1 //===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // CUDA C/C++ includes memory space designation as variable type qualifers (such
11 // as __global__ and __shared__). Knowing the space of a memory access allows
12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
13 // shared memory can be translated to `ld.shared` which is roughly 10% faster
14 // than a generic `ld` on an NVIDIA Tesla K40c.
15 //
16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
17 // compilers must infer the memory space of an address expression from
18 // type-qualified variables.
19 //
20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
22 // places only type-qualified variables in specific address spaces, and then
23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
24 // (so-called the generic address space) for other instructions to use.
25 //
26 // For example, the Clang translates the following CUDA code
27 // __shared__ float a[10];
28 // float v = a[i];
29 // to
30 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
31 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
32 // %v = load float, float* %1 ; emits ld.f32
33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
34 // redirected to %0 (the generic version of @a).
35 //
36 // The optimization implemented in this file propagates specific address spaces
37 // from type-qualified variable declarations to its users. For example, it
38 // optimizes the above IR to
39 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
40 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32
41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
42 // codegen is able to emit ld.shared.f32 for %v.
43 //
44 // Address space inference works in two steps. First, it uses a data-flow
45 // analysis to infer as many generic pointers as possible to point to only one
46 // specific address space. In the above example, it can prove that %1 only
47 // points to addrspace(3). This algorithm was published in
48 // CUDA: Compiling and optimizing for a GPU platform
49 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
50 // ICCS 2012
51 //
52 // Then, address space inference replaces all refinable generic pointers with
53 // equivalent specific pointers.
54 //
55 // The major challenge of implementing this optimization is handling PHINodes,
56 // which may create loops in the data flow graph. This brings two complications.
57 //
58 // First, the data flow analysis in Step 1 needs to be circular. For example,
59 // %generic.input = addrspacecast float addrspace(3)* %input to float*
60 // loop:
61 // %y = phi [ %generic.input, %y2 ]
62 // %y2 = getelementptr %y, 1
63 // %v = load %y2
64 // br ..., label %loop, ...
65 // proving %y specific requires proving both %generic.input and %y2 specific,
66 // but proving %y2 specific circles back to %y. To address this complication,
67 // the data flow analysis operates on a lattice:
68 // uninitialized > specific address spaces > generic.
69 // All address expressions (our implementation only considers phi, bitcast,
70 // addrspacecast, and getelementptr) start with the uninitialized address space.
71 // The monotone transfer function moves the address space of a pointer down a
72 // lattice path from uninitialized to specific and then to generic. A join
73 // operation of two different specific address spaces pushes the expression down
74 // to the generic address space. The analysis completes once it reaches a fixed
75 // point.
76 //
77 // Second, IR rewriting in Step 2 also needs to be circular. For example,
78 // converting %y to addrspace(3) requires the compiler to know the converted
79 // %y2, but converting %y2 needs the converted %y. To address this complication,
80 // we break these cycles using "undef" placeholders. When converting an
81 // instruction `I` to a new address space, if its operand `Op` is not converted
82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
83 // For instance, our algorithm first converts %y to
84 // %y' = phi float addrspace(3)* [ %input, undef ]
85 // Then, it converts %y2 to
86 // %y2' = getelementptr %y', 1
87 // Finally, it fixes the undef in %y' so that
88 // %y' = phi float addrspace(3)* [ %input, %y2' ]
89 //
90 // TODO: This pass is experimental and not enabled by default. Users can turn it
91 // on by setting the -nvptx-use-infer-addrspace flag of llc. We plan to replace
92 // NVPTXNonFavorGenericAddrSpaces with this pass shortly.
