• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops that contain branches on loop-invariant conditions
11 // to multiple loops.  For example, it turns the left into the right code:
12 //
13 //  for (...)                  if (lic)
14 //    A                          for (...)
15 //    if (lic)                     A; B; C
16 //      B                      else
17 //    C                          for (...)
18 //                                 A; C
19 //
20 // This can increase the size of the code exponentially (doubling it every time
21 // a loop is unswitched) so we only unswitch if the resultant code will be
22 // smaller than a threshold.
23 //
24 // This pass expects LICM to be run before it to hoist invariant conditions out
25 // of the loop, to make the unswitching opportunity obvious.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Analysis/AssumptionCache.h"
35 #include "llvm/Analysis/CodeMetrics.h"
36 #include "llvm/Analysis/DivergenceAnalysis.h"
37 #include "llvm/Analysis/InstructionSimplify.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/LoopPass.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/IRBuilder.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueHandle.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Scalar.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Cloning.h"
70 #include "llvm/Transforms/Utils/LoopUtils.h"
71 #include "llvm/Transforms/Utils/ValueMapper.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <map>
75 #include <set>
76 #include <tuple>
77 #include <utility>
78 #include <vector>
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "loop-unswitch"
83 
84 STATISTIC(NumBranches, "Number of branches unswitched");
85 STATISTIC(NumSwitches, "Number of switches unswitched");
86 STATISTIC(NumGuards,   "Number of guards unswitched");
87 STATISTIC(NumSelects , "Number of selects unswitched");
88 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
89 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
90 STATISTIC(TotalInsts,  "Total number of instructions analyzed");
91 
92 // The specific value of 100 here was chosen based only on intuition and a
93 // few specific examples.
94 static cl::opt<unsigned>
95 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
96           cl::init(100), cl::Hidden);
97 
98 namespace {
99 
100   class LUAnalysisCache {
101     using UnswitchedValsMap =
102         DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>;
103     using UnswitchedValsIt = UnswitchedValsMap::iterator;
104 
105     struct LoopProperties {
106       unsigned CanBeUnswitchedCount;
107       unsigned WasUnswitchedCount;
108       unsigned SizeEstimation;
109       UnswitchedValsMap UnswitchedVals;
110     };
111 
112     // Here we use std::map instead of DenseMap, since we need to keep valid
113     // LoopProperties pointer for current loop for better performance.
114     using LoopPropsMap = std::map<const Loop *, LoopProperties>;
115     using LoopPropsMapIt = LoopPropsMap::iterator;
116 
117     LoopPropsMap LoopsProperties;
118     UnswitchedValsMap *CurLoopInstructions = nullptr;
119     LoopProperties *CurrentLoopProperties = nullptr;
120 
121     // A loop unswitching with an estimated cost above this threshold
122     // is not performed. MaxSize is turned into unswitching quota for
123     // the current loop, and reduced correspondingly, though note that
124     // the quota is returned by releaseMemory() when the loop has been
125     // processed, so that MaxSize will return to its previous
126     // value. So in most cases MaxSize will equal the Threshold flag
127     // when a new loop is processed. An exception to that is that
128     // MaxSize will have a smaller value while processing nested loops
129     // that were introduced due to loop unswitching of an outer loop.
130     //
131     // FIXME: The way that MaxSize works is subtle and depends on the
132     // pass manager processing loops and calling releaseMemory() in a
133     // specific order. It would be good to find a more straightforward
134     // way of doing what MaxSize does.
135     unsigned MaxSize;
136 
137   public:
LUAnalysisCache()138     LUAnalysisCache() : MaxSize(Threshold) {}
139 
140     // Analyze loop. Check its size, calculate is it possible to unswitch
141     // it. Returns true if we can unswitch this loop.
142     bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
143                    AssumptionCache *AC);
144 
145     // Clean all data related to given loop.
146     void forgetLoop(const Loop *L);
147 
148     // Mark case value as unswitched.
149     // Since SI instruction can be partly unswitched, in order to avoid
150     // extra unswitching in cloned loops keep track all unswitched values.
151     void setUnswitched(const SwitchInst *SI, const Value *V);
152 
153     // Check was this case value unswitched before or not.
154     bool isUnswitched(const SwitchInst *SI, const Value *V);
155 
156     // Returns true if another unswitching could be done within the cost
157     // threshold.
158     bool CostAllowsUnswitching();
159 
160     // Clone all loop-unswitch related loop properties.
161     // Redistribute unswitching quotas.
162     // Note, that new loop data is stored inside the VMap.
163     void cloneData(const Loop *NewLoop, const Loop *OldLoop,
164                    const ValueToValueMapTy &VMap);
165   };
166 
167   class LoopUnswitch : public LoopPass {
168     LoopInfo *LI;  // Loop information
169     LPPassManager *LPM;
170     AssumptionCache *AC;
171 
172     // Used to check if second loop needs processing after
173     // RewriteLoopBodyWithConditionConstant rewrites first loop.
174     std::vector<Loop*> LoopProcessWorklist;
175 
176     LUAnalysisCache BranchesInfo;
177 
178     bool OptimizeForSize;
179     bool redoLoop = false;
180 
181     Loop *currentLoop = nullptr;
182     DominatorTree *DT = nullptr;
183     BasicBlock *loopHeader = nullptr;
184     BasicBlock *loopPreheader = nullptr;
185 
186     bool SanitizeMemory;
187     LoopSafetyInfo SafetyInfo;
188 
189     // LoopBlocks contains all of the basic blocks of the loop, including the
190     // preheader of the loop, the body of the loop, and the exit blocks of the
191     // loop, in that order.
192     std::vector<BasicBlock*> LoopBlocks;
193     // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
194     std::vector<BasicBlock*> NewBlocks;
195 
196     bool hasBranchDivergence;
197 
198   public:
199     static char ID; // Pass ID, replacement for typeid
200 
LoopUnswitch(bool Os=false,bool hasBranchDivergence=false)201     explicit LoopUnswitch(bool Os = false, bool hasBranchDivergence = false)
202         : LoopPass(ID), OptimizeForSize(Os),
203           hasBranchDivergence(hasBranchDivergence) {
204         initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
205     }
206 
207     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
208     bool processCurrentLoop();
209     bool isUnreachableDueToPreviousUnswitching(BasicBlock *);
210 
211     /// This transformation requires natural loop information & requires that
212     /// loop preheaders be inserted into the CFG.
213     ///
getAnalysisUsage(AnalysisUsage & AU) const214     void getAnalysisUsage(AnalysisUsage &AU) const override {
215       AU.addRequired<AssumptionCacheTracker>();
216       AU.addRequired<TargetTransformInfoWrapperPass>();
217       if (hasBranchDivergence)
218         AU.addRequired<DivergenceAnalysis>();
219       getLoopAnalysisUsage(AU);
220     }
221 
222   private:
releaseMemory()223     void releaseMemory() override {
224       BranchesInfo.forgetLoop(currentLoop);
225     }
226 
initLoopData()227     void initLoopData() {
228       loopHeader = currentLoop->getHeader();
229       loopPreheader = currentLoop->getLoopPreheader();
230     }
231 
232     /// Split all of the edges from inside the loop to their exit blocks.
233     /// Update the appropriate Phi nodes as we do so.
