1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/TableGen/Error.h"
26 #include "llvm/TableGen/Record.h"
27 #include <algorithm>
28 #include <cstdio>
29 #include <set>
30 using namespace llvm;
31
32 #define DEBUG_TYPE "dag-patterns"
33
isIntegerOrPtr(MVT VT)34 static inline bool isIntegerOrPtr(MVT VT) {
35 return VT.isInteger() || VT == MVT::iPTR;
36 }
isFloatingPoint(MVT VT)37 static inline bool isFloatingPoint(MVT VT) {
38 return VT.isFloatingPoint();
39 }
isVector(MVT VT)40 static inline bool isVector(MVT VT) {
41 return VT.isVector();
42 }
isScalar(MVT VT)43 static inline bool isScalar(MVT VT) {
44 return !VT.isVector();
45 }
46
47 template <typename Predicate>
berase_if(MachineValueTypeSet & S,Predicate P)48 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
49 bool Erased = false;
50 // It is ok to iterate over MachineValueTypeSet and remove elements from it
51 // at the same time.
52 for (MVT T : S) {
53 if (!P(T))
54 continue;
55 Erased = true;
56 S.erase(T);
57 }
58 return Erased;
59 }
60
61 // --- TypeSetByHwMode
62
63 // This is a parameterized type-set class. For each mode there is a list
64 // of types that are currently possible for a given tree node. Type
65 // inference will apply to each mode separately.
66
TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList)67 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
68 for (const ValueTypeByHwMode &VVT : VTList)
69 insert(VVT);
70 }
71
isValueTypeByHwMode(bool AllowEmpty) const72 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
73 for (const auto &I : *this) {
74 if (I.second.size() > 1)
75 return false;
76 if (!AllowEmpty && I.second.empty())
77 return false;
78 }
79 return true;
80 }
81
getValueTypeByHwMode() const82 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
83 assert(isValueTypeByHwMode(true) &&
84 "The type set has multiple types for at least one HW mode");
85 ValueTypeByHwMode VVT;
86 for (const auto &I : *this) {
87 MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
88 VVT.getOrCreateTypeForMode(I.first, T);
89 }
90 return VVT;
91 }
92
isPossible() const93 bool TypeSetByHwMode::isPossible() const {
94 for (const auto &I : *this)
95 if (!I.second.empty())
96 return true;
97 return false;
98 }
99
insert(const ValueTypeByHwMode & VVT)100 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
101 bool Changed = false;
102 SmallDenseSet<unsigned, 4> Modes;
103 for (const auto &P : VVT) {
104 unsigned M = P.first;
105 Modes.insert(M);
106 // Make sure there exists a set for each specific mode from VVT.
107 Changed |= getOrCreate(M).insert(P.second).second;
108 }
109
110 // If VVT has a default mode, add the corresponding type to all
111 // modes in "this" that do not exist in VVT.
112 if (Modes.count(DefaultMode)) {
113 MVT DT = VVT.getType(DefaultMode);
114 for (auto &I : *this)
115 if (!Modes.count(I.first))
116 Changed |= I.second.insert(DT).second;
117 }
118 return Changed;
119 }
120
121 // Constrain the type set to be the intersection with VTS.
constrain(const TypeSetByHwMode & VTS)122 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
123 bool Changed = false;
124 if (hasDefault()) {
125 for (const auto &I : VTS) {
126 unsigned M = I.first;
127 if (M == DefaultMode || hasMode(M))
128 continue;
129 Map.insert({M, Map.at(DefaultMode)});
130 Changed = true;
131 }
132 }
133
134 for (auto &I : *this) {
135 unsigned M = I.first;
136 SetType &S = I.second;
137 if (VTS.hasMode(M) || VTS.hasDefault()) {
138 Changed |= intersect(I.second, VTS.get(M));
139 } else if (!S.empty()) {
140 S.clear();
141 Changed = true;
142 }
143 }
144 return Changed;
145 }
146
147 template <typename Predicate>
constrain(Predicate P)148 bool TypeSetByHwMode::constrain(Predicate P) {
149 bool Changed = false;
150 for (auto &I : *this)
151 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
152 return Changed;
153 }
154
155 template <typename Predicate>
assign_if(const TypeSetByHwMode & VTS,Predicate P)156 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
157 assert(empty());
158 for (const auto &I : VTS) {
159 SetType &S = getOrCreate(I.first);
160 for (auto J : I.second)
161 if (P(J))
162 S.insert(J);
163 }
164 return !empty();
165 }
166
writeToStream(raw_ostream & OS) const167 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
168 SmallVector<unsigned, 4> Modes;
169 Modes.reserve(Map.size());
170
171 for (const auto &I : *this)
172 Modes.push_back(I.first);
173 if (Modes.empty()) {
174 OS << "{}";
175 return;
176 }
177 array_pod_sort(Modes.begin(), Modes.end());
178
179 OS << '{';
180 for (unsigned M : Modes) {
181 OS << ' ' << getModeName(M) << ':';
182 writeToStream(get(M), OS);
183 }
184 OS << " }";
185 }
186
writeToStream(const SetType & S,raw_ostream & OS)187 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
188 SmallVector<MVT, 4> Types(S.begin(), S.end());
189 array_pod_sort(Types.begin(), Types.end());
190
191 OS << '[';
192 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
193 OS << ValueTypeByHwMode::getMVTName(Types[i]);
194 if (i != e-1)
195 OS << ' ';
196 }
197 OS << ']';
198 }
199
operator ==(const TypeSetByHwMode & VTS) const200 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
201 bool HaveDefault = hasDefault();
202 if (HaveDefault != VTS.hasDefault())
203 return false;
204
205 if (isSimple()) {
206 if (VTS.isSimple())
207 return *begin() == *VTS.begin();
208 return false;
209 }
210
211 SmallDenseSet<unsigned, 4> Modes;
212 for (auto &I : *this)
213 Modes.insert(I.first);
214 for (const auto &I : VTS)
215 Modes.insert(I.first);
216
217 if (HaveDefault) {
218 // Both sets have default mode.
219 for (unsigned M : Modes) {
220 if (get(M) != VTS.get(M))
221 return false;
222 }
223 } else {
224 // Neither set has default mode.
225 for (unsigned M : Modes) {
226 // If there is no default mode, an empty set is equivalent to not having
227 // the corresponding mode.
228 bool NoModeThis = !hasMode(M) || get(M).empty();
229 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
230 if (NoModeThis != NoModeVTS)
231 return false;
232 if (!NoModeThis)
233 if (get(M) != VTS.get(M))
234 return false;
235 }
236 }
237
238 return true;
239 }
240
241 namespace llvm {
operator <<(raw_ostream & OS,const TypeSetByHwMode & T)242 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
243 T.writeToStream(OS);
244 return OS;
245 }
246 }
247
248 LLVM_DUMP_METHOD
dump() const249 void TypeSetByHwMode::dump() const {
250 dbgs() << *this << '\n';
251 }
252
intersect(SetType & Out,const SetType & In)253 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
254 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
255 auto Int = [&In](MVT T) -> bool { return !In.count(T); };
256
257 if (OutP == InP)
258 return berase_if(Out, Int);
259
260 // Compute the intersection of scalars separately to account for only
261 // one set containing iPTR.
262 // The itersection of iPTR with a set of integer scalar types that does not
263 // include iPTR will result in the most specific scalar type:
264 // - iPTR is more specific than any set with two elements or more
265 // - iPTR is less specific than any single integer scalar type.
266 // For example
267 // { iPTR } * { i32 } -> { i32 }
268 // { iPTR } * { i32 i64 } -> { iPTR }
269 // and
270 // { iPTR i32 } * { i32 } -> { i32 }
271 // { iPTR i32 } * { i32 i64 } -> { i32 i64 }
272 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
273
274 // Compute the difference between the two sets in such a way that the
275 // iPTR is in the set that is being subtracted. This is to see if there
276 // are any extra scalars in the set without iPTR that are not in the
277 // set containing iPTR. Then the iPTR could be considered a "wildcard"
278 // matching these scalars. If there is only one such scalar, it would
279 // replace the iPTR, if there are more, the iPTR would be retained.
280 SetType Diff;
281 if (InP) {
282 Diff = Out;
283 berase_if(Diff, [&In](MVT T) { return In.count(T); });
284 // Pre-remove these elements and rely only on InP/OutP to determine
285 // whether a change has been made.
286 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
287 } else {
288 Diff = In;
289 berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
290 Out.erase(MVT::iPTR);
291 }
292
293 // The actual intersection.
294 bool Changed = berase_if(Out, Int);
295 unsigned NumD = Diff.size();
296 if (NumD == 0)
297 return Changed;
298
299 if (NumD == 1) {
300 Out.insert(*Diff.begin());
301 // This is a change only if Out was the one with iPTR (which is now
302 // being replaced).
303 Changed |= OutP;
304 } else {
305 // Multiple elements from Out are now replaced with iPTR.
