt) const override {
5139     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5140   }
5141 };
5142 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const5143 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5144     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5145   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5146   addStackProbeSizeTargetAttribute(D, GV, CGM);
5147 }
5148 }
5149 
computeInfo(CGFunctionInfo & FI) const5150 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5151   if (!getCXXABI().classifyReturnType(FI))
5152     FI.getReturnInfo() =
5153         classifyReturnType(FI.getReturnType(), FI.isVariadic());
5154 
5155   for (auto &I : FI.arguments())
5156     I.info = classifyArgumentType(I.type, FI.isVariadic());
5157 
5158   // Always honor user-specified calling convention.
5159   if (FI.getCallingConvention() != llvm::CallingConv::C)
5160     return;
5161 
5162   llvm::CallingConv::ID cc = getRuntimeCC();
5163   if (cc != llvm::CallingConv::C)
5164     FI.setEffectiveCallingConvention(cc);
5165 }
5166 
5167 /// Return the default calling convention that LLVM will use.
getLLVMDefaultCC() const5168 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5169   // The default calling convention that LLVM will infer.
5170   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5171     return llvm::CallingConv::ARM_AAPCS_VFP;
5172   else if (isEABI())
5173     return llvm::CallingConv::ARM_AAPCS;
5174   else
5175     return llvm::CallingConv::ARM_APCS;
5176 }
5177 
5178 /// Return the calling convention that our ABI would like us to use
5179 /// as the C calling convention.
getABIDefaultCC() const5180 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5181   switch (getABIKind()) {
5182   case APCS: return llvm::CallingConv::ARM_APCS;
5183   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5184   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5185   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5186   }
5187   llvm_unreachable("bad ABI kind");
5188 }
5189 
setCCs()5190 void ARMABIInfo::setCCs() {
5191   assert(getRuntimeCC() == llvm::CallingConv::C);
5192 
5193   // Don't muddy up the IR with a ton of explicit annotations if
5194   // they'd just match what LLVM will infer from the triple.
5195   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5196   if (abiCC != getLLVMDefaultCC())
5197     RuntimeCC = abiCC;
5198 
5199   // AAPCS apparently requires runtime support functions to be soft-float, but
5200   // that's almost certainly for historic reasons (Thumb1 not supporting VFP
5201   // most likely). It's more convenient for AAPCS16_VFP to be hard-float.
5202   switch (getABIKind()) {
5203   case APCS:
5204   case AAPCS16_VFP:
5205     if (abiCC != getLLVMDefaultCC())
5206       BuiltinCC = abiCC;
5207     break;
5208   case AAPCS:
5209   case AAPCS_VFP:
5210     BuiltinCC = llvm::CallingConv::ARM_AAPCS;
5211     break;
5212   }
5213 }
5214 
classifyArgumentType(QualType Ty,bool isVariadic) const5215 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
5216                                             bool isVariadic) const {
5217   // 6.1.2.1 The following argument types are VFP CPRCs:
5218   //   A single-precision floating-point type (including promoted
5219   //   half-precision types); A double-precision floating-point type;
5220   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5221   //   with a Base Type of a single- or double-precision floating-point type,
5222   //   64-bit containerized vectors or 128-bit containerized vectors with one
5223   //   to four Elements.
5224   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5225 
5226   Ty = useFirstFieldIfTransparentUnion(Ty);
5227 
5228   // Handle illegal vector types here.
5229   if (isIllegalVectorType(Ty)) {
5230     uint64_t Size = getContext().getTypeSize(Ty);
5231     if (Size <= 32) {
5232       llvm::Type *ResType =
5233           llvm::Type::getInt32Ty(getVMContext());
5234       return ABIArgInfo::getDirect(ResType);
5235     }
5236     if (Size == 64) {
5237       llvm::Type *ResType = llvm::VectorType::get(
5238           llvm::Type::getInt32Ty(getVMContext()), 2);
5239       return ABIArgInfo::getDirect(ResType);
5240     }
5241     if (Size == 128) {
5242       llvm::Type *ResType = llvm::VectorType::get(
5243           llvm::Type::getInt32Ty(getVMContext()), 4);
5244       return ABIArgInfo::getDirect(ResType);
5245     }
5246     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5247   }
5248 
5249   // __fp16 gets passed as if it were an int or float, but with the top 16 bits
5250   // unspecified. This is not done for OpenCL as it handles the half type
5251   // natively, and does not need to interwork with AAPCS code.
5252   if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5253     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5254       llvm::Type::getFloatTy(getVMContext()) :
5255       llvm::Type::getInt32Ty(getVMContext());
5256     return ABIArgInfo::getDirect(ResType);
5257   }
5258 
5259   if (!isAggregateTypeForABI(Ty)) {
5260     // Treat an enum type as its underlying type.
5261     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5262       Ty = EnumTy->getDecl()->getIntegerType();
5263     }
5264 
5265     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5266                                           : ABIArgInfo::getDirect());
5267   }
5268 
5269   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5270     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5271   }
5272 
5273   // Ignore empty records.
5274   if (isEmptyRecord(getContext(), Ty, true))
5275     return ABIArgInfo::getIgnore();
5276 
5277   if (IsEffectivelyAAPCS_VFP) {
5278     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5279     // into VFP registers.
5280     const Type *Base = nullptr;
5281     uint64_t Members = 0;
5282     if (isHomogeneousAggregate(Ty, Base, Members)) {
5283       assert(Base && "Base class should be set for homogeneous aggregate");
5284       // Base can be a floating-point or a vector.
5285       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5286     }
5287   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5288     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5289     // this convention even for a variadic function: the backend will use GPRs
5290     // if needed.
5291     const Type *Base = nullptr;
5292     uint64_t Members = 0;
5293     if (isHomogeneousAggregate(Ty, Base, Members)) {
5294       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5295       llvm::Type *Ty =
5296         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5297       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5298     }
5299   }
5300 
5301   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5302       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5303     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5304     // bigger than 128-bits, they get placed in space allocated by the caller,
5305     // and a pointer is passed.
5306     return ABIArgInfo::getIndirect(
5307         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5308   }
5309 
5310   // Support byval for ARM.
5311   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5312   // most 8-byte. We realign the indirect argument if type alignment is bigger
5313   // than ABI alignment.
5314   uint64_t ABIAlign = 4;
5315   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
5316   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5317        getABIKind() == ARMABIInfo::AAPCS)
5318     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5319 
5320   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5321     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5322     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5323                                    /*ByVal=*/true,
5324                                    /*Realign=*/TyAlign > ABIAlign);
5325   }
5326 
5327   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5328   // same size and alignment.
5329   if (getTarget().isRenderScriptTarget()) {
5330     return coerceToIntArray(Ty, getContext(), getVMContext());
5331   }
5332 
5333   // Otherwise, pass by coercing to a structure of the appropriate size.
5334   llvm::Type* ElemTy;
5335   unsigned SizeRegs;
5336   // FIXME: Try to match the types of the arguments more accurately where
5337   // we can.
5338   if (getContext().getTypeAlign(Ty) <= 32) {
5339     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5340     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5341   } else {
5342     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5343     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5344   }
5345 
5346   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5347 }
5348 
isIntegerLikeType(QualType Ty,ASTContext & Context,llvm::LLVMContext & VMContext)5349 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5350                               llvm::LLVMContext &VMContext) {
5351   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5352   // is called integer-like if its size is less than or equal to one word, and
5353   // the offset of each of its addressable sub-fields is zero.
5354 
5355   uint64_t Size = Context.getTypeSize(Ty);
5356 
5357   // Check that the type fits in a word.
5358   if (Size > 32)
5359     return false;
5360 
5361   // FIXME: Handle vector types!
5362   if (Ty->isVectorType())
5363     return false;
5364 
5365   // Float types are never treated as "integer like".
5366   if (Ty->isRealFloatingType())
5367     return false;
5368 
5369   // If this is a builtin or pointer type then it is ok.
5370   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5371     return true;
5372 
5373   // Small complex integer types are "integer like".
5374   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5375     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5376 
5377   // Single element and zero sized arrays should be allowed, by the definition
5378   // above, but they are not.
5379 
5380   // Otherwise, it must be a record type.
5381   const RecordType *RT = Ty->getAs<RecordType>();
5382   if (!RT) return false;
5383 
5384   // Ignore records with flexible arrays.
5385   const RecordDecl *RD = RT->getDecl();
5386   if (RD->hasFlexibleArrayMember())
5387     return false;
5388 
5389   // Check that all sub-fields are at offset 0, and are themselves "integer
5390   // like".
5391   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5392 
5393   bool HadField = false;
5394   unsigned idx = 0;
5395   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5396        i != e; ++i, ++idx) {
5397     const FieldDecl *FD = *i;
5398 
5399     // Bit-fields are not addressable, we only need to verify they are "integer
5400     // like". We still have to disallow a subsequent non-bitfield, for example:
5401     //   struct { int : 0; int x }
5402     // is non-integer like according to gcc.
5403     if (FD->isBitField()) {
5404       if (!RD->isUnion())
5405         HadField = true;
5406 
5407       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5408         return false;
5409 
5410       continue;
5411     }
5412 
5413     // Check if this field is at offset 0.
5414     if (Layout.getFieldOffset(idx) != 0)
5415       return false;
5416 
5417     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5418       return false;
5419 
5420     // Only allow at most one field in a structure. This doesn't match the
5421     // wording above, but follows gcc in situations with a field following an
5422     // empty structure.
5423     if (!RD->isUnion()) {
5424       if (HadField)
5425         return false;
5426 
5427       HadField = true;
5428     }
5429   }
5430 
5431   return true;
5432 }
5433 
classifyReturnType(QualType RetTy,bool isVariadic) const5434 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5435                                           bool isVariadic) const {
5436   bool IsEffectivelyAAPCS_VFP =
5437       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
5438 
5439   if (RetTy->isVoidType())
5440     return ABIArgInfo::getIgnore();
5441 
5442   // Large vector types should be returned via memory.
5443   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5444     return getNaturalAlignIndirect(RetTy);
5445   }
5446 
5447   // __fp16 gets returned as if it were an int or float, but with the top 16
5448   // bits unspecified. This is not done for OpenCL as it handles the half type
5449   // natively, and does not need to interwork with AAPCS code.
5450   if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5451     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5452       llvm::Type::getFloatTy(getVMContext()) :
5453       llvm::Type::getInt32Ty(getVMContext());
5454     return ABIArgInfo::getDirect(ResType);
5455   }
5456 
5457   if (!isAggregateTypeForABI(RetTy)) {
5458     // Treat an enum type as its underlying type.
5459     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5460       RetTy = EnumTy->getDecl()->getIntegerType();
5461 
5462     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5463                                             : ABIArgInfo::getDirect();
5464   }
5465 
5466   // Are we following APCS?
5467   if (getABIKind() == APCS) {
5468     if (isEmptyRecord(getContext(), RetTy, false))
5469       return ABIArgInfo::getIgnore();
5470 
5471     // Complex types are all returned as packed integers.
5472     //
5473     // FIXME: Consider using 2 x vector types if the back end handles them
5474     // correctly.
5475     if (RetTy->isAnyComplexType())
5476       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5477           getVMContext(), getContext().getTypeSize(RetTy)));
5478 
5479     // Integer like structures are returned in r0.
5480     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5481       // Return in the smallest viable integer type.
5482       uint64_t Size = getContext().getTypeSize(RetTy);
5483       if (Size <= 8)
5484         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5485       if (Size <= 16)
5486         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5487       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5488     }
5489 
5490     // Otherwise return in memory.
5491     return getNaturalAlignIndirect(RetTy);
5492   }
5493 
5494   // Otherwise this is an AAPCS variant.
5495 
5496   if (isEmptyRecord(getContext(), RetTy, true))
5497     return ABIArgInfo::getIgnore();
5498 
5499   // Check for homogeneous aggregates with AAPCS-VFP.
5500   if (IsEffectivelyAAPCS_VFP) {
5501     const Type *Base = nullptr;
5502     uint64_t Members = 0;
5503     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5504       assert(Base && "Base class should be set for homogeneous aggregate");
5505       // Homogeneous Aggregates are returned directly.