234     void SplitExitEdges(Loop *L,
235                         const SmallVectorImpl<BasicBlock *> &ExitBlocks);
236 
237     bool TryTrivialLoopUnswitch(bool &Changed);
238 
239     bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
240                               TerminatorInst *TI = nullptr);
241     void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
242                                   BasicBlock *ExitBlock, TerminatorInst *TI);
243     void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
244                                      TerminatorInst *TI);
245 
246     void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
247                                               Constant *Val, bool isEqual);
248 
249     void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
250                                         BasicBlock *TrueDest,
251                                         BasicBlock *FalseDest,
252                                         BranchInst *OldBranch,
253                                         TerminatorInst *TI);
254 
255     void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
256 
257     /// Given that the Invariant is not equal to Val. Simplify instructions
258     /// in the loop.
259     Value *SimplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant,
260                                            Constant *Val);
261   };
262 
263 } // end anonymous namespace
264 
265 // Analyze loop. Check its size, calculate is it possible to unswitch
266 // it. Returns true if we can unswitch this loop.
countLoop(const Loop * L,const TargetTransformInfo & TTI,AssumptionCache * AC)267 bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
268                                 AssumptionCache *AC) {
269   LoopPropsMapIt PropsIt;
270   bool Inserted;
271   std::tie(PropsIt, Inserted) =
272       LoopsProperties.insert(std::make_pair(L, LoopProperties()));
273 
274   LoopProperties &Props = PropsIt->second;
275 
276   if (Inserted) {
277     // New loop.
278 
279     // Limit the number of instructions to avoid causing significant code
280     // expansion, and the number of basic blocks, to avoid loops with
281     // large numbers of branches which cause loop unswitching to go crazy.
282     // This is a very ad-hoc heuristic.
283 
284     SmallPtrSet<const Value *, 32> EphValues;
285     CodeMetrics::collectEphemeralValues(L, AC, EphValues);
286 
287     // FIXME: This is overly conservative because it does not take into
288     // consideration code simplification opportunities and code that can
289     // be shared by the resultant unswitched loops.
290     CodeMetrics Metrics;
291     for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
292          ++I)
293       Metrics.analyzeBasicBlock(*I, TTI, EphValues);
294 
295     Props.SizeEstimation = Metrics.NumInsts;
296     Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
297     Props.WasUnswitchedCount = 0;
298     MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
299 
300     if (Metrics.notDuplicatable) {
301       LLVM_DEBUG(dbgs() << "NOT unswitching loop %" << L->getHeader()->getName()
302                         << ", contents cannot be "
303                         << "duplicated!\n");
304       return false;
305     }
306   }
307 
308   // Be careful. This links are good only before new loop addition.
309   CurrentLoopProperties = &Props;
310   CurLoopInstructions = &Props.UnswitchedVals;
311 
312   return true;
313 }
314 
315 // Clean all data related to given loop.
forgetLoop(const Loop * L)316 void LUAnalysisCache::forgetLoop(const Loop *L) {
317   LoopPropsMapIt LIt = LoopsProperties.find(L);
318 
319   if (LIt != LoopsProperties.end()) {
320     LoopProperties &Props = LIt->second;
321     MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
322                Props.SizeEstimation;
323     LoopsProperties.erase(LIt);
324   }
325 
326   CurrentLoopProperties = nullptr;
327   CurLoopInstructions = nullptr;
328 }
329 
330 // Mark case value as unswitched.
331 // Since SI instruction can be partly unswitched, in order to avoid
332 // extra unswitching in cloned loops keep track all unswitched values.
setUnswitched(const SwitchInst * SI,const Value * V)333 void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
334   (*CurLoopInstructions)[SI].insert(V);
335 }
336 
337 // Check was this case value unswitched before or not.
isUnswitched(const SwitchInst * SI,const Value * V)338 bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
339   return (*CurLoopInstructions)[SI].count(V);
340 }
341 
CostAllowsUnswitching()342 bool LUAnalysisCache::CostAllowsUnswitching() {
343   return CurrentLoopProperties->CanBeUnswitchedCount > 0;
344 }
345 
346 // Clone all loop-unswitch related loop properties.
347 // Redistribute unswitching quotas.
348 // Note, that new loop data is stored inside the VMap.
cloneData(const Loop * NewLoop,const Loop * OldLoop,const ValueToValueMapTy & VMap)349 void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
350                                 const ValueToValueMapTy &VMap) {
351   LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
352   LoopProperties &OldLoopProps = *CurrentLoopProperties;
353   UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
354 
355   // Reallocate "can-be-unswitched quota"
356 
357   --OldLoopProps.CanBeUnswitchedCount;
358   ++OldLoopProps.WasUnswitchedCount;
359   NewLoopProps.WasUnswitchedCount = 0;
360   unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
361   NewLoopProps.CanBeUnswitchedCount = Quota / 2;
362   OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
363 
364   NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
365 
366   // Clone unswitched values info:
367   // for new loop switches we clone info about values that was
368   // already unswitched and has redundant successors.
369   for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
370     const SwitchInst *OldInst = I->first;
371     Value *NewI = VMap.lookup(OldInst);
372     const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
373     assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
374 
375     NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
376   }
377 }
378 
379 char LoopUnswitch::ID = 0;
380 
381 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
382                       false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)383 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
384 INITIALIZE_PASS_DEPENDENCY(LoopPass)
385 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
386 INITIALIZE_PASS_DEPENDENCY(DivergenceAnalysis)
387 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
388                       false, false)
389 
390 Pass *llvm::createLoopUnswitchPass(bool Os, bool hasBranchDivergence) {
391   return new LoopUnswitch(Os, hasBranchDivergence);
392 }
393 
394 /// Operator chain lattice.
395 enum OperatorChain {
396   OC_OpChainNone,    ///< There is no operator.
397   OC_OpChainOr,      ///< There are only ORs.
398   OC_OpChainAnd,     ///< There are only ANDs.
399   OC_OpChainMixed    ///< There are ANDs and ORs.
400 };
401 
402 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
403 /// an invariant piece, return the invariant. Otherwise, return null.
404 //
405 /// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a
406 /// mixed operator chain, as we can not reliably find a value which will simplify
407 /// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0
408 /// to simplify the chain.
409 ///
410 /// NOTE: In case a partial LIV and a mixed operator chain, we may be able to
411 /// simplify the condition itself to a loop variant condition, but at the
412 /// cost of creating an entirely new loop.
FindLIVLoopCondition(Value * Cond,Loop * L,bool & Changed,OperatorChain & ParentChain,DenseMap<Value *,Value * > & Cache)413 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
414                                    OperatorChain &ParentChain,
415                                    DenseMap<Value *, Value *> &Cache) {
416   auto CacheIt = Cache.find(Cond);
417   if (CacheIt != Cache.end())
418     return CacheIt->second;
419 
420   // We started analyze new instruction, increment scanned instructions counter.
421   ++TotalInsts;
422 
423   // We can never unswitch on vector conditions.
424   if (Cond->getType()->isVectorTy())
425     return nullptr;
426 
427   // Constants should be folded, not unswitched on!
428   if (isa<Constant>(Cond)) return nullptr;
429 
430   // TODO: Handle: br (VARIANT|INVARIANT).
431 
432   // Hoist simple values out.
433   if (L->makeLoopInvariant(Cond, Changed)) {
434     Cache[Cond] = Cond;
435     return Cond;
436   }
437 
438   // Walk up the operator chain to find partial invariant conditions.
439   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
440     if (BO->getOpcode() == Instruction::And ||
441         BO->getOpcode() == Instruction::Or) {
442       // Given the previous operator, compute the current operator chain status.
443       OperatorChain NewChain;
444       switch (ParentChain) {
445       case OC_OpChainNone:
446         NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
447                                       OC_OpChainOr;
448         break;
449       case OC_OpChainOr:
450         NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr :
451                                       OC_OpChainMixed;
452         break;
453       case OC_OpChainAnd:
454         NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
455                                       OC_OpChainMixed;
456         break;
457       case OC_OpChainMixed:
458         NewChain = OC_OpChainMixed;
459         break;
460       }
461 
462       // If we reach a Mixed state, we do not want to keep walking up as we can not
463       // reliably find a value that will simplify the chain. With this check, we
464       // will return null on the first sight of mixed chain and the caller will
465       // either backtrack to find partial LIV in other operand or return null.