306 Out.insert(MVT::iPTR);
307 Changed |= !OutP;
308 }
309 return Changed;
310 }
311
validate() const312 bool TypeSetByHwMode::validate() const {
313 #ifndef NDEBUG
314 if (empty())
315 return true;
316 bool AllEmpty = true;
317 for (const auto &I : *this)
318 AllEmpty &= I.second.empty();
319 return !AllEmpty;
320 #endif
321 return true;
322 }
323
324 // --- TypeInfer
325
MergeInTypeInfo(TypeSetByHwMode & Out,const TypeSetByHwMode & In)326 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
327 const TypeSetByHwMode &In) {
328 ValidateOnExit _1(Out, *this);
329 In.validate();
330 if (In.empty() || Out == In || TP.hasError())
331 return false;
332 if (Out.empty()) {
333 Out = In;
334 return true;
335 }
336
337 bool Changed = Out.constrain(In);
338 if (Changed && Out.empty())
339 TP.error("Type contradiction");
340
341 return Changed;
342 }
343
forceArbitrary(TypeSetByHwMode & Out)344 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
345 ValidateOnExit _1(Out, *this);
346 if (TP.hasError())
347 return false;
348 assert(!Out.empty() && "cannot pick from an empty set");
349
350 bool Changed = false;
351 for (auto &I : Out) {
352 TypeSetByHwMode::SetType &S = I.second;
353 if (S.size() <= 1)
354 continue;
355 MVT T = *S.begin(); // Pick the first element.
356 S.clear();
357 S.insert(T);
358 Changed = true;
359 }
360 return Changed;
361 }
362
EnforceInteger(TypeSetByHwMode & Out)363 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
364 ValidateOnExit _1(Out, *this);
365 if (TP.hasError())
366 return false;
367 if (!Out.empty())
368 return Out.constrain(isIntegerOrPtr);
369
370 return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
371 }
372
EnforceFloatingPoint(TypeSetByHwMode & Out)373 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
374 ValidateOnExit _1(Out, *this);
375 if (TP.hasError())
376 return false;
377 if (!Out.empty())
378 return Out.constrain(isFloatingPoint);
379
380 return Out.assign_if(getLegalTypes(), isFloatingPoint);
381 }
382
EnforceScalar(TypeSetByHwMode & Out)383 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
384 ValidateOnExit _1(Out, *this);
385 if (TP.hasError())
386 return false;
387 if (!Out.empty())
388 return Out.constrain(isScalar);
389
390 return Out.assign_if(getLegalTypes(), isScalar);
391 }
392
EnforceVector(TypeSetByHwMode & Out)393 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
394 ValidateOnExit _1(Out, *this);
395 if (TP.hasError())
396 return false;
397 if (!Out.empty())
398 return Out.constrain(isVector);
399
400 return Out.assign_if(getLegalTypes(), isVector);
401 }
402
EnforceAny(TypeSetByHwMode & Out)403 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
404 ValidateOnExit _1(Out, *this);
405 if (TP.hasError() || !Out.empty())
406 return false;
407
408 Out = getLegalTypes();
409 return true;
410 }
411
412 template <typename Iter, typename Pred, typename Less>
min_if(Iter B,Iter E,Pred P,Less L)413 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
414 if (B == E)
415 return E;
416 Iter Min = E;
417 for (Iter I = B; I != E; ++I) {
418 if (!P(*I))
419 continue;
420 if (Min == E || L(*I, *Min))
421 Min = I;
422 }
423 return Min;
424 }
425
426 template <typename Iter, typename Pred, typename Less>
max_if(Iter B,Iter E,Pred P,Less L)427 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
428 if (B == E)
429 return E;
430 Iter Max = E;
431 for (Iter I = B; I != E; ++I) {
432 if (!P(*I))
433 continue;
434 if (Max == E || L(*Max, *I))
435 Max = I;
436 }
437 return Max;
438 }
439
440 /// Make sure that for each type in Small, there exists a larger type in Big.
EnforceSmallerThan(TypeSetByHwMode & Small,TypeSetByHwMode & Big)441 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
442 TypeSetByHwMode &Big) {
443 ValidateOnExit _1(Small, *this), _2(Big, *this);
444 if (TP.hasError())
445 return false;
446 bool Changed = false;
447
448 if (Small.empty())
449 Changed |= EnforceAny(Small);
450 if (Big.empty())
451 Changed |= EnforceAny(Big);
452
453 assert(Small.hasDefault() && Big.hasDefault());
454
455 std::vector<unsigned> Modes = union_modes(Small, Big);
456
457 // 1. Only allow integer or floating point types and make sure that
458 // both sides are both integer or both floating point.
459 // 2. Make sure that either both sides have vector types, or neither
460 // of them does.
461 for (unsigned M : Modes) {
462 TypeSetByHwMode::SetType &S = Small.get(M);
463 TypeSetByHwMode::SetType &B = Big.get(M);
464
465 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
466 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
467 Changed |= berase_if(S, NotInt) |
468 berase_if(B, NotInt);
469 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
470 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
471 Changed |= berase_if(S, NotFP) |
472 berase_if(B, NotFP);
473 } else if (S.empty() || B.empty()) {
474 Changed = !S.empty() || !B.empty();
475 S.clear();
476 B.clear();
477 } else {
478 TP.error("Incompatible types");
479 return Changed;
480 }
481
482 if (none_of(S, isVector) || none_of(B, isVector)) {
483 Changed |= berase_if(S, isVector) |
484 berase_if(B, isVector);
485 }
486 }
487
488 auto LT = [](MVT A, MVT B) -> bool {
489 return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
490 (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
491 A.getSizeInBits() < B.getSizeInBits());
492 };
493 auto LE = [](MVT A, MVT B) -> bool {
494 // This function is used when removing elements: when a vector is compared
495 // to a non-vector, it should return false (to avoid removal).
496 if (A.isVector() != B.isVector())
497 return false;
498
499 // Note on the < comparison below:
500 // X86 has patterns like
501 // (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))),
502 // where the truncated vector is given a type v16i8, while the source
503 // vector has type v4i32. They both have the same size in bits.
504 // The minimal type in the result is obviously v16i8, and when we remove
505 // all types from the source that are smaller-or-equal than v8i16, the
506 // only source type would also be removed (since it's equal in size).
507 return A.getScalarSizeInBits() <= B.getScalarSizeInBits() ||
508 A.getSizeInBits() < B.getSizeInBits();
509 };
510
511 for (unsigned M : Modes) {
512 TypeSetByHwMode::SetType &S = Small.get(M);
513 TypeSetByHwMode::SetType &B = Big.get(M);
514 // MinS = min scalar in Small, remove all scalars from Big that are
515 // smaller-or-equal than MinS.
516 auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
517 if (MinS != S.end())
518 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
519
520 // MaxS = max scalar in Big, remove all scalars from Small that are
521 // larger than MaxS.
522 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
523 if (MaxS != B.end())
524 Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
525
526 // MinV = min vector in Small, remove all vectors from Big that are
527 // smaller-or-equal than MinV.
528 auto MinV = min_if(S.begin(), S.end(), isVector, LT);
529 if (MinV != S.end())
530 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
531
532 // MaxV = max vector in Big, remove all vectors from Small that are
533 // larger than MaxV.
534 auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
535 if (MaxV != B.end())
536 Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
537 }
538
539 return Changed;
540 }
541
542 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
543 /// for each type U in Elem, U is a scalar type.
544 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
545 /// type T in Vec, such that U is the element type of T.
EnforceVectorEltTypeIs(TypeSetByHwMode & Vec,TypeSetByHwMode & Elem)546 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
547 TypeSetByHwMode &Elem) {
548 ValidateOnExit _1(Vec, *this), _2(Elem, *this);
549 if (TP.hasError())
550 return false;
551 bool Changed = false;
552
553 if (Vec.empty())
554 Changed |= EnforceVector(Vec);
555 if (Elem.empty())
556 Changed |= EnforceScalar(Elem);
557
558 for (unsigned M : union_modes(Vec, Elem)) {
559 TypeSetByHwMode::SetType &V = Vec.get(M);
560 TypeSetByHwMode::SetType &E = Elem.get(M);
561
562 Changed |= berase_if(V, isScalar); // Scalar = !vector
563 Changed |= berase_if(E, isVector); // Vector = !scalar
564 assert(!V.empty() && !E.empty());
565
566 SmallSet<MVT,4> VT, ST;
567 // Collect element types from the "vector" set.
568 for (MVT T : V)
569 VT.insert(T.getVectorElementType());
570 // Collect scalar types from the "element" set.
571 for (MVT T : E)
572 ST.insert(T);
573
574 // Remove from V all (vector) types whose element type is not in S.
575 Changed |= berase_if(V, [&ST](MVT T) -> bool {
576 return !ST.count(T.getVectorElementType());
577 });
578 // Remove from E all (scalar) types, for which there is no corresponding
579 // type in V.
580 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
581 }
582
583 return Changed;
584 }
585
EnforceVectorEltTypeIs(TypeSetByHwMode & Vec,const ValueTypeByHwMode & VVT)586 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
587 const ValueTypeByHwMode &VVT) {
588 TypeSetByHwMode Tmp(VVT);
589 ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
590 return EnforceVectorEltTypeIs(Vec, Tmp);
591 }
592
593 /// Ensure that for each type T in Sub, T is a vector type, and there
594 /// exists a type U in Vec such that U is a vector type with the same
595 /// element type as T and at least as many elements as T.
EnforceVectorSubVectorTypeIs(TypeSetByHwMode & Vec,TypeSetByHwMode & Sub)596 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
597 TypeSetByHwMode &Sub) {
598 ValidateOnExit _1(Vec, *this), _2(Sub, *this);
599 if (TP.hasError())
600 return false;
601
602 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
603 auto IsSubVec = [](MVT B, MVT P) -> bool {
604 if (!B.isVector() || !P.isVector())
605 return false;
606 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
607 // but until there are obvious use-cases for this, keep the
608 // types separate.