93 //===----------------------------------------------------------------------===//
94
95 #define DEBUG_TYPE "nvptx-infer-addrspace"
96
97 #include "NVPTX.h"
98 #include "MCTargetDesc/NVPTXBaseInfo.h"
99 #include "llvm/ADT/DenseSet.h"
100 #include "llvm/ADT/Optional.h"
101 #include "llvm/ADT/SetVector.h"
102 #include "llvm/IR/Function.h"
103 #include "llvm/IR/InstIterator.h"
104 #include "llvm/IR/Instructions.h"
105 #include "llvm/IR/Operator.h"
106 #include "llvm/Support/Debug.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Transforms/Utils/Local.h"
109 #include "llvm/Transforms/Utils/ValueMapper.h"
110
111 using namespace llvm;
112
113 namespace {
114 const unsigned ADDRESS_SPACE_UNINITIALIZED = (unsigned)-1;
115
116 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
117
118 /// \brief NVPTXInferAddressSpaces
119 class NVPTXInferAddressSpaces: public FunctionPass {
120 public:
121 static char ID;
122
NVPTXInferAddressSpaces()123 NVPTXInferAddressSpaces() : FunctionPass(ID) {}
124
125 bool runOnFunction(Function &F) override;
126
127 private:
128 // Returns the new address space of V if updated; otherwise, returns None.
129 Optional<unsigned>
130 updateAddressSpace(const Value &V,
131 const ValueToAddrSpaceMapTy &InferredAddrSpace);
132
133 // Tries to infer the specific address space of each address expression in
134 // Postorder.
135 void inferAddressSpaces(const std::vector<Value *> &Postorder,
136 ValueToAddrSpaceMapTy *InferredAddrSpace);
137
138 // Changes the generic address expressions in function F to point to specific
139 // address spaces if InferredAddrSpace says so. Postorder is the postorder of
140 // all generic address expressions in the use-def graph of function F.
141 bool
142 rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder,
143 const ValueToAddrSpaceMapTy &InferredAddrSpace,
144 Function *F);
145 };
146 } // end anonymous namespace
147
148 char NVPTXInferAddressSpaces::ID = 0;
149
150 namespace llvm {
151 void initializeNVPTXInferAddressSpacesPass(PassRegistry &);
152 }
153 INITIALIZE_PASS(NVPTXInferAddressSpaces, "nvptx-infer-addrspace",
154 "Infer address spaces",
155 false, false)
156
157 // Returns true if V is an address expression.
158 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
159 // getelementptr operators.
isAddressExpression(const Value & V)160 static bool isAddressExpression(const Value &V) {
161 if (!isa<Operator>(V))
162 return false;
163
164 switch (cast<Operator>(V).getOpcode()) {
165 case Instruction::PHI:
166 case Instruction::BitCast:
167 case Instruction::AddrSpaceCast:
168 case Instruction::GetElementPtr:
169 return true;
170 default:
171 return false;
172 }
173 }
174
175 // Returns the pointer operands of V.
176 //
177 // Precondition: V is an address expression.
getPointerOperands(const Value & V)178 static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
179 assert(isAddressExpression(V));
180 const Operator& Op = cast<Operator>(V);
181 switch (Op.getOpcode()) {
182 case Instruction::PHI: {
183 auto IncomingValues = cast<PHINode>(Op).incoming_values();
184 return SmallVector<Value *, 2>(IncomingValues.begin(),
185 IncomingValues.end());
186 }
187 case Instruction::BitCast:
188 case Instruction::AddrSpaceCast:
189 case Instruction::GetElementPtr:
190 return {Op.getOperand(0)};
191 default:
192 llvm_unreachable("Unexpected instruction type.");
193 }
194 }
195
196 // If V is an unvisited generic address expression, appends V to PostorderStack
197 // and marks it as visited.
appendsGenericAddressExpressionToPostorderStack(Value * V,std::vector<std::pair<Value *,bool>> * PostorderStack,DenseSet<Value * > * Visited)198 static void appendsGenericAddressExpressionToPostorderStack(
199 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
200 DenseSet<Value *> *Visited) {
201 assert(V->getType()->isPointerTy());
202 if (isAddressExpression(*V) &&
203 V->getType()->getPointerAddressSpace() ==
204 AddressSpace::ADDRESS_SPACE_GENERIC) {
205 if (Visited->insert(V).second)
206 PostorderStack->push_back(std::make_pair(V, false));
207 }
208 }
209
210 // Returns all generic address expressions in function F. The elements are
211 // ordered in postorder.
collectGenericAddressExpressions(Function & F)212 static std::vector<Value *> collectGenericAddressExpressions(Function &F) {
213 // This function implements a non-recursive postorder traversal of a partial
214 // use-def graph of function F.
