1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_HEAP_SPACES_H_ 6 #define V8_HEAP_SPACES_H_ 7 8 #include <list> 9 #include <map> 10 #include <memory> 11 #include <unordered_map> 12 #include <unordered_set> 13 #include <vector> 14 15 #include "src/allocation.h" 16 #include "src/base/atomic-utils.h" 17 #include "src/base/iterator.h" 18 #include "src/base/list.h" 19 #include "src/base/platform/mutex.h" 20 #include "src/cancelable-task.h" 21 #include "src/flags.h" 22 #include "src/globals.h" 23 #include "src/heap/heap.h" 24 #include "src/heap/invalidated-slots.h" 25 #include "src/heap/marking.h" 26 #include "src/objects.h" 27 #include "src/objects/map.h" 28 #include "src/utils.h" 29 30 namespace v8 { 31 namespace internal { 32 33 namespace heap { 34 class HeapTester; 35 class TestCodeRangeScope; 36 } // namespace heap 37 38 class AllocationObserver; 39 class CompactionSpace; 40 class CompactionSpaceCollection; 41 class FreeList; 42 class Isolate; 43 class LinearAllocationArea; 44 class LocalArrayBufferTracker; 45 class MemoryAllocator; 46 class MemoryChunk; 47 class Page; 48 class PagedSpace; 49 class SemiSpace; 50 class SkipList; 51 class SlotsBuffer; 52 class SlotSet; 53 class TypedSlotSet; 54 class Space; 55 56 // ----------------------------------------------------------------------------- 57 // Heap structures: 58 // 59 // A JS heap consists of a young generation, an old generation, and a large 60 // object space. The young generation is divided into two semispaces. A 61 // scavenger implements Cheney's copying algorithm. The old generation is 62 // separated into a map space and an old object space. The map space contains 63 // all (and only) map objects, the rest of old objects go into the old space. 64 // The old generation is collected by a mark-sweep-compact collector. 65 // 66 // The semispaces of the young generation are contiguous. The old and map 67 // spaces consists of a list of pages. A page has a page header and an object 68 // area. 69 // 70 // There is a separate large object space for objects larger than 71 // kMaxRegularHeapObjectSize, so that they do not have to move during 72 // collection. The large object space is paged. Pages in large object space 73 // may be larger than the page size. 74 // 75 // A store-buffer based write barrier is used to keep track of intergenerational 76 // references. See heap/store-buffer.h. 77 // 78 // During scavenges and mark-sweep collections we sometimes (after a store 79 // buffer overflow) iterate intergenerational pointers without decoding heap 80 // object maps so if the page belongs to old space or large object space 81 // it is essential to guarantee that the page does not contain any 82 // garbage pointers to new space: every pointer aligned word which satisfies 83 // the Heap::InNewSpace() predicate must be a pointer to a live heap object in 84 // new space. Thus objects in old space and large object spaces should have a 85 // special layout (e.g. no bare integer fields). This requirement does not 86 // apply to map space which is iterated in a special fashion. However we still 87 // require pointer fields of dead maps to be cleaned. 88 // 89 // To enable lazy cleaning of old space pages we can mark chunks of the page 90 // as being garbage. Garbage sections are marked with a special map. These 91 // sections are skipped when scanning the page, even if we are otherwise 92 // scanning without regard for object boundaries. Garbage sections are chained 93 // together to form a free list after a GC. Garbage sections created outside 94 // of GCs by object trunctation etc. may not be in the free list chain. Very 95 // small free spaces are ignored, they need only be cleaned of bogus pointers 96 // into new space. 97 // 98 // Each page may have up to one special garbage section. The start of this 99 // section is denoted by the top field in the space. The end of the section 100 // is denoted by the limit field in the space. This special garbage section 101 // is not marked with a free space map in the data. The point of this section 102 // is to enable linear allocation without having to constantly update the byte 103 // array every time the top field is updated and a new object is created. The 104 // special garbage section is not in the chain of garbage sections. 105 // 106 // Since the top and limit fields are in the space, not the page, only one page 107 // has a special garbage section, and if the top and limit are equal then there 108 // is no special garbage section. 109 110 // Some assertion macros used in the debugging mode. 111 112 #define DCHECK_PAGE_ALIGNED(address) \ 113 DCHECK((OffsetFrom(address) & kPageAlignmentMask) == 0) 114 115 #define DCHECK_OBJECT_ALIGNED(address) \ 116 DCHECK((OffsetFrom(address) & kObjectAlignmentMask) == 0) 117 118 #define DCHECK_OBJECT_SIZE(size) \ 119 DCHECK((0 < size) && (size <= kMaxRegularHeapObjectSize)) 120 121 #define DCHECK_CODEOBJECT_SIZE(size, code_space) \ 122 DCHECK((0 < size) && (size <= code_space->AreaSize())) 123 124 #define DCHECK_PAGE_OFFSET(offset) \ 125 DCHECK((Page::kObjectStartOffset <= offset) && (offset <= Page::kPageSize)) 126 127 enum FreeListCategoryType { 128 kTiniest, 129 kTiny, 130 kSmall, 131 kMedium, 132 kLarge, 133 kHuge, 134 135 kFirstCategory = kTiniest, 136 kLastCategory = kHuge, 137 kNumberOfCategories = kLastCategory + 1, 138 kInvalidCategory 139 }; 140 141 enum FreeMode { kLinkCategory, kDoNotLinkCategory }; 142 143 enum class SpaceAccountingMode { kSpaceAccounted, kSpaceUnaccounted }; 144 145 enum ExternalBackingStoreType { 146 kArrayBuffer, 147 kExternalString, 148 kNumTypes 149 }; 150 151 enum RememberedSetType { 152 OLD_TO_NEW, 153 OLD_TO_OLD, 154 NUMBER_OF_REMEMBERED_SET_TYPES = OLD_TO_OLD + 1 155 }; 156 157 // A free list category maintains a linked list of free memory blocks. 158 class FreeListCategory { 159 public: FreeListCategory(FreeList * free_list,Page * page)160 FreeListCategory(FreeList* free_list, Page* page) 161 : free_list_(free_list), 162 page_(page), 163 type_(kInvalidCategory), 164 available_(0), 165 top_(nullptr), 166 prev_(nullptr), 167 next_(nullptr) {} 168 Initialize(FreeListCategoryType type)169 void Initialize(FreeListCategoryType type) { 170 type_ = type; 171 available_ = 0; 172 top_ = nullptr; 173 prev_ = nullptr; 174 next_ = nullptr; 175 } 176 177 void Reset(); 178 ResetStats()179 void ResetStats() { Reset(); } 180 181 void RepairFreeList(Heap* heap); 182 183 // Relinks the category into the currently owning free list. Requires that the 184 // category is currently unlinked. 185 void Relink(); 186 187 void Free(Address address, size_t size_in_bytes, FreeMode mode); 188 189 // Performs a single try to pick a node of at least |minimum_size| from the 190 // category. Stores the actual size in |node_size|. Returns nullptr if no 191 // node is found. 192 FreeSpace* PickNodeFromList(size_t minimum_size, size_t* node_size); 193 194 // Picks a node of at least |minimum_size| from the category. Stores the 195 // actual size in |node_size|. Returns nullptr if no node is found. 196 FreeSpace* SearchForNodeInList(size_t minimum_size, size_t* node_size); 197 198 inline FreeList* owner(); page()199 inline Page* page() const { return page_; } 200 inline bool is_linked(); is_empty()201 bool is_empty() { return top() == nullptr; } available()202 size_t available() const { return available_; } 203 set_free_list(FreeList * free_list)204 void set_free_list(FreeList* free_list) { free_list_ = free_list; } 205 206 #ifdef DEBUG 207 size_t SumFreeList(); 208 int FreeListLength(); 209 #endif 210 211 private: 212 // For debug builds we accurately compute free lists lengths up until 213 // {kVeryLongFreeList} by manually walking the list. 214 static const int kVeryLongFreeList = 500; 215 top()216 FreeSpace* top() { return top_; } set_top(FreeSpace * top)217 void set_top(FreeSpace* top) { top_ = top; } prev()218 FreeListCategory* prev() { return prev_; } set_prev(FreeListCategory * prev)219 void set_prev(FreeListCategory* prev) { prev_ = prev; } next()220 FreeListCategory* next() { return next_; } set_next(FreeListCategory * next)221 void set_next(FreeListCategory* next) { next_ = next; } 222 223 // This FreeListCategory is owned by the given free_list_. 224 FreeList* free_list_; 225 226 // This FreeListCategory holds free list entries of the given page_. 227 Page* const page_; 228 229 // |type_|: The type of this free list category. 230 FreeListCategoryType type_; 231 232 // |available_|: Total available bytes in all blocks of this free list 233 // category. 234 size_t available_; 235 236 // |top_|: Points to the top FreeSpace* in the free list category. 237 FreeSpace* top_; 238 239 FreeListCategory* prev_; 240 FreeListCategory* next_; 241 242 friend class FreeList; 243 friend class PagedSpace; 244 245 DISALLOW_IMPLICIT_CONSTRUCTORS(FreeListCategory); 246 }; 247 248 // MemoryChunk represents a memory region owned by a specific space. 249 // It is divided into the header and the body. Chunk start is always 250 // 1MB aligned. Start of the body is aligned so it can accommodate 251 // any heap object. 252 class MemoryChunk { 253 public: 254 // Use with std data structures. 255 struct Hasher { operatorHasher256 size_t operator()(MemoryChunk* const chunk) const { 257 return reinterpret_cast<size_t>(chunk) >> kPageSizeBits; 258 } 259 }; 260 261 enum Flag { 262 NO_FLAGS = 0u, 263 IS_EXECUTABLE = 1u << 0, 264 POINTERS_TO_HERE_ARE_INTERESTING = 1u << 1, 265 POINTERS_FROM_HERE_ARE_INTERESTING = 1u << 2, 266 // A page in new space has one of the next two flags set. 267 IN_FROM_SPACE = 1u << 3, 268 IN_TO_SPACE = 1u << 4, 269 NEW_SPACE_BELOW_AGE_MARK = 1u << 5, 270 EVACUATION_CANDIDATE = 1u << 6, 271 NEVER_EVACUATE = 1u << 7, 272 273 // Large objects can have a progress bar in their page header. These object 274 // are scanned in increments and will be kept black while being scanned. 275 // Even if the mutator writes to them they will be kept black and a white 276 // to grey transition is performed in the value. 277 HAS_PROGRESS_BAR = 1u << 8, 278 279 // |PAGE_NEW_OLD_PROMOTION|: A page tagged with this flag has been promoted 280 // from new to old space during evacuation. 281 PAGE_NEW_OLD_PROMOTION = 1u << 9, 282 283 // |PAGE_NEW_NEW_PROMOTION|: A page tagged with this flag has been moved 284 // within the new space during evacuation. 285 PAGE_NEW_NEW_PROMOTION = 1u << 10, 286 287 // This flag is intended to be used for testing. Works only when both 288 // FLAG_stress_compaction and FLAG_manual_evacuation_candidates_selection 289 // are set. It forces the page to become an evacuation candidate at next 290 // candidates selection cycle. 291 FORCE_EVACUATION_CANDIDATE_FOR_TESTING = 1u << 11, 292 293 // This flag is intended to be used for testing. 294 NEVER_ALLOCATE_ON_PAGE = 1u << 12, 295 296 // The memory chunk is already logically freed, however the actual freeing 297 // still has to be performed. 298 PRE_FREED = 1u << 13, 299 300 // |POOLED|: When actually freeing this chunk, only uncommit and do not 301 // give up the reservation as we still reuse the chunk at some point. 302 POOLED = 1u << 14, 303 304 // |COMPACTION_WAS_ABORTED|: Indicates that the compaction in this page 305 // has been aborted and needs special handling by the sweeper. 306 COMPACTION_WAS_ABORTED = 1u << 15, 307 308 // |COMPACTION_WAS_ABORTED_FOR_TESTING|: During stress testing evacuation 309 // on pages is sometimes aborted. The flag is used to avoid repeatedly 310 // triggering on the same page. 311 COMPACTION_WAS_ABORTED_FOR_TESTING = 1u << 16, 312 313 // |SWEEP_TO_ITERATE|: The page requires sweeping using external markbits 314 // to iterate the page. 315 SWEEP_TO_ITERATE = 1u << 17, 316 317 // |INCREMENTAL_MARKING|: Indicates whether incremental marking is currently 318 // enabled. 319 INCREMENTAL_MARKING = 1u << 18 320 }; 321 322 using Flags = uintptr_t; 323 324 static const Flags kPointersToHereAreInterestingMask = 325 POINTERS_TO_HERE_ARE_INTERESTING; 326 327 static const Flags kPointersFromHereAreInterestingMask = 328 POINTERS_FROM_HERE_ARE_INTERESTING; 329 330 static const Flags kEvacuationCandidateMask = EVACUATION_CANDIDATE; 331 332 static const Flags kIsInNewSpaceMask = IN_FROM_SPACE | IN_TO_SPACE; 333 334 static const Flags kSkipEvacuationSlotsRecordingMask = 335 kEvacuationCandidateMask | kIsInNewSpaceMask; 336 337 // |kSweepingDone|: The page state when sweeping is complete or sweeping must 338 // not be performed on that page. Sweeper threads that are done with their 339 // work will set this value and not touch the page anymore. 340 // |kSweepingPending|: This page is ready for parallel sweeping. 341 // |kSweepingInProgress|: This page is currently swept by a sweeper thread. 342 enum ConcurrentSweepingState { 343 kSweepingDone, 344 kSweepingPending, 345 kSweepingInProgress, 346 }; 347 348 static const intptr_t kAlignment = 349 (static_cast<uintptr_t>(1) << kPageSizeBits); 350 351 static const intptr_t kAlignmentMask = kAlignment - 1; 352 353 static const intptr_t kSizeOffset = 0; 354 static const intptr_t kFlagsOffset = kSizeOffset + kSizetSize; 355 static const intptr_t kAreaStartOffset = kFlagsOffset + kIntptrSize; 356 static const intptr_t kAreaEndOffset = kAreaStartOffset + kPointerSize; 357 static const intptr_t kReservationOffset = kAreaEndOffset + kPointerSize; 358 static const intptr_t kOwnerOffset = kReservationOffset + 2 * kPointerSize; 359 360 static const size_t kMinHeaderSize = 361 kSizeOffset // NOLINT 362 + kSizetSize // size_t size 363 + kUIntptrSize // uintptr_t flags_ 364 + kPointerSize // Address area_start_ 365 + kPointerSize // Address area_end_ 366 + 2 * kPointerSize // VirtualMemory reservation_ 367 + kPointerSize // Address owner_ 368 + kPointerSize // Heap* heap_ 369 + kIntptrSize // intptr_t progress_bar_ 370 + kIntptrSize // std::atomic<intptr_t> live_byte_count_ 371 + kPointerSize * NUMBER_OF_REMEMBERED_SET_TYPES // SlotSet* array 372 + kPointerSize * NUMBER_OF_REMEMBERED_SET_TYPES // TypedSlotSet* array 373 + kPointerSize // InvalidatedSlots* invalidated_slots_ 374 + kPointerSize // SkipList* skip_list_ 375 + kPointerSize // std::atomic<intptr_t> high_water_mark_ 376 + kPointerSize // base::Mutex* mutex_ 377 + 378 kPointerSize // std::atomic<ConcurrentSweepingState> concurrent_sweeping_ 379 + kPointerSize // base::Mutex* page_protection_change_mutex_ 380 + kPointerSize // unitptr_t write_unprotect_counter_ 381 + kSizetSize * kNumTypes 382 // std::atomic<size_t> external_backing_store_bytes_ 383 + kSizetSize // size_t allocated_bytes_ 384 + kSizetSize // size_t wasted_memory_ 385 + kPointerSize * 2 // base::ListNode 386 + kPointerSize * kNumberOfCategories 387 // FreeListCategory categories_[kNumberOfCategories] 388 + kPointerSize // LocalArrayBufferTracker* local_tracker_ 389 + kIntptrSize // std::atomic<intptr_t> young_generation_live_byte_count_ 390 + kPointerSize; // Bitmap* young_generation_bitmap_ 391 392 // We add some more space to the computed header size to amount for missing 393 // alignment requirements in our computation. 