609 if (B.isScalableVector() != P.isScalableVector())
610 return false;
611 if (B.getVectorElementType() != P.getVectorElementType())
612 return false;
613 return B.getVectorNumElements() < P.getVectorNumElements();
614 };
615
616 /// Return true if S has no element (vector type) that T is a sub-vector of,
617 /// i.e. has the same element type as T and more elements.
618 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
619 for (const auto &I : S)
620 if (IsSubVec(T, I))
621 return false;
622 return true;
623 };
624
625 /// Return true if S has no element (vector type) that T is a super-vector
626 /// of, i.e. has the same element type as T and fewer elements.
627 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
628 for (const auto &I : S)
629 if (IsSubVec(I, T))
630 return false;
631 return true;
632 };
633
634 bool Changed = false;
635
636 if (Vec.empty())
637 Changed |= EnforceVector(Vec);
638 if (Sub.empty())
639 Changed |= EnforceVector(Sub);
640
641 for (unsigned M : union_modes(Vec, Sub)) {
642 TypeSetByHwMode::SetType &S = Sub.get(M);
643 TypeSetByHwMode::SetType &V = Vec.get(M);
644
645 Changed |= berase_if(S, isScalar);
646
647 // Erase all types from S that are not sub-vectors of a type in V.
648 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
649
650 // Erase all types from V that are not super-vectors of a type in S.
651 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
652 }
653
654 return Changed;
655 }
656
657 /// 1. Ensure that V has a scalar type iff W has a scalar type.
658 /// 2. Ensure that for each vector type T in V, there exists a vector
659 /// type U in W, such that T and U have the same number of elements.
660 /// 3. Ensure that for each vector type U in W, there exists a vector
661 /// type T in V, such that T and U have the same number of elements
662 /// (reverse of 2).
EnforceSameNumElts(TypeSetByHwMode & V,TypeSetByHwMode & W)663 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
664 ValidateOnExit _1(V, *this), _2(W, *this);
665 if (TP.hasError())
666 return false;
667
668 bool Changed = false;
669 if (V.empty())
670 Changed |= EnforceAny(V);
671 if (W.empty())
672 Changed |= EnforceAny(W);
673
674 // An actual vector type cannot have 0 elements, so we can treat scalars
675 // as zero-length vectors. This way both vectors and scalars can be
676 // processed identically.
677 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
678 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
679 };
680
681 for (unsigned M : union_modes(V, W)) {
682 TypeSetByHwMode::SetType &VS = V.get(M);
683 TypeSetByHwMode::SetType &WS = W.get(M);
684
685 SmallSet<unsigned,2> VN, WN;
686 for (MVT T : VS)
687 VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
688 for (MVT T : WS)
689 WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
690
691 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
692 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
693 }
694 return Changed;
695 }
696
697 /// 1. Ensure that for each type T in A, there exists a type U in B,
698 /// such that T and U have equal size in bits.
699 /// 2. Ensure that for each type U in B, there exists a type T in A
700 /// such that T and U have equal size in bits (reverse of 1).
EnforceSameSize(TypeSetByHwMode & A,TypeSetByHwMode & B)701 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
702 ValidateOnExit _1(A, *this), _2(B, *this);
703 if (TP.hasError())
704 return false;
705 bool Changed = false;
706 if (A.empty())
707 Changed |= EnforceAny(A);
708 if (B.empty())
709 Changed |= EnforceAny(B);
710
711 auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
712 return !Sizes.count(T.getSizeInBits());
713 };
714
715 for (unsigned M : union_modes(A, B)) {
716 TypeSetByHwMode::SetType &AS = A.get(M);
717 TypeSetByHwMode::SetType &BS = B.get(M);
718 SmallSet<unsigned,2> AN, BN;
719
720 for (MVT T : AS)
721 AN.insert(T.getSizeInBits());
722 for (MVT T : BS)
723 BN.insert(T.getSizeInBits());
724
725 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
726 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
727 }
728
729 return Changed;
730 }
731
expandOverloads(TypeSetByHwMode & VTS)732 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
733 ValidateOnExit _1(VTS, *this);
734 TypeSetByHwMode Legal = getLegalTypes();
735 bool HaveLegalDef = Legal.hasDefault();
736
737 for (auto &I : VTS) {
738 unsigned M = I.first;
739 if (!Legal.hasMode(M) && !HaveLegalDef) {
740 TP.error("Invalid mode " + Twine(M));
741 return;
742 }
743 expandOverloads(I.second, Legal.get(M));
744 }
745 }
746
expandOverloads(TypeSetByHwMode::SetType & Out,const TypeSetByHwMode::SetType & Legal)747 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
748 const TypeSetByHwMode::SetType &Legal) {
749 std::set<MVT> Ovs;
750 for (MVT T : Out) {
751 if (!T.isOverloaded())
752 continue;
753
754 Ovs.insert(T);
755 // MachineValueTypeSet allows iteration and erasing.
756 Out.erase(T);
757 }
758
759 for (MVT Ov : Ovs) {
760 switch (Ov.SimpleTy) {
761 case MVT::iPTRAny:
762 Out.insert(MVT::iPTR);
763 return;
764 case MVT::iAny:
765 for (MVT T : MVT::integer_valuetypes())
766 if (Legal.count(T))
767 Out.insert(T);
768 for (MVT T : MVT::integer_vector_valuetypes())
769 if (Legal.count(T))
770 Out.insert(T);
771 return;
772 case MVT::fAny:
773 for (MVT T : MVT::fp_valuetypes())
774 if (Legal.count(T))
775 Out.insert(T);
776 for (MVT T : MVT::fp_vector_valuetypes())
777 if (Legal.count(T))
778 Out.insert(T);
779 return;
780 case MVT::vAny:
781 for (MVT T : MVT::vector_valuetypes())
782 if (Legal.count(T))
783 Out.insert(T);
784 return;
785 case MVT::Any:
786 for (MVT T : MVT::all_valuetypes())
787 if (Legal.count(T))
788 Out.insert(T);
789 return;
790 default:
791 break;
792 }
793 }
794 }
795
getLegalTypes()796 TypeSetByHwMode TypeInfer::getLegalTypes() {
797 if (!LegalTypesCached) {
798 // Stuff all types from all modes into the default mode.
799 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes();
800 for (const auto &I : LTS)
801 LegalCache.insert(I.second);
802 LegalTypesCached = true;
803 }
804 TypeSetByHwMode VTS;
805 VTS.getOrCreate(DefaultMode) = LegalCache;
806 return VTS;
807 }
808
809 #ifndef NDEBUG
~ValidateOnExit()810 TypeInfer::ValidateOnExit::~ValidateOnExit() {
811 if (Infer.Validate && !VTS.validate()) {
812 dbgs() << "Type set is empty for each HW mode:\n"
813 "possible type contradiction in the pattern below "
814 "(use -print-records with llvm-tblgen to see all "
815 "expanded records).\n";
816 Infer.TP.dump();
817 llvm_unreachable(nullptr);
818 }
819 }
820 #endif
821
822 //===----------------------------------------------------------------------===//
823 // TreePredicateFn Implementation
824 //===----------------------------------------------------------------------===//
825
826 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
TreePredicateFn(TreePattern * N)827 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
828 assert(
829 (!hasPredCode() || !hasImmCode()) &&
830 ".td file corrupt: can't have a node predicate *and* an imm predicate");
831 }
832
hasPredCode() const833 bool TreePredicateFn::hasPredCode() const {
834 return isLoad() || isStore() || isAtomic() ||
835 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
836 }
837
getPredCode() const838 std::string TreePredicateFn::getPredCode() const {
839 std::string Code = "";
840
841 if (!isLoad() && !isStore() && !isAtomic()) {
842 Record *MemoryVT = getMemoryVT();
843
844 if (MemoryVT)
845 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
846 "MemoryVT requires IsLoad or IsStore");
847 }
848
849 if (!isLoad() && !isStore()) {
850 if (isUnindexed())
851 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
852 "IsUnindexed requires IsLoad or IsStore");
853
854 Record *ScalarMemoryVT = getScalarMemoryVT();
855
856 if (ScalarMemoryVT)
857 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
858 "ScalarMemoryVT requires IsLoad or IsStore");
859 }
860
861 if (isLoad() + isStore() + isAtomic() > 1)
862 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
863 "IsLoad, IsStore, and IsAtomic are mutually exclusive");
864
865 if (isLoad()) {
866 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
867 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
868 getScalarMemoryVT() == nullptr)
869 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
870 "IsLoad cannot be used by itself");
871 } else {
872 if (isNonExtLoad())
873 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
874 "IsNonExtLoad requires IsLoad");
875 if (isAnyExtLoad())
876 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
877 "IsAnyExtLoad requires IsLoad");
878 if (isSignExtLoad())
879 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
880 "IsSignExtLoad requires IsLoad");
881 if (isZeroExtLoad())
882 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
883 "IsZeroExtLoad requires IsLoad");
884 }
885
886 if (isStore()) {
887 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
888 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr)
889 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
890 "IsStore cannot be used by itself");
891 } else {
892 if (isNonTruncStore())
893 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
894 "IsNonTruncStore requires IsStore");
895 if (isTruncStore())
896 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
897 "IsTruncStore requires IsStore");
898 }
899
900 if (isAtomic()) {
901 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
902 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
903 !isAtomicOrderingAcquireRelease() &&
904 !isAtomicOrderingSequentiallyConsistent() &&
905 !isAtomicOrderingAcquireOrStronger() &&
906 !isAtomicOrderingReleaseOrStronger() &&
907 !isAtomicOrderingWeakerThanAcquire() &&
908 !isAtomicOrderingWeakerThanRelease())
909 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
910 "IsAtomic cannot be used by itself");
911 } else {
912 if (isAtomicOrderingMonotonic())
913 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
914 "IsAtomicOrderingMonotonic requires IsAtomic");
915 if (isAtomicOrderingAcquire())
916 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
917 "IsAtomicOrderingAcquire requires IsAtomic");
918 if (isAtomicOrderingRelease())
919 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
920 "IsAtomicOrderingRelease requires IsAtomic");