215 std::vector<std::pair<Value*, bool>> PostorderStack;
216 // The set of visited expressions.
217 DenseSet<Value*> Visited;
218 // We only explore address expressions that are reachable from loads and
219 // stores for now because we aim at generating faster loads and stores.
220 for (Instruction &I : instructions(F)) {
221 if (isa<LoadInst>(I)) {
222 appendsGenericAddressExpressionToPostorderStack(
223 I.getOperand(0), &PostorderStack, &Visited);
224 } else if (isa<StoreInst>(I)) {
225 appendsGenericAddressExpressionToPostorderStack(
226 I.getOperand(1), &PostorderStack, &Visited);
227 }
228 }
229
230 std::vector<Value *> Postorder; // The resultant postorder.
231 while (!PostorderStack.empty()) {
232 // If the operands of the expression on the top are already explored,
233 // adds that expression to the resultant postorder.
234 if (PostorderStack.back().second) {
235 Postorder.push_back(PostorderStack.back().first);
236 PostorderStack.pop_back();
237 continue;
238 }
239 // Otherwise, adds its operands to the stack and explores them.
240 PostorderStack.back().second = true;
241 for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) {
242 appendsGenericAddressExpressionToPostorderStack(
243 PtrOperand, &PostorderStack, &Visited);
244 }
245 }
246 return Postorder;
247 }
248
249 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
250 // of OperandUse.get() in the new address space. If the clone is not ready yet,
251 // returns an undef in the new address space as a placeholder.
operandWithNewAddressSpaceOrCreateUndef(const Use & OperandUse,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,SmallVectorImpl<const Use * > * UndefUsesToFix)252 static Value *operandWithNewAddressSpaceOrCreateUndef(
253 const Use &OperandUse, unsigned NewAddrSpace,
254 const ValueToValueMapTy &ValueWithNewAddrSpace,
255 SmallVectorImpl<const Use *> *UndefUsesToFix) {
256 Value *Operand = OperandUse.get();
257 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
258 return NewOperand;
259
260 UndefUsesToFix->push_back(&OperandUse);
261 return UndefValue::get(
262 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace));
263 }
264
265 // Returns a clone of `I` with its operands converted to those specified in
266 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
267 // operand whose address space needs to be modified might not exist in
268 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
269 // adds that operand use to UndefUsesToFix so that caller can fix them later.
270 //
271 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
272 // from a pointer whose type already matches. Therefore, this function returns a
273 // Value* instead of an Instruction*.
cloneInstructionWithNewAddressSpace(Instruction * I,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,SmallVectorImpl<const Use * > * UndefUsesToFix)274 static Value *cloneInstructionWithNewAddressSpace(
275 Instruction *I, unsigned NewAddrSpace,
276 const ValueToValueMapTy &ValueWithNewAddrSpace,
277 SmallVectorImpl<const Use *> *UndefUsesToFix) {
278 Type *NewPtrType =
279 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
280
281 if (I->getOpcode() == Instruction::AddrSpaceCast) {
282 Value *Src = I->getOperand(0);
283 // Because `I` is generic, the source address space must be specific.
284 // Therefore, the inferred address space must be the source space, according
285 // to our algorithm.
286 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
287 if (Src->getType() != NewPtrType)
288 return new BitCastInst(Src, NewPtrType);
289 return Src;
290 }
291
292 // Computes the converted pointer operands.