466       if (NewChain != OC_OpChainMixed) {
467         // Update the current operator chain type before we search up the chain.
468         ParentChain = NewChain;
469         // If either the left or right side is invariant, we can unswitch on this,
470         // which will cause the branch to go away in one loop and the condition to
471         // simplify in the other one.
472         if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed,
473                                               ParentChain, Cache)) {
474           Cache[Cond] = LHS;
475           return LHS;
476         }
477         // We did not manage to find a partial LIV in operand(0). Backtrack and try
478         // operand(1).
479         ParentChain = NewChain;
480         if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed,
481                                               ParentChain, Cache)) {
482           Cache[Cond] = RHS;
483           return RHS;
484         }
485       }
486     }
487 
488   Cache[Cond] = nullptr;
489   return nullptr;
490 }
491 
492 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
493 /// an invariant piece, return the invariant along with the operator chain type.
494 /// Otherwise, return null.
FindLIVLoopCondition(Value * Cond,Loop * L,bool & Changed)495 static std::pair<Value *, OperatorChain> FindLIVLoopCondition(Value *Cond,
496                                                               Loop *L,
497                                                               bool &Changed) {
498   DenseMap<Value *, Value *> Cache;
499   OperatorChain OpChain = OC_OpChainNone;
500   Value *FCond = FindLIVLoopCondition(Cond, L, Changed, OpChain, Cache);
501 
502   // In case we do find a LIV, it can not be obtained by walking up a mixed
503   // operator chain.
504   assert((!FCond || OpChain != OC_OpChainMixed) &&
505         "Do not expect a partial LIV with mixed operator chain");
506   return {FCond, OpChain};
507 }
508 
runOnLoop(Loop * L,LPPassManager & LPM_Ref)509 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
510   if (skipLoop(L))
511     return false;
512 
513   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
514       *L->getHeader()->getParent());
515   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
516   LPM = &LPM_Ref;
517   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
518   currentLoop = L;
519   Function *F = currentLoop->getHeader()->getParent();
520 
521   SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
522   if (SanitizeMemory)
523     computeLoopSafetyInfo(&SafetyInfo, L);
524 
525   bool Changed = false;
526   do {
527     assert(currentLoop->isLCSSAForm(*DT));
528     redoLoop = false;
529     Changed |= processCurrentLoop();
530   } while(redoLoop);
531 
532   return Changed;
533 }
534 
535 // Return true if the BasicBlock BB is unreachable from the loop header.
536 // Return false, otherwise.
isUnreachableDueToPreviousUnswitching(BasicBlock * BB)537 bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) {
538   auto *Node = DT->getNode(BB)->getIDom();
539   BasicBlock *DomBB = Node->getBlock();
540   while (currentLoop->contains(DomBB)) {
541     BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator());
542 
543     Node = DT->getNode(DomBB)->getIDom();
544     DomBB = Node->getBlock();
545 
546     if (!BInst || !BInst->isConditional())
547       continue;
548 
549     Value *Cond = BInst->getCondition();
550     if (!isa<ConstantInt>(Cond))
551       continue;
552 
553     BasicBlock *UnreachableSucc =
554         Cond == ConstantInt::getTrue(Cond->getContext())
555             ? BInst->getSuccessor(1)
556             : BInst->getSuccessor(0);
557 
558     if (DT->dominates(UnreachableSucc, BB))
559       return true;
560   }
561   return false;
562 }
563 
564 /// FIXME: Remove this workaround when freeze related patches are done.
565 /// LoopUnswitch and Equality propagation in GVN have discrepancy about
566 /// whether branch on undef/poison has undefine behavior. Here it is to
567 /// rule out some common cases that we found such discrepancy already
568 /// causing problems. Detail could be found in PR31652. Note if the
569 /// func returns true, it is unsafe. But if it is false, it doesn't mean
570 /// it is necessarily safe.
EqualityPropUnSafe(Value & LoopCond)571 static bool EqualityPropUnSafe(Value &LoopCond) {
572   ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond);
573   if (!CI || !CI->isEquality())
574     return false;
575 
576   Value *LHS = CI->getOperand(0);
577   Value *RHS = CI->getOperand(1);
578   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
579     return true;
580 
581   auto hasUndefInPHI = [](PHINode &PN) {
582     for (Value *Opd : PN.incoming_values()) {
583       if (isa<UndefValue>(Opd))
584         return true;
585     }
586     return false;
587   };
588   PHINode *LPHI = dyn_cast<PHINode>(LHS);
589   PHINode *RPHI = dyn_cast<PHINode>(RHS);
590   if ((LPHI && hasUndefInPHI(*LPHI)) || (RPHI && hasUndefInPHI(*RPHI)))
591     return true;
592 
593   auto hasUndefInSelect = [](SelectInst &SI) {
594     if (isa<UndefValue>(SI.getTrueValue()) ||
595         isa<UndefValue>(SI.getFalseValue()))
596       return true;
597     return false;
598   };
599   SelectInst *LSI = dyn_cast<SelectInst>(LHS);
600   SelectInst *RSI = dyn_cast<SelectInst>(RHS);
601   if ((LSI && hasUndefInSelect(*LSI)) || (RSI && hasUndefInSelect(*RSI)))
602     return true;
603   return false;
604 }
605 
606 /// Do actual work and unswitch loop if possible and profitable.
processCurrentLoop()607 bool LoopUnswitch::processCurrentLoop() {
608   bool Changed = false;
609 
610   initLoopData();
611 
612   // If LoopSimplify was unable to form a preheader, don't do any unswitching.
613   if (!loopPreheader)
614     return false;
615 
616   // Loops with indirectbr cannot be cloned.
617   if (!currentLoop->isSafeToClone())
618     return false;
619 
620   // Without dedicated exits, splitting the exit edge may fail.
621   if (!currentLoop->hasDedicatedExits())
622     return false;
623 
624   LLVMContext &Context = loopHeader->getContext();
625 
626   // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
627   if (!BranchesInfo.countLoop(
628           currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
629                            *currentLoop->getHeader()->getParent()),
630           AC))
631     return false;
632 
633   // Try trivial unswitch first before loop over other basic blocks in the loop.
634   if (TryTrivialLoopUnswitch(Changed)) {
635     return true;
636   }
637 
638   // Do not do non-trivial unswitch while optimizing for size.
639   // FIXME: Use Function::optForSize().
640   if (OptimizeForSize ||
641       loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
642     return false;
643 
644   // Run through the instructions in the loop, keeping track of three things:
645   //
646   //  - That we do not unswitch loops containing convergent operations, as we
647   //    might be making them control dependent on the unswitch value when they
648   //    were not before.
649   //    FIXME: This could be refined to only bail if the convergent operation is
650   //    not already control-dependent on the unswitch value.
651   //
652   //  - That basic blocks in the loop contain invokes whose predecessor edges we
653   //    cannot split.
654   //
655   //  - The set of guard intrinsics encountered (these are non terminator
656   //    instructions that are also profitable to be unswitched).