921 if (isAtomicOrderingAcquireRelease())
922 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
923 "IsAtomicOrderingAcquireRelease requires IsAtomic");
924 if (isAtomicOrderingSequentiallyConsistent())
925 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
926 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
927 if (isAtomicOrderingAcquireOrStronger())
928 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
929 "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
930 if (isAtomicOrderingReleaseOrStronger())
931 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
932 "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
933 if (isAtomicOrderingWeakerThanAcquire())
934 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
935 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
936 }
937
938 if (isLoad() || isStore() || isAtomic()) {
939 StringRef SDNodeName =
940 isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode";
941
942 Record *MemoryVT = getMemoryVT();
943
944 if (MemoryVT)
945 Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" +
946 MemoryVT->getName() + ") return false;\n")
947 .str();
948 }
949
950 if (isAtomic() && isAtomicOrderingMonotonic())
951 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
952 "AtomicOrdering::Monotonic) return false;\n";
953 if (isAtomic() && isAtomicOrderingAcquire())
954 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
955 "AtomicOrdering::Acquire) return false;\n";
956 if (isAtomic() && isAtomicOrderingRelease())
957 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
958 "AtomicOrdering::Release) return false;\n";
959 if (isAtomic() && isAtomicOrderingAcquireRelease())
960 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
961 "AtomicOrdering::AcquireRelease) return false;\n";
962 if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
963 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
964 "AtomicOrdering::SequentiallyConsistent) return false;\n";
965
966 if (isAtomic() && isAtomicOrderingAcquireOrStronger())
967 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
968 "return false;\n";
969 if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
970 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
971 "return false;\n";
972
973 if (isAtomic() && isAtomicOrderingReleaseOrStronger())
974 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
975 "return false;\n";
976 if (isAtomic() && isAtomicOrderingWeakerThanRelease())
977 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
978 "return false;\n";
979
980 if (isLoad() || isStore()) {
981 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
982
983 if (isUnindexed())
984 Code += ("if (cast<" + SDNodeName +
985 ">(N)->getAddressingMode() != ISD::UNINDEXED) "
986 "return false;\n")
987 .str();
988
989 if (isLoad()) {
990 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
991 isZeroExtLoad()) > 1)
992 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
993 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
994 "IsZeroExtLoad are mutually exclusive");
995 if (isNonExtLoad())
996 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
997 "ISD::NON_EXTLOAD) return false;\n";
998 if (isAnyExtLoad())
999 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1000 "return false;\n";
1001 if (isSignExtLoad())
1002 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1003 "return false;\n";
1004 if (isZeroExtLoad())
1005 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1006 "return false;\n";
1007 } else {
1008 if ((isNonTruncStore() + isTruncStore()) > 1)
1009 PrintFatalError(
1010 getOrigPatFragRecord()->getRecord()->getLoc(),
1011 "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1012 if (isNonTruncStore())
1013 Code +=
1014 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1015 if (isTruncStore())
1016 Code +=
1017 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1018 }
1019
1020 Record *ScalarMemoryVT = getScalarMemoryVT();
1021
1022 if (ScalarMemoryVT)
1023 Code += ("if (cast<" + SDNodeName +
1024 ">(N)->getMemoryVT().getScalarType() != MVT::" +
1025 ScalarMemoryVT->getName() + ") return false;\n")
1026 .str();
1027 }
1028
1029 std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1030
1031 Code += PredicateCode;
1032
1033 if (PredicateCode.empty() && !Code.empty())
1034 Code += "return true;\n";
1035
1036 return Code;
1037 }
1038
hasImmCode() const1039 bool TreePredicateFn::hasImmCode() const {
1040 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1041 }
1042
getImmCode() const1043 std::string TreePredicateFn::getImmCode() const {
1044 return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1045 }
1046
immCodeUsesAPInt() const1047 bool TreePredicateFn::immCodeUsesAPInt() const {
1048 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1049 }
1050
immCodeUsesAPFloat() const1051 bool TreePredicateFn::immCodeUsesAPFloat() const {
1052 bool Unset;
1053 // The return value will be false when IsAPFloat is unset.
1054 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1055 Unset);
1056 }
1057
isPredefinedPredicateEqualTo(StringRef Field,bool Value) const1058 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1059 bool Value) const {
1060 bool Unset;
1061 bool Result =
1062 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1063 if (Unset)
1064 return false;
1065 return Result == Value;
1066 }
isLoad() const1067 bool TreePredicateFn::isLoad() const {
1068 return isPredefinedPredicateEqualTo("IsLoad", true);
1069 }
isStore() const1070 bool TreePredicateFn::isStore() const {
1071 return isPredefinedPredicateEqualTo("IsStore", true);
1072 }
isAtomic() const1073 bool TreePredicateFn::isAtomic() const {
1074 return isPredefinedPredicateEqualTo("IsAtomic", true);
1075 }
isUnindexed() const1076 bool TreePredicateFn::isUnindexed() const {
1077 return isPredefinedPredicateEqualTo("IsUnindexed", true);
1078 }
isNonExtLoad() const1079 bool TreePredicateFn::isNonExtLoad() const {
1080 return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1081 }
isAnyExtLoad() const1082 bool TreePredicateFn::isAnyExtLoad() const {
1083 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1084 }
isSignExtLoad() const1085 bool TreePredicateFn::isSignExtLoad() const {
1086 return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1087 }
isZeroExtLoad() const1088 bool TreePredicateFn::isZeroExtLoad() const {
1089 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1090 }
isNonTruncStore() const1091 bool TreePredicateFn::isNonTruncStore() const {
1092 return isPredefinedPredicateEqualTo("IsTruncStore", false);
1093 }
isTruncStore() const1094 bool TreePredicateFn::isTruncStore() const {
1095 return isPredefinedPredicateEqualTo("IsTruncStore", true);
1096 }
isAtomicOrderingMonotonic() const1097 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1098 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1099 }
isAtomicOrderingAcquire() const1100 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1101 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1102 }
isAtomicOrderingRelease() const1103 bool TreePredicateFn::isAtomicOrderingRelease() const {
1104 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1105 }
isAtomicOrderingAcquireRelease() const1106 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1107 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1108 }
isAtomicOrderingSequentiallyConsistent() const1109 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1110 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1111 true);
1112 }
isAtomicOrderingAcquireOrStronger() const1113 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1114 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1115 }
isAtomicOrderingWeakerThanAcquire() const1116 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1117 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1118 }
isAtomicOrderingReleaseOrStronger() const1119 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1120 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1121 }
isAtomicOrderingWeakerThanRelease() const1122 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1123 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1124 }
getMemoryVT() const1125 Record *TreePredicateFn::getMemoryVT() const {
1126 Record *R = getOrigPatFragRecord()->getRecord();
1127 if (R->isValueUnset("MemoryVT"))
1128 return nullptr;
1129 return R->getValueAsDef("MemoryVT");
1130 }
getScalarMemoryVT() const1131 Record *TreePredicateFn::getScalarMemoryVT() const {
1132 Record *R = getOrigPatFragRecord()->getRecord();
1133 if (R->isValueUnset("ScalarMemoryVT"))
1134 return nullptr;
1135 return R->getValueAsDef("ScalarMemoryVT");
1136 }
hasGISelPredicateCode() const1137 bool TreePredicateFn::hasGISelPredicateCode() const {
1138 return !PatFragRec->getRecord()
1139 ->getValueAsString("GISelPredicateCode")
1140 .empty();
1141 }
getGISelPredicateCode() const1142 std::string TreePredicateFn::getGISelPredicateCode() const {
1143 return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
1144 }
1145
getImmType() const1146 StringRef TreePredicateFn::getImmType() const {
1147 if (immCodeUsesAPInt())
1148 return "const APInt &";
1149 if (immCodeUsesAPFloat())
1150 return "const APFloat &";
1151 return "int64_t";
1152 }
1153
getImmTypeIdentifier() const1154 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1155 if (immCodeUsesAPInt())
1156 return "APInt";
1157 else if (immCodeUsesAPFloat())
1158 return "APFloat";
1159 return "I64";
1160 }
1161
1162 /// isAlwaysTrue - Return true if this is a noop predicate.
isAlwaysTrue() const1163 bool TreePredicateFn::isAlwaysTrue() const {
1164 return !hasPredCode() && !hasImmCode();
1165 }
1166
1167 /// Return the name to use in the generated code to reference this, this is
1168 /// "Predicate_foo" if from a pattern fragment "foo".
getFnName() const1169 std::string TreePredicateFn::getFnName() const {
1170 return "Predicate_" + PatFragRec->getRecord()->getName().str();
1171 }
1172
1173 /// getCodeToRunOnSDNode - Return the code for the function body that
1174 /// evaluates this predicate. The argument is expected to be in "Node",
1175 /// not N. This handles casting and conversion to a concrete node type as
1176 /// appropriate.
getCodeToRunOnSDNode() const1177 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1178 // Handle immediate predicates first.