293 SmallVector<Value *, 4> NewPointerOperands;
294 for (const Use &OperandUse : I->operands()) {
295 if (!OperandUse.get()->getType()->isPointerTy())
296 NewPointerOperands.push_back(nullptr);
297 else
298 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
299 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
300 }
301
302 switch (I->getOpcode()) {
303 case Instruction::BitCast:
304 return new BitCastInst(NewPointerOperands[0], NewPtrType);
305 case Instruction::PHI: {
306 assert(I->getType()->isPointerTy());
307 PHINode *PHI = cast<PHINode>(I);
308 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
309 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
310 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
311 NewPHI->addIncoming(NewPointerOperands[OperandNo],
312 PHI->getIncomingBlock(Index));
313 }
314 return NewPHI;
315 }
316 case Instruction::GetElementPtr: {
317 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
318 GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
319 GEP->getSourceElementType(), NewPointerOperands[0],
320 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
321 NewGEP->setIsInBounds(GEP->isInBounds());
322 return NewGEP;
323 }
324 default:
325 llvm_unreachable("Unexpected opcode");
326 }
327 }
328
329 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
330 // constant expression `CE` with its operands replaced as specified in
331 // ValueWithNewAddrSpace.
cloneConstantExprWithNewAddressSpace(ConstantExpr * CE,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace)332 static Value *cloneConstantExprWithNewAddressSpace(
333 ConstantExpr *CE, unsigned NewAddrSpace,
334 const ValueToValueMapTy &ValueWithNewAddrSpace) {
335 Type *TargetType =
336 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
337
338 if (CE->getOpcode() == Instruction::AddrSpaceCast) {
339 // Because CE is generic, the source address space must be specific.
340 // Therefore, the inferred address space must be the source space according
341 // to our algorithm.
342 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
343 NewAddrSpace);
344 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
345 }
346
347 // Computes the operands of the new constant expression.
348 SmallVector<Constant *, 4> NewOperands;
349 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
350 Constant *Operand = CE->getOperand(Index);
351 // If the address space of `Operand` needs to be modified, the new operand
352 // with the new address space should already be in ValueWithNewAddrSpace
353 // because (1) the constant expressions we consider (i.e. addrspacecast,
354 // bitcast, and getelementptr) do not incur cycles in the data flow graph
355 // and (2) this function is called on constant expressions in postorder.
356 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
357 NewOperands.push_back(cast<Constant>(NewOperand));
358 } else {
359 // Otherwise, reuses the old operand.
360 NewOperands.push_back(Operand);
361 }
362 }
363
364 if (CE->getOpcode() == Instruction::GetElementPtr) {
365 // Needs to specify the source type while constructing a getelementptr
366 // constant expression.
367 return CE->getWithOperands(
368 NewOperands, TargetType, /*OnlyIfReduced=*/false,
369 NewOperands[0]->getType()->getPointerElementType());
370 }
371
372 return CE->getWithOperands(NewOperands, TargetType);
373 }
374
375 // Returns a clone of the value `V`, with its operands replaced as specified in
376 // ValueWithNewAddrSpace. This function is called on every generic address
377 // expression whose address space needs to be modified, in postorder.
378 //
379 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
380 static Value *
cloneValueWithNewAddressSpace(Value * V,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,SmallVectorImpl<const Use * > * UndefUsesToFix)381 cloneValueWithNewAddressSpace(Value *V, unsigned NewAddrSpace,
382 const ValueToValueMapTy &ValueWithNewAddrSpace,
383 SmallVectorImpl<const Use *> *UndefUsesToFix) {
384 // All values in Postorder are generic address expressions.