5506       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5507     }
5508   }
5509 
5510   // Aggregates <= 4 bytes are returned in r0; other aggregates
5511   // are returned indirectly.
5512   uint64_t Size = getContext().getTypeSize(RetTy);
5513   if (Size <= 32) {
5514     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
5515     // same size and alignment.
5516     if (getTarget().isRenderScriptTarget()) {
5517       return coerceToIntArray(RetTy, getContext(), getVMContext());
5518     }
5519     if (getDataLayout().isBigEndian())
5520       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
5521       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5522 
5523     // Return in the smallest viable integer type.
5524     if (Size <= 8)
5525       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5526     if (Size <= 16)
5527       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5528     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5529   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
5530     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
5531     llvm::Type *CoerceTy =
5532         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
5533     return ABIArgInfo::getDirect(CoerceTy);
5534   }
5535 
5536   return getNaturalAlignIndirect(RetTy);
5537 }
5538 
5539 /// isIllegalVector - check whether Ty is an illegal vector type.
isIllegalVectorType(QualType Ty) const5540 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
5541   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
5542     if (isAndroid()) {
5543       // Android shipped using Clang 3.1, which supported a slightly different
5544       // vector ABI. The primary differences were that 3-element vector types
5545       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
5546       // accepts that legacy behavior for Android only.
5547       // Check whether VT is legal.
5548       unsigned NumElements = VT->getNumElements();
5549       // NumElements should be power of 2 or equal to 3.
5550       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
5551         return true;
5552     } else {
5553       // Check whether VT is legal.
5554       unsigned NumElements = VT->getNumElements();
5555       uint64_t Size = getContext().getTypeSize(VT);
5556       // NumElements should be power of 2.
5557       if (!llvm::isPowerOf2_32(NumElements))
5558         return true;
5559       // Size should be greater than 32 bits.
5560       return Size <= 32;
5561     }
5562   }
5563   return false;
5564 }
5565 
isHomogeneousAggregateBaseType(QualType Ty) const5566 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5567   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
5568   // double, or 64-bit or 128-bit vectors.
5569   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5570     if (BT->getKind() == BuiltinType::Float ||
5571         BT->getKind() == BuiltinType::Double ||
5572         BT->getKind() == BuiltinType::LongDouble)
5573       return true;
5574   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5575     unsigned VecSize = getContext().getTypeSize(VT);
5576     if (VecSize == 64 || VecSize == 128)
5577       return true;
5578   }
5579   return false;
5580 }
5581 
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const5582 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5583                                                    uint64_t Members) const {
5584   return Members <= 4;
5585 }
5586 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const5587 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5588                               QualType Ty) const {
5589   CharUnits SlotSize = CharUnits::fromQuantity(4);
5590 
5591   // Empty records are ignored for parameter passing purposes.
5592   if (isEmptyRecord(getContext(), Ty, true)) {
5593     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
5594     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5595     return Addr;
5596   }
5597 
5598   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5599   CharUnits TyAlignForABI = TyInfo.second;
5600 
5601   // Use indirect if size of the illegal vector is bigger than 16 bytes.
5602   bool IsIndirect = false;
5603   const Type *Base = nullptr;
5604   uint64_t Members = 0;
5605   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
5606     IsIndirect = true;
5607 
5608   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
5609   // allocated by the caller.
5610   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
5611              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5612              !isHomogeneousAggregate(Ty, Base, Members)) {
5613     IsIndirect = true;
5614 
5615   // Otherwise, bound the type's ABI alignment.
5616   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
5617   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
5618   // Our callers should be prepared to handle an under-aligned address.
5619   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5620              getABIKind() == ARMABIInfo::AAPCS) {
5621     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5622     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
5623   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5624     // ARMv7k allows type alignment up to 16 bytes.
5625     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5626     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
5627   } else {
5628     TyAlignForABI = CharUnits::fromQuantity(4);
5629   }
5630   TyInfo.second = TyAlignForABI;
5631 
5632   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
5633                           SlotSize, /*AllowHigherAlign*/ true);
5634 }
5635 
5636 //===----------------------------------------------------------------------===//
5637 // NVPTX ABI Implementation
5638 //===----------------------------------------------------------------------===//
5639 
5640 namespace {
5641 
5642 class NVPTXABIInfo : public ABIInfo {
5643 public:
NVPTXABIInfo(CodeGenTypes & CGT)5644   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5645 
5646   ABIArgInfo classifyReturnType(QualType RetTy) const;
5647   ABIArgInfo classifyArgumentType(QualType Ty) const;
5648 
5649   void computeInfo(CGFunctionInfo &FI) const override;
5650   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5651                     QualType Ty) const override;
5652 };
5653 
5654 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5655 public:
NVPTXTargetCodeGenInfo(CodeGenTypes & CGT)5656   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5657     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5658 
5659   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5660                            CodeGen::CodeGenModule &M) const override;
5661 private:
5662   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5663   // resulting MDNode to the nvvm.annotations MDNode.
5664   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5665 };
5666 
classifyReturnType(QualType RetTy) const5667 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5668   if (RetTy->isVoidType())
5669     return ABIArgInfo::getIgnore();
5670 
5671   // note: this is different from default ABI
5672   if (!RetTy->isScalarType())
5673     return ABIArgInfo::getDirect();
5674 
5675   // Treat an enum type as its underlying type.
5676   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5677     RetTy = EnumTy->getDecl()->getIntegerType();
5678 
5679   return (RetTy->isPromotableIntegerType() ?
5680           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5681 }
5682 
classifyArgumentType(QualType Ty) const5683 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5684   // Treat an enum type as its underlying type.
5685   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5686     Ty = EnumTy->getDecl()->getIntegerType();
5687 
5688   // Return aggregates type as indirect by value
5689   if (isAggregateTypeForABI(Ty))
5690     return getNaturalAlignIndirect(Ty, /* byval */ true);
5691 
5692   return (Ty->isPromotableIntegerType() ?
5693           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5694 }
5695 
computeInfo(CGFunctionInfo & FI) const5696 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5697   if (!getCXXABI().classifyReturnType(FI))
5698     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5699   for (auto &I : FI.arguments())
5700     I.info = classifyArgumentType(I.type);
5701 
5702   // Always honor user-specified calling convention.
5703   if (FI.getCallingConvention() != llvm::CallingConv::C)
5704     return;
5705 
5706   FI.setEffectiveCallingConvention(getRuntimeCC());
5707 }
5708 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const5709 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5710                                 QualType Ty) const {
5711   llvm_unreachable("NVPTX does not support varargs");
5712 }
5713 
5714 void NVPTXTargetCodeGenInfo::
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const5715 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5716                     CodeGen::CodeGenModule &M) const{
5717   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5718   if (!FD) return;
5719 
5720   llvm::Function *F = cast<llvm::Function>(GV);
5721 
5722   // Perform special handling in OpenCL mode
5723   if (M.getLangOpts().OpenCL) {
5724     // Use OpenCL function attributes to check for kernel functions
5725     // By default, all functions are device functions
5726     if (FD->hasAttr<OpenCLKernelAttr>()) {
5727       // OpenCL __kernel functions get kernel metadata
5728       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5729       addNVVMMetadata(F, "kernel", 1);
5730       // And kernel functions are not subject to inlining
5731       F->addFnAttr(llvm::Attribute::NoInline);
5732     }
5733   }
5734 
5735   // Perform special handling in CUDA mode.
5736   if (M.getLangOpts().CUDA) {
5737     // CUDA __global__ functions get a kernel metadata entry.  Since
5738     // __global__ functions cannot be called from the device, we do not
5739     // need to set the noinline attribute.
5740     if (FD->hasAttr<CUDAGlobalAttr>()) {
5741       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5742       addNVVMMetadata(F, "kernel", 1);
5743     }
5744     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
5745       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5746       llvm::APSInt MaxThreads(32);
5747       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
5748       if (MaxThreads > 0)
5749         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
5750 
5751       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
5752       // not specified in __launch_bounds__ or if the user specified a 0 value,
5753       // we don't have to add a PTX directive.
5754       if (Attr->getMinBlocks()) {
5755         llvm::APSInt MinBlocks(32);
5756         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
5757         if (MinBlocks > 0)
5758           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5759           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
5760       }
5761     }
5762   }
5763 }
5764 
addNVVMMetadata(llvm::Function * F,StringRef Name,int Operand)5765 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5766                                              int Operand) {
5767   llvm::Module *M = F->getParent();
5768   llvm::LLVMContext &Ctx = M->getContext();
5769 
5770   // Get "nvvm.annotations" metadata node
5771   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5772 
5773   llvm::Metadata *MDVals[] = {
5774       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5775       llvm::ConstantAsMetadata::get(
5776           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5777   // Append metadata to nvvm.annotations
5778   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5779 }
5780 }
5781 
5782 //===----------------------------------------------------------------------===//
5783 // SystemZ ABI Implementation
5784 //===----------------------------------------------------------------------===//
5785 
5786 namespace {
5787 
5788 class SystemZABIInfo : public SwiftABIInfo {
5789   bool HasVector;
5790 
5791 public:
SystemZABIInfo(CodeGenTypes & CGT,bool HV)5792   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
5793     : SwiftABIInfo(CGT), HasVector(HV) {}
5794 
5795   bool isPromotableIntegerType(QualType Ty) const;
5796   bool isCompoundType(QualType Ty) const;
5797   bool isVectorArgumentType(QualType Ty) const;
5798   bool isFPArgumentType(QualType Ty) const;
5799   QualType GetSingleElementType(QualType Ty) const;
5800 
5801   ABIArgInfo classifyReturnType(QualType RetTy) const;
5802   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5803 
computeInfo(CGFunctionInfo & FI) const5804   void computeInfo(CGFunctionInfo &FI) const override {
5805     if (!getCXXABI().classifyReturnType(FI))
5806       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5807     for (auto &I : FI.arguments())
5808       I.info = classifyArgumentType(I.type);
5809   }
5810 
5811   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5812                     QualType Ty) const override;
5813 
shouldPassIndirectlyForSwift(CharUnits totalSize,ArrayRef<llvm::Type * > scalars,bool asReturnValue) const5814   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
5815                                     ArrayRef<llvm::Type*> scalars,
5816                                     bool asReturnValue) const override {
5817     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5818   }
5819 };
5820 
5821 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5822 public:
SystemZTargetCodeGenInfo(CodeGenTypes & CGT,bool HasVector)5823   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
5824     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
5825 };
5826 
5827 }
5828 
isPromotableIntegerType(QualType Ty) const5829 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5830   // Treat an enum type as its underlying type.
5831   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5832     Ty = EnumTy->getDecl()->getIntegerType();
5833 
5834   // Promotable integer types are required to be promoted by the ABI.
5835   if (Ty->isPromotableIntegerType())
5836     return true;
5837 
5838   // 32-bit values must also be promoted.
5839   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5840     switch (BT->getKind()) {
5841     case BuiltinType::Int:
5842     case BuiltinType::UInt:
5843       return true;
5844     default:
5845       return false;
5846     }
5847   return false;
5848 }
5849 
isCompoundType(QualType Ty) const5850 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5851   return (Ty->isAnyComplexType() ||
5852           Ty->isVectorType() ||
5853           isAggregateTypeForABI(Ty));
5854 }
5855 
isVectorArgumentType(QualType Ty) const5856 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
5857   return (HasVector &&
5858           Ty->isVectorType() &&
5859           getContext().getTypeSize(Ty) <= 128);
5860 }
5861 
isFPArgumentType(QualType Ty) const5862 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5863   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5864     switch (BT->getKind()) {
5865     case BuiltinType::Float:
5866     case BuiltinType::Double:
5867       return true;
5868     default:
5869       return false;
5870     }
5871 
5872   return false;
5873 }
5874 
GetSingleElementType(QualType Ty) const5875 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
5876   if (const RecordType *RT = Ty->getAsStructureType()) {
5877     const RecordDecl *RD = RT->getDecl();
5878     QualType Found;
5879 
5880     // If this is a C++ record, check the bases first.
5881     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5882       for (const auto &I : CXXRD->bases()) {
5883         QualType Base = I.getType();
5884 
5885         // Empty bases don't affect things either way.