1179 std::string ImmCode = getImmCode();
1180 if (!ImmCode.empty()) {
1181 if (isLoad())
1182 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1183 "IsLoad cannot be used with ImmLeaf or its subclasses");
1184 if (isStore())
1185 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1186 "IsStore cannot be used with ImmLeaf or its subclasses");
1187 if (isUnindexed())
1188 PrintFatalError(
1189 getOrigPatFragRecord()->getRecord()->getLoc(),
1190 "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1191 if (isNonExtLoad())
1192 PrintFatalError(
1193 getOrigPatFragRecord()->getRecord()->getLoc(),
1194 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1195 if (isAnyExtLoad())
1196 PrintFatalError(
1197 getOrigPatFragRecord()->getRecord()->getLoc(),
1198 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1199 if (isSignExtLoad())
1200 PrintFatalError(
1201 getOrigPatFragRecord()->getRecord()->getLoc(),
1202 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1203 if (isZeroExtLoad())
1204 PrintFatalError(
1205 getOrigPatFragRecord()->getRecord()->getLoc(),
1206 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1207 if (isNonTruncStore())
1208 PrintFatalError(
1209 getOrigPatFragRecord()->getRecord()->getLoc(),
1210 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1211 if (isTruncStore())
1212 PrintFatalError(
1213 getOrigPatFragRecord()->getRecord()->getLoc(),
1214 "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1215 if (getMemoryVT())
1216 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1217 "MemoryVT cannot be used with ImmLeaf or its subclasses");
1218 if (getScalarMemoryVT())
1219 PrintFatalError(
1220 getOrigPatFragRecord()->getRecord()->getLoc(),
1221 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1222
1223 std::string Result = (" " + getImmType() + " Imm = ").str();
1224 if (immCodeUsesAPFloat())
1225 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1226 else if (immCodeUsesAPInt())
1227 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1228 else
1229 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1230 return Result + ImmCode;
1231 }
1232
1233 // Handle arbitrary node predicates.
1234 assert(hasPredCode() && "Don't have any predicate code!");
1235 StringRef ClassName;
1236 if (PatFragRec->getOnlyTree()->isLeaf())
1237 ClassName = "SDNode";
1238 else {
1239 Record *Op = PatFragRec->getOnlyTree()->getOperator();
1240 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1241 }
1242 std::string Result;
1243 if (ClassName == "SDNode")
1244 Result = " SDNode *N = Node;\n";
1245 else
1246 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n";
1247
1248 return Result + getPredCode();
1249 }
1250
1251 //===----------------------------------------------------------------------===//
1252 // PatternToMatch implementation
1253 //
1254
1255 /// getPatternSize - Return the 'size' of this pattern. We want to match large
1256 /// patterns before small ones. This is used to determine the size of a
1257 /// pattern.
getPatternSize(const TreePatternNode * P,const CodeGenDAGPatterns & CGP)1258 static unsigned getPatternSize(const TreePatternNode *P,
1259 const CodeGenDAGPatterns &CGP) {
1260 unsigned Size = 3; // The node itself.
1261 // If the root node is a ConstantSDNode, increases its size.
1262 // e.g. (set R32:$dst, 0).
1263 if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1264 Size += 2;
1265
1266 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1267 Size += AM->getComplexity();
1268 // We don't want to count any children twice, so return early.
1269 return Size;
1270 }
1271
1272 // If this node has some predicate function that must match, it adds to the
1273 // complexity of this node.
1274 if (!P->getPredicateFns().empty())
1275 ++Size;
1276
1277 // Count children in the count if they are also nodes.
1278 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1279 const TreePatternNode *Child = P->getChild(i);
1280 if (!Child->isLeaf() && Child->getNumTypes()) {
1281 const TypeSetByHwMode &T0 = Child->getType(0);
1282 // At this point, all variable type sets should be simple, i.e. only
1283 // have a default mode.
1284 if (T0.getMachineValueType() != MVT::Other) {
1285 Size += getPatternSize(Child, CGP);
1286 continue;
1287 }
1288 }
1289 if (Child->isLeaf()) {
1290 if (isa<IntInit>(Child->getLeafValue()))
1291 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
1292 else if (Child->getComplexPatternInfo(CGP))
1293 Size += getPatternSize(Child, CGP);
1294 else if (!Child->getPredicateFns().empty())
1295 ++Size;
1296 }
1297 }
1298
1299 return Size;
1300 }
1301
1302 /// Compute the complexity metric for the input pattern. This roughly
1303 /// corresponds to the number of nodes that are covered.
1304 int PatternToMatch::
getPatternComplexity(const CodeGenDAGPatterns & CGP) const1305 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1306 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1307 }
1308
1309 /// getPredicateCheck - Return a single string containing all of this
1310 /// pattern's predicates concatenated with "&&" operators.
1311 ///
getPredicateCheck() const1312 std::string PatternToMatch::getPredicateCheck() const {
1313 SmallVector<const Predicate*,4> PredList;
1314 for (const Predicate &P : Predicates)
1315 PredList.push_back(&P);
1316 llvm::sort(PredList.begin(), PredList.end(), deref<llvm::less>());
1317
1318 std::string Check;
1319 for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1320 if (i != 0)
1321 Check += " && ";
1322 Check += '(' + PredList[i]->getCondString() + ')';
1323 }
1324 return Check;
1325 }
1326
1327 //===----------------------------------------------------------------------===//
1328 // SDTypeConstraint implementation
1329 //
1330
SDTypeConstraint(Record * R,const CodeGenHwModes & CGH)1331 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1332 OperandNo = R->getValueAsInt("OperandNum");
1333
1334 if (R->isSubClassOf("SDTCisVT")) {
1335 ConstraintType = SDTCisVT;
1336 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1337 for (const auto &P : VVT)
1338 if (P.second == MVT::isVoid)
1339 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1340 } else if (R->isSubClassOf("SDTCisPtrTy")) {
1341 ConstraintType = SDTCisPtrTy;
1342 } else if (R->isSubClassOf("SDTCisInt")) {
1343 ConstraintType = SDTCisInt;
1344 } else if (R->isSubClassOf("SDTCisFP")) {
1345 ConstraintType = SDTCisFP;
1346 } else if (R->isSubClassOf("SDTCisVec")) {
1347 ConstraintType = SDTCisVec;
1348 } else if (R->isSubClassOf("SDTCisSameAs")) {
1349 ConstraintType = SDTCisSameAs;
1350 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1351 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1352 ConstraintType = SDTCisVTSmallerThanOp;
1353 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1354 R->getValueAsInt("OtherOperandNum");
1355 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1356 ConstraintType = SDTCisOpSmallerThanOp;
1357 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1358 R->getValueAsInt("BigOperandNum");
1359 } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1360 ConstraintType = SDTCisEltOfVec;
1361 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1362 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1363 ConstraintType = SDTCisSubVecOfVec;
1364 x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1365 R->getValueAsInt("OtherOpNum");
1366 } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1367 ConstraintType = SDTCVecEltisVT;
1368 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1369 for (const auto &P : VVT) {
1370 MVT T = P.second;
1371 if (T.isVector())
1372 PrintFatalError(R->getLoc(),
1373 "Cannot use vector type as SDTCVecEltisVT");
1374 if (!T.isInteger() && !T.isFloatingPoint())
1375 PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1376 "as SDTCVecEltisVT");
1377 }
1378 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1379 ConstraintType = SDTCisSameNumEltsAs;
1380 x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1381 R->getValueAsInt("OtherOperandNum");
1382 } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1383 ConstraintType = SDTCisSameSizeAs;
1384 x.SDTCisSameSizeAs_Info.OtherOperandNum =
1385 R->getValueAsInt("OtherOperandNum");
1386 } else {
1387 PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1388 }
1389 }
1390
1391 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1392 /// N, and the result number in ResNo.
getOperandNum(unsigned OpNo,TreePatternNode * N,const SDNodeInfo & NodeInfo,unsigned & ResNo)1393 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1394 const SDNodeInfo &NodeInfo,
1395 unsigned &ResNo) {
1396 unsigned NumResults = NodeInfo.getNumResults();
1397 if (OpNo < NumResults) {
1398 ResNo = OpNo;
1399 return N;
1400 }
1401
1402 OpNo -= NumResults;
1403
1404 if (OpNo >= N->getNumChildren()) {
1405 std::string S;
1406 raw_string_ostream OS(S);
1407 OS << "Invalid operand number in type constraint "
1408 << (OpNo+NumResults) << " ";
1409 N->print(OS);
1410 PrintFatalError(OS.str());
1411 }
1412
1413 return N->getChild(OpNo);
1414 }
1415
1416 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1417 /// constraint to the nodes operands. This returns true if it makes a
1418 /// change, false otherwise. If a type contradiction is found, flag an error.