385 assert(isAddressExpression(*V) &&
386 V->getType()->getPointerAddressSpace() ==
387 AddressSpace::ADDRESS_SPACE_GENERIC);
388
389 if (Instruction *I = dyn_cast<Instruction>(V)) {
390 Value *NewV = cloneInstructionWithNewAddressSpace(
391 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
392 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
393 if (NewI->getParent() == nullptr) {
394 NewI->insertBefore(I);
395 NewI->takeName(I);
396 }
397 }
398 return NewV;
399 }
400
401 return cloneConstantExprWithNewAddressSpace(
402 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
403 }
404
405 // Defines the join operation on the address space lattice (see the file header
406 // comments).
joinAddressSpaces(unsigned AS1,unsigned AS2)407 static unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) {
408 if (AS1 == AddressSpace::ADDRESS_SPACE_GENERIC ||
409 AS2 == AddressSpace::ADDRESS_SPACE_GENERIC)
410 return AddressSpace::ADDRESS_SPACE_GENERIC;
411
412 if (AS1 == ADDRESS_SPACE_UNINITIALIZED)
413 return AS2;
414 if (AS2 == ADDRESS_SPACE_UNINITIALIZED)
415 return AS1;
416
417 // The join of two different specific address spaces is generic.
418 return AS1 == AS2 ? AS1 : (unsigned)AddressSpace::ADDRESS_SPACE_GENERIC;
419 }
420
runOnFunction(Function & F)421 bool NVPTXInferAddressSpaces::runOnFunction(Function &F) {
422 if (skipFunction(F))
423 return false;
424
425 // Collects all generic address expressions in postorder.
426 std::vector<Value *> Postorder = collectGenericAddressExpressions(F);
427
428 // Runs a data-flow analysis to refine the address spaces of every expression
429 // in Postorder.
430 ValueToAddrSpaceMapTy InferredAddrSpace;
431 inferAddressSpaces(Postorder, &InferredAddrSpace);
432
433 // Changes the address spaces of the generic address expressions who are
434 // inferred to point to a specific address space.
435 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
436 }
437
inferAddressSpaces(const std::vector<Value * > & Postorder,ValueToAddrSpaceMapTy * InferredAddrSpace)438 void NVPTXInferAddressSpaces::inferAddressSpaces(
439 const std::vector<Value *> &Postorder,
440 ValueToAddrSpaceMapTy *InferredAddrSpace) {
441 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
442 // Initially, all expressions are in the uninitialized address space.
443 for (Value *V : Postorder)
444 (*InferredAddrSpace)[V] = ADDRESS_SPACE_UNINITIALIZED;
445
446 while (!Worklist.empty()) {
447 Value* V = Worklist.pop_back_val();
448
449 // Tries to update the address space of the stack top according to the
450 // address spaces of its operands.
451 DEBUG(dbgs() << "Updating the address space of\n"
452 << " " << *V << "\n");
453 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
454 if (!NewAS.hasValue())
455 continue;
456 // If any updates are made, grabs its users to the worklist because
457 // their address spaces can also be possibly updated.
458 DEBUG(dbgs() << " to " << NewAS.getValue() << "\n");
459 (*InferredAddrSpace)[V] = NewAS.getValue();
460
461 for (Value *User : V->users()) {
462 // Skip if User is already in the worklist.
463 if (Worklist.count(User))
464 continue;
465
466 auto Pos = InferredAddrSpace->find(User);
467 // Our algorithm only updates the address spaces of generic address
468 // expressions, which are those in InferredAddrSpace.
469 if (Pos == InferredAddrSpace->end())
470 continue;
471
472 // Function updateAddressSpace moves the address space down a lattice
473 // path. Therefore, nothing to do if User is already inferred as
474 // generic (the bottom element in the lattice).
475 if (Pos->second == AddressSpace::ADDRESS_SPACE_GENERIC)
476 continue;
477
478 Worklist.insert(User);
479 }
480 }
481 }
482
updateAddressSpace(const Value & V,const ValueToAddrSpaceMapTy & InferredAddrSpace)483 Optional<unsigned> NVPTXInferAddressSpaces::updateAddressSpace(
484 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) {
485 assert(InferredAddrSpace.count(&V));
486
487 // The new inferred address space equals the join of the address spaces
488 // of all its pointer operands.