5886         if (isEmptyRecord(getContext(), Base, true))
5887           continue;
5888 
5889         if (!Found.isNull())
5890           return Ty;
5891         Found = GetSingleElementType(Base);
5892       }
5893 
5894     // Check the fields.
5895     for (const auto *FD : RD->fields()) {
5896       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5897       // Unlike isSingleElementStruct(), empty structure and array fields
5898       // do count.  So do anonymous bitfields that aren't zero-sized.
5899       if (getContext().getLangOpts().CPlusPlus &&
5900           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5901         continue;
5902 
5903       // Unlike isSingleElementStruct(), arrays do not count.
5904       // Nested structures still do though.
5905       if (!Found.isNull())
5906         return Ty;
5907       Found = GetSingleElementType(FD->getType());
5908     }
5909 
5910     // Unlike isSingleElementStruct(), trailing padding is allowed.
5911     // An 8-byte aligned struct s { float f; } is passed as a double.
5912     if (!Found.isNull())
5913       return Found;
5914   }
5915 
5916   return Ty;
5917 }
5918 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const5919 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5920                                   QualType Ty) const {
5921   // Assume that va_list type is correct; should be pointer to LLVM type:
5922   // struct {
5923   //   i64 __gpr;
5924   //   i64 __fpr;
5925   //   i8 *__overflow_arg_area;
5926   //   i8 *__reg_save_area;
5927   // };
5928 
5929   // Every non-vector argument occupies 8 bytes and is passed by preference
5930   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
5931   // always passed on the stack.
5932   Ty = getContext().getCanonicalType(Ty);
5933   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5934   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
5935   llvm::Type *DirectTy = ArgTy;
5936   ABIArgInfo AI = classifyArgumentType(Ty);
5937   bool IsIndirect = AI.isIndirect();
5938   bool InFPRs = false;
5939   bool IsVector = false;
5940   CharUnits UnpaddedSize;
5941   CharUnits DirectAlign;
5942   if (IsIndirect) {
5943     DirectTy = llvm::PointerType::getUnqual(DirectTy);
5944     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
5945   } else {
5946     if (AI.getCoerceToType())
5947       ArgTy = AI.getCoerceToType();
5948     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
5949     IsVector = ArgTy->isVectorTy();
5950     UnpaddedSize = TyInfo.first;
5951     DirectAlign = TyInfo.second;
5952   }
5953   CharUnits PaddedSize = CharUnits::fromQuantity(8);
5954   if (IsVector && UnpaddedSize > PaddedSize)
5955     PaddedSize = CharUnits::fromQuantity(16);
5956   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
5957 
5958   CharUnits Padding = (PaddedSize - UnpaddedSize);
5959 
5960   llvm::Type *IndexTy = CGF.Int64Ty;
5961   llvm::Value *PaddedSizeV =
5962     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
5963 
5964   if (IsVector) {
5965     // Work out the address of a vector argument on the stack.
5966     // Vector arguments are always passed in the high bits of a
5967     // single (8 byte) or double (16 byte) stack slot.
5968     Address OverflowArgAreaPtr =
5969       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
5970                                   "overflow_arg_area_ptr");
5971     Address OverflowArgArea =
5972       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5973               TyInfo.second);
5974     Address MemAddr =
5975       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
5976 
5977     // Update overflow_arg_area_ptr pointer
5978     llvm::Value *NewOverflowArgArea =
5979       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5980                             "overflow_arg_area");
5981     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5982 
5983     return MemAddr;
5984   }
5985 
5986   assert(PaddedSize.getQuantity() == 8);
5987 
5988   unsigned MaxRegs, RegCountField, RegSaveIndex;
5989   CharUnits RegPadding;
5990   if (InFPRs) {
5991     MaxRegs = 4; // Maximum of 4 FPR arguments
5992     RegCountField = 1; // __fpr
5993     RegSaveIndex = 16; // save offset for f0
5994     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
5995   } else {
5996     MaxRegs = 5; // Maximum of 5 GPR arguments
5997     RegCountField = 0; // __gpr
5998     RegSaveIndex = 2; // save offset for r2
5999     RegPadding = Padding; // values are passed in the low bits of a GPR
6000   }
6001 
6002   Address RegCountPtr = CGF.Builder.CreateStructGEP(
6003       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
6004       "reg_count_ptr");
6005   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6006   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6007   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6008                                                  "fits_in_regs");
6009 
6010   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6011   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6012   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6013   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6014 
6015   // Emit code to load the value if it was passed in registers.
6016   CGF.EmitBlock(InRegBlock);
6017 
6018   // Work out the address of an argument register.
6019   llvm::Value *ScaledRegCount =
6020     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6021   llvm::Value *RegBase =
6022     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6023                                       + RegPadding.getQuantity());
6024   llvm::Value *RegOffset =
6025     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6026   Address RegSaveAreaPtr =
6027       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
6028                                   "reg_save_area_ptr");
6029   llvm::Value *RegSaveArea =
6030     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6031   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6032                                            "raw_reg_addr"),
6033                      PaddedSize);
6034   Address RegAddr =
6035     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6036 
6037   // Update the register count
6038   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6039   llvm::Value *NewRegCount =
6040     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6041   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6042   CGF.EmitBranch(ContBlock);
6043 
6044   // Emit code to load the value if it was passed in memory.
6045   CGF.EmitBlock(InMemBlock);
6046 
6047   // Work out the address of a stack argument.
6048   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
6049       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
6050   Address OverflowArgArea =
6051     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6052             PaddedSize);
6053   Address RawMemAddr =
6054     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6055   Address MemAddr =
6056     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6057 
6058   // Update overflow_arg_area_ptr pointer
6059   llvm::Value *NewOverflowArgArea =
6060     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6061                           "overflow_arg_area");
6062   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6063   CGF.EmitBranch(ContBlock);
6064 
6065   // Return the appropriate result.
6066   CGF.EmitBlock(ContBlock);
6067   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6068                                  MemAddr, InMemBlock, "va_arg.addr");
6069 
6070   if (IsIndirect)
6071     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6072                       TyInfo.second);
6073 
6074   return ResAddr;
6075 }
6076 
classifyReturnType(QualType RetTy) const6077 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6078   if (RetTy->isVoidType())
6079     return ABIArgInfo::getIgnore();
6080   if (isVectorArgumentType(RetTy))
6081     return ABIArgInfo::getDirect();
6082   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6083     return getNaturalAlignIndirect(RetTy);
6084   return (isPromotableIntegerType(RetTy) ?
6085           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6086 }
6087 
classifyArgumentType(QualType Ty) const6088 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6089   // Handle the generic C++ ABI.
6090   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6091     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6092 
6093   // Integers and enums are extended to full register width.
6094   if (isPromotableIntegerType(Ty))
6095     return ABIArgInfo::getExtend();
6096 
6097   // Handle vector types and vector-like structure types.  Note that
6098   // as opposed to float-like structure types, we do not allow any
6099   // padding for vector-like structures, so verify the sizes match.
6100   uint64_t Size = getContext().getTypeSize(Ty);
6101   QualType SingleElementTy = GetSingleElementType(Ty);
6102   if (isVectorArgumentType(SingleElementTy) &&
6103       getContext().getTypeSize(SingleElementTy) == Size)
6104     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6105 
6106   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6107   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6108     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6109 
6110   // Handle small structures.
6111   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6112     // Structures with flexible arrays have variable length, so really
6113     // fail the size test above.
6114     const RecordDecl *RD = RT->getDecl();
6115     if (RD->hasFlexibleArrayMember())
6116       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6117 
6118     // The structure is passed as an unextended integer, a float, or a double.
6119     llvm::Type *PassTy;
6120     if (isFPArgumentType(SingleElementTy)) {
6121       assert(Size == 32 || Size == 64);
6122       if (Size == 32)
6123         PassTy = llvm::Type::getFloatTy(getVMContext());
6124       else
6125         PassTy = llvm::Type::getDoubleTy(getVMContext());
6126     } else
6127       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6128     return ABIArgInfo::getDirect(PassTy);
6129   }
6130 
6131   // Non-structure compounds are passed indirectly.
6132   if (isCompoundType(Ty))
6133     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6134 
6135   return ABIArgInfo::getDirect(nullptr);
6136 }
6137 
6138 //===----------------------------------------------------------------------===//
6139 // MSP430 ABI Implementation
6140 //===----------------------------------------------------------------------===//
6141 
6142 namespace {
6143 
6144 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6145 public:
MSP430TargetCodeGenInfo(CodeGenTypes & CGT)6146   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6147     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6148   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6149                            CodeGen::CodeGenModule &M) const override;
6150 };
6151 
6152 }
6153 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const6154 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D,
6155                                                   llvm::GlobalValue *GV,
6156                                              CodeGen::CodeGenModule &M) const {
6157   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6158     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
6159       // Handle 'interrupt' attribute:
6160       llvm::Function *F = cast<llvm::Function>(GV);
6161 
6162       // Step 1: Set ISR calling convention.
6163       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6164 
6165       // Step 2: Add attributes goodness.
6166       F->addFnAttr(llvm::Attribute::NoInline);
6167 
6168       // Step 3: Emit ISR vector alias.
6169       unsigned Num = attr->getNumber() / 2;
6170       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
6171                                 "__isr_" + Twine(Num), F);
6172     }
6173   }
6174 }
6175 
6176 //===----------------------------------------------------------------------===//
6177 // MIPS ABI Implementation.  This works for both little-endian and
6178 // big-endian variants.
6179 //===----------------------------------------------------------------------===//
6180 
6181 namespace {
6182 class MipsABIInfo : public ABIInfo {
6183   bool IsO32;
6184   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6185   void CoerceToIntArgs(uint64_t TySize,
6186                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6187   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6188   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6189   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6190 public:
MipsABIInfo(CodeGenTypes & CGT,bool _IsO32)6191   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6192     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6193     StackAlignInBytes(IsO32 ? 8 : 16) {}
6194 
6195   ABIArgInfo classifyReturnType(QualType RetTy) const;
6196   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6197   void computeInfo(CGFunctionInfo &FI) const override;
6198   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6199                     QualType Ty) const override;
6200   bool shouldSignExtUnsignedType(QualType Ty) const override;
6201 };
6202 
6203 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6204   unsigned SizeOfUnwindException;
6205 public:
MIPSTargetCodeGenInfo(CodeGenTypes & CGT,bool IsO32)6206   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6207     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6208       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6209 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const6210   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6211     return 29;
6212   }
6213 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const6214   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6215                            CodeGen::CodeGenModule &CGM) const override {
6216     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6217     if (!FD) return;
6218     llvm::Function *Fn = cast<llvm::Function>(GV);
6219     if (FD->hasAttr<Mips16Attr>()) {
6220       Fn->addFnAttr("mips16");
6221     }
6222     else if (FD->hasAttr<NoMips16Attr>()) {
6223       Fn->addFnAttr("nomips16");
6224     }
6225 
6226     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6227     if (!Attr)
6228       return;
6229 
6230     const char *Kind;
6231     switch (Attr->getInterrupt()) {
6232     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6233     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6234     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6235     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6236     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6237     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6238     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6239     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6240     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6241     }
6242 
6243     Fn->addFnAttr("interrupt", Kind);
6244 
6245   }
6246 
6247   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6248                                llvm::Value *Address) const override;
6249 
getSizeOfUnwindException() const6250   unsigned getSizeOfUnwindException() const override {
6251     return SizeOfUnwindException;
6252   }
6253 };
6254 }
6255 
CoerceToIntArgs(uint64_t TySize,SmallVectorImpl<llvm::Type * > & ArgList) const6256 void MipsABIInfo::CoerceToIntArgs(
6257     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6258   llvm::IntegerType *IntTy =
6259     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6260 
6261   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6262   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6263     ArgList.push_back(IntTy);
6264 
6265   // If necessary, add one more integer type to ArgList.
6266   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6267 
6268   if (R)
6269     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6270 }
6271 
6272 // In N32/64, an aligned double precision floating point field is passed in
6273 // a register.
HandleAggregates(QualType Ty,uint64_t TySize) const6274 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6275   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6276 
6277   if (IsO32) {
6278     CoerceToIntArgs(TySize, ArgList);
6279     return llvm::StructType::get(getVMContext(), ArgList);
6280   }
6281 
6282   if (Ty->isComplexType())
6283     return CGT.ConvertType(Ty);
6284 
6285   const RecordType *RT = Ty->getAs<RecordType>();
6286 
6287   // Unions/vectors are passed in integer registers.