ApplyTypeConstraint(TreePatternNode * N,const SDNodeInfo & NodeInfo,TreePattern & TP) const1419 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1420 const SDNodeInfo &NodeInfo,
1421 TreePattern &TP) const {
1422 if (TP.hasError())
1423 return false;
1424
1425 unsigned ResNo = 0; // The result number being referenced.
1426 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1427 TypeInfer &TI = TP.getInfer();
1428
1429 switch (ConstraintType) {
1430 case SDTCisVT:
1431 // Operand must be a particular type.
1432 return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1433 case SDTCisPtrTy:
1434 // Operand must be same as target pointer type.
1435 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1436 case SDTCisInt:
1437 // Require it to be one of the legal integer VTs.
1438 return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1439 case SDTCisFP:
1440 // Require it to be one of the legal fp VTs.
1441 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1442 case SDTCisVec:
1443 // Require it to be one of the legal vector VTs.
1444 return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1445 case SDTCisSameAs: {
1446 unsigned OResNo = 0;
1447 TreePatternNode *OtherNode =
1448 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1449 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1450 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1451 }
1452 case SDTCisVTSmallerThanOp: {
1453 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
1454 // have an integer type that is smaller than the VT.
1455 if (!NodeToApply->isLeaf() ||
1456 !isa<DefInit>(NodeToApply->getLeafValue()) ||
1457 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1458 ->isSubClassOf("ValueType")) {
1459 TP.error(N->getOperator()->getName() + " expects a VT operand!");
1460 return false;
1461 }
1462 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1463 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1464 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1465 TypeSetByHwMode TypeListTmp(VVT);
1466
1467 unsigned OResNo = 0;
1468 TreePatternNode *OtherNode =
1469 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1470 OResNo);
1471
1472 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1473 }
1474 case SDTCisOpSmallerThanOp: {
1475 unsigned BResNo = 0;
1476 TreePatternNode *BigOperand =
1477 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1478 BResNo);
1479 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1480 BigOperand->getExtType(BResNo));
1481 }
1482 case SDTCisEltOfVec: {
1483 unsigned VResNo = 0;
1484 TreePatternNode *VecOperand =
1485 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1486 VResNo);
1487 // Filter vector types out of VecOperand that don't have the right element
1488 // type.
1489 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1490 NodeToApply->getExtType(ResNo));
1491 }
1492 case SDTCisSubVecOfVec: {
1493 unsigned VResNo = 0;
1494 TreePatternNode *BigVecOperand =
1495 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1496 VResNo);
1497
1498 // Filter vector types out of BigVecOperand that don't have the
1499 // right subvector type.
1500 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1501 NodeToApply->getExtType(ResNo));
1502 }
1503 case SDTCVecEltisVT: {
1504 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1505 }
1506 case SDTCisSameNumEltsAs: {
1507 unsigned OResNo = 0;
1508 TreePatternNode *OtherNode =
1509 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1510 N, NodeInfo, OResNo);
1511 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1512 NodeToApply->getExtType(ResNo));
1513 }
1514 case SDTCisSameSizeAs: {
1515 unsigned OResNo = 0;
1516 TreePatternNode *OtherNode =
1517 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1518 N, NodeInfo, OResNo);
1519 return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1520 NodeToApply->getExtType(ResNo));
1521 }
1522 }
1523 llvm_unreachable("Invalid ConstraintType!");
1524 }
1525
1526 // Update the node type to match an instruction operand or result as specified
1527 // in the ins or outs lists on the instruction definition. Return true if the
1528 // type was actually changed.
UpdateNodeTypeFromInst(unsigned ResNo,Record * Operand,TreePattern & TP)1529 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1530 Record *Operand,
1531 TreePattern &TP) {
1532 // The 'unknown' operand indicates that types should be inferred from the
1533 // context.
1534 if (Operand->isSubClassOf("unknown_class"))
1535 return false;
1536
1537 // The Operand class specifies a type directly.
1538 if (Operand->isSubClassOf("Operand")) {
1539 Record *R = Operand->getValueAsDef("Type");
1540 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1541 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1542 }
1543
1544 // PointerLikeRegClass has a type that is determined at runtime.
1545 if (Operand->isSubClassOf("PointerLikeRegClass"))
1546 return UpdateNodeType(ResNo, MVT::iPTR, TP);
1547
1548 // Both RegisterClass and RegisterOperand operands derive their types from a
1549 // register class def.
1550 Record *RC = nullptr;
1551 if (Operand->isSubClassOf("RegisterClass"))
1552 RC = Operand;
1553 else if (Operand->isSubClassOf("RegisterOperand"))
1554 RC = Operand->getValueAsDef("RegClass");
1555
1556 assert(RC && "Unknown operand type");
1557 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1558 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1559 }
1560
ContainsUnresolvedType(TreePattern & TP) const1561 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1562 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1563 if (!TP.getInfer().isConcrete(Types[i], true))
1564 return true;
1565 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1566 if (getChild(i)->ContainsUnresolvedType(TP))
1567 return true;
1568 return false;
1569 }
1570
hasProperTypeByHwMode() const1571 bool TreePatternNode::hasProperTypeByHwMode() const {
1572 for (const TypeSetByHwMode &S : Types)
1573 if (!S.isDefaultOnly())
1574 return true;
1575 for (const TreePatternNodePtr &C : Children)
1576 if (C->hasProperTypeByHwMode())
1577 return true;
1578 return false;
1579 }
1580
hasPossibleType() const1581 bool TreePatternNode::hasPossibleType() const {
1582 for (const TypeSetByHwMode &S : Types)
1583 if (!S.isPossible())
1584 return false;
1585 for (const TreePatternNodePtr &C : Children)
1586 if (!C->hasPossibleType())
1587 return false;
1588 return true;
1589 }
1590
setDefaultMode(unsigned Mode)1591 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1592 for (TypeSetByHwMode &S : Types) {
1593 S.makeSimple(Mode);
1594 // Check if the selected mode had a type conflict.
1595 if (S.get(DefaultMode).empty())
1596 return false;
1597 }
1598 for (const TreePatternNodePtr &C : Children)
1599 if (!C->setDefaultMode(Mode))
1600 return false;
1601 return true;
1602 }
1603
1604 //===----------------------------------------------------------------------===//
1605 // SDNodeInfo implementation
1606 //
SDNodeInfo(Record * R,const CodeGenHwModes & CGH)1607 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1608 EnumName = R->getValueAsString("Opcode");
1609 SDClassName = R->getValueAsString("SDClass");
1610 Record *TypeProfile = R->getValueAsDef("TypeProfile");
1611 NumResults = TypeProfile->getValueAsInt("NumResults");
1612 NumOperands = TypeProfile->getValueAsInt("NumOperands");
1613
1614 // Parse the properties.
1615 Properties = parseSDPatternOperatorProperties(R);
1616
1617 // Parse the type constraints.
1618 std::vector<Record*> ConstraintList =
1619 TypeProfile->getValueAsListOfDefs("Constraints");
1620 for (Record *R : ConstraintList)
1621 TypeConstraints.emplace_back(R, CGH);
1622 }
1623
1624 /// getKnownType - If the type constraints on this node imply a fixed type
1625 /// (e.g. all stores return void, etc), then return it as an
1626 /// MVT::SimpleValueType. Otherwise, return EEVT::Other.
getKnownType(unsigned ResNo) const1627 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1628 unsigned NumResults = getNumResults();
1629 assert(NumResults <= 1 &&
1630 "We only work with nodes with zero or one result so far!");
1631 assert(ResNo == 0 && "Only handles single result nodes so far");
1632
1633 for (const SDTypeConstraint &Constraint : TypeConstraints) {
1634 // Make sure that this applies to the correct node result.
1635 if (Constraint.OperandNo >= NumResults) // FIXME: need value #
1636 continue;
1637
1638 switch (Constraint.ConstraintType) {
1639 default: break;
1640 case SDTypeConstraint::SDTCisVT:
1641 if (Constraint.VVT.isSimple())
1642 return Constraint.VVT.getSimple().SimpleTy;
1643 break;
1644 case SDTypeConstraint::SDTCisPtrTy:
1645 return MVT::iPTR;
1646 }
1647 }
1648 return MVT::Other;
1649 }
1650
1651 //===----------------------------------------------------------------------===//
1652 // TreePatternNode implementation
1653 //
1654
GetNumNodeResults(Record * Operator,CodeGenDAGPatterns & CDP)1655 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1656 if (Operator->getName() == "set" ||
1657 Operator->getName() == "implicit")
1658 return 0; // All return nothing.
1659
1660 if (Operator->isSubClassOf("Intrinsic"))
1661 return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1662
1663 if (Operator->isSubClassOf("SDNode"))
1664 return CDP.getSDNodeInfo(Operator).getNumResults();
1665
1666 if (Operator->isSubClassOf("PatFrags")) {
1667 // If we've already parsed this pattern fragment, get it. Otherwise, handle
1668 // the forward reference case where one pattern fragment references another
1669 // before it is processed.
1670 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1671 // The number of results of a fragment with alternative records is the
1672 // maximum number of results across all alternatives.