394 // Try to get kHeaderSize properly aligned on 32-bit and 64-bit machines. 395 static const size_t kHeaderSize = kMinHeaderSize; 396 397 static const int kBodyOffset = 398 CODE_POINTER_ALIGN(kHeaderSize + Bitmap::kSize); 399 400 // The start offset of the object area in a page. Aligned to both maps and 401 // code alignment to be suitable for both. Also aligned to 32 words because 402 // the marking bitmap is arranged in 32 bit chunks. 403 static const int kObjectStartAlignment = 32 * kPointerSize; 404 static const int kObjectStartOffset = 405 kBodyOffset - 1 + 406 (kObjectStartAlignment - (kBodyOffset - 1) % kObjectStartAlignment); 407 408 // Page size in bytes. This must be a multiple of the OS page size. 409 static const int kPageSize = 1 << kPageSizeBits; 410 411 static const int kAllocatableMemory = kPageSize - kObjectStartOffset; 412 413 // Maximum number of nested code memory modification scopes. 414 // TODO(6792,mstarzinger): Drop to 3 or lower once WebAssembly is off heap. 415 static const int kMaxWriteUnprotectCounter = 4; 416 417 // Only works if the pointer is in the first kPageSize of the MemoryChunk. FromAddress(Address a)418 static MemoryChunk* FromAddress(Address a) { 419 return reinterpret_cast<MemoryChunk*>(OffsetFrom(a) & ~kAlignmentMask); 420 } 421 // Only works if the object is in the first kPageSize of the MemoryChunk. FromHeapObject(const HeapObject * o)422 static MemoryChunk* FromHeapObject(const HeapObject* o) { 423 return reinterpret_cast<MemoryChunk*>(reinterpret_cast<Address>(o) & 424 ~kAlignmentMask); 425 } 426 427 void SetOldGenerationPageFlags(bool is_marking); 428 void SetYoungGenerationPageFlags(bool is_marking); 429 430 static inline MemoryChunk* FromAnyPointerAddress(Heap* heap, Address addr); 431 UpdateHighWaterMark(Address mark)432 static inline void UpdateHighWaterMark(Address mark) { 433 if (mark == kNullAddress) return; 434 // Need to subtract one from the mark because when a chunk is full the 435 // top points to the next address after the chunk, which effectively belongs 436 // to another chunk. See the comment to Page::FromTopOrLimit. 437 MemoryChunk* chunk = MemoryChunk::FromAddress(mark - 1); 438 intptr_t new_mark = static_cast<intptr_t>(mark - chunk->address()); 439 intptr_t old_mark = 0; 440 do { 441 old_mark = chunk->high_water_mark_; 442 } while ( 443 (new_mark > old_mark) && 444 !chunk->high_water_mark_.compare_exchange_weak(old_mark, new_mark)); 445 } 446 address()447 Address address() const { 448 return reinterpret_cast<Address>(const_cast<MemoryChunk*>(this)); 449 } 450 mutex()451 base::Mutex* mutex() { return mutex_; } 452 Contains(Address addr)453 bool Contains(Address addr) { 454 return addr >= area_start() && addr < area_end(); 455 } 456 457 // Checks whether |addr| can be a limit of addresses in this page. It's a 458 // limit if it's in the page, or if it's just after the last byte of the page. ContainsLimit(Address addr)459 bool ContainsLimit(Address addr) { 460 return addr >= area_start() && addr <= area_end(); 461 } 462 set_concurrent_sweeping_state(ConcurrentSweepingState state)463 void set_concurrent_sweeping_state(ConcurrentSweepingState state) { 464 concurrent_sweeping_ = state; 465 } 466 concurrent_sweeping_state()467 ConcurrentSweepingState concurrent_sweeping_state() { 468 return static_cast<ConcurrentSweepingState>(concurrent_sweeping_.load()); 469 } 470 SweepingDone()471 bool SweepingDone() { return concurrent_sweeping_ == kSweepingDone; } 472 size()473 size_t size() const { return size_; } set_size(size_t size)474 void set_size(size_t size) { size_ = size; } 475 heap()476 inline Heap* heap() const { return heap_; } 477 478 Heap* synchronized_heap(); 479 skip_list()480 inline SkipList* skip_list() { return skip_list_; } 481 set_skip_list(SkipList * skip_list)482 inline void set_skip_list(SkipList* skip_list) { skip_list_ = skip_list; } 483 484 template <RememberedSetType type> ContainsSlots()485 bool ContainsSlots() { 486 return slot_set<type>() != nullptr || typed_slot_set<type>() != nullptr || 487 invalidated_slots() != nullptr; 488 } 489 490 template <RememberedSetType type, AccessMode access_mode = AccessMode::ATOMIC> slot_set()491 SlotSet* slot_set() { 492 if (access_mode == AccessMode::ATOMIC) 493 return base::AsAtomicPointer::Acquire_Load(&slot_set_[type]); 494 return slot_set_[type]; 495 } 496 497 template <RememberedSetType type, AccessMode access_mode = AccessMode::ATOMIC> typed_slot_set()498 TypedSlotSet* typed_slot_set() { 499 if (access_mode == AccessMode::ATOMIC) 500 return base::AsAtomicPointer::Acquire_Load(&typed_slot_set_[type]); 501 return typed_slot_set_[type]; 502 } 503 504 template <RememberedSetType type> 505 SlotSet* AllocateSlotSet(); 506 // Not safe to be called concurrently. 507 template <RememberedSetType type> 508 void ReleaseSlotSet(); 509 template <RememberedSetType type> 510 TypedSlotSet* AllocateTypedSlotSet(); 511 // Not safe to be called concurrently. 512 template <RememberedSetType type> 513 void ReleaseTypedSlotSet(); 514 515 InvalidatedSlots* AllocateInvalidatedSlots(); 516 void ReleaseInvalidatedSlots(); 517 void RegisterObjectWithInvalidatedSlots(HeapObject* object, int size); 518 // Updates invalidated_slots after array left-trimming. 519 void MoveObjectWithInvalidatedSlots(HeapObject* old_start, 520 HeapObject* new_start); invalidated_slots()521 InvalidatedSlots* invalidated_slots() { return invalidated_slots_; } 522 523 void ReleaseLocalTracker(); 524 525 void AllocateYoungGenerationBitmap(); 526 void ReleaseYoungGenerationBitmap(); 527 area_start()528 Address area_start() { return area_start_; } area_end()529 Address area_end() { return area_end_; } area_size()530 size_t area_size() { return static_cast<size_t>(area_end() - area_start()); } 531 532 // Approximate amount of physical memory committed for this chunk. 533 size_t CommittedPhysicalMemory(); 534 HighWaterMark()535 Address HighWaterMark() { return address() + high_water_mark_; } 536 progress_bar()537 int progress_bar() { 538 DCHECK(IsFlagSet(HAS_PROGRESS_BAR)); 539 return static_cast<int>(progress_bar_); 540 } 541 set_progress_bar(int progress_bar)542 void set_progress_bar(int progress_bar) { 543 DCHECK(IsFlagSet(HAS_PROGRESS_BAR)); 544 progress_bar_ = progress_bar; 545 } 546 ResetProgressBar()547 void ResetProgressBar() { 548 if (IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR)) { 549 set_progress_bar(0); 550 } 551 } 552 553 void IncrementExternalBackingStoreBytes(ExternalBackingStoreType type, 554 size_t amount); 555 void DecrementExternalBackingStoreBytes(ExternalBackingStoreType type, 556 size_t amount); ExternalBackingStoreBytes(ExternalBackingStoreType type)557 size_t ExternalBackingStoreBytes(ExternalBackingStoreType type) { 558 return external_backing_store_bytes_[type]; 559 } 560 AddressToMarkbitIndex(Address addr)561 inline uint32_t AddressToMarkbitIndex(Address addr) const { 562 return static_cast<uint32_t>(addr - this->address()) >> kPointerSizeLog2; 563 } 564 MarkbitIndexToAddress(uint32_t index)565 inline Address MarkbitIndexToAddress(uint32_t index) const { 566 return this->address() + (index << kPointerSizeLog2); 567 } 568 569 template <AccessMode access_mode = AccessMode::NON_ATOMIC> SetFlag(Flag flag)570 void SetFlag(Flag flag) { 571 if (access_mode == AccessMode::NON_ATOMIC) { 572 flags_ |= flag; 573 } else { 574 base::AsAtomicWord::SetBits<uintptr_t>(&flags_, flag, flag); 575 } 576 } 577 578 template <AccessMode access_mode = AccessMode::NON_ATOMIC> IsFlagSet(Flag flag)579 bool IsFlagSet(Flag flag) { 580 return (GetFlags<access_mode>() & flag) != 0; 581 } 582 ClearFlag(Flag flag)583 void ClearFlag(Flag flag) { flags_ &= ~flag; } 584 // Set or clear multiple flags at a time. The flags in the mask are set to 585 // the value in "flags", the rest retain the current value in |flags_|. SetFlags(uintptr_t flags,uintptr_t mask)586 void SetFlags(uintptr_t flags, uintptr_t mask) { 587 flags_ = (flags_ & ~mask) | (flags & mask); 588 } 589 590 // Return all current flags. 591 template <AccessMode access_mode = AccessMode::NON_ATOMIC> GetFlags()592 uintptr_t GetFlags() { 593 if (access_mode == AccessMode::NON_ATOMIC) { 594 return flags_; 595 } else { 596 return base::AsAtomicWord::Relaxed_Load(&flags_); 597 } 598 } 599 NeverEvacuate()600 bool NeverEvacuate() { return IsFlagSet(NEVER_EVACUATE); } 601 MarkNeverEvacuate()602 void MarkNeverEvacuate() { SetFlag(NEVER_EVACUATE); } 603 CanAllocate()604 bool CanAllocate() { 605 return !IsEvacuationCandidate() && !IsFlagSet(NEVER_ALLOCATE_ON_PAGE); 606 } 607 608 template <AccessMode access_mode = AccessMode::NON_ATOMIC> IsEvacuationCandidate()609 bool IsEvacuationCandidate() { 610 DCHECK(!(IsFlagSet<access_mode>(NEVER_EVACUATE) && 611 IsFlagSet<access_mode>(EVACUATION_CANDIDATE))); 612 return IsFlagSet<access_mode>(EVACUATION_CANDIDATE); 613 } 614 615 template <AccessMode access_mode = AccessMode::NON_ATOMIC> ShouldSkipEvacuationSlotRecording()616 bool ShouldSkipEvacuationSlotRecording() { 617 uintptr_t flags = GetFlags<access_mode>(); 618 return ((flags & kSkipEvacuationSlotsRecordingMask) != 0) && 619 ((flags & COMPACTION_WAS_ABORTED) == 0); 620 } 621 executable()622 Executability executable() { 623 return IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE; 624 } 625 InNewSpace()626 bool InNewSpace() { return (flags_ & kIsInNewSpaceMask) != 0; } 627 InToSpace()628 bool InToSpace() { return IsFlagSet(IN_TO_SPACE); } 629 InFromSpace()630 bool InFromSpace() { return IsFlagSet(IN_FROM_SPACE); } 631 632 bool InOldSpace() const; 633 634 bool InLargeObjectSpace() const; 635 owner()636 Space* owner() const { return owner_; } 637 set_owner(Space * space)638 void set_owner(Space* space) { owner_ = space; } 639 640 bool IsPagedSpace() const; 641 642 // Emits a memory barrier. For TSAN builds the other thread needs to perform 643 // MemoryChunk::synchronized_heap() to simulate the barrier. 644 void InitializationMemoryFence(); 645 646 void SetReadAndExecutable(); 647 void SetReadAndWritable(); 648 list_node()649 base::ListNode<MemoryChunk>& list_node() { return list_node_; } 650 651 protected: 652 static MemoryChunk* Initialize(Heap* heap, Address base, size_t size, 653 Address area_start, Address area_end, 654 Executability executable, Space* owner, 655 VirtualMemory* reservation); 656 657 // Should be called when memory chunk is about to be freed. 658 void ReleaseAllocatedMemory(); 659 reserved_memory()660 VirtualMemory* reserved_memory() { return &reservation_; } 661 662 size_t size_; 663 uintptr_t flags_; 664 665 // Start and end of allocatable memory on this chunk. 666 Address area_start_; 667 Address area_end_; 668 669 // If the chunk needs to remember its memory reservation, it is stored here. 670 VirtualMemory reservation_; 671 672 // The space owning this memory chunk. 673 std::atomic<Space*> owner_; 674 675 Heap* heap_; 676 677 // Used by the incremental marker to keep track of the scanning progress in 678 // large objects that have a progress bar and are scanned in increments. 679 intptr_t progress_bar_; 680 681 // Count of bytes marked black on page. 682 std::atomic<intptr_t> live_byte_count_; 683 684 // A single slot set for small pages (of size kPageSize) or an array of slot 685 // set for large pages. In the latter case the number of entries in the array 686 // is ceil(size() / kPageSize). 687 SlotSet* slot_set_[NUMBER_OF_REMEMBERED_SET_TYPES]; 688 TypedSlotSet* typed_slot_set_[NUMBER_OF_REMEMBERED_SET_TYPES]; 689 InvalidatedSlots* invalidated_slots_; 690 691 SkipList* skip_list_; 692 693 // Assuming the initial allocation on a page is sequential, 694 // count highest number of bytes ever allocated on the page. 695 std::atomic<intptr_t> high_water_mark_; 696 697 base::Mutex* mutex_; 698 699 std::atomic<intptr_t> concurrent_sweeping_; 700 701 base::Mutex* page_protection_change_mutex_; 702 703 // This field is only relevant for code pages. It depicts the number of 704 // times a component requested this page to be read+writeable. The 705 // counter is decremented when a component resets to read+executable. 706 // If Value() == 0 => The memory is read and executable. 707 // If Value() >= 1 => The Memory is read and writable (and maybe executable). 708 // The maximum value is limited by {kMaxWriteUnprotectCounter} to prevent 709 // excessive nesting of scopes. 710 // All executable MemoryChunks are allocated rw based on the assumption that 711 // they will be used immediatelly for an allocation. They are initialized 712 // with the number of open CodeSpaceMemoryModificationScopes. The caller 713 // that triggers the page allocation is responsible for decrementing the 714 // counter. 715 uintptr_t write_unprotect_counter_; 716 717 // Byte allocated on the page, which includes all objects on the page 718 // and the linear allocation area. 719 size_t allocated_bytes_; 720 721 // Tracks off-heap memory used by this memory chunk. 722 std::atomic<size_t> external_backing_store_bytes_[kNumTypes]; 723 724 // Freed memory that was not added to the free list. 725 size_t wasted_memory_; 726 727 base::ListNode<MemoryChunk> list_node_; 728 729 FreeListCategory* categories_[kNumberOfCategories]; 730 731 LocalArrayBufferTracker* local_tracker_; 732 733 std::atomic<intptr_t> young_generation_live_byte_count_; 734 Bitmap* young_generation_bitmap_; 735 736 private: InitializeReservedMemory()737 void InitializeReservedMemory() { reservation_.Reset(); } 738 739 friend class ConcurrentMarkingState; 740 friend class IncrementalMarkingState; 741 friend class MajorAtomicMarkingState; 742 friend class MajorMarkingState; 743 friend class MajorNonAtomicMarkingState; 744 friend class MemoryAllocator; 745 friend class MemoryChunkValidator; 746 friend class MinorMarkingState; 747 friend class MinorNonAtomicMarkingState; 748 friend class PagedSpace; 749 }; 750 751 static_assert(sizeof(std::atomic<intptr_t>) == kPointerSize, 752 "sizeof(std::atomic<intptr_t>) == kPointerSize"); 753 754 static_assert(kMaxRegularHeapObjectSize <= MemoryChunk::kAllocatableMemory, 755 "kMaxRegularHeapObjectSize <= MemoryChunk::kAllocatableMemory"); 756 757 758 // ----------------------------------------------------------------------------- 759 // A page is a memory chunk of a size 512K. Large object pages may be larger. 760 // 761 // The only way to get a page pointer is by calling factory methods: 762 // Page* p = Page::FromAddress(addr); or 763 // Page* p = Page::FromTopOrLimit(top); 764 class Page : public MemoryChunk { 765 public: 766 static const intptr_t kCopyAllFlags = ~0; 767 768 // Page flags copied from from-space to to-space when flipping semispaces. 