6288   if (!RT || !RT->isStructureOrClassType()) {
6289     CoerceToIntArgs(TySize, ArgList);
6290     return llvm::StructType::get(getVMContext(), ArgList);
6291   }
6292 
6293   const RecordDecl *RD = RT->getDecl();
6294   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6295   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6296 
6297   uint64_t LastOffset = 0;
6298   unsigned idx = 0;
6299   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6300 
6301   // Iterate over fields in the struct/class and check if there are any aligned
6302   // double fields.
6303   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6304        i != e; ++i, ++idx) {
6305     const QualType Ty = i->getType();
6306     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6307 
6308     if (!BT || BT->getKind() != BuiltinType::Double)
6309       continue;
6310 
6311     uint64_t Offset = Layout.getFieldOffset(idx);
6312     if (Offset % 64) // Ignore doubles that are not aligned.
6313       continue;
6314 
6315     // Add ((Offset - LastOffset) / 64) args of type i64.
6316     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6317       ArgList.push_back(I64);
6318 
6319     // Add double type.
6320     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6321     LastOffset = Offset + 64;
6322   }
6323 
6324   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6325   ArgList.append(IntArgList.begin(), IntArgList.end());
6326 
6327   return llvm::StructType::get(getVMContext(), ArgList);
6328 }
6329 
getPaddingType(uint64_t OrigOffset,uint64_t Offset) const6330 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6331                                         uint64_t Offset) const {
6332   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6333     return nullptr;
6334 
6335   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6336 }
6337 
6338 ABIArgInfo
classifyArgumentType(QualType Ty,uint64_t & Offset) const6339 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6340   Ty = useFirstFieldIfTransparentUnion(Ty);
6341 
6342   uint64_t OrigOffset = Offset;
6343   uint64_t TySize = getContext().getTypeSize(Ty);
6344   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6345 
6346   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6347                    (uint64_t)StackAlignInBytes);
6348   unsigned CurrOffset = llvm::alignTo(Offset, Align);
6349   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
6350 
6351   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6352     // Ignore empty aggregates.
6353     if (TySize == 0)
6354       return ABIArgInfo::getIgnore();
6355 
6356     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6357       Offset = OrigOffset + MinABIStackAlignInBytes;
6358       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6359     }
6360 
6361     // If we have reached here, aggregates are passed directly by coercing to
6362     // another structure type. Padding is inserted if the offset of the
6363     // aggregate is unaligned.
6364     ABIArgInfo ArgInfo =
6365         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
6366                               getPaddingType(OrigOffset, CurrOffset));
6367     ArgInfo.setInReg(true);
6368     return ArgInfo;
6369   }
6370 
6371   // Treat an enum type as its underlying type.
6372   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6373     Ty = EnumTy->getDecl()->getIntegerType();
6374 
6375   // All integral types are promoted to the GPR width.
6376   if (Ty->isIntegralOrEnumerationType())
6377     return ABIArgInfo::getExtend();
6378 
6379   return ABIArgInfo::getDirect(
6380       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
6381 }
6382 
6383 llvm::Type*
returnAggregateInRegs(QualType RetTy,uint64_t Size) const6384 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
6385   const RecordType *RT = RetTy->getAs<RecordType>();
6386   SmallVector<llvm::Type*, 8> RTList;
6387 
6388   if (RT && RT->isStructureOrClassType()) {
6389     const RecordDecl *RD = RT->getDecl();
6390     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6391     unsigned FieldCnt = Layout.getFieldCount();
6392 
6393     // N32/64 returns struct/classes in floating point registers if the
6394     // following conditions are met:
6395     // 1. The size of the struct/class is no larger than 128-bit.
6396     // 2. The struct/class has one or two fields all of which are floating
6397     //    point types.
6398     // 3. The offset of the first field is zero (this follows what gcc does).
6399     //
6400     // Any other composite results are returned in integer registers.
6401     //
6402     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
6403       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
6404       for (; b != e; ++b) {
6405         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
6406 
6407         if (!BT || !BT->isFloatingPoint())
6408           break;
6409 
6410         RTList.push_back(CGT.ConvertType(b->getType()));
6411       }
6412 
6413       if (b == e)
6414         return llvm::StructType::get(getVMContext(), RTList,
6415                                      RD->hasAttr<PackedAttr>());
6416 
6417       RTList.clear();
6418     }
6419   }
6420 
6421   CoerceToIntArgs(Size, RTList);
6422   return llvm::StructType::get(getVMContext(), RTList);
6423 }
6424 
classifyReturnType(QualType RetTy) const6425 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
6426   uint64_t Size = getContext().getTypeSize(RetTy);
6427 
6428   if (RetTy->isVoidType())
6429     return ABIArgInfo::getIgnore();
6430 
6431   // O32 doesn't treat zero-sized structs differently from other structs.
6432   // However, N32/N64 ignores zero sized return values.
6433   if (!IsO32 && Size == 0)
6434     return ABIArgInfo::getIgnore();
6435 
6436   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6437     if (Size <= 128) {
6438       if (RetTy->isAnyComplexType())
6439         return ABIArgInfo::getDirect();
6440 
6441       // O32 returns integer vectors in registers and N32/N64 returns all small
6442       // aggregates in registers.
6443       if (!IsO32 ||
6444           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6445         ABIArgInfo ArgInfo =
6446             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6447         ArgInfo.setInReg(true);
6448         return ArgInfo;
6449       }
6450     }
6451 
6452     return getNaturalAlignIndirect(RetTy);
6453   }
6454 
6455   // Treat an enum type as its underlying type.
6456   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6457     RetTy = EnumTy->getDecl()->getIntegerType();
6458 
6459   return (RetTy->isPromotableIntegerType() ?
6460           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6461 }
6462 
computeInfo(CGFunctionInfo & FI) const6463 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6464   ABIArgInfo &RetInfo = FI.getReturnInfo();
6465   if (!getCXXABI().classifyReturnType(FI))
6466     RetInfo = classifyReturnType(FI.getReturnType());
6467 
6468   // Check if a pointer to an aggregate is passed as a hidden argument.
6469   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6470 
6471   for (auto &I : FI.arguments())
6472     I.info = classifyArgumentType(I.type, Offset);
6473 }
6474 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType OrigTy) const6475 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6476                                QualType OrigTy) const {
6477   QualType Ty = OrigTy;
6478 
6479   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6480   // Pointers are also promoted in the same way but this only matters for N32.
6481   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
6482   unsigned PtrWidth = getTarget().getPointerWidth(0);
6483   bool DidPromote = false;
6484   if ((Ty->isIntegerType() &&
6485           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
6486       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
6487     DidPromote = true;
6488     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
6489                                             Ty->isSignedIntegerType());
6490   }
6491 
6492   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6493 
6494   // The alignment of things in the argument area is never larger than
6495   // StackAlignInBytes.
6496   TyInfo.second =
6497     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
6498 
6499   // MinABIStackAlignInBytes is the size of argument slots on the stack.
6500   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
6501 
6502   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6503                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
6504 
6505 
6506   // If there was a promotion, "unpromote" into a temporary.
6507   // TODO: can we just use a pointer into a subset of the original slot?
6508   if (DidPromote) {
6509     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
6510     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
6511 
6512     // Truncate down to the right width.
6513     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
6514                                                  : CGF.IntPtrTy);
6515     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
6516     if (OrigTy->isPointerType())
6517       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
6518 
6519     CGF.Builder.CreateStore(V, Temp);
6520     Addr = Temp;
6521   }
6522 
6523   return Addr;
6524 }
6525 
shouldSignExtUnsignedType(QualType Ty) const6526 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
6527   int TySize = getContext().getTypeSize(Ty);
6528 
6529   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
6530   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
6531     return true;
6532 
6533   return false;
6534 }
6535 
6536 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const6537 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6538                                                llvm::Value *Address) const {
6539   // This information comes from gcc's implementation, which seems to
6540   // as canonical as it gets.
6541 
6542   // Everything on MIPS is 4 bytes.  Double-precision FP registers
6543   // are aliased to pairs of single-precision FP registers.
6544   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6545 
6546   // 0-31 are the general purpose registers, $0 - $31.
6547   // 32-63 are the floating-point registers, $f0 - $f31.
6548   // 64 and 65 are the multiply/divide registers, $hi and $lo.
6549   // 66 is the (notional, I think) register for signal-handler return.
6550   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
6551 
6552   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
6553   // They are one bit wide and ignored here.
6554 
6555   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
6556   // (coprocessor 1 is the FP unit)
6557   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
6558   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
6559   // 176-181 are the DSP accumulator registers.
6560   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
6561   return false;
6562 }
6563 
6564 //===----------------------------------------------------------------------===//
6565 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
6566 // Currently subclassed only to implement custom OpenCL C function attribute
6567 // handling.
6568 //===----------------------------------------------------------------------===//
6569 
6570 namespace {
6571 
6572 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
6573 public:
TCETargetCodeGenInfo(CodeGenTypes & CGT)6574   TCETargetCodeGenInfo(CodeGenTypes &CGT)
6575     : DefaultTargetCodeGenInfo(CGT) {}
6576 
6577   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6578                            CodeGen::CodeGenModule &M) const override;
6579 };
6580 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const6581 void TCETargetCodeGenInfo::setTargetAttributes(
6582     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6583   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6584   if (!FD) return;
6585 
6586   llvm::Function *F = cast<llvm::Function>(GV);
6587 
6588   if (M.getLangOpts().OpenCL) {
6589     if (FD->hasAttr<OpenCLKernelAttr>()) {
6590       // OpenCL C Kernel functions are not subject to inlining
6591       F->addFnAttr(llvm::Attribute::NoInline);
6592       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
6593       if (Attr) {
6594         // Convert the reqd_work_group_size() attributes to metadata.
6595         llvm::LLVMContext &Context = F->getContext();
6596         llvm::NamedMDNode *OpenCLMetadata =
6597             M.getModule().getOrInsertNamedMetadata(
6598                 "opencl.kernel_wg_size_info");
6599 
6600         SmallVector<llvm::Metadata *, 5> Operands;
6601         Operands.push_back(llvm::ConstantAsMetadata::get(F));
6602 
6603         Operands.push_back(
6604             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6605                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
6606         Operands.push_back(
6607             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6608                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
6609         Operands.push_back(
6610             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6611                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
6612 
6613         // Add a boolean constant operand for "required" (true) or "hint"
6614         // (false) for implementing the work_group_size_hint attr later.
6615         // Currently always true as the hint is not yet implemented.
6616         Operands.push_back(
6617             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
6618         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
6619       }
6620     }
6621   }
6622 }
6623 
6624 }
6625 
6626 //===----------------------------------------------------------------------===//
6627 // Hexagon ABI Implementation
6628 //===----------------------------------------------------------------------===//
6629 
6630 namespace {
6631 
6632 class HexagonABIInfo : public ABIInfo {
6633 
6634 
6635 public:
HexagonABIInfo(CodeGenTypes & CGT)6636   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6637 
6638 private:
6639 
6640   ABIArgInfo classifyReturnType(QualType RetTy) const;
6641   ABIArgInfo classifyArgumentType(QualType RetTy) const;
6642 
6643   void computeInfo(CGFunctionInfo &FI) const override;
6644 
6645   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6646                     QualType Ty) const override;
6647 };
6648 
6649 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
6650 public:
HexagonTargetCodeGenInfo(CodeGenTypes & CGT)6651   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
6652     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
6653 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const6654   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6655     return 29;
6656   }
6657 };
6658 
6659 }
6660 
computeInfo(CGFunctionInfo & FI) const6661 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
6662   if (!getCXXABI().classifyReturnType(FI))
6663     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6664   for (auto &I : FI.arguments())
6665     I.info = classifyArgumentType(I.type);
6666 }
6667 
classifyArgumentType(QualType Ty) const6668 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
6669   if (!isAggregateTypeForABI(Ty)) {
6670     // Treat an enum type as its underlying type.
6671     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6672       Ty = EnumTy->getDecl()->getIntegerType();
6673 
6674     return (Ty->isPromotableIntegerType() ?