657 
658   SmallVector<IntrinsicInst *, 4> Guards;
659 
660   for (const auto BB : currentLoop->blocks()) {
661     for (auto &I : *BB) {
662       auto CS = CallSite(&I);
663       if (!CS) continue;
664       if (CS.hasFnAttr(Attribute::Convergent))
665         return false;
666       if (auto *II = dyn_cast<InvokeInst>(&I))
667         if (!II->getUnwindDest()->canSplitPredecessors())
668           return false;
669       if (auto *II = dyn_cast<IntrinsicInst>(&I))
670         if (II->getIntrinsicID() == Intrinsic::experimental_guard)
671           Guards.push_back(II);
672     }
673   }
674 
675   for (IntrinsicInst *Guard : Guards) {
676     Value *LoopCond =
677         FindLIVLoopCondition(Guard->getOperand(0), currentLoop, Changed).first;
678     if (LoopCond &&
679         UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
680       // NB! Unswitching (if successful) could have erased some of the
681       // instructions in Guards leaving dangling pointers there.  This is fine
682       // because we're returning now, and won't look at Guards again.
683       ++NumGuards;
684       return true;
685     }
686   }
687 
688   // Loop over all of the basic blocks in the loop.  If we find an interior
689   // block that is branching on a loop-invariant condition, we can unswitch this
690   // loop.
691   for (Loop::block_iterator I = currentLoop->block_begin(),
692          E = currentLoop->block_end(); I != E; ++I) {
693     TerminatorInst *TI = (*I)->getTerminator();
694 
695     // Unswitching on a potentially uninitialized predicate is not
696     // MSan-friendly. Limit this to the cases when the original predicate is
697     // guaranteed to execute, to avoid creating a use-of-uninitialized-value
698     // in the code that did not have one.
699     // This is a workaround for the discrepancy between LLVM IR and MSan
700     // semantics. See PR28054 for more details.
701     if (SanitizeMemory &&
702         !isGuaranteedToExecute(*TI, DT, currentLoop, &SafetyInfo))
703       continue;
704 
705     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
706       // Some branches may be rendered unreachable because of previous
707       // unswitching.
708       // Unswitch only those branches that are reachable.
709       if (isUnreachableDueToPreviousUnswitching(*I))
710         continue;
711 
712       // If this isn't branching on an invariant condition, we can't unswitch
713       // it.
714       if (BI->isConditional()) {
715         // See if this, or some part of it, is loop invariant.  If so, we can
716         // unswitch on it if we desire.
717         Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
718                                                currentLoop, Changed).first;
719         if (LoopCond && !EqualityPropUnSafe(*LoopCond) &&
720             UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
721           ++NumBranches;
722           return true;
723         }
724       }
725     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
726       Value *SC = SI->getCondition();
727       Value *LoopCond;
728       OperatorChain OpChain;
729       std::tie(LoopCond, OpChain) =
730         FindLIVLoopCondition(SC, currentLoop, Changed);
731 
732       unsigned NumCases = SI->getNumCases();
733       if (LoopCond && NumCases) {
734         // Find a value to unswitch on:
735         // FIXME: this should chose the most expensive case!
736         // FIXME: scan for a case with a non-critical edge?
737         Constant *UnswitchVal = nullptr;
738         // Find a case value such that at least one case value is unswitched
739         // out.
740         if (OpChain == OC_OpChainAnd) {
741           // If the chain only has ANDs and the switch has a case value of 0.
742           // Dropping in a 0 to the chain will unswitch out the 0-casevalue.
743           auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType()));
744           if (BranchesInfo.isUnswitched(SI, AllZero))
745             continue;
746           // We are unswitching 0 out.
747           UnswitchVal = AllZero;
748         } else if (OpChain == OC_OpChainOr) {
749           // If the chain only has ORs and the switch has a case value of ~0.
750           // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue.
751           auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType()));
752           if (BranchesInfo.isUnswitched(SI, AllOne))
753             continue;
754           // We are unswitching ~0 out.
755           UnswitchVal = AllOne;
756         } else {
757           assert(OpChain == OC_OpChainNone &&
758                  "Expect to unswitch on trivial chain");
759           // Do not process same value again and again.
760           // At this point we have some cases already unswitched and
761           // some not yet unswitched. Let's find the first not yet unswitched one.
762           for (auto Case : SI->cases()) {
763             Constant *UnswitchValCandidate = Case.getCaseValue();
764             if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
765               UnswitchVal = UnswitchValCandidate;
766               break;
767             }
768           }
769         }
770 
771         if (!UnswitchVal)
772           continue;
773 
774         if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
775           ++NumSwitches;
776           // In case of a full LIV, UnswitchVal is the value we unswitched out.
777           // In case of a partial LIV, we only unswitch when its an AND-chain
778           // or OR-chain. In both cases switch input value simplifies to
779           // UnswitchVal.
780           BranchesInfo.setUnswitched(SI, UnswitchVal);
781           return true;
782         }
783       }
784     }
785 
786     // Scan the instructions to check for unswitchable values.
787     for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
788          BBI != E; ++BBI)
789       if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
790         Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
791                                                currentLoop, Changed).first;
792         if (LoopCond && UnswitchIfProfitable(LoopCond,
793                                              ConstantInt::getTrue(Context))) {
794           ++NumSelects;
795           return true;
796         }
797       }
798   }
799   return Changed;
800 }
801 
802 /// Check to see if all paths from BB exit the loop with no side effects
803 /// (including infinite loops).
804 ///
805 /// If true, we return true and set ExitBB to the block we
806 /// exit through.
807 ///
isTrivialLoopExitBlockHelper(Loop * L,BasicBlock * BB,BasicBlock * & ExitBB,std::set<BasicBlock * > & Visited)808 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
809                                          BasicBlock *&ExitBB,
810                                          std::set<BasicBlock*> &Visited) {
811   if (!Visited.insert(BB).second) {
812     // Already visited. Without more analysis, this could indicate an infinite
813     // loop.
814     return false;
815   }
816   if (!L->contains(BB)) {
817     // Otherwise, this is a loop exit, this is fine so long as this is the
818     // first exit.
819     if (ExitBB) return false;
820     ExitBB = BB;
821     return true;
822   }
823 
824   // Otherwise, this is an unvisited intra-loop node.  Check all successors.
825   for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
826     // Check to see if the successor is a trivial loop exit.
827     if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
828       return false;
829   }
830 
831   // Okay, everything after this looks good, check to make sure that this block
832   // doesn't include any side effects.
833   for (Instruction &I : *BB)
834     if (I.mayHaveSideEffects())
835       return false;
836 
837   return true;
838 }
839 
840 /// Return true if the specified block unconditionally leads to an exit from
841 /// the specified loop, and has no side-effects in the process. If so, return
842 /// the block that is exited to, otherwise return null.
isTrivialLoopExitBlock(Loop * L,BasicBlock * BB)843 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
844   std::set<BasicBlock*> Visited;
845   Visited.insert(L->getHeader());  // Branches to header make infinite loops.
846   BasicBlock *ExitBB = nullptr;
847   if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
848     return ExitBB;
849   return nullptr;
850 }
851 
852 /// We have found that we can unswitch currentLoop when LoopCond == Val to
853 /// simplify the loop.  If we decide that this is profitable,
854 /// unswitch the loop, reprocess the pieces, then return true.
UnswitchIfProfitable(Value * LoopCond,Constant * Val,TerminatorInst * TI)855 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
856                                         TerminatorInst *TI) {
857   // Check to see if it would be profitable to unswitch current loop.