769 static const intptr_t kCopyOnFlipFlagsMask = 770 static_cast<intptr_t>(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING) | 771 static_cast<intptr_t>(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING) | 772 static_cast<intptr_t>(MemoryChunk::INCREMENTAL_MARKING); 773 774 // Returns the page containing a given address. The address ranges 775 // from [page_addr .. page_addr + kPageSize[. This only works if the object 776 // is in fact in a page. FromAddress(Address addr)777 static Page* FromAddress(Address addr) { 778 return reinterpret_cast<Page*>(OffsetFrom(addr) & ~kPageAlignmentMask); 779 } FromHeapObject(const HeapObject * o)780 static Page* FromHeapObject(const HeapObject* o) { 781 return reinterpret_cast<Page*>(reinterpret_cast<Address>(o) & 782 ~kAlignmentMask); 783 } 784 785 // Returns the page containing the address provided. The address can 786 // potentially point righter after the page. To be also safe for tagged values 787 // we subtract a hole word. The valid address ranges from 788 // [page_addr + kObjectStartOffset .. page_addr + kPageSize + kPointerSize]. FromAllocationAreaAddress(Address address)789 static Page* FromAllocationAreaAddress(Address address) { 790 return Page::FromAddress(address - kPointerSize); 791 } 792 793 // Checks if address1 and address2 are on the same new space page. OnSamePage(Address address1,Address address2)794 static bool OnSamePage(Address address1, Address address2) { 795 return Page::FromAddress(address1) == Page::FromAddress(address2); 796 } 797 798 // Checks whether an address is page aligned. IsAlignedToPageSize(Address addr)799 static bool IsAlignedToPageSize(Address addr) { 800 return (OffsetFrom(addr) & kPageAlignmentMask) == 0; 801 } 802 IsAtObjectStart(Address addr)803 static bool IsAtObjectStart(Address addr) { 804 return (addr & kPageAlignmentMask) == kObjectStartOffset; 805 } 806 807 static Page* ConvertNewToOld(Page* old_page); 808 809 inline void MarkNeverAllocateForTesting(); 810 inline void MarkEvacuationCandidate(); 811 inline void ClearEvacuationCandidate(); 812 next_page()813 Page* next_page() { return static_cast<Page*>(list_node_.next()); } prev_page()814 Page* prev_page() { return static_cast<Page*>(list_node_.prev()); } 815 816 template <typename Callback> ForAllFreeListCategories(Callback callback)817 inline void ForAllFreeListCategories(Callback callback) { 818 for (int i = kFirstCategory; i < kNumberOfCategories; i++) { 819 callback(categories_[i]); 820 } 821 } 822 823 // Returns the offset of a given address to this page. Offset(Address a)824 inline size_t Offset(Address a) { return static_cast<size_t>(a - address()); } 825 826 // Returns the address for a given offset to the this page. OffsetToAddress(size_t offset)827 Address OffsetToAddress(size_t offset) { 828 DCHECK_PAGE_OFFSET(offset); 829 return address() + offset; 830 } 831 832 // WaitUntilSweepingCompleted only works when concurrent sweeping is in 833 // progress. In particular, when we know that right before this call a 834 // sweeper thread was sweeping this page. WaitUntilSweepingCompleted()835 void WaitUntilSweepingCompleted() { 836 mutex_->Lock(); 837 mutex_->Unlock(); 838 DCHECK(SweepingDone()); 839 } 840 841 void AllocateLocalTracker(); local_tracker()842 inline LocalArrayBufferTracker* local_tracker() { return local_tracker_; } 843 bool contains_array_buffers(); 844 845 void ResetFreeListStatistics(); 846 847 size_t AvailableInFreeList(); 848 AvailableInFreeListFromAllocatedBytes()849 size_t AvailableInFreeListFromAllocatedBytes() { 850 DCHECK_GE(area_size(), wasted_memory() + allocated_bytes()); 851 return area_size() - wasted_memory() - allocated_bytes(); 852 } 853 free_list_category(FreeListCategoryType type)854 FreeListCategory* free_list_category(FreeListCategoryType type) { 855 return categories_[type]; 856 } 857 wasted_memory()858 size_t wasted_memory() { return wasted_memory_; } add_wasted_memory(size_t waste)859 void add_wasted_memory(size_t waste) { wasted_memory_ += waste; } allocated_bytes()860 size_t allocated_bytes() { return allocated_bytes_; } IncreaseAllocatedBytes(size_t bytes)861 void IncreaseAllocatedBytes(size_t bytes) { 862 DCHECK_LE(bytes, area_size()); 863 allocated_bytes_ += bytes; 864 } DecreaseAllocatedBytes(size_t bytes)865 void DecreaseAllocatedBytes(size_t bytes) { 866 DCHECK_LE(bytes, area_size()); 867 DCHECK_GE(allocated_bytes(), bytes); 868 allocated_bytes_ -= bytes; 869 } 870 871 void ResetAllocatedBytes(); 872 873 size_t ShrinkToHighWaterMark(); 874 875 V8_EXPORT_PRIVATE void CreateBlackArea(Address start, Address end); 876 void DestroyBlackArea(Address start, Address end); 877 878 void InitializeFreeListCategories(); 879 void AllocateFreeListCategories(); 880 void ReleaseFreeListCategories(); 881 882 #ifdef DEBUG 883 void Print(); 884 #endif // DEBUG 885 886 private: 887 enum InitializationMode { kFreeMemory, kDoNotFreeMemory }; 888 889 friend class MemoryAllocator; 890 }; 891 892 class ReadOnlyPage : public Page { 893 public: 894 // Clears any pointers in the header that point out of the page that would 895 // otherwise make the header non-relocatable. 896 void MakeHeaderRelocatable(); 897 }; 898 899 class LargePage : public MemoryChunk { 900 public: GetObject()901 HeapObject* GetObject() { return HeapObject::FromAddress(area_start()); } 902 next_page()903 inline LargePage* next_page() { 904 return static_cast<LargePage*>(list_node_.next()); 905 } 906 907 // Uncommit memory that is not in use anymore by the object. If the object 908 // cannot be shrunk 0 is returned. 909 Address GetAddressToShrink(Address object_address, size_t object_size); 910 911 void ClearOutOfLiveRangeSlots(Address free_start); 912 913 // A limit to guarantee that we do not overflow typed slot offset in 914 // the old to old remembered set. 915 // Note that this limit is higher than what assembler already imposes on 916 // x64 and ia32 architectures. 917 static const int kMaxCodePageSize = 512 * MB; 918 919 private: 920 static LargePage* Initialize(Heap* heap, MemoryChunk* chunk, 921 Executability executable); 922 923 friend class MemoryAllocator; 924 }; 925 926 927 // ---------------------------------------------------------------------------- 928 // Space is the abstract superclass for all allocation spaces. 929 class Space : public Malloced { 930 public: Space(Heap * heap,AllocationSpace id)931 Space(Heap* heap, AllocationSpace id) 932 : allocation_observers_paused_(false), 933 heap_(heap), 934 id_(id), 935 committed_(0), 936 max_committed_(0) { 937 external_backing_store_bytes_ = 938 new std::atomic<size_t>[ExternalBackingStoreType::kNumTypes]; 939 external_backing_store_bytes_[ExternalBackingStoreType::kArrayBuffer] = 0; 940 external_backing_store_bytes_[ExternalBackingStoreType::kExternalString] = 941 0; 942 } 943 ~Space()944 virtual ~Space() { 945 delete[] external_backing_store_bytes_; 946 external_backing_store_bytes_ = nullptr; 947 } 948 heap()949 Heap* heap() const { return heap_; } 950 951 // Identity used in error reporting. identity()952 AllocationSpace identity() { return id_; } 953 name()954 const char* name() { return AllocationSpaceName(id_); } 955 956 V8_EXPORT_PRIVATE virtual void AddAllocationObserver( 957 AllocationObserver* observer); 958 959 V8_EXPORT_PRIVATE virtual void RemoveAllocationObserver( 960 AllocationObserver* observer); 961 962 V8_EXPORT_PRIVATE virtual void PauseAllocationObservers(); 963 964 V8_EXPORT_PRIVATE virtual void ResumeAllocationObservers(); 965 StartNextInlineAllocationStep()966 V8_EXPORT_PRIVATE virtual void StartNextInlineAllocationStep() {} 967 968 void AllocationStep(int bytes_since_last, Address soon_object, int size); 969 970 // Return the total amount committed memory for this space, i.e., allocatable 971 // memory and page headers. CommittedMemory()972 virtual size_t CommittedMemory() { return committed_; } 973 MaximumCommittedMemory()974 virtual size_t MaximumCommittedMemory() { return max_committed_; } 975 976 // Returns allocated size. 977 virtual size_t Size() = 0; 978 979 // Returns size of objects. Can differ from the allocated size 980 // (e.g. see LargeObjectSpace). SizeOfObjects()981 virtual size_t SizeOfObjects() { return Size(); } 982 983 // Returns amount of off-heap memory in-use by objects in this Space. ExternalBackingStoreBytes(ExternalBackingStoreType type)984 virtual size_t ExternalBackingStoreBytes( 985 ExternalBackingStoreType type) const { 986 return external_backing_store_bytes_[type]; 987 } 988 989 // Approximate amount of physical memory committed for this space. 990 virtual size_t CommittedPhysicalMemory() = 0; 991 992 // Return the available bytes without growing. 993 virtual size_t Available() = 0; 994 RoundSizeDownToObjectAlignment(int size)995 virtual int RoundSizeDownToObjectAlignment(int size) { 996 if (id_ == CODE_SPACE) { 997 return RoundDown(size, kCodeAlignment); 998 } else { 999 return RoundDown(size, kPointerSize); 1000 } 1001 } 1002 1003 virtual std::unique_ptr<ObjectIterator> GetObjectIterator() = 0; 1004 AccountCommitted(size_t bytes)1005 void AccountCommitted(size_t bytes) { 1006 DCHECK_GE(committed_ + bytes, committed_); 1007 committed_ += bytes; 1008 if (committed_ > max_committed_) { 1009 max_committed_ = committed_; 1010 } 1011 } 1012 AccountUncommitted(size_t bytes)1013 void AccountUncommitted(size_t bytes) { 1014 DCHECK_GE(committed_, committed_ - bytes); 1015 committed_ -= bytes; 1016 } 1017 IncrementExternalBackingStoreBytes(ExternalBackingStoreType type,size_t amount)1018 void IncrementExternalBackingStoreBytes(ExternalBackingStoreType type, 1019 size_t amount) { 1020 external_backing_store_bytes_[type] += amount; 1021 } DecrementExternalBackingStoreBytes(ExternalBackingStoreType type,size_t amount)1022 void DecrementExternalBackingStoreBytes(ExternalBackingStoreType type, 1023 size_t amount) { 1024 DCHECK_GE(external_backing_store_bytes_[type], amount); 1025 external_backing_store_bytes_[type] -= amount; 1026 } 1027 1028 V8_EXPORT_PRIVATE void* GetRandomMmapAddr(); 1029 first_page()1030 MemoryChunk* first_page() { return memory_chunk_list_.front(); } last_page()1031 MemoryChunk* last_page() { return memory_chunk_list_.back(); } 1032 memory_chunk_list()1033 base::List<MemoryChunk>& memory_chunk_list() { return memory_chunk_list_; } 1034 1035 #ifdef DEBUG 1036 virtual void Print() = 0; 1037 #endif 1038 1039 protected: 1040 intptr_t GetNextInlineAllocationStepSize(); AllocationObserversActive()1041 bool AllocationObserversActive() { 1042 return !allocation_observers_paused_ && !allocation_observers_.empty(); 1043 } 1044 1045 std::vector<AllocationObserver*> allocation_observers_; 1046 1047 // The List manages the pages that belong to the given space. 1048 base::List<MemoryChunk> memory_chunk_list_; 1049 1050 // Tracks off-heap memory used by this space. 1051 std::atomic<size_t>* external_backing_store_bytes_; 1052 1053 private: 1054 bool allocation_observers_paused_; 1055 Heap* heap_; 1056 AllocationSpace id_; 1057 1058 // Keeps track of committed memory in a space. 1059 size_t committed_; 1060 size_t max_committed_; 1061 1062 DISALLOW_COPY_AND_ASSIGN(Space); 1063 }; 1064 1065 1066 class MemoryChunkValidator { 1067 // Computed offsets should match the compiler generated ones. 1068 STATIC_ASSERT(MemoryChunk::kSizeOffset == offsetof(MemoryChunk, size_)); 1069 1070 // Validate our estimates on the header size. 1071 STATIC_ASSERT(sizeof(MemoryChunk) <= MemoryChunk::kHeaderSize); 1072 STATIC_ASSERT(sizeof(LargePage) <= MemoryChunk::kHeaderSize); 1073 STATIC_ASSERT(sizeof(Page) <= MemoryChunk::kHeaderSize); 1074 }; 1075 1076 1077 // ---------------------------------------------------------------------------- 1078 // All heap objects containing executable code (code objects) must be allocated 1079 // from a 2 GB range of memory, so that they can call each other using 32-bit 1080 // displacements. This happens automatically on 32-bit platforms, where 32-bit 1081 // displacements cover the entire 4GB virtual address space. On 64-bit 1082 // platforms, we support this using the CodeRange object, which reserves and 1083 // manages a range of virtual memory. 1084 class CodeRange { 1085 public: 1086 CodeRange(Isolate* isolate, size_t requested_size); 1087 ~CodeRange(); 1088 valid()1089 bool valid() { return virtual_memory_.IsReserved(); } start()1090 Address start() { 1091 DCHECK(valid()); 1092 return virtual_memory_.address(); 1093 } size()1094 size_t size() { 1095 DCHECK(valid()); 1096 return virtual_memory_.size(); 1097 } contains(Address address)1098 bool contains(Address address) { 1099 if (!valid()) return false; 1100 Address start = virtual_memory_.address(); 1101 return start <= address && address < start + virtual_memory_.size(); 1102 } 1103 1104 // Allocates a chunk of memory from the large-object portion of 1105 // the code range. On platforms with no separate code range, should 1106 // not be called. 1107 V8_WARN_UNUSED_RESULT Address AllocateRawMemory(const size_t requested_size, 1108 const size_t commit_size, 1109 size_t* allocated); 1110 void FreeRawMemory(Address buf, size_t length); 1111 1112 private: 1113 class FreeBlock { 1114 public: FreeBlock()1115 FreeBlock() : start(0), size(0) {} FreeBlock(Address start_arg,size_t size_arg)1116 FreeBlock(Address start_arg, size_t size_arg) 1117 : start(start_arg), size(size_arg) { 1118 DCHECK(IsAddressAligned(start, MemoryChunk::kAlignment)); 1119 DCHECK(size >= static_cast<size_t>(Page::kPageSize)); 1120 } FreeBlock(void * start_arg,size_t size_arg)1121 FreeBlock(void* start_arg, size_t size_arg) 1122 : start(reinterpret_cast<Address>(start_arg)), size(size_arg) { 1123 DCHECK(IsAddressAligned(start, MemoryChunk::kAlignment)); 1124 DCHECK(size >= static_cast<size_t>(Page::kPageSize)); 1125 } 1126 1127 Address start; 1128 size_t size; 1129 }; 1130 1131 // Finds a block on the allocation list that contains at least the 1132 // requested amount of memory. If none is found, sorts and merges 1133 // the existing free memory blocks, and searches again. 1134 // If none can be found, returns false. 1135 bool GetNextAllocationBlock(size_t requested); 1136 // Compares the start addresses of two free blocks. 1137 static bool CompareFreeBlockAddress(const FreeBlock& left, 1138 const FreeBlock& right); 1139 bool ReserveBlock(const size_t requested_size, FreeBlock* block); 1140 void ReleaseBlock(const FreeBlock* block); 1141 1142 Isolate* isolate_; 1143 1144 // The reserved range of virtual memory that all code objects are put in. 1145 VirtualMemory virtual_memory_; 1146 1147 // The global mutex guards free_list_ and allocation_list_ as GC threads may 1148 // access both lists concurrently to the main thread. 1149 base::Mutex code_range_mutex_; 1150 1151 // Freed blocks of memory are added to the free list. When the allocation 1152 // list is exhausted, the free list is sorted and merged to make the new 1153 // allocation list. 1154 std::vector<FreeBlock> free_list_; 1155 1156 // Memory is allocated from the free blocks on the allocation list. 1157 // The block at current_allocation_block_index_ is the current block. 1158 std::vector<FreeBlock> allocation_list_; 1159 size_t current_allocation_block_index_; 1160 size_t requested_code_range_size_; 1161 1162 DISALLOW_COPY_AND_ASSIGN(CodeRange); 1163 }; 1164 1165 // The process-wide singleton that keeps track of code range regions with the 1166 // intention to reuse free code range regions as a workaround for CFG memory 1167 // leaks (see crbug.com/870054). 