6675             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6676   }
6677 
6678   // Ignore empty records.
6679   if (isEmptyRecord(getContext(), Ty, true))
6680     return ABIArgInfo::getIgnore();
6681 
6682   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6683     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6684 
6685   uint64_t Size = getContext().getTypeSize(Ty);
6686   if (Size > 64)
6687     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6688     // Pass in the smallest viable integer type.
6689   else if (Size > 32)
6690       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6691   else if (Size > 16)
6692       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6693   else if (Size > 8)
6694       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6695   else
6696       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6697 }
6698 
classifyReturnType(QualType RetTy) const6699 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6700   if (RetTy->isVoidType())
6701     return ABIArgInfo::getIgnore();
6702 
6703   // Large vector types should be returned via memory.
6704   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6705     return getNaturalAlignIndirect(RetTy);
6706 
6707   if (!isAggregateTypeForABI(RetTy)) {
6708     // Treat an enum type as its underlying type.
6709     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6710       RetTy = EnumTy->getDecl()->getIntegerType();
6711 
6712     return (RetTy->isPromotableIntegerType() ?
6713             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6714   }
6715 
6716   if (isEmptyRecord(getContext(), RetTy, true))
6717     return ABIArgInfo::getIgnore();
6718 
6719   // Aggregates <= 8 bytes are returned in r0; other aggregates
6720   // are returned indirectly.
6721   uint64_t Size = getContext().getTypeSize(RetTy);
6722   if (Size <= 64) {
6723     // Return in the smallest viable integer type.
6724     if (Size <= 8)
6725       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6726     if (Size <= 16)
6727       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6728     if (Size <= 32)
6729       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6730     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6731   }
6732 
6733   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
6734 }
6735 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const6736 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6737                                   QualType Ty) const {
6738   // FIXME: Someone needs to audit that this handle alignment correctly.
6739   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6740                           getContext().getTypeInfoInChars(Ty),
6741                           CharUnits::fromQuantity(4),
6742                           /*AllowHigherAlign*/ true);
6743 }
6744 
6745 //===----------------------------------------------------------------------===//
6746 // Lanai ABI Implementation
6747 //===----------------------------------------------------------------------===//
6748 
6749 namespace {
6750 class LanaiABIInfo : public DefaultABIInfo {
6751 public:
LanaiABIInfo(CodeGen::CodeGenTypes & CGT)6752   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6753 
6754   bool shouldUseInReg(QualType Ty, CCState &State) const;
6755 
computeInfo(CGFunctionInfo & FI) const6756   void computeInfo(CGFunctionInfo &FI) const override {
6757     CCState State(FI.getCallingConvention());
6758     // Lanai uses 4 registers to pass arguments unless the function has the
6759     // regparm attribute set.
6760     if (FI.getHasRegParm()) {
6761       State.FreeRegs = FI.getRegParm();
6762     } else {
6763       State.FreeRegs = 4;
6764     }
6765 
6766     if (!getCXXABI().classifyReturnType(FI))
6767       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6768     for (auto &I : FI.arguments())
6769       I.info = classifyArgumentType(I.type, State);
6770   }
6771 
6772   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
6773   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
6774 };
6775 } // end anonymous namespace
6776 
shouldUseInReg(QualType Ty,CCState & State) const6777 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
6778   unsigned Size = getContext().getTypeSize(Ty);
6779   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
6780 
6781   if (SizeInRegs == 0)
6782     return false;
6783 
6784   if (SizeInRegs > State.FreeRegs) {
6785     State.FreeRegs = 0;
6786     return false;
6787   }
6788 
6789   State.FreeRegs -= SizeInRegs;
6790 
6791   return true;
6792 }
6793 
getIndirectResult(QualType Ty,bool ByVal,CCState & State) const6794 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
6795                                            CCState &State) const {
6796   if (!ByVal) {
6797     if (State.FreeRegs) {
6798       --State.FreeRegs; // Non-byval indirects just use one pointer.
6799       return getNaturalAlignIndirectInReg(Ty);
6800     }
6801     return getNaturalAlignIndirect(Ty, false);
6802   }
6803 
6804   // Compute the byval alignment.
6805   const unsigned MinABIStackAlignInBytes = 4;
6806   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
6807   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
6808                                  /*Realign=*/TypeAlign >
6809                                      MinABIStackAlignInBytes);
6810 }
6811 
classifyArgumentType(QualType Ty,CCState & State) const6812 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
6813                                               CCState &State) const {
6814   // Check with the C++ ABI first.
6815   const RecordType *RT = Ty->getAs<RecordType>();
6816   if (RT) {
6817     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
6818     if (RAA == CGCXXABI::RAA_Indirect) {
6819       return getIndirectResult(Ty, /*ByVal=*/false, State);
6820     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
6821       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
6822     }
6823   }
6824 
6825   if (isAggregateTypeForABI(Ty)) {
6826     // Structures with flexible arrays are always indirect.
6827     if (RT && RT->getDecl()->hasFlexibleArrayMember())
6828       return getIndirectResult(Ty, /*ByVal=*/true, State);
6829 
6830     // Ignore empty structs/unions.
6831     if (isEmptyRecord(getContext(), Ty, true))
6832       return ABIArgInfo::getIgnore();
6833 
6834     llvm::LLVMContext &LLVMContext = getVMContext();
6835     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6836     if (SizeInRegs <= State.FreeRegs) {
6837       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
6838       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
6839       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
6840       State.FreeRegs -= SizeInRegs;
6841       return ABIArgInfo::getDirectInReg(Result);
6842     } else {
6843       State.FreeRegs = 0;
6844     }
6845     return getIndirectResult(Ty, true, State);
6846   }
6847 
6848   // Treat an enum type as its underlying type.
6849   if (const auto *EnumTy = Ty->getAs<EnumType>())
6850     Ty = EnumTy->getDecl()->getIntegerType();
6851 
6852   bool InReg = shouldUseInReg(Ty, State);
6853   if (Ty->isPromotableIntegerType()) {
6854     if (InReg)
6855       return ABIArgInfo::getDirectInReg();
6856     return ABIArgInfo::getExtend();
6857   }
6858   if (InReg)
6859     return ABIArgInfo::getDirectInReg();
6860   return ABIArgInfo::getDirect();
6861 }
6862 
6863 namespace {
6864 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
6865 public:
LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)6866   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
6867       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
6868 };
6869 }
6870 
6871 //===----------------------------------------------------------------------===//
6872 // AMDGPU ABI Implementation
6873 //===----------------------------------------------------------------------===//
6874 
6875 namespace {
6876 
6877 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6878 public:
AMDGPUTargetCodeGenInfo(CodeGenTypes & CGT)6879   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6880     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6881   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6882                            CodeGen::CodeGenModule &M) const override;
6883   unsigned getOpenCLKernelCallingConv() const override;
6884 };
6885 
6886 }
6887 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const6888 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
6889   const Decl *D,
6890   llvm::GlobalValue *GV,
6891   CodeGen::CodeGenModule &M) const {
6892   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6893   if (!FD)
6894     return;
6895 
6896   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6897     llvm::Function *F = cast<llvm::Function>(GV);
6898     uint32_t NumVGPR = Attr->getNumVGPR();
6899     if (NumVGPR != 0)
6900       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6901   }
6902 
6903   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6904     llvm::Function *F = cast<llvm::Function>(GV);
6905     unsigned NumSGPR = Attr->getNumSGPR();
6906     if (NumSGPR != 0)
6907       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6908   }
6909 }
6910 
6911 
getOpenCLKernelCallingConv() const6912 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
6913   return llvm::CallingConv::AMDGPU_KERNEL;
6914 }
6915 
6916 //===----------------------------------------------------------------------===//
6917 // SPARC v8 ABI Implementation.
6918 // Based on the SPARC Compliance Definition version 2.4.1.
6919 //
6920 // Ensures that complex values are passed in registers.
6921 //
6922 namespace {
6923 class SparcV8ABIInfo : public DefaultABIInfo {
6924 public:
SparcV8ABIInfo(CodeGenTypes & CGT)6925   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6926 
6927 private:
6928   ABIArgInfo classifyReturnType(QualType RetTy) const;
6929   void computeInfo(CGFunctionInfo &FI) const override;
6930 };
6931 } // end anonymous namespace
6932 
6933 
6934 ABIArgInfo
classifyReturnType(QualType Ty) const6935 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
6936   if (Ty->isAnyComplexType()) {
6937     return ABIArgInfo::getDirect();
6938   }
6939   else {
6940     return DefaultABIInfo::classifyReturnType(Ty);
6941   }
6942 }
6943 
computeInfo(CGFunctionInfo & FI) const6944 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6945 
6946   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6947   for (auto &Arg : FI.arguments())
6948     Arg.info = classifyArgumentType(Arg.type);
6949 }
6950 
6951 namespace {
6952 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
6953 public:
SparcV8TargetCodeGenInfo(CodeGenTypes & CGT)6954   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
6955     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
6956 };
6957 } // end anonymous namespace
6958 
6959 //===----------------------------------------------------------------------===//
6960 // SPARC v9 ABI Implementation.
6961 // Based on the SPARC Compliance Definition version 2.4.1.
6962 //
6963 // Function arguments a mapped to a nominal "parameter array" and promoted to
6964 // registers depending on their type. Each argument occupies 8 or 16 bytes in
6965 // the array, structs larger than 16 bytes are passed indirectly.
6966 //
6967 // One case requires special care:
6968 //
6969 //   struct mixed {
6970 //     int i;
6971 //     float f;
6972 //   };
6973 //
6974 // When a struct mixed is passed by value, it only occupies 8 bytes in the
6975 // parameter array, but the int is passed in an integer register, and the float
6976 // is passed in a floating point register. This is represented as two arguments
6977 // with the LLVM IR inreg attribute:
6978 //
6979 //   declare void f(i32 inreg %i, float inreg %f)
6980 //
6981 // The code generator will only allocate 4 bytes from the parameter array for
6982 // the inreg arguments. All other arguments are allocated a multiple of 8
6983 // bytes.
6984 //
6985 namespace {
6986 class SparcV9ABIInfo : public ABIInfo {
6987 public:
SparcV9ABIInfo(CodeGenTypes & CGT)6988   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6989 
6990 private:
6991   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6992   void computeInfo(CGFunctionInfo &FI) const override;
6993   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6994                     QualType Ty) const override;
6995 
6996   // Coercion type builder for structs passed in registers. The coercion type
6997   // serves two purposes:
6998   //
6999   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
7000   //    in registers.
7001   // 2. Expose aligned floating point elements as first-level elements, so the
7002   //    code generator knows to pass them in floating point registers.
7003   //
7004   // We also compute the InReg flag which indicates that the struct contains
7005   // aligned 32-bit floats.
7006   //
7007   struct CoerceBuilder {
7008     llvm::LLVMContext &Context;
7009     const llvm::DataLayout &DL;
7010     SmallVector<llvm::Type*, 8> Elems;
7011     uint64_t Size;
7012     bool InReg;
7013 
CoerceBuilder__anoncb30615c1211::SparcV9ABIInfo::CoerceBuilder7014     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
7015       : Context(c), DL(dl), Size(0), InReg(false) {}
7016 
7017     // Pad Elems with integers until Size is ToSize.
pad__anoncb30615c1211::SparcV9ABIInfo::CoerceBuilder7018     void pad(uint64_t ToSize) {
7019       assert(ToSize >= Size && "Cannot remove elements");
7020       if (ToSize == Size)
7021         return;
7022 
7023       // Finish the current 64-bit word.
7024       uint64_t Aligned = llvm::alignTo(Size, 64);
7025       if (Aligned > Size && Aligned <= ToSize) {
7026         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
7027         Size = Aligned;
7028       }
7029 
7030       // Add whole 64-bit words.
7031       while (Size + 64 <= ToSize) {
7032         Elems.push_back(llvm::Type::getInt64Ty(Context));
7033         Size += 64;
7034       }
7035 
7036       // Final in-word padding.
7037       if (Size < ToSize) {
7038         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
7039         Size = ToSize;
7040       }
7041     }
7042 
7043     // Add a floating point element at Offset.
addFloat__anoncb30615c1211::SparcV9ABIInfo::CoerceBuilder7044     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
7045       // Unaligned floats are treated as integers.