1673 unsigned NumResults = 0;
1674 for (auto T : PFRec->getTrees())
1675 NumResults = std::max(NumResults, T->getNumTypes());
1676 return NumResults;
1677 }
1678
1679 ListInit *LI = Operator->getValueAsListInit("Fragments");
1680 assert(LI && "Invalid Fragment");
1681 unsigned NumResults = 0;
1682 for (Init *I : LI->getValues()) {
1683 Record *Op = nullptr;
1684 if (DagInit *Dag = dyn_cast<DagInit>(I))
1685 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1686 Op = DI->getDef();
1687 assert(Op && "Invalid Fragment");
1688 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1689 }
1690 return NumResults;
1691 }
1692
1693 if (Operator->isSubClassOf("Instruction")) {
1694 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1695
1696 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1697
1698 // Subtract any defaulted outputs.
1699 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1700 Record *OperandNode = InstInfo.Operands[i].Rec;
1701
1702 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1703 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1704 --NumDefsToAdd;
1705 }
1706
1707 // Add on one implicit def if it has a resolvable type.
1708 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1709 ++NumDefsToAdd;
1710 return NumDefsToAdd;
1711 }
1712
1713 if (Operator->isSubClassOf("SDNodeXForm"))
1714 return 1; // FIXME: Generalize SDNodeXForm
1715
1716 if (Operator->isSubClassOf("ValueType"))
1717 return 1; // A type-cast of one result.
1718
1719 if (Operator->isSubClassOf("ComplexPattern"))
1720 return 1;
1721
1722 errs() << *Operator;
1723 PrintFatalError("Unhandled node in GetNumNodeResults");
1724 }
1725
print(raw_ostream & OS) const1726 void TreePatternNode::print(raw_ostream &OS) const {
1727 if (isLeaf())
1728 OS << *getLeafValue();
1729 else
1730 OS << '(' << getOperator()->getName();
1731
1732 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1733 OS << ':';
1734 getExtType(i).writeToStream(OS);
1735 }
1736
1737 if (!isLeaf()) {
1738 if (getNumChildren() != 0) {
1739 OS << " ";
1740 getChild(0)->print(OS);
1741 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1742 OS << ", ";
1743 getChild(i)->print(OS);
1744 }
1745 }
1746 OS << ")";
1747 }
1748
1749 for (const TreePredicateFn &Pred : PredicateFns)
1750 OS << "<<P:" << Pred.getFnName() << ">>";
1751 if (TransformFn)
1752 OS << "<<X:" << TransformFn->getName() << ">>";
1753 if (!getName().empty())
1754 OS << ":$" << getName();
1755
1756 }
dump() const1757 void TreePatternNode::dump() const {
1758 print(errs());
1759 }
1760
1761 /// isIsomorphicTo - Return true if this node is recursively
1762 /// isomorphic to the specified node. For this comparison, the node's
1763 /// entire state is considered. The assigned name is ignored, since
1764 /// nodes with differing names are considered isomorphic. However, if
1765 /// the assigned name is present in the dependent variable set, then
1766 /// the assigned name is considered significant and the node is
1767 /// isomorphic if the names match.
isIsomorphicTo(const TreePatternNode * N,const MultipleUseVarSet & DepVars) const1768 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1769 const MultipleUseVarSet &DepVars) const {
1770 if (N == this) return true;
1771 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1772 getPredicateFns() != N->getPredicateFns() ||
1773 getTransformFn() != N->getTransformFn())
1774 return false;
1775
1776 if (isLeaf()) {
1777 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1778 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1779 return ((DI->getDef() == NDI->getDef())
1780 && (DepVars.find(getName()) == DepVars.end()
1781 || getName() == N->getName()));
1782 }
1783 }
1784 return getLeafValue() == N->getLeafValue();
1785 }
1786
1787 if (N->getOperator() != getOperator() ||
1788 N->getNumChildren() != getNumChildren()) return false;
1789 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1790 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1791 return false;
1792 return true;
1793 }
1794
1795 /// clone - Make a copy of this tree and all of its children.
1796 ///
clone() const1797 TreePatternNodePtr TreePatternNode::clone() const {
1798 TreePatternNodePtr New;
1799 if (isLeaf()) {
1800 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1801 } else {
1802 std::vector<TreePatternNodePtr> CChildren;
1803 CChildren.reserve(Children.size());
1804 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1805 CChildren.push_back(getChild(i)->clone());
1806 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1807 getNumTypes());
1808 }
1809 New->setName(getName());
1810 New->Types = Types;
1811 New->setPredicateFns(getPredicateFns());
1812 New->setTransformFn(getTransformFn());
1813 return New;
1814 }
1815
1816 /// RemoveAllTypes - Recursively strip all the types of this tree.
RemoveAllTypes()1817 void TreePatternNode::RemoveAllTypes() {
1818 // Reset to unknown type.
1819 std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1820 if (isLeaf()) return;
1821 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1822 getChild(i)->RemoveAllTypes();
1823 }
1824
1825
1826 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1827 /// with actual values specified by ArgMap.
SubstituteFormalArguments(std::map<std::string,TreePatternNodePtr> & ArgMap)1828 void TreePatternNode::SubstituteFormalArguments(
1829 std::map<std::string, TreePatternNodePtr> &ArgMap) {
1830 if (isLeaf()) return;
1831
1832 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1833 TreePatternNode *Child = getChild(i);
1834 if (Child->isLeaf()) {
1835 Init *Val = Child->getLeafValue();
1836 // Note that, when substituting into an output pattern, Val might be an
1837 // UnsetInit.
1838 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1839 cast<DefInit>(Val)->getDef()->getName() == "node")) {
1840 // We found a use of a formal argument, replace it with its value.
1841 TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1842 assert(NewChild && "Couldn't find formal argument!");
1843 assert((Child->getPredicateFns().empty() ||
1844 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1845 "Non-empty child predicate clobbered!");
1846 setChild(i, std::move(NewChild));
1847 }
1848 } else {
1849 getChild(i)->SubstituteFormalArguments(ArgMap);
1850 }
1851 }
1852 }
1853
1854
1855 /// InlinePatternFragments - If this pattern refers to any pattern
1856 /// fragments, return the set of inlined versions (this can be more than
1857 /// one if a PatFrags record has multiple alternatives).
InlinePatternFragments(TreePatternNodePtr T,TreePattern & TP,std::vector<TreePatternNodePtr> & OutAlternatives)1858 void TreePatternNode::InlinePatternFragments(
1859 TreePatternNodePtr T, TreePattern &TP,
1860 std::vector<TreePatternNodePtr> &OutAlternatives) {
1861
1862 if (TP.hasError())
1863 return;
1864
1865 if (isLeaf()) {
1866 OutAlternatives.push_back(T); // nothing to do.
1867 return;
1868 }
1869
1870 Record *Op = getOperator();
1871
1872 if (!Op->isSubClassOf("PatFrags")) {
1873 if (getNumChildren() == 0) {
1874 OutAlternatives.push_back(T);
1875 return;
1876 }
1877
1878 // Recursively inline children nodes.
1879 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
1880 ChildAlternatives.resize(getNumChildren());
1881 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1882 TreePatternNodePtr Child = getChildShared(i);
1883 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
1884 // If there are no alternatives for any child, there are no
1885 // alternatives for this expression as whole.
1886 if (ChildAlternatives[i].empty())
1887 return;
1888
1889 for (auto NewChild : ChildAlternatives[i])
1890 assert((Child->getPredicateFns().empty() ||
1891 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1892 "Non-empty child predicate clobbered!");
1893 }
1894
1895 // The end result is an all-pairs construction of the resultant pattern.
1896 std::vector<unsigned> Idxs;
1897 Idxs.resize(ChildAlternatives.size());
1898 bool NotDone;
1899 do {
1900 // Create the variant and add it to the output list.
1901 std::vector<TreePatternNodePtr> NewChildren;
1902 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
1903 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
1904 TreePatternNodePtr R = std::make_shared<TreePatternNode>(
1905 getOperator(), std::move(NewChildren), getNumTypes());
1906
1907 // Copy over properties.
1908 R->setName(getName());
1909 R->setPredicateFns(getPredicateFns());
1910 R->setTransformFn(getTransformFn());
1911 for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
1912 R->setType(i, getExtType(i));
1913
1914 // Register alternative.
1915 OutAlternatives.push_back(R);
1916
1917 // Increment indices to the next permutation by incrementing the
1918 // indices from last index backward, e.g., generate the sequence
1919 // [0, 0], [0, 1], [1, 0], [1, 1].
1920 int IdxsIdx;
1921 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
1922 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
1923 Idxs[IdxsIdx] = 0;
1924 else
1925 break;
1926 }
1927 NotDone = (IdxsIdx >= 0);
1928 } while (NotDone);
1929
1930 return;
1931 }
1932
1933 // Otherwise, we found a reference to a fragment. First, look up its
1934 // TreePattern record.
1935 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1936
1937 // Verify that we are passing the right number of operands.
1938 if (Frag->getNumArgs() != Children.size()) {
1939 TP.error("'" + Op->getName() + "' fragment requires " +
1940 Twine(Frag->getNumArgs()) + " operands!");
1941 return;
1942 }
1943
1944 // Compute the map of formal to actual arguments.
1945 std::map<std::string, TreePatternNodePtr> ArgMap;
1946 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
1947 const TreePatternNodePtr &Child = getChildShared(i);
1948 ArgMap[Frag->getArgName(i)] = Child;
1949 }
1950
1951 // Loop over all fragment alternatives.
1952 for (auto Alternative : Frag->getTrees()) {
1953 TreePatternNodePtr FragTree = Alternative->clone();
1954
1955 TreePredicateFn PredFn(Frag);
1956 if (!PredFn.isAlwaysTrue())
1957 FragTree->addPredicateFn(PredFn);
1958
1959 // Resolve formal arguments to their actual value.