1168 class CodeRangeAddressHint { 1169 public: 1170 // Returns the most recently freed code range start address for the given 1171 // size. If there is no such entry, then a random address is returned. 1172 V8_EXPORT_PRIVATE void* GetAddressHint(size_t code_range_size); 1173 1174 V8_EXPORT_PRIVATE void NotifyFreedCodeRange(void* code_range_start, 1175 size_t code_range_size); 1176 1177 private: 1178 base::Mutex mutex_; 1179 // A map from code range size to an array of recently freed code range 1180 // addresses. There should be O(1) different code range sizes. 1181 // The length of each array is limited by the peak number of code ranges, 1182 // which should be also O(1). 1183 std::map<size_t, std::vector<void*>> recently_freed_; 1184 }; 1185 1186 class SkipList { 1187 public: SkipList()1188 SkipList() { Clear(); } 1189 Clear()1190 void Clear() { 1191 for (int idx = 0; idx < kSize; idx++) { 1192 starts_[idx] = static_cast<Address>(-1); 1193 } 1194 } 1195 StartFor(Address addr)1196 Address StartFor(Address addr) { return starts_[RegionNumber(addr)]; } 1197 AddObject(Address addr,int size)1198 void AddObject(Address addr, int size) { 1199 int start_region = RegionNumber(addr); 1200 int end_region = RegionNumber(addr + size - kPointerSize); 1201 for (int idx = start_region; idx <= end_region; idx++) { 1202 if (starts_[idx] > addr) { 1203 starts_[idx] = addr; 1204 } else { 1205 // In the first region, there may already be an object closer to the 1206 // start of the region. Do not change the start in that case. If this 1207 // is not the first region, you probably added overlapping objects. 1208 DCHECK_EQ(start_region, idx); 1209 } 1210 } 1211 } 1212 RegionNumber(Address addr)1213 static inline int RegionNumber(Address addr) { 1214 return (OffsetFrom(addr) & kPageAlignmentMask) >> kRegionSizeLog2; 1215 } 1216 Update(Address addr,int size)1217 static void Update(Address addr, int size) { 1218 Page* page = Page::FromAddress(addr); 1219 SkipList* list = page->skip_list(); 1220 if (list == nullptr) { 1221 list = new SkipList(); 1222 page->set_skip_list(list); 1223 } 1224 1225 list->AddObject(addr, size); 1226 } 1227 1228 private: 1229 static const int kRegionSizeLog2 = 13; 1230 static const int kRegionSize = 1 << kRegionSizeLog2; 1231 static const int kSize = Page::kPageSize / kRegionSize; 1232 1233 STATIC_ASSERT(Page::kPageSize % kRegionSize == 0); 1234 1235 Address starts_[kSize]; 1236 }; 1237 1238 1239 // ---------------------------------------------------------------------------- 1240 // A space acquires chunks of memory from the operating system. The memory 1241 // allocator allocates and deallocates pages for the paged heap spaces and large 1242 // pages for large object space. 1243 class V8_EXPORT_PRIVATE MemoryAllocator { 1244 public: 1245 // Unmapper takes care of concurrently unmapping and uncommitting memory 1246 // chunks. 1247 class Unmapper { 1248 public: 1249 class UnmapFreeMemoryTask; 1250 Unmapper(Heap * heap,MemoryAllocator * allocator)1251 Unmapper(Heap* heap, MemoryAllocator* allocator) 1252 : heap_(heap), 1253 allocator_(allocator), 1254 pending_unmapping_tasks_semaphore_(0), 1255 pending_unmapping_tasks_(0), 1256 active_unmapping_tasks_(0) { 1257 chunks_[kRegular].reserve(kReservedQueueingSlots); 1258 chunks_[kPooled].reserve(kReservedQueueingSlots); 1259 } 1260 AddMemoryChunkSafe(MemoryChunk * chunk)1261 void AddMemoryChunkSafe(MemoryChunk* chunk) { 1262 if (chunk->IsPagedSpace() && chunk->executable() != EXECUTABLE) { 1263 AddMemoryChunkSafe<kRegular>(chunk); 1264 } else { 1265 AddMemoryChunkSafe<kNonRegular>(chunk); 1266 } 1267 } 1268 TryGetPooledMemoryChunkSafe()1269 MemoryChunk* TryGetPooledMemoryChunkSafe() { 1270 // Procedure: 1271 // (1) Try to get a chunk that was declared as pooled and already has 1272 // been uncommitted. 1273 // (2) Try to steal any memory chunk of kPageSize that would've been 1274 // unmapped. 1275 MemoryChunk* chunk = GetMemoryChunkSafe<kPooled>(); 1276 if (chunk == nullptr) { 1277 chunk = GetMemoryChunkSafe<kRegular>(); 1278 if (chunk != nullptr) { 1279 // For stolen chunks we need to manually free any allocated memory. 1280 chunk->ReleaseAllocatedMemory(); 1281 } 1282 } 1283 return chunk; 1284 } 1285 1286 void FreeQueuedChunks(); 1287 void CancelAndWaitForPendingTasks(); 1288 void PrepareForMarkCompact(); 1289 void EnsureUnmappingCompleted(); 1290 void TearDown(); 1291 int NumberOfChunks(); 1292 size_t CommittedBufferedMemory(); 1293 1294 private: 1295 static const int kReservedQueueingSlots = 64; 1296 static const int kMaxUnmapperTasks = 4; 1297 1298 enum ChunkQueueType { 1299 kRegular, // Pages of kPageSize that do not live in a CodeRange and 1300 // can thus be used for stealing. 1301 kNonRegular, // Large chunks and executable chunks. 1302 kPooled, // Pooled chunks, already uncommited and ready for reuse. 1303 kNumberOfChunkQueues, 1304 }; 1305 1306 enum class FreeMode { 1307 kUncommitPooled, 1308 kReleasePooled, 1309 }; 1310 1311 template <ChunkQueueType type> AddMemoryChunkSafe(MemoryChunk * chunk)1312 void AddMemoryChunkSafe(MemoryChunk* chunk) { 1313 base::LockGuard<base::Mutex> guard(&mutex_); 1314 chunks_[type].push_back(chunk); 1315 } 1316 1317 template <ChunkQueueType type> GetMemoryChunkSafe()1318 MemoryChunk* GetMemoryChunkSafe() { 1319 base::LockGuard<base::Mutex> guard(&mutex_); 1320 if (chunks_[type].empty()) return nullptr; 1321 MemoryChunk* chunk = chunks_[type].back(); 1322 chunks_[type].pop_back(); 1323 return chunk; 1324 } 1325 1326 bool MakeRoomForNewTasks(); 1327 1328 template <FreeMode mode> 1329 void PerformFreeMemoryOnQueuedChunks(); 1330 1331 void PerformFreeMemoryOnQueuedNonRegularChunks(); 1332 1333 Heap* const heap_; 1334 MemoryAllocator* const allocator_; 1335 base::Mutex mutex_; 1336 std::vector<MemoryChunk*> chunks_[kNumberOfChunkQueues]; 1337 CancelableTaskManager::Id task_ids_[kMaxUnmapperTasks]; 1338 base::Semaphore pending_unmapping_tasks_semaphore_; 1339 intptr_t pending_unmapping_tasks_; 1340 std::atomic<intptr_t> active_unmapping_tasks_; 1341 1342 friend class MemoryAllocator; 1343 }; 1344 1345 enum AllocationMode { 1346 kRegular, 1347 kPooled, 1348 }; 1349 1350 enum FreeMode { 1351 kFull, 1352 kAlreadyPooled, 1353 kPreFreeAndQueue, 1354 kPooledAndQueue, 1355 }; 1356 1357 static size_t CodePageGuardStartOffset(); 1358 1359 static size_t CodePageGuardSize(); 1360 1361 static size_t CodePageAreaStartOffset(); 1362 1363 static size_t CodePageAreaEndOffset(); 1364 CodePageAreaSize()1365 static size_t CodePageAreaSize() { 1366 return CodePageAreaEndOffset() - CodePageAreaStartOffset(); 1367 } 1368 PageAreaSize(AllocationSpace space)1369 static size_t PageAreaSize(AllocationSpace space) { 1370 DCHECK_NE(LO_SPACE, space); 1371 return (space == CODE_SPACE) ? CodePageAreaSize() 1372 : Page::kAllocatableMemory; 1373 } 1374 1375 static intptr_t GetCommitPageSize(); 1376 1377 MemoryAllocator(Isolate* isolate, size_t max_capacity, 1378 size_t code_range_size); 1379 1380 void TearDown(); 1381 1382 // Allocates a Page from the allocator. AllocationMode is used to indicate 1383 // whether pooled allocation, which only works for MemoryChunk::kPageSize, 1384 // should be tried first. 1385 template <MemoryAllocator::AllocationMode alloc_mode = kRegular, 1386 typename SpaceType> 1387 Page* AllocatePage(size_t size, SpaceType* owner, Executability executable); 1388 1389 LargePage* AllocateLargePage(size_t size, LargeObjectSpace* owner, 1390 Executability executable); 1391 1392 template <MemoryAllocator::FreeMode mode = kFull> 1393 void Free(MemoryChunk* chunk); 1394 1395 // Returns allocated spaces in bytes. Size()1396 size_t Size() { return size_; } 1397 1398 // Returns allocated executable spaces in bytes. SizeExecutable()1399 size_t SizeExecutable() { return size_executable_; } 1400 1401 // Returns the maximum available bytes of heaps. Available()1402 size_t Available() { 1403 const size_t size = Size(); 1404 return capacity_ < size ? 0 : capacity_ - size; 1405 } 1406 1407 // Returns maximum available bytes that the old space can have. MaxAvailable()1408 size_t MaxAvailable() { 1409 return (Available() / Page::kPageSize) * Page::kAllocatableMemory; 1410 } 1411 1412 // Returns an indication of whether a pointer is in a space that has 1413 // been allocated by this MemoryAllocator. IsOutsideAllocatedSpace(Address address)1414 V8_INLINE bool IsOutsideAllocatedSpace(Address address) { 1415 return address < lowest_ever_allocated_ || 1416 address >= highest_ever_allocated_; 1417 } 1418 1419 // Returns a MemoryChunk in which the memory region from commit_area_size to 1420 // reserve_area_size of the chunk area is reserved but not committed, it 1421 // could be committed later by calling MemoryChunk::CommitArea. 1422 MemoryChunk* AllocateChunk(size_t reserve_area_size, size_t commit_area_size, 1423 Executability executable, Space* space); 1424 1425 Address ReserveAlignedMemory(size_t requested, size_t alignment, void* hint, 1426 VirtualMemory* controller); 1427 Address AllocateAlignedMemory(size_t reserve_size, size_t commit_size, 1428 size_t alignment, Executability executable, 1429 void* hint, VirtualMemory* controller); 1430 1431 bool CommitMemory(Address addr, size_t size); 1432 1433 void FreeMemory(VirtualMemory* reservation, Executability executable); 1434 void FreeMemory(Address addr, size_t size, Executability executable); 1435 1436 // Partially release |bytes_to_free| bytes starting at |start_free|. Note that 1437 // internally memory is freed from |start_free| to the end of the reservation. 1438 // Additional memory beyond the page is not accounted though, so 1439 // |bytes_to_free| is computed by the caller. 1440 void PartialFreeMemory(MemoryChunk* chunk, Address start_free, 1441 size_t bytes_to_free, Address new_area_end); 1442 1443 // Commit a contiguous block of memory from the initial chunk. Assumes that 1444 // the address is not kNullAddress, the size is greater than zero, and that 1445 // the block is contained in the initial chunk. Returns true if it succeeded 1446 // and false otherwise. 1447 bool CommitBlock(Address start, size_t size); 1448 1449 // Checks if an allocated MemoryChunk was intended to be used for executable 1450 // memory. IsMemoryChunkExecutable(MemoryChunk * chunk)1451 bool IsMemoryChunkExecutable(MemoryChunk* chunk) { 1452 return executable_memory_.find(chunk) != executable_memory_.end(); 1453 } 1454 1455 // Uncommit a contiguous block of memory [start..(start+size)[. 1456 // start is not kNullAddress, the size is greater than zero, and the 1457 // block is contained in the initial chunk. Returns true if it succeeded 1458 // and false otherwise. 1459 bool UncommitBlock(Address start, size_t size); 1460 1461 // Zaps a contiguous block of memory [start..(start+size)[ with 1462 // a given zap value. 1463 void ZapBlock(Address start, size_t size, uintptr_t zap_value); 1464 1465 V8_WARN_UNUSED_RESULT bool CommitExecutableMemory(VirtualMemory* vm, 1466 Address start, 1467 size_t commit_size, 1468 size_t reserved_size); 1469 code_range()1470 CodeRange* code_range() { return code_range_; } unmapper()1471 Unmapper* unmapper() { return &unmapper_; } 1472 1473 private: 1474 // PreFree logically frees the object, i.e., it takes care of the size 1475 // bookkeeping and calls the allocation callback. 1476 void PreFreeMemory(MemoryChunk* chunk); 1477 1478 // FreeMemory can be called concurrently when PreFree was executed before. 1479 void PerformFreeMemory(MemoryChunk* chunk); 1480 1481 // See AllocatePage for public interface. Note that currently we only support 1482 // pools for NOT_EXECUTABLE pages of size MemoryChunk::kPageSize. 1483 template <typename SpaceType> 1484 MemoryChunk* AllocatePagePooled(SpaceType* owner); 1485 1486 // Initializes pages in a chunk. Returns the first page address. 1487 // This function and GetChunkId() are provided for the mark-compact 1488 // collector to rebuild page headers in the from space, which is 1489 // used as a marking stack and its page headers are destroyed. 1490 Page* InitializePagesInChunk(int chunk_id, int pages_in_chunk, 1491 PagedSpace* owner); 1492 UpdateAllocatedSpaceLimits(Address low,Address high)1493 void UpdateAllocatedSpaceLimits(Address low, Address high) { 1494 // The use of atomic primitives does not guarantee correctness (wrt. 1495 // desired semantics) by default. The loop here ensures that we update the 1496 // values only if they did not change in between. 1497 Address ptr = kNullAddress; 1498 do { 1499 ptr = lowest_ever_allocated_; 1500 } while ((low < ptr) && 1501 !lowest_ever_allocated_.compare_exchange_weak(ptr, low)); 1502 do { 1503 ptr = highest_ever_allocated_; 1504 } while ((high > ptr) && 1505 !highest_ever_allocated_.compare_exchange_weak(ptr, high)); 1506 } 1507 RegisterExecutableMemoryChunk(MemoryChunk * chunk)1508 void RegisterExecutableMemoryChunk(MemoryChunk* chunk) { 1509 DCHECK(chunk->IsFlagSet(MemoryChunk::IS_EXECUTABLE)); 1510 DCHECK_EQ(executable_memory_.find(chunk), executable_memory_.end()); 1511 executable_memory_.insert(chunk); 1512 } 1513 UnregisterExecutableMemoryChunk(MemoryChunk * chunk)1514 void UnregisterExecutableMemoryChunk(MemoryChunk* chunk) { 1515 DCHECK_NE(executable_memory_.find(chunk), executable_memory_.end()); 1516 executable_memory_.erase(chunk); 1517 chunk->heap()->UnregisterUnprotectedMemoryChunk(chunk); 1518 } 1519 1520 Isolate* isolate_; 1521 CodeRange* code_range_; 1522 1523 // Maximum space size in bytes. 1524 size_t capacity_; 1525 1526 // Allocated space size in bytes. 1527 std::atomic<size_t> size_; 1528 // Allocated executable space size in bytes. 1529 std::atomic<size_t> size_executable_; 1530 1531 // We keep the lowest and highest addresses allocated as a quick way 1532 // of determining that pointers are outside the heap. The estimate is 1533 // conservative, i.e. not all addresses in 'allocated' space are allocated 1534 // to our heap. The range is [lowest, highest[, inclusive on the low end 1535 // and exclusive on the high end. 1536 std::atomic<Address> lowest_ever_allocated_; 1537 std::atomic<Address> highest_ever_allocated_; 1538 1539 VirtualMemory last_chunk_; 1540 Unmapper unmapper_; 1541 1542 // Data structure to remember allocated executable memory chunks. 1543 std::unordered_set<MemoryChunk*> executable_memory_; 1544 1545 friend class heap::TestCodeRangeScope; 1546 1547 DISALLOW_IMPLICIT_CONSTRUCTORS(MemoryAllocator); 1548 }; 1549 1550 extern template Page* 1551 MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, PagedSpace>( 1552 size_t size, PagedSpace* owner, Executability executable); 1553 extern template Page* 1554 MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, SemiSpace>( 1555 size_t size, SemiSpace* owner, Executability executable); 1556 extern template Page* 1557 MemoryAllocator::AllocatePage<MemoryAllocator::kPooled, SemiSpace>( 1558 size_t size, SemiSpace* owner, Executability executable); 1559 1560 // ----------------------------------------------------------------------------- 1561 // Interface for heap object iterator to be implemented by all object space 1562 // object iterators. 