7046       if (Offset % Bits)
7047         return;
7048       // The InReg flag is only required if there are any floats < 64 bits.
7049       if (Bits < 64)
7050         InReg = true;
7051       pad(Offset);
7052       Elems.push_back(Ty);
7053       Size = Offset + Bits;
7054     }
7055 
7056     // Add a struct type to the coercion type, starting at Offset (in bits).
addStruct__anoncb30615c1211::SparcV9ABIInfo::CoerceBuilder7057     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
7058       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
7059       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
7060         llvm::Type *ElemTy = StrTy->getElementType(i);
7061         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
7062         switch (ElemTy->getTypeID()) {
7063         case llvm::Type::StructTyID:
7064           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
7065           break;
7066         case llvm::Type::FloatTyID:
7067           addFloat(ElemOffset, ElemTy, 32);
7068           break;
7069         case llvm::Type::DoubleTyID:
7070           addFloat(ElemOffset, ElemTy, 64);
7071           break;
7072         case llvm::Type::FP128TyID:
7073           addFloat(ElemOffset, ElemTy, 128);
7074           break;
7075         case llvm::Type::PointerTyID:
7076           if (ElemOffset % 64 == 0) {
7077             pad(ElemOffset);
7078             Elems.push_back(ElemTy);
7079             Size += 64;
7080           }
7081           break;
7082         default:
7083           break;
7084         }
7085       }
7086     }
7087 
7088     // Check if Ty is a usable substitute for the coercion type.
isUsableType__anoncb30615c1211::SparcV9ABIInfo::CoerceBuilder7089     bool isUsableType(llvm::StructType *Ty) const {
7090       return llvm::makeArrayRef(Elems) == Ty->elements();
7091     }
7092 
7093     // Get the coercion type as a literal struct type.
getType__anoncb30615c1211::SparcV9ABIInfo::CoerceBuilder7094     llvm::Type *getType() const {
7095       if (Elems.size() == 1)
7096         return Elems.front();
7097       else
7098         return llvm::StructType::get(Context, Elems);
7099     }
7100   };
7101 };
7102 } // end anonymous namespace
7103 
7104 ABIArgInfo
classifyType(QualType Ty,unsigned SizeLimit) const7105 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
7106   if (Ty->isVoidType())
7107     return ABIArgInfo::getIgnore();
7108 
7109   uint64_t Size = getContext().getTypeSize(Ty);
7110 
7111   // Anything too big to fit in registers is passed with an explicit indirect
7112   // pointer / sret pointer.
7113   if (Size > SizeLimit)
7114     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7115 
7116   // Treat an enum type as its underlying type.
7117   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7118     Ty = EnumTy->getDecl()->getIntegerType();
7119 
7120   // Integer types smaller than a register are extended.
7121   if (Size < 64 && Ty->isIntegerType())
7122     return ABIArgInfo::getExtend();
7123 
7124   // Other non-aggregates go in registers.
7125   if (!isAggregateTypeForABI(Ty))
7126     return ABIArgInfo::getDirect();
7127 
7128   // If a C++ object has either a non-trivial copy constructor or a non-trivial
7129   // destructor, it is passed with an explicit indirect pointer / sret pointer.
7130   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7131     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7132 
7133   // This is a small aggregate type that should be passed in registers.
7134   // Build a coercion type from the LLVM struct type.
7135   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
7136   if (!StrTy)
7137     return ABIArgInfo::getDirect();
7138 
7139   CoerceBuilder CB(getVMContext(), getDataLayout());
7140   CB.addStruct(0, StrTy);
7141   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
7142 
7143   // Try to use the original type for coercion.
7144   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
7145 
7146   if (CB.InReg)
7147     return ABIArgInfo::getDirectInReg(CoerceTy);
7148   else
7149     return ABIArgInfo::getDirect(CoerceTy);
7150 }
7151 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const7152 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7153                                   QualType Ty) const {
7154   ABIArgInfo AI = classifyType(Ty, 16 * 8);
7155   llvm::Type *ArgTy = CGT.ConvertType(Ty);
7156   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
7157     AI.setCoerceToType(ArgTy);
7158 
7159   CharUnits SlotSize = CharUnits::fromQuantity(8);
7160 
7161   CGBuilderTy &Builder = CGF.Builder;
7162   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
7163   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
7164 
7165   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
7166 
7167   Address ArgAddr = Address::invalid();
7168   CharUnits Stride;
7169   switch (AI.getKind()) {
7170   case ABIArgInfo::Expand:
7171   case ABIArgInfo::CoerceAndExpand:
7172   case ABIArgInfo::InAlloca:
7173     llvm_unreachable("Unsupported ABI kind for va_arg");
7174 
7175   case ABIArgInfo::Extend: {
7176     Stride = SlotSize;
7177     CharUnits Offset = SlotSize - TypeInfo.first;
7178     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
7179     break;
7180   }
7181 
7182   case ABIArgInfo::Direct: {
7183     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
7184     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
7185     ArgAddr = Addr;
7186     break;
7187   }
7188 
7189   case ABIArgInfo::Indirect:
7190     Stride = SlotSize;
7191     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
7192     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
7193                       TypeInfo.second);
7194     break;
7195 
7196   case ABIArgInfo::Ignore:
7197     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
7198   }
7199 
7200   // Update VAList.
7201   llvm::Value *NextPtr =
7202     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
7203   Builder.CreateStore(NextPtr, VAListAddr);
7204 
7205   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
7206 }
7207 
computeInfo(CGFunctionInfo & FI) const7208 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7209   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
7210   for (auto &I : FI.arguments())
7211     I.info = classifyType(I.type, 16 * 8);
7212 }
7213 
7214 namespace {
7215 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
7216 public:
SparcV9TargetCodeGenInfo(CodeGenTypes & CGT)7217   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
7218     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
7219 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const7220   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7221     return 14;
7222   }
7223 
7224   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7225                                llvm::Value *Address) const override;
7226 };
7227 } // end anonymous namespace
7228 
7229 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const7230 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7231                                                 llvm::Value *Address) const {
7232   // This is calculated from the LLVM and GCC tables and verified
7233   // against gcc output.  AFAIK all ABIs use the same encoding.
7234 
7235   CodeGen::CGBuilderTy &Builder = CGF.Builder;
7236 
7237   llvm::IntegerType *i8 = CGF.Int8Ty;
7238   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
7239   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
7240 
7241   // 0-31: the 8-byte general-purpose registers
7242   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
7243 
7244   // 32-63: f0-31, the 4-byte floating-point registers
7245   AssignToArrayRange(Builder, Address, Four8, 32, 63);
7246 
7247   //   Y   = 64
7248   //   PSR = 65
7249   //   WIM = 66
7250   //   TBR = 67
7251   //   PC  = 68
7252   //   NPC = 69
7253   //   FSR = 70
7254   //   CSR = 71
7255   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
7256 
7257   // 72-87: d0-15, the 8-byte floating-point registers
7258   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
7259 
7260   return false;
7261 }
7262 
7263 
7264 //===----------------------------------------------------------------------===//
7265 // XCore ABI Implementation
7266 //===----------------------------------------------------------------------===//
7267 
7268 namespace {
7269 
7270 /// A SmallStringEnc instance is used to build up the TypeString by passing
7271 /// it by reference between functions that append to it.
7272 typedef llvm::SmallString<128> SmallStringEnc;
7273 
7274 /// TypeStringCache caches the meta encodings of Types.
7275 ///
7276 /// The reason for caching TypeStrings is two fold:
7277 ///   1. To cache a type's encoding for later uses;
7278 ///   2. As a means to break recursive member type inclusion.
7279 ///
7280 /// A cache Entry can have a Status of:
7281 ///   NonRecursive:   The type encoding is not recursive;
7282 ///   Recursive:      The type encoding is recursive;
7283 ///   Incomplete:     An incomplete TypeString;
7284 ///   IncompleteUsed: An incomplete TypeString that has been used in a
7285 ///                   Recursive type encoding.
7286 ///
7287 /// A NonRecursive entry will have all of its sub-members expanded as fully
7288 /// as possible. Whilst it may contain types which are recursive, the type
7289 /// itself is not recursive and thus its encoding may be safely used whenever
7290 /// the type is encountered.
7291 ///
7292 /// A Recursive entry will have all of its sub-members expanded as fully as
7293 /// possible. The type itself is recursive and it may contain other types which
7294 /// are recursive. The Recursive encoding must not be used during the expansion
7295 /// of a recursive type's recursive branch. For simplicity the code uses
7296 /// IncompleteCount to reject all usage of Recursive encodings for member types.
7297 ///
7298 /// An Incomplete entry is always a RecordType and only encodes its
7299 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
7300 /// are placed into the cache during type expansion as a means to identify and
7301 /// handle recursive inclusion of types as sub-members. If there is recursion
7302 /// the entry becomes IncompleteUsed.
7303 ///
7304 /// During the expansion of a RecordType's members:
7305 ///
7306 ///   If the cache contains a NonRecursive encoding for the member type, the
7307 ///   cached encoding is used;
7308 ///
7309 ///   If the cache contains a Recursive encoding for the member type, the
7310 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
7311 ///
7312 ///   If the member is a RecordType, an Incomplete encoding is placed into the
7313 ///   cache to break potential recursive inclusion of itself as a sub-member;
7314 ///
7315 ///   Once a member RecordType has been expanded, its temporary incomplete
7316 ///   entry is removed from the cache. If a Recursive encoding was swapped out
7317 ///   it is swapped back in;
7318 ///
7319 ///   If an incomplete entry is used to expand a sub-member, the incomplete
7320 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
7321 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
7322 ///
7323 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
7324 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
7325 ///   Else the member is part of a recursive type and thus the recursion has
7326 ///   been exited too soon for the encoding to be correct for the member.
7327 ///
7328 class TypeStringCache {
7329   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
7330   struct Entry {
7331     std::string Str;     // The encoded TypeString for the type.
7332     enum Status State;   // Information about the encoding in 'Str'.
7333     std::string Swapped; // A temporary place holder for a Recursive encoding
7334                          // during the expansion of RecordType's members.
7335   };
7336   std::map<const IdentifierInfo *, struct Entry> Map;
7337   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
7338   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
7339 public:
TypeStringCache()7340   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
7341   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
7342   bool removeIncomplete(const IdentifierInfo *ID);
7343   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
7344                      bool IsRecursive);
7345   StringRef lookupStr(const IdentifierInfo *ID);
7346 };
7347 
7348 /// TypeString encodings for enum & union fields must be order.
7349 /// FieldEncoding is a helper for this ordering process.
7350 class FieldEncoding {
7351   bool HasName;
7352   std::string Enc;
7353 public:
FieldEncoding(bool b,SmallStringEnc & e)7354   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
str()7355   StringRef str() {return Enc.c_str();}
operator <(const FieldEncoding & rhs) const7356   bool operator<(const FieldEncoding &rhs) const {
7357     if (HasName != rhs.HasName) return HasName;
7358     return Enc < rhs.Enc;
7359   }
7360 };
7361 
7362 class XCoreABIInfo : public DefaultABIInfo {
7363 public:
XCoreABIInfo(CodeGen::CodeGenTypes & CGT)7364   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7365   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7366                     QualType Ty) const override;
7367 };
7368 
7369 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
7370   mutable TypeStringCache TSC;
7371 public:
XCoreTargetCodeGenInfo(CodeGenTypes & CGT)7372   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
7373     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
7374   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7375                     CodeGen::CodeGenModule &M) const override;
7376 };
7377 
7378 } // End anonymous namespace.
7379 
7380 // TODO: this implementation is likely now redundant with the default
7381 // EmitVAArg.
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const7382 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7383                                 QualType Ty) const {
7384   CGBuilderTy &Builder = CGF.Builder;
7385 
7386   // Get the VAList.
7387   CharUnits SlotSize = CharUnits::fromQuantity(4);
7388   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
7389 
7390   // Handle the argument.