858   if (!BranchesInfo.CostAllowsUnswitching()) {
859     LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
860                       << currentLoop->getHeader()->getName()
861                       << " at non-trivial condition '" << *Val
862                       << "' == " << *LoopCond << "\n"
863                       << ". Cost too high.\n");
864     return false;
865   }
866   if (hasBranchDivergence &&
867       getAnalysis<DivergenceAnalysis>().isDivergent(LoopCond)) {
868     LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
869                       << currentLoop->getHeader()->getName()
870                       << " at non-trivial condition '" << *Val
871                       << "' == " << *LoopCond << "\n"
872                       << ". Condition is divergent.\n");
873     return false;
874   }
875 
876   UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
877   return true;
878 }
879 
880 /// Recursively clone the specified loop and all of its children,
881 /// mapping the blocks with the specified map.
CloneLoop(Loop * L,Loop * PL,ValueToValueMapTy & VM,LoopInfo * LI,LPPassManager * LPM)882 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
883                        LoopInfo *LI, LPPassManager *LPM) {
884   Loop &New = *LI->AllocateLoop();
885   if (PL)
886     PL->addChildLoop(&New);
887   else
888     LI->addTopLevelLoop(&New);
889   LPM->addLoop(New);
890 
891   // Add all of the blocks in L to the new loop.
892   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
893        I != E; ++I)
894     if (LI->getLoopFor(*I) == L)
895       New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
896 
897   // Add all of the subloops to the new loop.
898   for (Loop *I : *L)
899     CloneLoop(I, &New, VM, LI, LPM);
900 
901   return &New;
902 }
903 
904 /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
905 /// otherwise branch to FalseDest. Insert the code immediately before OldBranch
906 /// and remove (but not erase!) it from the function.
EmitPreheaderBranchOnCondition(Value * LIC,Constant * Val,BasicBlock * TrueDest,BasicBlock * FalseDest,BranchInst * OldBranch,TerminatorInst * TI)907 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
908                                                   BasicBlock *TrueDest,
909                                                   BasicBlock *FalseDest,
910                                                   BranchInst *OldBranch,
911                                                   TerminatorInst *TI) {
912   assert(OldBranch->isUnconditional() && "Preheader is not split correctly");
913   assert(TrueDest != FalseDest && "Branch targets should be different");
914   // Insert a conditional branch on LIC to the two preheaders.  The original
915   // code is the true version and the new code is the false version.
916   Value *BranchVal = LIC;
917   bool Swapped = false;
918   if (!isa<ConstantInt>(Val) ||
919       Val->getType() != Type::getInt1Ty(LIC->getContext()))
920     BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val);
921   else if (Val != ConstantInt::getTrue(Val->getContext())) {
922     // We want to enter the new loop when the condition is true.
923     std::swap(TrueDest, FalseDest);
924     Swapped = true;
925   }
926 
927   // Old branch will be removed, so save its parent and successor to update the
928   // DomTree.
929   auto *OldBranchSucc = OldBranch->getSuccessor(0);
930   auto *OldBranchParent = OldBranch->getParent();
931 
932   // Insert the new branch.
933   BranchInst *BI =
934       IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI);
935   if (Swapped)
936     BI->swapProfMetadata();
937 
938   // Remove the old branch so there is only one branch at the end. This is
939   // needed to perform DomTree's internal DFS walk on the function's CFG.
940   OldBranch->removeFromParent();
941 
942   // Inform the DT about the new branch.
943   if (DT) {
944     // First, add both successors.
945     SmallVector<DominatorTree::UpdateType, 3> Updates;
946     if (TrueDest != OldBranchSucc)
947       Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest});
948     if (FalseDest != OldBranchSucc)
949       Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest});
950     // If both of the new successors are different from the old one, inform the
951     // DT that the edge was deleted.
952     if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) {
953       Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc});
954     }
955 
956     DT->applyUpdates(Updates);
957   }
958 
959   // If either edge is critical, split it. This helps preserve LoopSimplify
960   // form for enclosing loops.
961   auto Options = CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA();
962   SplitCriticalEdge(BI, 0, Options);
963   SplitCriticalEdge(BI, 1, Options);
964 }
965 
966 /// Given a loop that has a trivial unswitchable condition in it (a cond branch
967 /// from its header block to its latch block, where the path through the loop
968 /// that doesn't execute its body has no side-effects), unswitch it. This
969 /// doesn't involve any code duplication, just moving the conditional branch
970 /// outside of the loop and updating loop info.
UnswitchTrivialCondition(Loop * L,Value * Cond,Constant * Val,BasicBlock * ExitBlock,TerminatorInst * TI)971 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
972                                             BasicBlock *ExitBlock,
973                                             TerminatorInst *TI) {
974   LLVM_DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
975                     << loopHeader->getName() << " [" << L->getBlocks().size()
976                     << " blocks] in Function "
977                     << L->getHeader()->getParent()->getName()
978                     << " on cond: " << *Val << " == " << *Cond << "\n");
979   // We are going to make essential changes to CFG. This may invalidate cached
980   // information for L or one of its parent loops in SCEV.
981   if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
982     SEWP->getSE().forgetTopmostLoop(L);
983 
984   // First step, split the preheader, so that we know that there is a safe place
985   // to insert the conditional branch.  We will change loopPreheader to have a
986   // conditional branch on Cond.
987   BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI);
988 
989   // Now that we have a place to insert the conditional branch, create a place
990   // to branch to: this is the exit block out of the loop that we should
991   // short-circuit to.
992 
993   // Split this block now, so that the loop maintains its exit block, and so
994   // that the jump from the preheader can execute the contents of the exit block
995   // without actually branching to it (the exit block should be dominated by the
996   // loop header, not the preheader).
997   assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
998   BasicBlock *NewExit = SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI);
999 
1000   // Okay, now we have a position to branch from and a position to branch to,
1001   // insert the new conditional branch.
1002   auto *OldBranch = dyn_cast<BranchInst>(loopPreheader->getTerminator());
1003   assert(OldBranch && "Failed to split the preheader");
1004   EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI);
1005   LPM->deleteSimpleAnalysisValue(OldBranch, L);
1006 
1007   // EmitPreheaderBranchOnCondition removed the OldBranch from the function.
1008   // Delete it, as it is no longer needed.
1009   delete OldBranch;
1010 
1011   // We need to reprocess this loop, it could be unswitched again.
1012   redoLoop = true;
1013 
1014   // Now that we know that the loop is never entered when this condition is a
1015   // particular value, rewrite the loop with this info.  We know that this will
1016   // at least eliminate the old branch.
1017   RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
1018   ++NumTrivial;
1019 }
1020 
1021 /// Check if the first non-constant condition starting from the loop header is
1022 /// a trivial unswitch condition: that is, a condition controls whether or not
1023 /// the loop does anything at all. If it is a trivial condition, unswitching
1024 /// produces no code duplications (equivalently, it produces a simpler loop and
1025 /// a new empty loop, which gets deleted). Therefore always unswitch trivial
1026 /// condition.
TryTrivialLoopUnswitch(bool & Changed)1027 bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
1028   BasicBlock *CurrentBB = currentLoop->getHeader();
1029   TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
1030   LLVMContext &Context = CurrentBB->getContext();
1031 
1032   // If loop header has only one reachable successor (currently via an
1033   // unconditional branch or constant foldable conditional branch, but
1034   // should also consider adding constant foldable switch instruction in
1035   // future), we should keep looking for trivial condition candidates in
1036   // the successor as well. An alternative is to constant fold conditions
1037   // and merge successors into loop header (then we only need to check header's
1038   // terminator). The reason for not doing this in LoopUnswitch pass is that
1039   // it could potentially break LoopPassManager's invariants. Folding dead
1040   // branches could either eliminate the current loop or make other loops
1041   // unreachable. LCSSA form might also not be preserved after deleting
1042   // branches. The following code keeps traversing loop header's successors
1043   // until it finds the trivial condition candidate (condition that is not a
1044   // constant). Since unswitching generates branches with constant conditions,
1045   // this scenario could be very common in practice.