1563 // 1564 // NOTE: The space specific object iterators also implements the own next() 1565 // method which is used to avoid using virtual functions 1566 // iterating a specific space. 1567 1568 class V8_EXPORT_PRIVATE ObjectIterator : public Malloced { 1569 public: ~ObjectIterator()1570 virtual ~ObjectIterator() {} 1571 virtual HeapObject* Next() = 0; 1572 }; 1573 1574 template <class PAGE_TYPE> 1575 class PageIteratorImpl 1576 : public base::iterator<std::forward_iterator_tag, PAGE_TYPE> { 1577 public: PageIteratorImpl(PAGE_TYPE * p)1578 explicit PageIteratorImpl(PAGE_TYPE* p) : p_(p) {} PageIteratorImpl(const PageIteratorImpl<PAGE_TYPE> & other)1579 PageIteratorImpl(const PageIteratorImpl<PAGE_TYPE>& other) : p_(other.p_) {} 1580 PAGE_TYPE* operator*() { return p_; } 1581 bool operator==(const PageIteratorImpl<PAGE_TYPE>& rhs) { 1582 return rhs.p_ == p_; 1583 } 1584 bool operator!=(const PageIteratorImpl<PAGE_TYPE>& rhs) { 1585 return rhs.p_ != p_; 1586 } 1587 inline PageIteratorImpl<PAGE_TYPE>& operator++(); 1588 inline PageIteratorImpl<PAGE_TYPE> operator++(int); 1589 1590 private: 1591 PAGE_TYPE* p_; 1592 }; 1593 1594 typedef PageIteratorImpl<Page> PageIterator; 1595 typedef PageIteratorImpl<LargePage> LargePageIterator; 1596 1597 class PageRange { 1598 public: 1599 typedef PageIterator iterator; PageRange(Page * begin,Page * end)1600 PageRange(Page* begin, Page* end) : begin_(begin), end_(end) {} PageRange(Page * page)1601 explicit PageRange(Page* page) : PageRange(page, page->next_page()) {} 1602 inline PageRange(Address start, Address limit); 1603 begin()1604 iterator begin() { return iterator(begin_); } end()1605 iterator end() { return iterator(end_); } 1606 1607 private: 1608 Page* begin_; 1609 Page* end_; 1610 }; 1611 1612 // ----------------------------------------------------------------------------- 1613 // Heap object iterator in new/old/map spaces. 1614 // 1615 // A HeapObjectIterator iterates objects from the bottom of the given space 1616 // to its top or from the bottom of the given page to its top. 1617 // 1618 // If objects are allocated in the page during iteration the iterator may 1619 // or may not iterate over those objects. The caller must create a new 1620 // iterator in order to be sure to visit these new objects. 1621 class V8_EXPORT_PRIVATE HeapObjectIterator : public ObjectIterator { 1622 public: 1623 // Creates a new object iterator in a given space. 1624 explicit HeapObjectIterator(PagedSpace* space); 1625 explicit HeapObjectIterator(Page* page); 1626 1627 // Advance to the next object, skipping free spaces and other fillers and 1628 // skipping the special garbage section of which there is one per space. 1629 // Returns nullptr when the iteration has ended. 1630 inline HeapObject* Next() override; 1631 1632 private: 1633 // Fast (inlined) path of next(). 1634 inline HeapObject* FromCurrentPage(); 1635 1636 // Slow path of next(), goes into the next page. Returns false if the 1637 // iteration has ended. 1638 bool AdvanceToNextPage(); 1639 1640 Address cur_addr_; // Current iteration point. 1641 Address cur_end_; // End iteration point. 1642 PagedSpace* space_; 1643 PageRange page_range_; 1644 PageRange::iterator current_page_; 1645 }; 1646 1647 1648 // ----------------------------------------------------------------------------- 1649 // A space has a circular list of pages. The next page can be accessed via 1650 // Page::next_page() call. 1651 1652 // An abstraction of allocation and relocation pointers in a page-structured 1653 // space. 1654 class LinearAllocationArea { 1655 public: LinearAllocationArea()1656 LinearAllocationArea() : top_(kNullAddress), limit_(kNullAddress) {} LinearAllocationArea(Address top,Address limit)1657 LinearAllocationArea(Address top, Address limit) : top_(top), limit_(limit) {} 1658 Reset(Address top,Address limit)1659 void Reset(Address top, Address limit) { 1660 set_top(top); 1661 set_limit(limit); 1662 } 1663 set_top(Address top)1664 V8_INLINE void set_top(Address top) { 1665 SLOW_DCHECK(top == kNullAddress || (top & kHeapObjectTagMask) == 0); 1666 top_ = top; 1667 } 1668 top()1669 V8_INLINE Address top() const { 1670 SLOW_DCHECK(top_ == kNullAddress || (top_ & kHeapObjectTagMask) == 0); 1671 return top_; 1672 } 1673 top_address()1674 Address* top_address() { return &top_; } 1675 set_limit(Address limit)1676 V8_INLINE void set_limit(Address limit) { limit_ = limit; } 1677 limit()1678 V8_INLINE Address limit() const { return limit_; } 1679 limit_address()1680 Address* limit_address() { return &limit_; } 1681 1682 #ifdef DEBUG VerifyPagedAllocation()1683 bool VerifyPagedAllocation() { 1684 return (Page::FromAllocationAreaAddress(top_) == 1685 Page::FromAllocationAreaAddress(limit_)) && 1686 (top_ <= limit_); 1687 } 1688 #endif 1689 1690 private: 1691 // Current allocation top. 1692 Address top_; 1693 // Current allocation limit. 1694 Address limit_; 1695 }; 1696 1697 1698 // An abstraction of the accounting statistics of a page-structured space. 1699 // 1700 // The stats are only set by functions that ensure they stay balanced. These 1701 // functions increase or decrease one of the non-capacity stats in conjunction 1702 // with capacity, or else they always balance increases and decreases to the 1703 // non-capacity stats. 1704 class AllocationStats BASE_EMBEDDED { 1705 public: AllocationStats()1706 AllocationStats() { Clear(); } 1707 1708 // Zero out all the allocation statistics (i.e., no capacity). Clear()1709 void Clear() { 1710 capacity_ = 0; 1711 max_capacity_ = 0; 1712 ClearSize(); 1713 } 1714 ClearSize()1715 void ClearSize() { 1716 size_ = 0; 1717 #ifdef DEBUG 1718 allocated_on_page_.clear(); 1719 #endif 1720 } 1721 1722 // Accessors for the allocation statistics. Capacity()1723 size_t Capacity() { return capacity_; } MaxCapacity()1724 size_t MaxCapacity() { return max_capacity_; } Size()1725 size_t Size() { return size_; } 1726 #ifdef DEBUG AllocatedOnPage(Page * page)1727 size_t AllocatedOnPage(Page* page) { return allocated_on_page_[page]; } 1728 #endif 1729 IncreaseAllocatedBytes(size_t bytes,Page * page)1730 void IncreaseAllocatedBytes(size_t bytes, Page* page) { 1731 DCHECK_GE(size_ + bytes, size_); 1732 size_ += bytes; 1733 #ifdef DEBUG 1734 allocated_on_page_[page] += bytes; 1735 #endif 1736 } 1737 DecreaseAllocatedBytes(size_t bytes,Page * page)1738 void DecreaseAllocatedBytes(size_t bytes, Page* page) { 1739 DCHECK_GE(size_, bytes); 1740 size_ -= bytes; 1741 #ifdef DEBUG 1742 DCHECK_GE(allocated_on_page_[page], bytes); 1743 allocated_on_page_[page] -= bytes; 1744 #endif 1745 } 1746 DecreaseCapacity(size_t bytes)1747 void DecreaseCapacity(size_t bytes) { 1748 DCHECK_GE(capacity_, bytes); 1749 DCHECK_GE(capacity_ - bytes, size_); 1750 capacity_ -= bytes; 1751 } 1752 IncreaseCapacity(size_t bytes)1753 void IncreaseCapacity(size_t bytes) { 1754 DCHECK_GE(capacity_ + bytes, capacity_); 1755 capacity_ += bytes; 1756 if (capacity_ > max_capacity_) { 1757 max_capacity_ = capacity_; 1758 } 1759 } 1760 1761 private: 1762 // |capacity_|: The number of object-area bytes (i.e., not including page 1763 // bookkeeping structures) currently in the space. 1764 // During evacuation capacity of the main spaces is accessed from multiple 1765 // threads to check the old generation hard limit. 1766 std::atomic<size_t> capacity_; 1767 1768 // |max_capacity_|: The maximum capacity ever observed. 1769 size_t max_capacity_; 1770 1771 // |size_|: The number of allocated bytes. 1772 size_t size_; 1773 1774 #ifdef DEBUG 1775 std::unordered_map<Page*, size_t, Page::Hasher> allocated_on_page_; 1776 #endif 1777 }; 1778 1779 // A free list maintaining free blocks of memory. The free list is organized in 1780 // a way to encourage objects allocated around the same time to be near each 1781 // other. The normal way to allocate is intended to be by bumping a 'top' 1782 // pointer until it hits a 'limit' pointer. When the limit is hit we need to 1783 // find a new space to allocate from. This is done with the free list, which is 1784 // divided up into rough categories to cut down on waste. Having finer 1785 // categories would scatter allocation more. 1786 1787 // The free list is organized in categories as follows: 1788 // kMinBlockSize-10 words (tiniest): The tiniest blocks are only used for 1789 // allocation, when categories >= small do not have entries anymore. 1790 // 11-31 words (tiny): The tiny blocks are only used for allocation, when 1791 // categories >= small do not have entries anymore. 1792 // 32-255 words (small): Used for allocating free space between 1-31 words in 1793 // size. 1794 // 256-2047 words (medium): Used for allocating free space between 32-255 words 1795 // in size. 1796 // 1048-16383 words (large): Used for allocating free space between 256-2047 1797 // words in size. 1798 // At least 16384 words (huge): This list is for objects of 2048 words or 1799 // larger. Empty pages are also added to this list. 1800 class V8_EXPORT_PRIVATE FreeList { 1801 public: 1802 // This method returns how much memory can be allocated after freeing 1803 // maximum_freed memory. GuaranteedAllocatable(size_t maximum_freed)1804 static inline size_t GuaranteedAllocatable(size_t maximum_freed) { 1805 if (maximum_freed <= kTiniestListMax) { 1806 // Since we are not iterating over all list entries, we cannot guarantee 1807 // that we can find the maximum freed block in that free list. 1808 return 0; 1809 } else if (maximum_freed <= kTinyListMax) { 1810 return kTinyAllocationMax; 1811 } else if (maximum_freed <= kSmallListMax) { 1812 return kSmallAllocationMax; 1813 } else if (maximum_freed <= kMediumListMax) { 1814 return kMediumAllocationMax; 1815 } else if (maximum_freed <= kLargeListMax) { 1816 return kLargeAllocationMax; 1817 } 1818 return maximum_freed; 1819 } 1820 SelectFreeListCategoryType(size_t size_in_bytes)1821 static FreeListCategoryType SelectFreeListCategoryType(size_t size_in_bytes) { 1822 if (size_in_bytes <= kTiniestListMax) { 1823 return kTiniest; 1824 } else if (size_in_bytes <= kTinyListMax) { 1825 return kTiny; 1826 } else if (size_in_bytes <= kSmallListMax) { 1827 return kSmall; 1828 } else if (size_in_bytes <= kMediumListMax) { 1829 return kMedium; 1830 } else if (size_in_bytes <= kLargeListMax) { 1831 return kLarge; 1832 } 1833 return kHuge; 1834 } 1835 1836 FreeList(); 1837 1838 // Adds a node on the free list. The block of size {size_in_bytes} starting 1839 // at {start} is placed on the free list. The return value is the number of 1840 // bytes that were not added to the free list, because they freed memory block 1841 // was too small. Bookkeeping information will be written to the block, i.e., 1842 // its contents will be destroyed. The start address should be word aligned, 1843 // and the size should be a non-zero multiple of the word size. 1844 size_t Free(Address start, size_t size_in_bytes, FreeMode mode); 1845 1846 // Allocates a free space node frome the free list of at least size_in_bytes 1847 // bytes. Returns the actual node size in node_size which can be bigger than 1848 // size_in_bytes. This method returns null if the allocation request cannot be 1849 // handled by the free list. 1850 V8_WARN_UNUSED_RESULT FreeSpace* Allocate(size_t size_in_bytes, 1851 size_t* node_size); 1852 1853 // Clear the free list. 1854 void Reset(); 1855 ResetStats()1856 void ResetStats() { 1857 wasted_bytes_ = 0; 1858 ForAllFreeListCategories( 1859 [](FreeListCategory* category) { category->ResetStats(); }); 1860 } 1861 1862 // Return the number of bytes available on the free list. Available()1863 size_t Available() { 1864 size_t available = 0; 1865 ForAllFreeListCategories([&available](FreeListCategory* category) { 1866 available += category->available(); 1867 }); 1868 return available; 1869 } 1870 IsEmpty()1871 bool IsEmpty() { 1872 bool empty = true; 1873 ForAllFreeListCategories([&empty](FreeListCategory* category) { 1874 if (!category->is_empty()) empty = false; 1875 }); 1876 return empty; 1877 } 1878 1879 // Used after booting the VM. 1880 void RepairLists(Heap* heap); 1881 1882 size_t EvictFreeListItems(Page* page); 1883 bool ContainsPageFreeListItems(Page* page); 1884 wasted_bytes()1885 size_t wasted_bytes() { return wasted_bytes_; } 1886 1887 template <typename Callback> ForAllFreeListCategories(FreeListCategoryType type,Callback callback)1888 void ForAllFreeListCategories(FreeListCategoryType type, Callback callback) { 1889 FreeListCategory* current = categories_[type]; 1890 while (current != nullptr) { 1891 FreeListCategory* next = current->next(); 1892 callback(current); 1893 current = next; 1894 } 1895 } 1896 1897 template <typename Callback> ForAllFreeListCategories(Callback callback)1898 void ForAllFreeListCategories(Callback callback) { 1899 for (int i = kFirstCategory; i < kNumberOfCategories; i++) { 1900 ForAllFreeListCategories(static_cast<FreeListCategoryType>(i), callback); 1901 } 1902 } 1903 1904 bool AddCategory(FreeListCategory* category); 1905 void RemoveCategory(FreeListCategory* category); 1906 void PrintCategories(FreeListCategoryType type); 1907 1908 // Returns a page containing an entry for a given type, or nullptr otherwise. 1909 inline Page* GetPageForCategoryType(FreeListCategoryType type); 1910 1911 #ifdef DEBUG 1912 size_t SumFreeLists(); 1913 bool IsVeryLong(); 1914 #endif 1915 1916 private: 1917 class FreeListCategoryIterator { 1918 public: FreeListCategoryIterator(FreeList * free_list,FreeListCategoryType type)1919 FreeListCategoryIterator(FreeList* free_list, FreeListCategoryType type) 1920 : current_(free_list->categories_[type]) {} 1921 HasNext()1922 bool HasNext() { return current_ != nullptr; } 1923 Next()1924 FreeListCategory* Next() { 1925 DCHECK(HasNext()); 1926 FreeListCategory* tmp = current_; 1927 current_ = current_->next(); 1928 return tmp; 1929 } 1930 1931 private: 1932 FreeListCategory* current_; 1933 }; 1934 1935 // The size range of blocks, in bytes. 1936 static const size_t kMinBlockSize = 3 * kPointerSize; 1937 static const size_t kMaxBlockSize = Page::kAllocatableMemory; 1938 1939 static const size_t kTiniestListMax = 0xa * kPointerSize; 1940 static const size_t kTinyListMax = 0x1f * kPointerSize; 1941 static const size_t kSmallListMax = 0xff * kPointerSize; 1942 static const size_t kMediumListMax = 0x7ff * kPointerSize; 1943 static const size_t kLargeListMax = 0x3fff * kPointerSize; 1944 static const size_t kTinyAllocationMax = kTiniestListMax; 1945 static const size_t kSmallAllocationMax = kTinyListMax; 1946 static const size_t kMediumAllocationMax = kSmallListMax; 1947 static const size_t kLargeAllocationMax = kMediumListMax; 1948 1949 // Walks all available categories for a given |type| and tries to retrieve 1950 // a node. Returns nullptr if the category is empty. 