7391   ABIArgInfo AI = classifyArgumentType(Ty);
7392   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
7393   llvm::Type *ArgTy = CGT.ConvertType(Ty);
7394   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
7395     AI.setCoerceToType(ArgTy);
7396   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
7397 
7398   Address Val = Address::invalid();
7399   CharUnits ArgSize = CharUnits::Zero();
7400   switch (AI.getKind()) {
7401   case ABIArgInfo::Expand:
7402   case ABIArgInfo::CoerceAndExpand:
7403   case ABIArgInfo::InAlloca:
7404     llvm_unreachable("Unsupported ABI kind for va_arg");
7405   case ABIArgInfo::Ignore:
7406     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
7407     ArgSize = CharUnits::Zero();
7408     break;
7409   case ABIArgInfo::Extend:
7410   case ABIArgInfo::Direct:
7411     Val = Builder.CreateBitCast(AP, ArgPtrTy);
7412     ArgSize = CharUnits::fromQuantity(
7413                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
7414     ArgSize = ArgSize.alignTo(SlotSize);
7415     break;
7416   case ABIArgInfo::Indirect:
7417     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
7418     Val = Address(Builder.CreateLoad(Val), TypeAlign);
7419     ArgSize = SlotSize;
7420     break;
7421   }
7422 
7423   // Increment the VAList.
7424   if (!ArgSize.isZero()) {
7425     llvm::Value *APN =
7426       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
7427     Builder.CreateStore(APN, VAListAddr);
7428   }
7429 
7430   return Val;
7431 }
7432 
7433 /// During the expansion of a RecordType, an incomplete TypeString is placed
7434 /// into the cache as a means to identify and break recursion.
7435 /// If there is a Recursive encoding in the cache, it is swapped out and will
7436 /// be reinserted by removeIncomplete().
7437 /// All other types of encoding should have been used rather than arriving here.
addIncomplete(const IdentifierInfo * ID,std::string StubEnc)7438 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
7439                                     std::string StubEnc) {
7440   if (!ID)
7441     return;
7442   Entry &E = Map[ID];
7443   assert( (E.Str.empty() || E.State == Recursive) &&
7444          "Incorrectly use of addIncomplete");
7445   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
7446   E.Swapped.swap(E.Str); // swap out the Recursive
7447   E.Str.swap(StubEnc);
7448   E.State = Incomplete;
7449   ++IncompleteCount;
7450 }
7451 
7452 /// Once the RecordType has been expanded, the temporary incomplete TypeString
7453 /// must be removed from the cache.
7454 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
7455 /// Returns true if the RecordType was defined recursively.
removeIncomplete(const IdentifierInfo * ID)7456 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
7457   if (!ID)
7458     return false;
7459   auto I = Map.find(ID);
7460   assert(I != Map.end() && "Entry not present");
7461   Entry &E = I->second;
7462   assert( (E.State == Incomplete ||
7463            E.State == IncompleteUsed) &&
7464          "Entry must be an incomplete type");
7465   bool IsRecursive = false;
7466   if (E.State == IncompleteUsed) {
7467     // We made use of our Incomplete encoding, thus we are recursive.
7468     IsRecursive = true;
7469     --IncompleteUsedCount;
7470   }
7471   if (E.Swapped.empty())
7472     Map.erase(I);
7473   else {
7474     // Swap the Recursive back.
7475     E.Swapped.swap(E.Str);
7476     E.Swapped.clear();
7477     E.State = Recursive;
7478   }
7479   --IncompleteCount;
7480   return IsRecursive;
7481 }
7482 
7483 /// Add the encoded TypeString to the cache only if it is NonRecursive or
7484 /// Recursive (viz: all sub-members were expanded as fully as possible).
addIfComplete(const IdentifierInfo * ID,StringRef Str,bool IsRecursive)7485 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
7486                                     bool IsRecursive) {
7487   if (!ID || IncompleteUsedCount)
7488     return; // No key or it is is an incomplete sub-type so don't add.
7489   Entry &E = Map[ID];
7490   if (IsRecursive && !E.Str.empty()) {
7491     assert(E.State==Recursive && E.Str.size() == Str.size() &&
7492            "This is not the same Recursive entry");
7493     // The parent container was not recursive after all, so we could have used
7494     // this Recursive sub-member entry after all, but we assumed the worse when
7495     // we started viz: IncompleteCount!=0.
7496     return;
7497   }
7498   assert(E.Str.empty() && "Entry already present");
7499   E.Str = Str.str();
7500   E.State = IsRecursive? Recursive : NonRecursive;
7501 }
7502 
7503 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
7504 /// are recursively expanding a type (IncompleteCount != 0) and the cached
7505 /// encoding is Recursive, return an empty StringRef.
lookupStr(const IdentifierInfo * ID)7506 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
7507   if (!ID)
7508     return StringRef();   // We have no key.
7509   auto I = Map.find(ID);
7510   if (I == Map.end())
7511     return StringRef();   // We have no encoding.
7512   Entry &E = I->second;
7513   if (E.State == Recursive && IncompleteCount)
7514     return StringRef();   // We don't use Recursive encodings for member types.
7515 
7516   if (E.State == Incomplete) {
7517     // The incomplete type is being used to break out of recursion.
7518     E.State = IncompleteUsed;
7519     ++IncompleteUsedCount;
7520   }
7521   return E.Str.c_str();
7522 }
7523 
7524 /// The XCore ABI includes a type information section that communicates symbol
7525 /// type information to the linker. The linker uses this information to verify
7526 /// safety/correctness of things such as array bound and pointers et al.
7527 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
7528 /// This type information (TypeString) is emitted into meta data for all global
7529 /// symbols: definitions, declarations, functions & variables.
7530 ///
7531 /// The TypeString carries type, qualifier, name, size & value details.
7532 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
7533 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
7534 /// The output is tested by test/CodeGen/xcore-stringtype.c.
7535 ///
7536 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7537                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
7538 
7539 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
emitTargetMD(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const7540 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7541                                           CodeGen::CodeGenModule &CGM) const {
7542   SmallStringEnc Enc;
7543   if (getTypeString(Enc, D, CGM, TSC)) {
7544     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
7545     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
7546                                 llvm::MDString::get(Ctx, Enc.str())};
7547     llvm::NamedMDNode *MD =
7548       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
7549     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7550   }
7551 }
7552 
7553 //===----------------------------------------------------------------------===//
7554 // SPIR ABI Implementation
7555 //===----------------------------------------------------------------------===//
7556 
7557 namespace {
7558 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
7559 public:
SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)7560   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7561     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
7562   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7563                     CodeGen::CodeGenModule &M) const override;
7564   unsigned getOpenCLKernelCallingConv() const override;
7565 };
7566 } // End anonymous namespace.
7567 
7568 /// Emit SPIR specific metadata: OpenCL and SPIR version.
emitTargetMD(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const7569 void SPIRTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7570                                          CodeGen::CodeGenModule &CGM) const {
7571   llvm::LLVMContext &Ctx = CGM.getModule().getContext();
7572   llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx);
7573   llvm::Module &M = CGM.getModule();
7574   // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
7575   // opencl.spir.version named metadata.
7576   llvm::Metadata *SPIRVerElts[] = {
7577       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 2)),
7578       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 0))};
7579   llvm::NamedMDNode *SPIRVerMD =
7580       M.getOrInsertNamedMetadata("opencl.spir.version");
7581   SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
7582   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
7583   // opencl.ocl.version named metadata node.
7584   llvm::Metadata *OCLVerElts[] = {
7585       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
7586           Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)),
7587       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
7588           Int32Ty, (CGM.getLangOpts().OpenCLVersion % 100) / 10))};
7589   llvm::NamedMDNode *OCLVerMD =
7590       M.getOrInsertNamedMetadata("opencl.ocl.version");
7591   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
7592 }
7593 
getOpenCLKernelCallingConv() const7594 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7595   return llvm::CallingConv::SPIR_KERNEL;
7596 }
7597 
7598 static bool appendType(SmallStringEnc &Enc, QualType QType,
7599                        const CodeGen::CodeGenModule &CGM,
7600                        TypeStringCache &TSC);
7601 
7602 /// Helper function for appendRecordType().
7603 /// Builds a SmallVector containing the encoded field types in declaration
7604 /// order.
extractFieldType(SmallVectorImpl<FieldEncoding> & FE,const RecordDecl * RD,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)7605 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
7606                              const RecordDecl *RD,
7607                              const CodeGen::CodeGenModule &CGM,
7608                              TypeStringCache &TSC) {
7609   for (const auto *Field : RD->fields()) {
7610     SmallStringEnc Enc;
7611     Enc += "m(";
7612     Enc += Field->getName();
7613     Enc += "){";
7614     if (Field->isBitField()) {
7615       Enc += "b(";
7616       llvm::raw_svector_ostream OS(Enc);
7617       OS << Field->getBitWidthValue(CGM.getContext());
7618       Enc += ':';
7619     }
7620     if (!appendType(Enc, Field->getType(), CGM, TSC))
7621       return false;
7622     if (Field->isBitField())
7623       Enc += ')';
7624     Enc += '}';
7625     FE.emplace_back(!Field->getName().empty(), Enc);
7626   }
7627   return true;
7628 }
7629 
7630 /// Appends structure and union types to Enc and adds encoding to cache.
7631 /// Recursively calls appendType (via extractFieldType) for each field.
7632 /// Union types have their fields ordered according to the ABI.
appendRecordType(SmallStringEnc & Enc,const RecordType * RT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC,const IdentifierInfo * ID)7633 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
7634                              const CodeGen::CodeGenModule &CGM,
7635                              TypeStringCache &TSC, const IdentifierInfo *ID) {
7636   // Append the cached TypeString if we have one.
7637   StringRef TypeString = TSC.lookupStr(ID);
7638   if (!TypeString.empty()) {
7639     Enc += TypeString;
7640     return true;
7641   }
7642 
7643   // Start to emit an incomplete TypeString.
7644   size_t Start = Enc.size();
7645   Enc += (RT->isUnionType()? 'u' : 's');
7646   Enc += '(';
7647   if (ID)
7648     Enc += ID->getName();
7649   Enc += "){";
7650 
7651   // We collect all encoded fields and order as necessary.
7652   bool IsRecursive = false;
7653   const RecordDecl *RD = RT->getDecl()->getDefinition();
7654   if (RD && !RD->field_empty()) {
7655     // An incomplete TypeString stub is placed in the cache for this RecordType
7656     // so that recursive calls to this RecordType will use it whilst building a
7657     // complete TypeString for this RecordType.
7658     SmallVector<FieldEncoding, 16> FE;
7659     std::string StubEnc(Enc.substr(Start).str());
7660     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
7661     TSC.addIncomplete(ID, std::move(StubEnc));
7662     if (!extractFieldType(FE, RD, CGM, TSC)) {
7663       (void) TSC.removeIncomplete(ID);
7664       return false;
7665     }
7666     IsRecursive = TSC.removeIncomplete(ID);
7667     // The ABI requires unions to be sorted but not structures.
7668     // See FieldEncoding::operator< for sort algorithm.
7669     if (RT->isUnionType())
7670       std::sort(FE.begin(), FE.end());
7671     // We can now complete the TypeString.
7672     unsigned E = FE.size();
7673     for (unsigned I = 0; I != E; ++I) {
7674       if (I)
7675         Enc += ',';
7676       Enc += FE[I].str();
7677     }
7678   }
7679   Enc += '}';
7680   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
7681   return true;
7682 }
7683 
7684 /// Appends enum types to Enc and adds the encoding to the cache.
appendEnumType(SmallStringEnc & Enc,const EnumType * ET,TypeStringCache & TSC,const IdentifierInfo * ID)7685 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
7686                            TypeStringCache &TSC,
7687                            const IdentifierInfo *ID) {
7688   // Append the cached TypeString if we have one.
7689   StringRef TypeString = TSC.lookupStr(ID);
7690   if (!TypeString.empty()) {
7691     Enc += TypeString;
7692     return true;
7693   }
7694 
7695   size_t Start = Enc.size();
7696   Enc += "e(";
7697   if (ID)
7698     Enc += ID->getName();
7699   Enc += "){";
7700 
7701   // We collect all encoded enumerations and order them alphanumerically.