1046   SmallPtrSet<BasicBlock*, 8> Visited;
1047 
1048   while (true) {
1049     // If we exit loop or reach a previous visited block, then
1050     // we can not reach any trivial condition candidates (unfoldable
1051     // branch instructions or switch instructions) and no unswitch
1052     // can happen. Exit and return false.
1053     if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
1054       return false;
1055 
1056     // Check if this loop will execute any side-effecting instructions (e.g.
1057     // stores, calls, volatile loads) in the part of the loop that the code
1058     // *would* execute. Check the header first.
1059     for (Instruction &I : *CurrentBB)
1060       if (I.mayHaveSideEffects())
1061         return false;
1062 
1063     if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
1064       if (BI->isUnconditional()) {
1065         CurrentBB = BI->getSuccessor(0);
1066       } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
1067         CurrentBB = BI->getSuccessor(0);
1068       } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
1069         CurrentBB = BI->getSuccessor(1);
1070       } else {
1071         // Found a trivial condition candidate: non-foldable conditional branch.
1072         break;
1073       }
1074     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1075       // At this point, any constant-foldable instructions should have probably
1076       // been folded.
1077       ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
1078       if (!Cond)
1079         break;
1080       // Find the target block we are definitely going to.
1081       CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor();
1082     } else {
1083       // We do not understand these terminator instructions.
1084       break;
1085     }
1086 
1087     CurrentTerm = CurrentBB->getTerminator();
1088   }
1089 
1090   // CondVal is the condition that controls the trivial condition.
1091   // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
1092   Constant *CondVal = nullptr;
1093   BasicBlock *LoopExitBB = nullptr;
1094 
1095   if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
1096     // If this isn't branching on an invariant condition, we can't unswitch it.
1097     if (!BI->isConditional())
1098       return false;
1099 
1100     Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
1101                                            currentLoop, Changed).first;
1102 
1103     // Unswitch only if the trivial condition itself is an LIV (not
1104     // partial LIV which could occur in and/or)
1105     if (!LoopCond || LoopCond != BI->getCondition())
1106       return false;
1107 
1108     // Check to see if a successor of the branch is guaranteed to
1109     // exit through a unique exit block without having any
1110     // side-effects.  If so, determine the value of Cond that causes
1111     // it to do this.
1112     if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
1113                                              BI->getSuccessor(0)))) {
1114       CondVal = ConstantInt::getTrue(Context);
1115     } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
1116                                                     BI->getSuccessor(1)))) {
1117       CondVal = ConstantInt::getFalse(Context);
1118     }
1119 
1120     // If we didn't find a single unique LoopExit block, or if the loop exit
1121     // block contains phi nodes, this isn't trivial.
1122     if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
1123       return false;   // Can't handle this.
1124 
1125     if (EqualityPropUnSafe(*LoopCond))
1126       return false;
1127 
1128     UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
1129                              CurrentTerm);
1130     ++NumBranches;
1131     return true;
1132   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1133     // If this isn't switching on an invariant condition, we can't unswitch it.
1134     Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
1135                                            currentLoop, Changed).first;
1136 
1137     // Unswitch only if the trivial condition itself is an LIV (not
1138     // partial LIV which could occur in and/or)
1139     if (!LoopCond || LoopCond != SI->getCondition())
1140       return false;
1141 
1142     // Check to see if a successor of the switch is guaranteed to go to the
1143     // latch block or exit through a one exit block without having any
1144     // side-effects.  If so, determine the value of Cond that causes it to do
1145     // this.
1146     // Note that we can't trivially unswitch on the default case or
1147     // on already unswitched cases.
1148     for (auto Case : SI->cases()) {
1149       BasicBlock *LoopExitCandidate;
1150       if ((LoopExitCandidate =
1151                isTrivialLoopExitBlock(currentLoop, Case.getCaseSuccessor()))) {
1152         // Okay, we found a trivial case, remember the value that is trivial.
1153         ConstantInt *CaseVal = Case.getCaseValue();
1154 
1155         // Check that it was not unswitched before, since already unswitched
1156         // trivial vals are looks trivial too.
1157         if (BranchesInfo.isUnswitched(SI, CaseVal))
1158           continue;
1159         LoopExitBB = LoopExitCandidate;
1160         CondVal = CaseVal;
1161         break;
1162       }
1163     }
1164 
1165     // If we didn't find a single unique LoopExit block, or if the loop exit
1166     // block contains phi nodes, this isn't trivial.
1167     if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
1168       return false;   // Can't handle this.
1169 
1170     UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
1171                              nullptr);
1172 
1173     // We are only unswitching full LIV.
1174     BranchesInfo.setUnswitched(SI, CondVal);
1175     ++NumSwitches;
1176     return true;
1177   }
1178   return false;
1179 }
1180 
1181 /// Split all of the edges from inside the loop to their exit blocks.
1182 /// Update the appropriate Phi nodes as we do so.
SplitExitEdges(Loop * L,const SmallVectorImpl<BasicBlock * > & ExitBlocks)1183 void LoopUnswitch::SplitExitEdges(Loop *L,
1184                                const SmallVectorImpl<BasicBlock *> &ExitBlocks){
1185 
1186   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1187     BasicBlock *ExitBlock = ExitBlocks[i];
1188     SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
1189                                        pred_end(ExitBlock));
1190 
1191     // Although SplitBlockPredecessors doesn't preserve loop-simplify in
1192     // general, if we call it on all predecessors of all exits then it does.
1193     SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI,
1194                            /*PreserveLCSSA*/ true);
1195   }
1196 }
1197 
1198 /// We determined that the loop is profitable to unswitch when LIC equal Val.
1199 /// Split it into loop versions and test the condition outside of either loop.
1200 /// Return the loops created as Out1/Out2.
UnswitchNontrivialCondition(Value * LIC,Constant * Val,Loop * L,TerminatorInst * TI)1201 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
1202                                                Loop *L, TerminatorInst *TI) {
1203   Function *F = loopHeader->getParent();
1204   LLVM_DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
1205                     << loopHeader->getName() << " [" << L->getBlocks().size()
1206                     << " blocks] in Function " << F->getName() << " when '"
1207                     << *Val << "' == " << *LIC << "\n");
1208 
1209   // We are going to make essential changes to CFG. This may invalidate cached
1210   // information for L or one of its parent loops in SCEV.
1211   if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
1212     SEWP->getSE().forgetTopmostLoop(L);
1213 
1214   LoopBlocks.clear();
1215   NewBlocks.clear();
1216 
1217   // First step, split the preheader and exit blocks, and add these blocks to
1218   // the LoopBlocks list.
1219   BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, DT, LI);
1220   LoopBlocks.push_back(NewPreheader);
1221 
1222   // We want the loop to come after the preheader, but before the exit blocks.
1223   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
1224 
1225   SmallVector<BasicBlock*, 8> ExitBlocks;
1226   L->getUniqueExitBlocks(ExitBlocks);
1227 
1228   // Split all of the edges from inside the loop to their exit blocks.  Update
1229   // the appropriate Phi nodes as we do so.
1230   SplitExitEdges(L, ExitBlocks);
1231 
1232   // The exit blocks may have been changed due to edge splitting, recompute.
1233   ExitBlocks.clear();
1234   L->getUniqueExitBlocks(ExitBlocks);
1235 
1236   // Add exit blocks to the loop blocks.
1237   LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
1238 
1239   // Next step, clone all of the basic blocks that make up the loop (including
1240   // the loop preheader and exit blocks), keeping track of the mapping between
1241   // the instructions and blocks.