1951 FreeSpace* FindNodeIn(FreeListCategoryType type, size_t minimum_size, 1952 size_t* node_size); 1953 1954 // Tries to retrieve a node from the first category in a given |type|. 1955 // Returns nullptr if the category is empty or the top entry is smaller 1956 // than minimum_size. 1957 FreeSpace* TryFindNodeIn(FreeListCategoryType type, size_t minimum_size, 1958 size_t* node_size); 1959 1960 // Searches a given |type| for a node of at least |minimum_size|. 1961 FreeSpace* SearchForNodeInList(FreeListCategoryType type, size_t* node_size, 1962 size_t minimum_size); 1963 1964 // The tiny categories are not used for fast allocation. SelectFastAllocationFreeListCategoryType(size_t size_in_bytes)1965 FreeListCategoryType SelectFastAllocationFreeListCategoryType( 1966 size_t size_in_bytes) { 1967 if (size_in_bytes <= kSmallAllocationMax) { 1968 return kSmall; 1969 } else if (size_in_bytes <= kMediumAllocationMax) { 1970 return kMedium; 1971 } else if (size_in_bytes <= kLargeAllocationMax) { 1972 return kLarge; 1973 } 1974 return kHuge; 1975 } 1976 top(FreeListCategoryType type)1977 FreeListCategory* top(FreeListCategoryType type) const { 1978 return categories_[type]; 1979 } 1980 1981 std::atomic<size_t> wasted_bytes_; 1982 FreeListCategory* categories_[kNumberOfCategories]; 1983 1984 friend class FreeListCategory; 1985 }; 1986 1987 // LocalAllocationBuffer represents a linear allocation area that is created 1988 // from a given {AllocationResult} and can be used to allocate memory without 1989 // synchronization. 1990 // 1991 // The buffer is properly closed upon destruction and reassignment. 1992 // Example: 1993 // { 1994 // AllocationResult result = ...; 1995 // LocalAllocationBuffer a(heap, result, size); 1996 // LocalAllocationBuffer b = a; 1997 // CHECK(!a.IsValid()); 1998 // CHECK(b.IsValid()); 1999 // // {a} is invalid now and cannot be used for further allocations. 2000 // } 2001 // // Since {b} went out of scope, the LAB is closed, resulting in creating a 2002 // // filler object for the remaining area. 2003 class LocalAllocationBuffer { 2004 public: 2005 // Indicates that a buffer cannot be used for allocations anymore. Can result 2006 // from either reassigning a buffer, or trying to construct it from an 2007 // invalid {AllocationResult}. InvalidBuffer()2008 static LocalAllocationBuffer InvalidBuffer() { 2009 return LocalAllocationBuffer( 2010 nullptr, LinearAllocationArea(kNullAddress, kNullAddress)); 2011 } 2012 2013 // Creates a new LAB from a given {AllocationResult}. Results in 2014 // InvalidBuffer if the result indicates a retry. 2015 static inline LocalAllocationBuffer FromResult(Heap* heap, 2016 AllocationResult result, 2017 intptr_t size); 2018 ~LocalAllocationBuffer()2019 ~LocalAllocationBuffer() { Close(); } 2020 2021 // Convert to C++11 move-semantics once allowed by the style guide. 2022 LocalAllocationBuffer(const LocalAllocationBuffer& other); 2023 LocalAllocationBuffer& operator=(const LocalAllocationBuffer& other); 2024 2025 V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRawAligned( 2026 int size_in_bytes, AllocationAlignment alignment); 2027 IsValid()2028 inline bool IsValid() { return allocation_info_.top() != kNullAddress; } 2029 2030 // Try to merge LABs, which is only possible when they are adjacent in memory. 2031 // Returns true if the merge was successful, false otherwise. 2032 inline bool TryMerge(LocalAllocationBuffer* other); 2033 2034 inline bool TryFreeLast(HeapObject* object, int object_size); 2035 2036 // Close a LAB, effectively invalidating it. Returns the unused area. 2037 LinearAllocationArea Close(); 2038 2039 private: 2040 LocalAllocationBuffer(Heap* heap, LinearAllocationArea allocation_info); 2041 2042 Heap* heap_; 2043 LinearAllocationArea allocation_info_; 2044 }; 2045 2046 class SpaceWithLinearArea : public Space { 2047 public: SpaceWithLinearArea(Heap * heap,AllocationSpace id)2048 SpaceWithLinearArea(Heap* heap, AllocationSpace id) 2049 : Space(heap, id), top_on_previous_step_(0) { 2050 allocation_info_.Reset(kNullAddress, kNullAddress); 2051 } 2052 2053 virtual bool SupportsInlineAllocation() = 0; 2054 2055 // Returns the allocation pointer in this space. top()2056 Address top() { return allocation_info_.top(); } limit()2057 Address limit() { return allocation_info_.limit(); } 2058 2059 // The allocation top address. allocation_top_address()2060 Address* allocation_top_address() { return allocation_info_.top_address(); } 2061 2062 // The allocation limit address. allocation_limit_address()2063 Address* allocation_limit_address() { 2064 return allocation_info_.limit_address(); 2065 } 2066 2067 V8_EXPORT_PRIVATE void AddAllocationObserver( 2068 AllocationObserver* observer) override; 2069 V8_EXPORT_PRIVATE void RemoveAllocationObserver( 2070 AllocationObserver* observer) override; 2071 V8_EXPORT_PRIVATE void ResumeAllocationObservers() override; 2072 V8_EXPORT_PRIVATE void PauseAllocationObservers() override; 2073 2074 // When allocation observers are active we may use a lower limit to allow the 2075 // observers to 'interrupt' earlier than the natural limit. Given a linear 2076 // area bounded by [start, end), this function computes the limit to use to 2077 // allow proper observation based on existing observers. min_size specifies 2078 // the minimum size that the limited area should have. 2079 Address ComputeLimit(Address start, Address end, size_t min_size); 2080 V8_EXPORT_PRIVATE virtual void UpdateInlineAllocationLimit( 2081 size_t min_size) = 0; 2082 2083 protected: 2084 // If we are doing inline allocation in steps, this method performs the 'step' 2085 // operation. top is the memory address of the bump pointer at the last 2086 // inline allocation (i.e. it determines the numbers of bytes actually 2087 // allocated since the last step.) top_for_next_step is the address of the 2088 // bump pointer where the next byte is going to be allocated from. top and 2089 // top_for_next_step may be different when we cross a page boundary or reset 2090 // the space. 2091 // TODO(ofrobots): clarify the precise difference between this and 2092 // Space::AllocationStep. 2093 void InlineAllocationStep(Address top, Address top_for_next_step, 2094 Address soon_object, size_t size); 2095 V8_EXPORT_PRIVATE void StartNextInlineAllocationStep() override; 2096 2097 // TODO(ofrobots): make these private after refactoring is complete. 2098 LinearAllocationArea allocation_info_; 2099 Address top_on_previous_step_; 2100 }; 2101 2102 class V8_EXPORT_PRIVATE PagedSpace NON_EXPORTED_BASE(public SpaceWithLinearArea)2103 : NON_EXPORTED_BASE(public SpaceWithLinearArea) { 2104 public: 2105 typedef PageIterator iterator; 2106 2107 static const size_t kCompactionMemoryWanted = 500 * KB; 2108 2109 // Creates a space with an id. 2110 PagedSpace(Heap* heap, AllocationSpace id, Executability executable); 2111 2112 ~PagedSpace() override { TearDown(); } 2113 2114 // Checks whether an object/address is in this space. 2115 inline bool Contains(Address a); 2116 inline bool Contains(Object* o); 2117 bool ContainsSlow(Address addr); 2118 2119 // Does the space need executable memory? 2120 Executability executable() { return executable_; } 2121 2122 // During boot the free_space_map is created, and afterwards we may need 2123 // to write it into the free list nodes that were already created. 2124 void RepairFreeListsAfterDeserialization(); 2125 2126 // Prepares for a mark-compact GC. 2127 void PrepareForMarkCompact(); 2128 2129 // Current capacity without growing (Size() + Available()). 2130 size_t Capacity() { return accounting_stats_.Capacity(); } 2131 2132 // Approximate amount of physical memory committed for this space. 2133 size_t CommittedPhysicalMemory() override; 2134 2135 void ResetFreeListStatistics(); 2136 2137 // Sets the capacity, the available space and the wasted space to zero. 2138 // The stats are rebuilt during sweeping by adding each page to the 2139 // capacity and the size when it is encountered. As free spaces are 2140 // discovered during the sweeping they are subtracted from the size and added 2141 // to the available and wasted totals. 2142 void ClearStats() { 2143 accounting_stats_.ClearSize(); 2144 free_list_.ResetStats(); 2145 ResetFreeListStatistics(); 2146 } 2147 2148 // Available bytes without growing. These are the bytes on the free list. 2149 // The bytes in the linear allocation area are not included in this total 2150 // because updating the stats would slow down allocation. New pages are 2151 // immediately added to the free list so they show up here. 2152 size_t Available() override { return free_list_.Available(); } 2153 2154 // Allocated bytes in this space. Garbage bytes that were not found due to 2155 // concurrent sweeping are counted as being allocated! The bytes in the 2156 // current linear allocation area (between top and limit) are also counted 2157 // here. 2158 size_t Size() override { return accounting_stats_.Size(); } 2159 2160 // As size, but the bytes in lazily swept pages are estimated and the bytes 2161 // in the current linear allocation area are not included. 2162 size_t SizeOfObjects() override; 2163 2164 // Wasted bytes in this space. These are just the bytes that were thrown away 2165 // due to being too small to use for allocation. 2166 virtual size_t Waste() { return free_list_.wasted_bytes(); } 2167 2168 enum UpdateSkipList { UPDATE_SKIP_LIST, IGNORE_SKIP_LIST }; 2169 2170 // Allocate the requested number of bytes in the space if possible, return a 2171 // failure object if not. Only use IGNORE_SKIP_LIST if the skip list is going 2172 // to be manually updated later. 2173 V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRawUnaligned( 2174 int size_in_bytes, UpdateSkipList update_skip_list = UPDATE_SKIP_LIST); 2175 2176 // Allocate the requested number of bytes in the space double aligned if 2177 // possible, return a failure object if not. 2178 V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRawAligned( 2179 int size_in_bytes, AllocationAlignment alignment); 2180 2181 // Allocate the requested number of bytes in the space and consider allocation 2182 // alignment if needed. 2183 V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRaw( 2184 int size_in_bytes, AllocationAlignment alignment); 2185 2186 size_t Free(Address start, size_t size_in_bytes, SpaceAccountingMode mode) { 2187 if (size_in_bytes == 0) return 0; 2188 heap()->CreateFillerObjectAt(start, static_cast<int>(size_in_bytes), 2189 ClearRecordedSlots::kNo); 2190 if (mode == SpaceAccountingMode::kSpaceAccounted) { 2191 return AccountedFree(start, size_in_bytes); 2192 } else { 2193 return UnaccountedFree(start, size_in_bytes); 2194 } 2195 } 2196 2197 // Give a block of memory to the space's free list. It might be added to 2198 // the free list or accounted as waste. 2199 // If add_to_freelist is false then just accounting stats are updated and 2200 // no attempt to add area to free list is made. 2201 size_t AccountedFree(Address start, size_t size_in_bytes) { 2202 size_t wasted = free_list_.Free(start, size_in_bytes, kLinkCategory); 2203 Page* page = Page::FromAddress(start); 2204 accounting_stats_.DecreaseAllocatedBytes(size_in_bytes, page); 2205 DCHECK_GE(size_in_bytes, wasted); 2206 return size_in_bytes - wasted; 2207 } 2208 2209 size_t UnaccountedFree(Address start, size_t size_in_bytes) { 2210 size_t wasted = free_list_.Free(start, size_in_bytes, kDoNotLinkCategory); 2211 DCHECK_GE(size_in_bytes, wasted); 2212 return size_in_bytes - wasted; 2213 } 2214 2215 inline bool TryFreeLast(HeapObject* object, int object_size); 2216 2217 void ResetFreeList(); 2218 2219 // Empty space linear allocation area, returning unused area to free list. 2220 void FreeLinearAllocationArea(); 2221 2222 void MarkLinearAllocationAreaBlack(); 2223 void UnmarkLinearAllocationArea(); 2224 2225 void DecreaseAllocatedBytes(size_t bytes, Page* page) { 2226 accounting_stats_.DecreaseAllocatedBytes(bytes, page); 2227 } 2228 void IncreaseAllocatedBytes(size_t bytes, Page* page) { 2229 accounting_stats_.IncreaseAllocatedBytes(bytes, page); 2230 } 2231 void DecreaseCapacity(size_t bytes) { 2232 accounting_stats_.DecreaseCapacity(bytes); 2233 } 2234 void IncreaseCapacity(size_t bytes) { 2235 accounting_stats_.IncreaseCapacity(bytes); 2236 } 2237 2238 void RefineAllocatedBytesAfterSweeping(Page* page); 2239 2240 Page* InitializePage(MemoryChunk* chunk, Executability executable); 2241 2242 void ReleasePage(Page* page); 2243 2244 // Adds the page to this space and returns the number of bytes added to the 2245 // free list of the space. 2246 size_t AddPage(Page* page); 2247 void RemovePage(Page* page); 2248 // Remove a page if it has at least |size_in_bytes| bytes available that can 2249 // be used for allocation. 2250 Page* RemovePageSafe(int size_in_bytes); 2251 2252 void SetReadAndExecutable(); 2253 void SetReadAndWritable(); 2254 2255 #ifdef VERIFY_HEAP 2256 // Verify integrity of this space. 2257 virtual void Verify(Isolate* isolate, ObjectVisitor* visitor); 2258 2259 void VerifyLiveBytes(); 2260 2261 // Overridden by subclasses to verify space-specific object 2262 // properties (e.g., only maps or free-list nodes are in map space). 2263 virtual void VerifyObject(HeapObject* obj) {} 2264 #endif 2265 2266 #ifdef DEBUG 2267 void VerifyCountersAfterSweeping(); 2268 void VerifyCountersBeforeConcurrentSweeping(); 2269 // Print meta info and objects in this space. 2270 void Print() override; 2271 2272 // Report code object related statistics 2273 static void ReportCodeStatistics(Isolate* isolate); 2274 static void ResetCodeStatistics(Isolate* isolate); 2275 #endif 2276 2277 bool CanExpand(size_t size); 2278 2279 // Returns the number of total pages in this space. 2280 int CountTotalPages(); 2281 2282 // Return size of allocatable area on a page in this space. 2283 inline int AreaSize() { return static_cast<int>(area_size_); } 2284 2285 virtual bool is_local() { return false; } 2286 2287 // Merges {other} into the current space. Note that this modifies {other}, 2288 // e.g., removes its bump pointer area and resets statistics. 2289 void MergeCompactionSpace(CompactionSpace* other); 2290 2291 // Refills the free list from the corresponding free list filled by the 2292 // sweeper. 2293 virtual void RefillFreeList(); 2294 2295 FreeList* free_list() { return &free_list_; } 2296 2297 base::Mutex* mutex() { return &space_mutex_; } 2298 2299 inline void UnlinkFreeListCategories(Page* page); 2300 inline size_t RelinkFreeListCategories(Page* page); 2301 2302 Page* first_page() { return reinterpret_cast<Page*>(Space::first_page()); } 2303 2304 iterator begin() { return iterator(first_page()); } 2305 iterator end() { return iterator(nullptr); } 2306 2307 // Shrink immortal immovable pages of the space to be exactly the size needed 2308 // using the high water mark. 2309 void ShrinkImmortalImmovablePages(); 2310 2311 size_t ShrinkPageToHighWaterMark(Page* page); 2312 2313 std::unique_ptr<ObjectIterator> GetObjectIterator() override; 2314 2315 void SetLinearAllocationArea(Address top, Address limit); 2316 2317 private: 2318 // Set space linear allocation area. 2319 void SetTopAndLimit(Address top, Address limit) { 2320 DCHECK(top == limit || 2321 Page::FromAddress(top) == Page::FromAddress(limit - 1)); 2322 MemoryChunk::UpdateHighWaterMark(allocation_info_.top()); 2323 allocation_info_.Reset(top, limit); 2324 } 2325 void DecreaseLimit(Address new_limit); 2326 void UpdateInlineAllocationLimit(size_t min_size) override; 2327 bool SupportsInlineAllocation() override { 2328 return identity() == OLD_SPACE && !is_local(); 2329 } 2330 2331 protected: 2332 // PagedSpaces that should be included in snapshots have different, i.e., 2333 // smaller, initial pages. 