7702   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
7703     SmallVector<FieldEncoding, 16> FE;
7704     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
7705          ++I) {
7706       SmallStringEnc EnumEnc;
7707       EnumEnc += "m(";
7708       EnumEnc += I->getName();
7709       EnumEnc += "){";
7710       I->getInitVal().toString(EnumEnc);
7711       EnumEnc += '}';
7712       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
7713     }
7714     std::sort(FE.begin(), FE.end());
7715     unsigned E = FE.size();
7716     for (unsigned I = 0; I != E; ++I) {
7717       if (I)
7718         Enc += ',';
7719       Enc += FE[I].str();
7720     }
7721   }
7722   Enc += '}';
7723   TSC.addIfComplete(ID, Enc.substr(Start), false);
7724   return true;
7725 }
7726 
7727 /// Appends type's qualifier to Enc.
7728 /// This is done prior to appending the type's encoding.
appendQualifier(SmallStringEnc & Enc,QualType QT)7729 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
7730   // Qualifiers are emitted in alphabetical order.
7731   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
7732   int Lookup = 0;
7733   if (QT.isConstQualified())
7734     Lookup += 1<<0;
7735   if (QT.isRestrictQualified())
7736     Lookup += 1<<1;
7737   if (QT.isVolatileQualified())
7738     Lookup += 1<<2;
7739   Enc += Table[Lookup];
7740 }
7741 
7742 /// Appends built-in types to Enc.
appendBuiltinType(SmallStringEnc & Enc,const BuiltinType * BT)7743 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
7744   const char *EncType;
7745   switch (BT->getKind()) {
7746     case BuiltinType::Void:
7747       EncType = "0";
7748       break;
7749     case BuiltinType::Bool:
7750       EncType = "b";
7751       break;
7752     case BuiltinType::Char_U:
7753       EncType = "uc";
7754       break;
7755     case BuiltinType::UChar:
7756       EncType = "uc";
7757       break;
7758     case BuiltinType::SChar:
7759       EncType = "sc";
7760       break;
7761     case BuiltinType::UShort:
7762       EncType = "us";
7763       break;
7764     case BuiltinType::Short:
7765       EncType = "ss";
7766       break;
7767     case BuiltinType::UInt:
7768       EncType = "ui";
7769       break;
7770     case BuiltinType::Int:
7771       EncType = "si";
7772       break;
7773     case BuiltinType::ULong:
7774       EncType = "ul";
7775       break;
7776     case BuiltinType::Long:
7777       EncType = "sl";
7778       break;
7779     case BuiltinType::ULongLong:
7780       EncType = "ull";
7781       break;
7782     case BuiltinType::LongLong:
7783       EncType = "sll";
7784       break;
7785     case BuiltinType::Float:
7786       EncType = "ft";
7787       break;
7788     case BuiltinType::Double:
7789       EncType = "d";
7790       break;
7791     case BuiltinType::LongDouble:
7792       EncType = "ld";
7793       break;
7794     default:
7795       return false;
7796   }
7797   Enc += EncType;
7798   return true;
7799 }
7800 
7801 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
appendPointerType(SmallStringEnc & Enc,const PointerType * PT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)7802 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
7803                               const CodeGen::CodeGenModule &CGM,
7804                               TypeStringCache &TSC) {
7805   Enc += "p(";
7806   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
7807     return false;
7808   Enc += ')';
7809   return true;
7810 }
7811 
7812 /// Appends array encoding to Enc before calling appendType for the element.
appendArrayType(SmallStringEnc & Enc,QualType QT,const ArrayType * AT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC,StringRef NoSizeEnc)7813 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
7814                             const ArrayType *AT,
7815                             const CodeGen::CodeGenModule &CGM,
7816                             TypeStringCache &TSC, StringRef NoSizeEnc) {
7817   if (AT->getSizeModifier() != ArrayType::Normal)
7818     return false;
7819   Enc += "a(";
7820   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
7821     CAT->getSize().toStringUnsigned(Enc);
7822   else
7823     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
7824   Enc += ':';
7825   // The Qualifiers should be attached to the type rather than the array.
7826   appendQualifier(Enc, QT);
7827   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
7828     return false;
7829   Enc += ')';
7830   return true;
7831 }
7832 
7833 /// Appends a function encoding to Enc, calling appendType for the return type
7834 /// and the arguments.
appendFunctionType(SmallStringEnc & Enc,const FunctionType * FT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)7835 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
7836                              const CodeGen::CodeGenModule &CGM,
7837                              TypeStringCache &TSC) {
7838   Enc += "f{";
7839   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
7840     return false;
7841   Enc += "}(";
7842   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
7843     // N.B. we are only interested in the adjusted param types.
7844     auto I = FPT->param_type_begin();
7845     auto E = FPT->param_type_end();
7846     if (I != E) {
7847       do {
7848         if (!appendType(Enc, *I, CGM, TSC))
7849           return false;
7850         ++I;
7851         if (I != E)
7852           Enc += ',';
7853       } while (I != E);
7854       if (FPT->isVariadic())
7855         Enc += ",va";
7856     } else {
7857       if (FPT->isVariadic())
7858         Enc += "va";
7859       else
7860         Enc += '0';
7861     }
7862   }
7863   Enc += ')';
7864   return true;
7865 }
7866 
7867 /// Handles the type's qualifier before dispatching a call to handle specific
7868 /// type encodings.
appendType(SmallStringEnc & Enc,QualType QType,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)7869 static bool appendType(SmallStringEnc &Enc, QualType QType,
7870                        const CodeGen::CodeGenModule &CGM,
7871                        TypeStringCache &TSC) {
7872 
7873   QualType QT = QType.getCanonicalType();
7874 
7875   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
7876     // The Qualifiers should be attached to the type rather than the array.
7877     // Thus we don't call appendQualifier() here.
7878     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
7879 
7880   appendQualifier(Enc, QT);
7881 
7882   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
7883     return appendBuiltinType(Enc, BT);
7884 
7885   if (const PointerType *PT = QT->getAs<PointerType>())
7886     return appendPointerType(Enc, PT, CGM, TSC);
7887 
7888   if (const EnumType *ET = QT->getAs<EnumType>())
7889     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
7890 
7891   if (const RecordType *RT = QT->getAsStructureType())
7892     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7893 
7894   if (const RecordType *RT = QT->getAsUnionType())
7895     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7896 
7897   if (const FunctionType *FT = QT->getAs<FunctionType>())
7898     return appendFunctionType(Enc, FT, CGM, TSC);
7899 
7900   return false;
7901 }
7902 
getTypeString(SmallStringEnc & Enc,const Decl * D,CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)7903 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7904                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
7905   if (!D)
7906     return false;
7907 
7908   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7909     if (FD->getLanguageLinkage() != CLanguageLinkage)
7910       return false;
7911     return appendType(Enc, FD->getType(), CGM, TSC);
7912   }
7913 
7914   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7915     if (VD->getLanguageLinkage() != CLanguageLinkage)
7916       return false;
7917     QualType QT = VD->getType().getCanonicalType();
7918     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
7919       // Global ArrayTypes are given a size of '*' if the size is unknown.
7920       // The Qualifiers should be attached to the type rather than the array.
7921       // Thus we don't call appendQualifier() here.
7922       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
7923     }
7924     return appendType(Enc, QT, CGM, TSC);
7925   }
7926   return false;
7927 }
7928 
7929 
7930 //===----------------------------------------------------------------------===//
7931 // Driver code
7932 //===----------------------------------------------------------------------===//
7933 
getTriple() const7934 const llvm::Triple &CodeGenModule::getTriple() const {
7935   return getTarget().getTriple();
7936 }
7937 
supportsCOMDAT() const7938 bool CodeGenModule::supportsCOMDAT() const {
7939   return getTriple().supportsCOMDAT();
7940 }
7941 
getTargetCodeGenInfo()7942 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
7943   if (TheTargetCodeGenInfo)
7944     return *TheTargetCodeGenInfo;
7945 
7946   // Helper to set the unique_ptr while still keeping the return value.
7947   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
7948     this->TheTargetCodeGenInfo.reset(P);
7949     return *P;
7950   };
7951 
7952   const llvm::Triple &Triple = getTarget().getTriple();
7953   switch (Triple.getArch()) {
7954   default:
7955     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
7956 
7957   case llvm::Triple::le32:
7958     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
7959   case llvm::Triple::mips:
7960   case llvm::Triple::mipsel:
7961     if (Triple.getOS() == llvm::Triple::NaCl)
7962       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
7963     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
7964 
7965   case llvm::Triple::mips64:
7966   case llvm::Triple::mips64el:
7967     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
7968 
7969   case llvm::Triple::aarch64:
7970   case llvm::Triple::aarch64_be: {
7971     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
7972     if (getTarget().getABI() == "darwinpcs")
7973       Kind = AArch64ABIInfo::DarwinPCS;
7974 
7975     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
7976   }
7977 
7978   case llvm::Triple::wasm32:
7979   case llvm::Triple::wasm64:
7980     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
7981 
7982   case llvm::Triple::arm:
7983   case llvm::Triple::armeb:
7984   case llvm::Triple::thumb:
7985   case llvm::Triple::thumbeb: {
7986     if (Triple.getOS() == llvm::Triple::Win32) {
7987       return SetCGInfo(
7988           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
7989     }
7990 
7991     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
7992     StringRef ABIStr = getTarget().getABI();
7993     if (ABIStr == "apcs-gnu")
7994       Kind = ARMABIInfo::APCS;
7995     else if (ABIStr == "aapcs16")
7996       Kind = ARMABIInfo::AAPCS16_VFP;
7997     else if (CodeGenOpts.FloatABI == "hard" ||
7998              (CodeGenOpts.FloatABI != "soft" &&
7999               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
8000                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
8001                Triple.getEnvironment() == llvm::Triple::EABIHF)))
8002       Kind = ARMABIInfo::AAPCS_VFP;
8003 
8004     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
8005   }
8006 
8007   case llvm::Triple::ppc:
8008     return SetCGInfo(
8009         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
8010   case llvm::Triple::ppc64:
8011     if (Triple.isOSBinFormatELF()) {
8012       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
8013       if (getTarget().getABI() == "elfv2")
8014         Kind = PPC64_SVR4_ABIInfo::ELFv2;
8015       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
8016 
8017       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
8018     } else
8019       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
8020   case llvm::Triple::ppc64le: {
8021     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
8022     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
8023     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
8024       Kind = PPC64_SVR4_ABIInfo::ELFv1;
8025     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
8026 
8027     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
8028   }
8029 
8030   case llvm::Triple::nvptx:
8031   case llvm::Triple::nvptx64:
8032     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
8033 
8034   case llvm::Triple::msp430:
8035     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
8036 
8037   case llvm::Triple::systemz: {
8038     bool HasVector = getTarget().getABI() == "vector";
8039     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
8040   }
8041 
8042   case llvm::Triple::tce:
8043     return SetCGInfo(new TCETargetCodeGenInfo(Types));
8044 
8045   case llvm::Triple::x86: {
8046     bool IsDarwinVectorABI = Triple.isOSDarwin();
8047     bool RetSmallStructInRegABI =
8048         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
8049     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
8050 
8051     if (Triple.getOS() == llvm::Triple::Win32) {
8052       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
8053           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
8054           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
8055     } else {
8056       return SetCGInfo(new X86_32TargetCodeGenInfo(
8057           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
8058           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
8059           CodeGenOpts.FloatABI == "soft"));
8060     }
8061   }
8062 
8063   case llvm::Triple::x86_64: {
8064     StringRef ABI = getTarget().getABI();
8065     X86AVXABILevel AVXLevel =
8066         (ABI == "avx512"
8067              ? X86AVXABILevel::AVX512
8068              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
8069 
8070     switch (Triple.getOS()) {
8071     case llvm::Triple::Win32:
8072       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
8073     case llvm::Triple::PS4:
8074       return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
8075     default:
8076       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
8077     }
8078   }
8079   case llvm::Triple::hexagon:
8080     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
8081   case llvm::Triple::lanai:
8082     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
8083   case llvm::Triple::r600:
8084     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
8085   case llvm::Triple::amdgcn:
8086     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
8087   case llvm::Triple::sparc:
8088     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
8089   case llvm::Triple::sparcv9:
8090     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
8091   case llvm::Triple::xcore:
8092     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
8093   case llvm::Triple::spir:
8094   case llvm::Triple::spir64:
8095     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
8096   }
8097 }
8098