1242   NewBlocks.reserve(LoopBlocks.size());
1243   ValueToValueMapTy VMap;
1244   for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
1245     BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
1246 
1247     NewBlocks.push_back(NewBB);
1248     VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
1249     LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
1250   }
1251 
1252   // Splice the newly inserted blocks into the function right before the
1253   // original preheader.
1254   F->getBasicBlockList().splice(NewPreheader->getIterator(),
1255                                 F->getBasicBlockList(),
1256                                 NewBlocks[0]->getIterator(), F->end());
1257 
1258   // Now we create the new Loop object for the versioned loop.
1259   Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
1260 
1261   // Recalculate unswitching quota, inherit simplified switches info for NewBB,
1262   // Probably clone more loop-unswitch related loop properties.
1263   BranchesInfo.cloneData(NewLoop, L, VMap);
1264 
1265   Loop *ParentLoop = L->getParentLoop();
1266   if (ParentLoop) {
1267     // Make sure to add the cloned preheader and exit blocks to the parent loop
1268     // as well.
1269     ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
1270   }
1271 
1272   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1273     BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
1274     // The new exit block should be in the same loop as the old one.
1275     if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
1276       ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
1277 
1278     assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
1279            "Exit block should have been split to have one successor!");
1280     BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
1281 
1282     // If the successor of the exit block had PHI nodes, add an entry for
1283     // NewExit.
1284     for (PHINode &PN : ExitSucc->phis()) {
1285       Value *V = PN.getIncomingValueForBlock(ExitBlocks[i]);
1286       ValueToValueMapTy::iterator It = VMap.find(V);
1287       if (It != VMap.end()) V = It->second;
1288       PN.addIncoming(V, NewExit);
1289     }
1290 
1291     if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
1292       PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
1293                                     &*ExitSucc->getFirstInsertionPt());
1294 
1295       for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
1296            I != E; ++I) {
1297         BasicBlock *BB = *I;
1298         LandingPadInst *LPI = BB->getLandingPadInst();
1299         LPI->replaceAllUsesWith(PN);
1300         PN->addIncoming(LPI, BB);
1301       }
1302     }
1303   }
1304 
1305   // Rewrite the code to refer to itself.
1306   for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
1307     for (Instruction &I : *NewBlocks[i]) {
1308       RemapInstruction(&I, VMap,
1309                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1310       if (auto *II = dyn_cast<IntrinsicInst>(&I))
1311         if (II->getIntrinsicID() == Intrinsic::assume)
1312           AC->registerAssumption(II);
1313     }
1314   }
1315 
1316   // Rewrite the original preheader to select between versions of the loop.
1317   BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
1318   assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
1319          "Preheader splitting did not work correctly!");
1320 
1321   // Emit the new branch that selects between the two versions of this loop.
1322   EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
1323                                  TI);
1324   LPM->deleteSimpleAnalysisValue(OldBR, L);
1325 
1326   // The OldBr was replaced by a new one and removed (but not erased) by
1327   // EmitPreheaderBranchOnCondition. It is no longer needed, so delete it.
1328   delete OldBR;
1329 
1330   LoopProcessWorklist.push_back(NewLoop);
1331   redoLoop = true;
1332 
1333   // Keep a WeakTrackingVH holding onto LIC.  If the first call to
1334   // RewriteLoopBody
1335   // deletes the instruction (for example by simplifying a PHI that feeds into
1336   // the condition that we're unswitching on), we don't rewrite the second
1337   // iteration.
1338   WeakTrackingVH LICHandle(LIC);
1339 
1340   // Now we rewrite the original code to know that the condition is true and the
1341   // new code to know that the condition is false.
1342   RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
1343 
1344   // It's possible that simplifying one loop could cause the other to be
1345   // changed to another value or a constant.  If its a constant, don't simplify
1346   // it.
1347   if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
1348       LICHandle && !isa<Constant>(LICHandle))
1349     RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
1350 }
1351 
1352 /// Remove all instances of I from the worklist vector specified.
RemoveFromWorklist(Instruction * I,std::vector<Instruction * > & Worklist)1353 static void RemoveFromWorklist(Instruction *I,
1354                                std::vector<Instruction*> &Worklist) {
1355 
1356   Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
1357                  Worklist.end());
1358 }
1359 
1360 /// When we find that I really equals V, remove I from the
1361 /// program, replacing all uses with V and update the worklist.
ReplaceUsesOfWith(Instruction * I,Value * V,std::vector<Instruction * > & Worklist,Loop * L,LPPassManager * LPM)1362 static void ReplaceUsesOfWith(Instruction *I, Value *V,
1363                               std::vector<Instruction*> &Worklist,
1364                               Loop *L, LPPassManager *LPM) {
1365   LLVM_DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n");
1366 
1367   // Add uses to the worklist, which may be dead now.
1368   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1369     if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1370       Worklist.push_back(Use);
1371 
1372   // Add users to the worklist which may be simplified now.
1373   for (User *U : I->users())
1374     Worklist.push_back(cast<Instruction>(U));
1375   LPM->deleteSimpleAnalysisValue(I, L);
1376   RemoveFromWorklist(I, Worklist);
1377   I->replaceAllUsesWith(V);
1378   if (!I->mayHaveSideEffects())
1379     I->eraseFromParent();
1380   ++NumSimplify;
1381 }
1382 
1383 /// We know either that the value LIC has the value specified by Val in the
1384 /// specified loop, or we know it does NOT have that value.
1385 /// Rewrite any uses of LIC or of properties correlated to it.
RewriteLoopBodyWithConditionConstant(Loop * L,Value * LIC,Constant * Val,bool IsEqual)1386 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
1387                                                         Constant *Val,
1388                                                         bool IsEqual) {
1389   assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
1390 
1391   // FIXME: Support correlated properties, like:
1392   //  for (...)
1393   //    if (li1 < li2)
1394   //      ...
1395   //    if (li1 > li2)
1396   //      ...
1397 
1398   // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
1399   // selects, switches.
1400   std::vector<Instruction*> Worklist;
1401   LLVMContext &Context = Val->getContext();
1402 
1403   // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1404   // in the loop with the appropriate one directly.
1405   if (IsEqual || (isa<ConstantInt>(Val) &&
1406       Val->getType()->isIntegerTy(1))) {
1407     Value *Replacement;
1408     if (IsEqual)
1409       Replacement = Val;
1410     else
1411       Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
1412                                      !cast<ConstantInt>(Val)->getZExtValue());
1413 
1414     for (User *U : LIC->users()) {
1415       Instruction *UI = dyn_cast<Instruction>(U);
1416       if (!UI || !L->contains(UI))
1417         continue;
1418       Worklist.push_back(UI);
1419     }
1420 
1421     for (Instruction *UI : Worklist)
1422       UI->replaceUsesOfWith(LIC, Replacement);
1423 
1424     SimplifyCode(Worklist, L);
1425     return;
1426   }
1427 
1428   // Otherwise, we don't know the precise value of LIC, but we do know that it
1429   // is certainly NOT "Val".  As such, simplify any uses in the loop that we
1430   // can.  This case occurs when we unswitch switch statements.
1431   for (User *U : LIC->users()) {
1432     Instruction *UI = dyn_cast<Instruction>(U);
1433     if (!UI || !L->contains(UI))
1434       continue;
1435 
1436     // At this point, we know LIC is definitely not Val. Try to use some simple
1437     // logic to simplify the user w.r.t. to the context.
1438     if (Value *Replacement = SimplifyInstructionWithNotEqual(UI, LIC, Val)) {
1439       if (LI->replacementPreservesLCSSAForm(UI, Replacement)) {
1440         // This in-loop instruction has been simplified w.r.t. its context,
1441         // i.e. LIC != Val, make sure we propagate its replacement value to
1442         // all its users.