2334 virtual bool snapshotable() { return true; } 2335 2336 bool HasPages() { return first_page() != nullptr; } 2337 2338 // Cleans up the space, frees all pages in this space except those belonging 2339 // to the initial chunk, uncommits addresses in the initial chunk. 2340 void TearDown(); 2341 2342 // Expands the space by allocating a fixed number of pages. Returns false if 2343 // it cannot allocate requested number of pages from OS, or if the hard heap 2344 // size limit has been hit. 2345 bool Expand(); 2346 2347 // Sets up a linear allocation area that fits the given number of bytes. 2348 // Returns false if there is not enough space and the caller has to retry 2349 // after collecting garbage. 2350 inline bool EnsureLinearAllocationArea(int size_in_bytes); 2351 // Allocates an object from the linear allocation area. Assumes that the 2352 // linear allocation area is large enought to fit the object. 2353 inline HeapObject* AllocateLinearly(int size_in_bytes); 2354 // Tries to allocate an aligned object from the linear allocation area. 2355 // Returns nullptr if the linear allocation area does not fit the object. 2356 // Otherwise, returns the object pointer and writes the allocation size 2357 // (object size + alignment filler size) to the size_in_bytes. 2358 inline HeapObject* TryAllocateLinearlyAligned(int* size_in_bytes, 2359 AllocationAlignment alignment); 2360 2361 V8_WARN_UNUSED_RESULT bool RefillLinearAllocationAreaFromFreeList( 2362 size_t size_in_bytes); 2363 2364 // If sweeping is still in progress try to sweep unswept pages. If that is 2365 // not successful, wait for the sweeper threads and retry free-list 2366 // allocation. Returns false if there is not enough space and the caller 2367 // has to retry after collecting garbage. 2368 V8_WARN_UNUSED_RESULT virtual bool SweepAndRetryAllocation(int size_in_bytes); 2369 2370 // Slow path of AllocateRaw. This function is space-dependent. Returns false 2371 // if there is not enough space and the caller has to retry after 2372 // collecting garbage. 2373 V8_WARN_UNUSED_RESULT virtual bool SlowRefillLinearAllocationArea( 2374 int size_in_bytes); 2375 2376 // Implementation of SlowAllocateRaw. Returns false if there is not enough 2377 // space and the caller has to retry after collecting garbage. 2378 V8_WARN_UNUSED_RESULT bool RawSlowRefillLinearAllocationArea( 2379 int size_in_bytes); 2380 2381 Executability executable_; 2382 2383 size_t area_size_; 2384 2385 // Accounting information for this space. 2386 AllocationStats accounting_stats_; 2387 2388 // The space's free list. 2389 FreeList free_list_; 2390 2391 // Mutex guarding any concurrent access to the space. 2392 base::Mutex space_mutex_; 2393 2394 friend class IncrementalMarking; 2395 friend class MarkCompactCollector; 2396 2397 // Used in cctest. 2398 friend class heap::HeapTester; 2399 }; 2400 2401 enum SemiSpaceId { kFromSpace = 0, kToSpace = 1 }; 2402 2403 // ----------------------------------------------------------------------------- 2404 // SemiSpace in young generation 2405 // 2406 // A SemiSpace is a contiguous chunk of memory holding page-like memory chunks. 2407 // The mark-compact collector uses the memory of the first page in the from 2408 // space as a marking stack when tracing live objects. 2409 class SemiSpace : public Space { 2410 public: 2411 typedef PageIterator iterator; 2412 2413 static void Swap(SemiSpace* from, SemiSpace* to); 2414 SemiSpace(Heap * heap,SemiSpaceId semispace)2415 SemiSpace(Heap* heap, SemiSpaceId semispace) 2416 : Space(heap, NEW_SPACE), 2417 current_capacity_(0), 2418 maximum_capacity_(0), 2419 minimum_capacity_(0), 2420 age_mark_(kNullAddress), 2421 committed_(false), 2422 id_(semispace), 2423 current_page_(nullptr), 2424 pages_used_(0) {} 2425 2426 inline bool Contains(HeapObject* o); 2427 inline bool Contains(Object* o); 2428 inline bool ContainsSlow(Address a); 2429 2430 void SetUp(size_t initial_capacity, size_t maximum_capacity); 2431 void TearDown(); 2432 2433 bool Commit(); 2434 bool Uncommit(); is_committed()2435 bool is_committed() { return committed_; } 2436 2437 // Grow the semispace to the new capacity. The new capacity requested must 2438 // be larger than the current capacity and less than the maximum capacity. 2439 bool GrowTo(size_t new_capacity); 2440 2441 // Shrinks the semispace to the new capacity. The new capacity requested 2442 // must be more than the amount of used memory in the semispace and less 2443 // than the current capacity. 2444 bool ShrinkTo(size_t new_capacity); 2445 2446 bool EnsureCurrentCapacity(); 2447 space_end()2448 Address space_end() { return memory_chunk_list_.back()->area_end(); } 2449 2450 // Returns the start address of the first page of the space. space_start()2451 Address space_start() { 2452 DCHECK_NE(memory_chunk_list_.front(), nullptr); 2453 return memory_chunk_list_.front()->area_start(); 2454 } 2455 current_page()2456 Page* current_page() { return current_page_; } pages_used()2457 int pages_used() { return pages_used_; } 2458 2459 // Returns the start address of the current page of the space. page_low()2460 Address page_low() { return current_page_->area_start(); } 2461 2462 // Returns one past the end address of the current page of the space. page_high()2463 Address page_high() { return current_page_->area_end(); } 2464 AdvancePage()2465 bool AdvancePage() { 2466 Page* next_page = current_page_->next_page(); 2467 // We cannot expand if we reached the maximum number of pages already. Note 2468 // that we need to account for the next page already for this check as we 2469 // could potentially fill the whole page after advancing. 2470 const bool reached_max_pages = (pages_used_ + 1) == max_pages(); 2471 if (next_page == nullptr || reached_max_pages) { 2472 return false; 2473 } 2474 current_page_ = next_page; 2475 pages_used_++; 2476 return true; 2477 } 2478 2479 // Resets the space to using the first page. 2480 void Reset(); 2481 2482 void RemovePage(Page* page); 2483 void PrependPage(Page* page); 2484 2485 Page* InitializePage(MemoryChunk* chunk, Executability executable); 2486 2487 // Age mark accessors. age_mark()2488 Address age_mark() { return age_mark_; } 2489 void set_age_mark(Address mark); 2490 2491 // Returns the current capacity of the semispace. current_capacity()2492 size_t current_capacity() { return current_capacity_; } 2493 2494 // Returns the maximum capacity of the semispace. maximum_capacity()2495 size_t maximum_capacity() { return maximum_capacity_; } 2496 2497 // Returns the initial capacity of the semispace. minimum_capacity()2498 size_t minimum_capacity() { return minimum_capacity_; } 2499 id()2500 SemiSpaceId id() { return id_; } 2501 2502 // Approximate amount of physical memory committed for this space. 2503 size_t CommittedPhysicalMemory() override; 2504 2505 // If we don't have these here then SemiSpace will be abstract. However 2506 // they should never be called: 2507 Size()2508 size_t Size() override { 2509 UNREACHABLE(); 2510 } 2511 SizeOfObjects()2512 size_t SizeOfObjects() override { return Size(); } 2513 Available()2514 size_t Available() override { 2515 UNREACHABLE(); 2516 } 2517 first_page()2518 Page* first_page() { return reinterpret_cast<Page*>(Space::first_page()); } last_page()2519 Page* last_page() { return reinterpret_cast<Page*>(Space::last_page()); } 2520 begin()2521 iterator begin() { return iterator(first_page()); } end()2522 iterator end() { return iterator(nullptr); } 2523 2524 std::unique_ptr<ObjectIterator> GetObjectIterator() override; 2525 2526 #ifdef DEBUG 2527 void Print() override; 2528 // Validate a range of of addresses in a SemiSpace. 2529 // The "from" address must be on a page prior to the "to" address, 2530 // in the linked page order, or it must be earlier on the same page. 2531 static void AssertValidRange(Address from, Address to); 2532 #else 2533 // Do nothing. AssertValidRange(Address from,Address to)2534 inline static void AssertValidRange(Address from, Address to) {} 2535 #endif 2536 2537 #ifdef VERIFY_HEAP 2538 virtual void Verify(); 2539 #endif 2540 2541 private: 2542 void RewindPages(int num_pages); 2543 max_pages()2544 inline int max_pages() { 2545 return static_cast<int>(current_capacity_ / Page::kPageSize); 2546 } 2547 2548 // Copies the flags into the masked positions on all pages in the space. 2549 void FixPagesFlags(intptr_t flags, intptr_t flag_mask); 2550 2551 // The currently committed space capacity. 2552 size_t current_capacity_; 2553 2554 // The maximum capacity that can be used by this space. A space cannot grow 2555 // beyond that size. 2556 size_t maximum_capacity_; 2557 2558 // The minimum capacity for the space. A space cannot shrink below this size. 2559 size_t minimum_capacity_; 2560 2561 // Used to govern object promotion during mark-compact collection. 2562 Address age_mark_; 2563 2564 bool committed_; 2565 SemiSpaceId id_; 2566 2567 Page* current_page_; 2568 2569 int pages_used_; 2570 2571 friend class NewSpace; 2572 friend class SemiSpaceIterator; 2573 }; 2574 2575 2576 // A SemiSpaceIterator is an ObjectIterator that iterates over the active 2577 // semispace of the heap's new space. It iterates over the objects in the 2578 // semispace from a given start address (defaulting to the bottom of the 2579 // semispace) to the top of the semispace. New objects allocated after the 2580 // iterator is created are not iterated. 2581 class SemiSpaceIterator : public ObjectIterator { 2582 public: 2583 // Create an iterator over the allocated objects in the given to-space. 2584 explicit SemiSpaceIterator(NewSpace* space); 2585 2586 inline HeapObject* Next() override; 2587 2588 private: 2589 void Initialize(Address start, Address end); 2590 2591 // The current iteration point. 2592 Address current_; 2593 // The end of iteration. 2594 Address limit_; 2595 }; 2596 2597 // ----------------------------------------------------------------------------- 2598 // The young generation space. 2599 // 2600 // The new space consists of a contiguous pair of semispaces. It simply 2601 // forwards most functions to the appropriate semispace. 2602 2603 class NewSpace : public SpaceWithLinearArea { 2604 public: 2605 typedef PageIterator iterator; 2606 2607 NewSpace(Heap* heap, size_t initial_semispace_capacity, 2608 size_t max_semispace_capacity); 2609 ~NewSpace()2610 ~NewSpace() override { TearDown(); } 2611 2612 inline bool Contains(HeapObject* o); 2613 inline bool ContainsSlow(Address a); 2614 inline bool Contains(Object* o); 2615 2616 // Tears down the space. Heap memory was not allocated by the space, so it 2617 // is not deallocated here. 2618 void TearDown(); 2619 2620 // Flip the pair of spaces. 2621 void Flip(); 2622 2623 // Grow the capacity of the semispaces. Assumes that they are not at 2624 // their maximum capacity. 2625 void Grow(); 2626 2627 // Shrink the capacity of the semispaces. 2628 void Shrink(); 2629 2630 // Return the allocated bytes in the active semispace. Size()2631 size_t Size() override { 2632 DCHECK_GE(top(), to_space_.page_low()); 2633 return to_space_.pages_used() * Page::kAllocatableMemory + 2634 static_cast<size_t>(top() - to_space_.page_low()); 2635 } 2636 SizeOfObjects()2637 size_t SizeOfObjects() override { return Size(); } 2638 2639 // Return the allocatable capacity of a semispace. Capacity()2640 size_t Capacity() { 2641 SLOW_DCHECK(to_space_.current_capacity() == from_space_.current_capacity()); 2642 return (to_space_.current_capacity() / Page::kPageSize) * 2643 Page::kAllocatableMemory; 2644 } 2645 2646 // Return the current size of a semispace, allocatable and non-allocatable 2647 // memory. TotalCapacity()2648 size_t TotalCapacity() { 2649 DCHECK(to_space_.current_capacity() == from_space_.current_capacity()); 2650 return to_space_.current_capacity(); 2651 } 2652 2653 // Committed memory for NewSpace is the committed memory of both semi-spaces 2654 // combined. CommittedMemory()2655 size_t CommittedMemory() override { 2656 return from_space_.CommittedMemory() + to_space_.CommittedMemory(); 2657 } 2658 MaximumCommittedMemory()2659 size_t MaximumCommittedMemory() override { 2660 return from_space_.MaximumCommittedMemory() + 2661 to_space_.MaximumCommittedMemory(); 2662 } 2663 2664 // Approximate amount of physical memory committed for this space. 2665 size_t CommittedPhysicalMemory() override; 2666 2667 // Return the available bytes without growing. Available()2668 size_t Available() override { 2669 DCHECK_GE(Capacity(), Size()); 2670 return Capacity() - Size(); 2671 } 2672 ExternalBackingStoreBytes(ExternalBackingStoreType type)2673 size_t ExternalBackingStoreBytes( 2674 ExternalBackingStoreType type) const override { 2675 DCHECK_EQ(0, from_space_.ExternalBackingStoreBytes(type)); 2676 return to_space_.ExternalBackingStoreBytes(type); 2677 } 2678 AllocatedSinceLastGC()2679 size_t AllocatedSinceLastGC() { 2680 const Address age_mark = to_space_.age_mark(); 2681 DCHECK_NE(age_mark, kNullAddress); 2682 DCHECK_NE(top(), kNullAddress); 2683 Page* const age_mark_page = Page::FromAllocationAreaAddress(age_mark); 2684 Page* const last_page = Page::FromAllocationAreaAddress(top()); 2685 Page* current_page = age_mark_page; 2686 size_t allocated = 0; 2687 if (current_page != last_page) { 2688 DCHECK_EQ(current_page, age_mark_page); 2689 DCHECK_GE(age_mark_page->area_end(), age_mark); 2690 allocated += age_mark_page->area_end() - age_mark; 2691 current_page = current_page->next_page(); 2692 } else { 2693 DCHECK_GE(top(), age_mark); 2694 return top() - age_mark; 2695 } 2696 while (current_page != last_page) { 2697 DCHECK_NE(current_page, age_mark_page); 2698 allocated += Page::kAllocatableMemory; 2699 current_page = current_page->next_page(); 2700 } 2701 DCHECK_GE(top(), current_page->area_start()); 2702 allocated += top() - current_page->area_start(); 2703 DCHECK_LE(allocated, Size()); 2704 return allocated; 2705 } 2706 MovePageFromSpaceToSpace(Page * page)2707 void MovePageFromSpaceToSpace(Page* page) { 2708 DCHECK(page->InFromSpace()); 2709 from_space_.RemovePage(page); 2710 to_space_.PrependPage(page); 2711 } 2712 2713 bool Rebalance(); 2714 2715 // Return the maximum capacity of a semispace. MaximumCapacity()2716 size_t MaximumCapacity() { 2717 DCHECK(to_space_.maximum_capacity() == from_space_.maximum_capacity()); 2718 return to_space_.maximum_capacity(); 2719 } 2720 IsAtMaximumCapacity()2721 bool IsAtMaximumCapacity() { return TotalCapacity() == MaximumCapacity(); } 2722 2723 // Returns the initial capacity of a semispace. InitialTotalCapacity()2724 size_t InitialTotalCapacity() { 2725 DCHECK(to_space_.minimum_capacity() == from_space_.minimum_capacity()); 2726 return to_space_.minimum_capacity(); 2727 } 2728 ResetOriginalTop()2729 void ResetOriginalTop() { 2730 DCHECK_GE(top(), original_top()); 2731 DCHECK_LE(top(), original_limit()); 2732 original_top_ = top(); 2733 } 2734 original_top()2735 Address original_top() { return original_top_; } original_limit()2736 Address original_limit() { return original_limit_; } 2737 2738 // Return the address of the first allocatable address in the active 2739 // semispace. This may be the address where the first object resides. first_allocatable_address()2740 Address first_allocatable_address() { return to_space_.space_start(); } 2741 2742 // Get the age mark of the inactive semispace. age_mark()2743 Address age_mark() { return from_space_.age_mark(); } 2744 // Set the age mark in the active semispace. set_age_mark(Address mark)2745 void set_age_mark(Address mark) { to_space_.set_age_mark(mark); } 2746 2747 V8_WARN_UNUSED_RESULT V8_INLINE AllocationResult 2748 AllocateRawAligned(int size_in_bytes, AllocationAlignment alignment); 2749 2750 V8_WARN_UNUSED_RESULT V8_INLINE AllocationResult 2751 AllocateRawUnaligned(int size_in_bytes); 2752 2753 V8_WARN_UNUSED_RESULT V8_INLINE AllocationResult 2754 AllocateRaw(int size_in_bytes, AllocationAlignment alignment); 2755 2756 V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRawSynchronized( 2757 int size_in_bytes, AllocationAlignment alignment); 2758 2759 // Reset the allocation pointer to the beginning of the active semispace. 