489 unsigned NewAS = ADDRESS_SPACE_UNINITIALIZED;
490 for (Value *PtrOperand : getPointerOperands(V)) {
491 unsigned OperandAS;
492 if (InferredAddrSpace.count(PtrOperand))
493 OperandAS = InferredAddrSpace.lookup(PtrOperand);
494 else
495 OperandAS = PtrOperand->getType()->getPointerAddressSpace();
496 NewAS = joinAddressSpaces(NewAS, OperandAS);
497 // join(generic, *) = generic. So we can break if NewAS is already generic.
498 if (NewAS == AddressSpace::ADDRESS_SPACE_GENERIC)
499 break;
500 }
501
502 unsigned OldAS = InferredAddrSpace.lookup(&V);
503 assert(OldAS != AddressSpace::ADDRESS_SPACE_GENERIC);
504 if (OldAS == NewAS)
505 return None;
506 return NewAS;
507 }
508
rewriteWithNewAddressSpaces(const std::vector<Value * > & Postorder,const ValueToAddrSpaceMapTy & InferredAddrSpace,Function * F)509 bool NVPTXInferAddressSpaces::rewriteWithNewAddressSpaces(
510 const std::vector<Value *> &Postorder,
511 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) {
512 // For each address expression to be modified, creates a clone of it with its
513 // pointer operands converted to the new address space. Since the pointer
514 // operands are converted, the clone is naturally in the new address space by
515 // construction.
516 ValueToValueMapTy ValueWithNewAddrSpace;
517 SmallVector<const Use *, 32> UndefUsesToFix;
518 for (Value* V : Postorder) {
519 unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
520 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
521 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
522 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
523 }
524 }
525
526 if (ValueWithNewAddrSpace.empty())
527 return false;
528
529 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
530 for (const Use* UndefUse : UndefUsesToFix) {
531 User *V = UndefUse->getUser();
532 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
533 unsigned OperandNo = UndefUse->getOperandNo();
534 assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
535 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
536 }
537
538 // Replaces the uses of the old address expressions with the new ones.
539 for (Value *V : Postorder) {
540 Value *NewV = ValueWithNewAddrSpace.lookup(V);
541 if (NewV == nullptr)
542 continue;
543
544 SmallVector<Use *, 4> Uses;
545 for (Use &U : V->uses())
546 Uses.push_back(&U);
547 DEBUG(dbgs() << "Replacing the uses of " << *V << "\n to\n " << *NewV
548 << "\n");
549 for (Use *U : Uses) {
550 if (isa<LoadInst>(U->getUser()) ||
551 (isa<StoreInst>(U->getUser()) && U->getOperandNo() == 1)) {
552 // If V is used as the pointer operand of a load/store, sets the pointer
553 // operand to NewV. This replacement does not change the element type,
554 // so the resultant load/store is still valid.
555 U->set(NewV);
556 } else if (isa<Instruction>(U->getUser())) {
557 // Otherwise, replaces the use with generic(NewV).
558 // TODO: Some optimization opportunities are missed. For example, in
559 // %0 = icmp eq float* %p, %q
560 // if both p and q are inferred to be shared, we can rewrite %0 as
561 // %0 = icmp eq float addrspace(3)* %new_p, %new_q
562 // instead of currently
563 // %generic_p = addrspacecast float addrspace(3)* %new_p to float*
564 // %generic_q = addrspacecast float addrspace(3)* %new_q to float*
565 // %0 = icmp eq float* %generic_p, %generic_q
566 if (Instruction *I = dyn_cast<Instruction>(V)) {
567 BasicBlock::iterator InsertPos = std::next(I->getIterator());
568 while (isa<PHINode>(InsertPos))
569 ++InsertPos;
570 U->set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
571 } else {
572 U->set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
573 V->getType()));
574 }
575 }
576 }
577 if (V->use_empty())
578 RecursivelyDeleteTriviallyDeadInstructions(V);
579 }
580
581 return true;
582 }
583
createNVPTXInferAddressSpacesPass()584 FunctionPass *llvm::createNVPTXInferAddressSpacesPass() {
585 return new NVPTXInferAddressSpaces();
586 }
587