1443         //
1444         // We can not yet delete UI, the LIC user, yet, because that would invalidate
1445         // the LIC->users() iterator !. However, we can make this instruction
1446         // dead by replacing all its users and push it onto the worklist so that
1447         // it can be properly deleted and its operands simplified.
1448         UI->replaceAllUsesWith(Replacement);
1449       }
1450     }
1451 
1452     // This is a LIC user, push it into the worklist so that SimplifyCode can
1453     // attempt to simplify it.
1454     Worklist.push_back(UI);
1455 
1456     // If we know that LIC is not Val, use this info to simplify code.
1457     SwitchInst *SI = dyn_cast<SwitchInst>(UI);
1458     if (!SI || !isa<ConstantInt>(Val)) continue;
1459 
1460     // NOTE: if a case value for the switch is unswitched out, we record it
1461     // after the unswitch finishes. We can not record it here as the switch
1462     // is not a direct user of the partial LIV.
1463     SwitchInst::CaseHandle DeadCase =
1464         *SI->findCaseValue(cast<ConstantInt>(Val));
1465     // Default case is live for multiple values.
1466     if (DeadCase == *SI->case_default())
1467       continue;
1468 
1469     // Found a dead case value.  Don't remove PHI nodes in the
1470     // successor if they become single-entry, those PHI nodes may
1471     // be in the Users list.
1472 
1473     BasicBlock *Switch = SI->getParent();
1474     BasicBlock *SISucc = DeadCase.getCaseSuccessor();
1475     BasicBlock *Latch = L->getLoopLatch();
1476 
1477     if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
1478     // If the DeadCase successor dominates the loop latch, then the
1479     // transformation isn't safe since it will delete the sole predecessor edge
1480     // to the latch.
1481     if (Latch && DT->dominates(SISucc, Latch))
1482       continue;
1483 
1484     // FIXME: This is a hack.  We need to keep the successor around
1485     // and hooked up so as to preserve the loop structure, because
1486     // trying to update it is complicated.  So instead we preserve the
1487     // loop structure and put the block on a dead code path.
1488     SplitEdge(Switch, SISucc, DT, LI);
1489     // Compute the successors instead of relying on the return value
1490     // of SplitEdge, since it may have split the switch successor
1491     // after PHI nodes.
1492     BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
1493     BasicBlock *OldSISucc = *succ_begin(NewSISucc);
1494     // Create an "unreachable" destination.
1495     BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
1496                                            Switch->getParent(),
1497                                            OldSISucc);
1498     new UnreachableInst(Context, Abort);
1499     // Force the new case destination to branch to the "unreachable"
1500     // block while maintaining a (dead) CFG edge to the old block.
1501     NewSISucc->getTerminator()->eraseFromParent();
1502     BranchInst::Create(Abort, OldSISucc,
1503                        ConstantInt::getTrue(Context), NewSISucc);
1504     // Release the PHI operands for this edge.
1505     for (PHINode &PN : NewSISucc->phis())
1506       PN.setIncomingValue(PN.getBasicBlockIndex(Switch),
1507                           UndefValue::get(PN.getType()));
1508     // Tell the domtree about the new block. We don't fully update the
1509     // domtree here -- instead we force it to do a full recomputation
1510     // after the pass is complete -- but we do need to inform it of
1511     // new blocks.
1512     DT->addNewBlock(Abort, NewSISucc);
1513   }
1514 
1515   SimplifyCode(Worklist, L);
1516 }
1517 
1518 /// Now that we have simplified some instructions in the loop, walk over it and
1519 /// constant prop, dce, and fold control flow where possible. Note that this is
1520 /// effectively a very simple loop-structure-aware optimizer. During processing
1521 /// of this loop, L could very well be deleted, so it must not be used.
1522 ///
1523 /// FIXME: When the loop optimizer is more mature, separate this out to a new
1524 /// pass.
1525 ///
SimplifyCode(std::vector<Instruction * > & Worklist,Loop * L)1526 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1527   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1528   while (!Worklist.empty()) {
1529     Instruction *I = Worklist.back();
1530     Worklist.pop_back();
1531 
1532     // Simple DCE.
1533     if (isInstructionTriviallyDead(I)) {
1534       LLVM_DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n");
1535 
1536       // Add uses to the worklist, which may be dead now.
1537       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1538         if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1539           Worklist.push_back(Use);
1540       LPM->deleteSimpleAnalysisValue(I, L);
1541       RemoveFromWorklist(I, Worklist);
1542       I->eraseFromParent();
1543       ++NumSimplify;
1544       continue;
1545     }
1546 
1547     // See if instruction simplification can hack this up.  This is common for
1548     // things like "select false, X, Y" after unswitching made the condition be
1549     // 'false'.  TODO: update the domtree properly so we can pass it here.
1550     if (Value *V = SimplifyInstruction(I, DL))
1551       if (LI->replacementPreservesLCSSAForm(I, V)) {
1552         ReplaceUsesOfWith(I, V, Worklist, L, LPM);
1553         continue;
1554       }
1555 
1556     // Special case hacks that appear commonly in unswitched code.
1557     if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1558       if (BI->isUnconditional()) {
1559         // If BI's parent is the only pred of the successor, fold the two blocks
1560         // together.
1561         BasicBlock *Pred = BI->getParent();
1562         BasicBlock *Succ = BI->getSuccessor(0);
1563         BasicBlock *SinglePred = Succ->getSinglePredecessor();
1564         if (!SinglePred) continue;  // Nothing to do.
1565         assert(SinglePred == Pred && "CFG broken");
1566 
1567         LLVM_DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1568                           << Succ->getName() << "\n");
1569 
1570         // Resolve any single entry PHI nodes in Succ.
1571         while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1572           ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1573 
1574         // If Succ has any successors with PHI nodes, update them to have
1575         // entries coming from Pred instead of Succ.
1576         Succ->replaceAllUsesWith(Pred);
1577 
1578         // Move all of the successor contents from Succ to Pred.
1579         Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(),
1580                                    Succ->begin(), Succ->end());
1581         LPM->deleteSimpleAnalysisValue(BI, L);
1582         RemoveFromWorklist(BI, Worklist);
1583         BI->eraseFromParent();
1584 
1585         // Remove Succ from the loop tree.
1586         LI->removeBlock(Succ);
1587         LPM->deleteSimpleAnalysisValue(Succ, L);
1588         Succ->eraseFromParent();
1589         ++NumSimplify;
1590         continue;
1591       }
1592 
1593       continue;
1594     }
1595   }
1596 }
1597 
1598 /// Simple simplifications we can do given the information that Cond is
1599 /// definitely not equal to Val.
SimplifyInstructionWithNotEqual(Instruction * Inst,Value * Invariant,Constant * Val)1600 Value *LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction *Inst,
1601                                                      Value *Invariant,
1602                                                      Constant *Val) {
1603   // icmp eq cond, val -> false
1604   ICmpInst *CI = dyn_cast<ICmpInst>(Inst);
1605   if (CI && CI->isEquality()) {
1606     Value *Op0 = CI->getOperand(0);
1607     Value *Op1 = CI->getOperand(1);
1608     if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) {
1609       LLVMContext &Ctx = Inst->getContext();
1610       if (CI->getPredicate() == CmpInst::ICMP_EQ)
1611         return ConstantInt::getFalse(Ctx);
1612       else
1613         return ConstantInt::getTrue(Ctx);
1614      }
1615   }
1616 
1617   // FIXME: there may be other opportunities, e.g. comparison with floating
1618   // point, or Invariant - Val != 0, etc.
1619   return nullptr;
1620 }
1621