2760 void ResetLinearAllocationArea(); 2761 2762 // When inline allocation stepping is active, either because of incremental 2763 // marking, idle scavenge, or allocation statistics gathering, we 'interrupt' 2764 // inline allocation every once in a while. This is done by setting 2765 // allocation_info_.limit to be lower than the actual limit and and increasing 2766 // it in steps to guarantee that the observers are notified periodically. 2767 void UpdateInlineAllocationLimit(size_t size_in_bytes) override; 2768 2769 inline bool ToSpaceContainsSlow(Address a); 2770 inline bool FromSpaceContainsSlow(Address a); 2771 inline bool ToSpaceContains(Object* o); 2772 inline bool FromSpaceContains(Object* o); 2773 2774 // Try to switch the active semispace to a new, empty, page. 2775 // Returns false if this isn't possible or reasonable (i.e., there 2776 // are no pages, or the current page is already empty), or true 2777 // if successful. 2778 bool AddFreshPage(); 2779 bool AddFreshPageSynchronized(); 2780 2781 #ifdef VERIFY_HEAP 2782 // Verify the active semispace. 2783 virtual void Verify(Isolate* isolate); 2784 #endif 2785 2786 #ifdef DEBUG 2787 // Print the active semispace. Print()2788 void Print() override { to_space_.Print(); } 2789 #endif 2790 2791 // Return whether the operation succeeded. CommitFromSpaceIfNeeded()2792 bool CommitFromSpaceIfNeeded() { 2793 if (from_space_.is_committed()) return true; 2794 return from_space_.Commit(); 2795 } 2796 UncommitFromSpace()2797 bool UncommitFromSpace() { 2798 if (!from_space_.is_committed()) return true; 2799 return from_space_.Uncommit(); 2800 } 2801 IsFromSpaceCommitted()2802 bool IsFromSpaceCommitted() { return from_space_.is_committed(); } 2803 active_space()2804 SemiSpace* active_space() { return &to_space_; } 2805 first_page()2806 Page* first_page() { return to_space_.first_page(); } last_page()2807 Page* last_page() { return to_space_.last_page(); } 2808 begin()2809 iterator begin() { return to_space_.begin(); } end()2810 iterator end() { return to_space_.end(); } 2811 2812 std::unique_ptr<ObjectIterator> GetObjectIterator() override; 2813 from_space()2814 SemiSpace& from_space() { return from_space_; } to_space()2815 SemiSpace& to_space() { return to_space_; } 2816 2817 private: 2818 // Update linear allocation area to match the current to-space page. 2819 void UpdateLinearAllocationArea(); 2820 2821 base::Mutex mutex_; 2822 2823 // The top and the limit at the time of setting the linear allocation area. 2824 // These values can be accessed by background tasks. 2825 std::atomic<Address> original_top_; 2826 std::atomic<Address> original_limit_; 2827 2828 // The semispaces. 2829 SemiSpace to_space_; 2830 SemiSpace from_space_; 2831 VirtualMemory reservation_; 2832 2833 bool EnsureAllocation(int size_in_bytes, AllocationAlignment alignment); SupportsInlineAllocation()2834 bool SupportsInlineAllocation() override { return true; } 2835 2836 friend class SemiSpaceIterator; 2837 }; 2838 2839 class PauseAllocationObserversScope { 2840 public: 2841 explicit PauseAllocationObserversScope(Heap* heap); 2842 ~PauseAllocationObserversScope(); 2843 2844 private: 2845 Heap* heap_; 2846 DISALLOW_COPY_AND_ASSIGN(PauseAllocationObserversScope); 2847 }; 2848 2849 // ----------------------------------------------------------------------------- 2850 // Compaction space that is used temporarily during compaction. 2851 2852 class V8_EXPORT_PRIVATE CompactionSpace : public PagedSpace { 2853 public: CompactionSpace(Heap * heap,AllocationSpace id,Executability executable)2854 CompactionSpace(Heap* heap, AllocationSpace id, Executability executable) 2855 : PagedSpace(heap, id, executable) {} 2856 is_local()2857 bool is_local() override { return true; } 2858 2859 protected: 2860 // The space is temporary and not included in any snapshots. snapshotable()2861 bool snapshotable() override { return false; } 2862 2863 V8_WARN_UNUSED_RESULT bool SweepAndRetryAllocation( 2864 int size_in_bytes) override; 2865 2866 V8_WARN_UNUSED_RESULT bool SlowRefillLinearAllocationArea( 2867 int size_in_bytes) override; 2868 }; 2869 2870 2871 // A collection of |CompactionSpace|s used by a single compaction task. 2872 class CompactionSpaceCollection : public Malloced { 2873 public: CompactionSpaceCollection(Heap * heap)2874 explicit CompactionSpaceCollection(Heap* heap) 2875 : old_space_(heap, OLD_SPACE, Executability::NOT_EXECUTABLE), 2876 code_space_(heap, CODE_SPACE, Executability::EXECUTABLE) {} 2877 Get(AllocationSpace space)2878 CompactionSpace* Get(AllocationSpace space) { 2879 switch (space) { 2880 case OLD_SPACE: 2881 return &old_space_; 2882 case CODE_SPACE: 2883 return &code_space_; 2884 default: 2885 UNREACHABLE(); 2886 } 2887 UNREACHABLE(); 2888 } 2889 2890 private: 2891 CompactionSpace old_space_; 2892 CompactionSpace code_space_; 2893 }; 2894 2895 // ----------------------------------------------------------------------------- 2896 // Old generation regular object space. 2897 2898 class OldSpace : public PagedSpace { 2899 public: 2900 // Creates an old space object. The constructor does not allocate pages 2901 // from OS. OldSpace(Heap * heap)2902 explicit OldSpace(Heap* heap) : PagedSpace(heap, OLD_SPACE, NOT_EXECUTABLE) {} 2903 }; 2904 2905 // ----------------------------------------------------------------------------- 2906 // Old generation code object space. 2907 2908 class CodeSpace : public PagedSpace { 2909 public: 2910 // Creates an old space object. The constructor does not allocate pages 2911 // from OS. CodeSpace(Heap * heap)2912 explicit CodeSpace(Heap* heap) : PagedSpace(heap, CODE_SPACE, EXECUTABLE) {} 2913 }; 2914 2915 2916 // For contiguous spaces, top should be in the space (or at the end) and limit 2917 // should be the end of the space. 2918 #define DCHECK_SEMISPACE_ALLOCATION_INFO(info, space) \ 2919 SLOW_DCHECK((space).page_low() <= (info).top() && \ 2920 (info).top() <= (space).page_high() && \ 2921 (info).limit() <= (space).page_high()) 2922 2923 2924 // ----------------------------------------------------------------------------- 2925 // Old space for all map objects 2926 2927 class MapSpace : public PagedSpace { 2928 public: 2929 // Creates a map space object. MapSpace(Heap * heap)2930 explicit MapSpace(Heap* heap) : PagedSpace(heap, MAP_SPACE, NOT_EXECUTABLE) {} 2931 RoundSizeDownToObjectAlignment(int size)2932 int RoundSizeDownToObjectAlignment(int size) override { 2933 if (base::bits::IsPowerOfTwo(Map::kSize)) { 2934 return RoundDown(size, Map::kSize); 2935 } else { 2936 return (size / Map::kSize) * Map::kSize; 2937 } 2938 } 2939 2940 #ifdef VERIFY_HEAP 2941 void VerifyObject(HeapObject* obj) override; 2942 #endif 2943 }; 2944 2945 // ----------------------------------------------------------------------------- 2946 // Read Only space for all Immortal Immovable and Immutable objects 2947 2948 class ReadOnlySpace : public PagedSpace { 2949 public: 2950 class WritableScope { 2951 public: WritableScope(ReadOnlySpace * space)2952 explicit WritableScope(ReadOnlySpace* space) : space_(space) { 2953 space_->MarkAsReadWrite(); 2954 } 2955 ~WritableScope()2956 ~WritableScope() { space_->MarkAsReadOnly(); } 2957 2958 private: 2959 ReadOnlySpace* space_; 2960 }; 2961 2962 explicit ReadOnlySpace(Heap* heap); 2963 writable()2964 bool writable() const { return !is_marked_read_only_; } 2965 2966 void ClearStringPaddingIfNeeded(); 2967 void MarkAsReadOnly(); 2968 2969 private: 2970 void MarkAsReadWrite(); 2971 void SetPermissionsForPages(PageAllocator::Permission access); 2972 2973 bool is_marked_read_only_ = false; 2974 // 2975 // String padding must be cleared just before serialization and therefore the 2976 // string padding in the space will already have been cleared if the space was 2977 // deserialized. 2978 bool is_string_padding_cleared_; 2979 }; 2980 2981 // ----------------------------------------------------------------------------- 2982 // Large objects ( > kMaxRegularHeapObjectSize ) are allocated and 2983 // managed by the large object space. A large object is allocated from OS 2984 // heap with extra padding bytes (Page::kPageSize + Page::kObjectStartOffset). 2985 // A large object always starts at Page::kObjectStartOffset to a page. 2986 // Large objects do not move during garbage collections. 2987 2988 class LargeObjectSpace : public Space { 2989 public: 2990 typedef LargePageIterator iterator; 2991 2992 explicit LargeObjectSpace(Heap* heap); 2993 LargeObjectSpace(Heap* heap, AllocationSpace id); 2994 ~LargeObjectSpace()2995 ~LargeObjectSpace() override { TearDown(); } 2996 2997 // Releases internal resources, frees objects in this space. 2998 void TearDown(); 2999 ObjectSizeFor(size_t chunk_size)3000 static size_t ObjectSizeFor(size_t chunk_size) { 3001 if (chunk_size <= (Page::kPageSize + Page::kObjectStartOffset)) return 0; 3002 return chunk_size - Page::kPageSize - Page::kObjectStartOffset; 3003 } 3004 3005 V8_WARN_UNUSED_RESULT AllocationResult AllocateRaw(int object_size, 3006 Executability executable); 3007 3008 // Available bytes for objects in this space. 3009 size_t Available() override; 3010 Size()3011 size_t Size() override { return size_; } SizeOfObjects()3012 size_t SizeOfObjects() override { return objects_size_; } 3013 3014 // Approximate amount of physical memory committed for this space. 3015 size_t CommittedPhysicalMemory() override; 3016 PageCount()3017 int PageCount() { return page_count_; } 3018 3019 // Finds an object for a given address, returns a Smi if it is not found. 3020 // The function iterates through all objects in this space, may be slow. 3021 Object* FindObject(Address a); 3022 3023 // Takes the chunk_map_mutex_ and calls FindPage after that. 3024 LargePage* FindPageThreadSafe(Address a); 3025 3026 // Finds a large object page containing the given address, returns nullptr 3027 // if such a page doesn't exist. 3028 LargePage* FindPage(Address a); 3029 3030 // Clears the marking state of live objects. 3031 void ClearMarkingStateOfLiveObjects(); 3032 3033 // Frees unmarked objects. 3034 void FreeUnmarkedObjects(); 3035 3036 void InsertChunkMapEntries(LargePage* page); 3037 void RemoveChunkMapEntries(LargePage* page); 3038 void RemoveChunkMapEntries(LargePage* page, Address free_start); 3039 3040 // Checks whether a heap object is in this space; O(1). 3041 bool Contains(HeapObject* obj); 3042 // Checks whether an address is in the object area in this space. Iterates 3043 // all objects in the space. May be slow. ContainsSlow(Address addr)3044 bool ContainsSlow(Address addr) { return FindObject(addr)->IsHeapObject(); } 3045 3046 // Checks whether the space is empty. IsEmpty()3047 bool IsEmpty() { return first_page() == nullptr; } 3048 first_page()3049 LargePage* first_page() { 3050 return reinterpret_cast<LargePage*>(Space::first_page()); 3051 } 3052 3053 // Collect code statistics. 3054 void CollectCodeStatistics(); 3055 begin()3056 iterator begin() { return iterator(first_page()); } end()3057 iterator end() { return iterator(nullptr); } 3058 3059 std::unique_ptr<ObjectIterator> GetObjectIterator() override; 3060 chunk_map_mutex()3061 base::Mutex* chunk_map_mutex() { return &chunk_map_mutex_; } 3062 3063 #ifdef VERIFY_HEAP 3064 virtual void Verify(Isolate* isolate); 3065 #endif 3066 3067 #ifdef DEBUG 3068 void Print() override; 3069 #endif 3070 3071 protected: 3072 LargePage* AllocateLargePage(int object_size, Executability executable); 3073 3074 private: 3075 size_t size_; // allocated bytes 3076 int page_count_; // number of chunks 3077 size_t objects_size_; // size of objects 3078 3079 // The chunk_map_mutex_ has to be used when the chunk map is accessed 3080 // concurrently. 3081 base::Mutex chunk_map_mutex_; 3082 3083 // Page-aligned addresses to their corresponding LargePage. 3084 std::unordered_map<Address, LargePage*> chunk_map_; 3085 3086 friend class LargeObjectIterator; 3087 }; 3088 3089 class NewLargeObjectSpace : public LargeObjectSpace { 3090 public: 3091 explicit NewLargeObjectSpace(Heap* heap); 3092 3093 V8_WARN_UNUSED_RESULT AllocationResult AllocateRaw(int object_size); 3094 3095 // Available bytes for objects in this space. 3096 size_t Available() override; 3097 }; 3098 3099 class LargeObjectIterator : public ObjectIterator { 3100 public: 3101 explicit LargeObjectIterator(LargeObjectSpace* space); 3102 3103 HeapObject* Next() override; 3104 3105 private: 3106 LargePage* current_; 3107 }; 3108 3109 // Iterates over the chunks (pages and large object pages) that can contain 3110 // pointers to new space or to evacuation candidates. 3111 class MemoryChunkIterator BASE_EMBEDDED { 3112 public: 3113 inline explicit MemoryChunkIterator(Heap* heap); 3114 3115 // Return nullptr when the iterator is done. 3116 inline MemoryChunk* next(); 3117 3118 private: 3119 enum State { 3120 kOldSpaceState, 3121 kMapState, 3122 kCodeState, 3123 kLargeObjectState, 3124 kFinishedState 3125 }; 3126 Heap* heap_; 3127 State state_; 3128 PageIterator old_iterator_; 3129 PageIterator code_iterator_; 3130 PageIterator map_iterator_; 3131 LargePageIterator lo_iterator_; 3132 }; 3133 3134 } // namespace internal 3135 } // namespace v8 3136 3137 #endif // V8_HEAP_SPACES_H_ 3138