1960 if (Frag->getNumArgs())
1961 FragTree->SubstituteFormalArguments(ArgMap);
1962
1963 // Transfer types. Note that the resolved alternative may have fewer
1964 // (but not more) results than the PatFrags node.
1965 FragTree->setName(getName());
1966 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
1967 FragTree->UpdateNodeType(i, getExtType(i), TP);
1968
1969 // Transfer in the old predicates.
1970 for (const TreePredicateFn &Pred : getPredicateFns())
1971 FragTree->addPredicateFn(Pred);
1972
1973 // The fragment we inlined could have recursive inlining that is needed. See
1974 // if there are any pattern fragments in it and inline them as needed.
1975 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
1976 }
1977 }
1978
1979 /// getImplicitType - Check to see if the specified record has an implicit
1980 /// type which should be applied to it. This will infer the type of register
1981 /// references from the register file information, for example.
1982 ///
1983 /// When Unnamed is set, return the type of a DAG operand with no name, such as
1984 /// the F8RC register class argument in:
1985 ///
1986 /// (COPY_TO_REGCLASS GPR:$src, F8RC)
1987 ///
1988 /// When Unnamed is false, return the type of a named DAG operand such as the
1989 /// GPR:$src operand above.
1990 ///
getImplicitType(Record * R,unsigned ResNo,bool NotRegisters,bool Unnamed,TreePattern & TP)1991 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
1992 bool NotRegisters,
1993 bool Unnamed,
1994 TreePattern &TP) {
1995 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1996
1997 // Check to see if this is a register operand.
1998 if (R->isSubClassOf("RegisterOperand")) {
1999 assert(ResNo == 0 && "Regoperand ref only has one result!");
2000 if (NotRegisters)
2001 return TypeSetByHwMode(); // Unknown.
2002 Record *RegClass = R->getValueAsDef("RegClass");
2003 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2004 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2005 }
2006
2007 // Check to see if this is a register or a register class.
2008 if (R->isSubClassOf("RegisterClass")) {
2009 assert(ResNo == 0 && "Regclass ref only has one result!");
2010 // An unnamed register class represents itself as an i32 immediate, for
2011 // example on a COPY_TO_REGCLASS instruction.
2012 if (Unnamed)
2013 return TypeSetByHwMode(MVT::i32);
2014
2015 // In a named operand, the register class provides the possible set of
2016 // types.
2017 if (NotRegisters)
2018 return TypeSetByHwMode(); // Unknown.
2019 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2020 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2021 }
2022
2023 if (R->isSubClassOf("PatFrags")) {
2024 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2025 // Pattern fragment types will be resolved when they are inlined.
2026 return TypeSetByHwMode(); // Unknown.
2027 }
2028
2029 if (R->isSubClassOf("Register")) {
2030 assert(ResNo == 0 && "Registers only produce one result!");
2031 if (NotRegisters)
2032 return TypeSetByHwMode(); // Unknown.
2033 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2034 return TypeSetByHwMode(T.getRegisterVTs(R));
2035 }
2036
2037 if (R->isSubClassOf("SubRegIndex")) {
2038 assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2039 return TypeSetByHwMode(MVT::i32);
2040 }
2041
2042 if (R->isSubClassOf("ValueType")) {
2043 assert(ResNo == 0 && "This node only has one result!");
2044 // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2045 //
2046 // (sext_inreg GPR:$src, i16)
2047 // ~~~
2048 if (Unnamed)
2049 return TypeSetByHwMode(MVT::Other);
2050 // With a name, the ValueType simply provides the type of the named
2051 // variable.
2052 //
2053 // (sext_inreg i32:$src, i16)
2054 // ~~~~~~~~
2055 if (NotRegisters)
2056 return TypeSetByHwMode(); // Unknown.
2057 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2058 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2059 }
2060
2061 if (R->isSubClassOf("CondCode")) {
2062 assert(ResNo == 0 && "This node only has one result!");
2063 // Using a CondCodeSDNode.
2064 return TypeSetByHwMode(MVT::Other);
2065 }
2066
2067 if (R->isSubClassOf("ComplexPattern")) {
2068 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2069 if (NotRegisters)
2070 return TypeSetByHwMode(); // Unknown.
2071 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2072 }
2073 if (R->isSubClassOf("PointerLikeRegClass")) {
2074 assert(ResNo == 0 && "Regclass can only have one result!");
2075 TypeSetByHwMode VTS(MVT::iPTR);
2076 TP.getInfer().expandOverloads(VTS);
2077 return VTS;
2078 }
2079
2080 if (R->getName() == "node" || R->getName() == "srcvalue" ||
2081 R->getName() == "zero_reg") {
2082 // Placeholder.
2083 return TypeSetByHwMode(); // Unknown.
2084 }
2085
2086 if (R->isSubClassOf("Operand")) {
2087 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2088 Record *T = R->getValueAsDef("Type");
2089 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2090 }
2091
2092 TP.error("Unknown node flavor used in pattern: " + R->getName());
2093 return TypeSetByHwMode(MVT::Other);
2094 }
2095
2096
2097 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2098 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2099 const CodeGenIntrinsic *TreePatternNode::
getIntrinsicInfo(const CodeGenDAGPatterns & CDP) const2100 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2101 if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2102 getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2103 getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2104 return nullptr;
2105
2106 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2107 return &CDP.getIntrinsicInfo(IID);
2108 }
2109
2110 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2111 /// return the ComplexPattern information, otherwise return null.
2112 const ComplexPattern *
getComplexPatternInfo(const CodeGenDAGPatterns & CGP) const2113 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2114 Record *Rec;
2115 if (isLeaf()) {
2116 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2117 if (!DI)
2118 return nullptr;
2119 Rec = DI->getDef();
2120 } else
2121 Rec = getOperator();
2122
2123 if (!Rec->isSubClassOf("ComplexPattern"))
2124 return nullptr;
2125 return &CGP.getComplexPattern(Rec);
2126 }
2127
getNumMIResults(const CodeGenDAGPatterns & CGP) const2128 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2129 // A ComplexPattern specifically declares how many results it fills in.
2130 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2131 return CP->getNumOperands();
2132
2133 // If MIOperandInfo is specified, that gives the count.
2134 if (isLeaf()) {
2135 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2136 if (DI && DI->getDef()->isSubClassOf("Operand")) {
2137 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2138 if (MIOps->getNumArgs())
2139 return MIOps->getNumArgs();
2140 }
2141 }
2142
2143 // Otherwise there is just one result.
2144 return 1;
2145 }
2146
2147 /// NodeHasProperty - Return true if this node has the specified property.
NodeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const2148 bool TreePatternNode::NodeHasProperty(SDNP Property,
2149 const CodeGenDAGPatterns &CGP) const {
2150 if (isLeaf()) {
2151 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2152 return CP->hasProperty(Property);
2153
2154 return false;
2155 }
2156
2157 if (Property != SDNPHasChain) {
2158 // The chain proprety is already present on the different intrinsic node
2159 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2160 // on the intrinsic. Anything else is specific to the individual intrinsic.
2161 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2162 return Int->hasProperty(Property);
2163 }
2164
2165 if (!Operator->isSubClassOf("SDPatternOperator"))
2166 return false;
2167
2168 return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2169 }
2170
2171
2172
2173
2174 /// TreeHasProperty - Return true if any node in this tree has the specified
2175 /// property.
TreeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const2176 bool TreePatternNode::TreeHasProperty(SDNP Property,
2177 const CodeGenDAGPatterns &CGP) const {
2178 if (NodeHasProperty(Property, CGP))
2179 return true;
2180 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2181 if (getChild(i)->TreeHasProperty(Property, CGP))
2182 return true;
2183 return false;
2184 }
2185
2186 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2187 /// commutative intrinsic.
2188 bool
isCommutativeIntrinsic(const CodeGenDAGPatterns & CDP) const2189 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2190 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2191 return Int->isCommutative;
2192 return false;
2193 }
2194
isOperandClass(const TreePatternNode * N,StringRef Class)2195 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2196 if (!N->isLeaf())
2197 return N->getOperator()->isSubClassOf(Class);
2198
2199 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2200 if (DI && DI->getDef()->isSubClassOf(Class))
2201 return true;
2202
2203 return false;
2204 }
2205
emitTooManyOperandsError(TreePattern & TP,StringRef InstName,unsigned Expected,unsigned Actual)2206 static void emitTooManyOperandsError(TreePattern &TP,
2207 StringRef InstName,
2208 unsigned Expected,
2209 unsigned Actual) {
2210 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2211 " operands but expected only " + Twine(Expected) + "!");
2212 }
2213
emitTooFewOperandsError(TreePattern & TP,StringRef InstName,unsigned Actual)2214 static void emitTooFewOperandsError(TreePattern &TP,
2215 StringRef InstName,
2216 unsigned Actual) {
2217 TP.error("Instruction '" + InstName +
2218 "' expects more than the provided " + Twine(Actual) + " operands!");
2219 }
2220
2221 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2222 /// this node and its children in the tree. This returns true if it makes a
2223 /// change, false otherwise. If a type contradiction is found, flag an error.
ApplyTypeConstraints(TreePattern & TP,bool NotRegisters)2224 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2225 if (TP.hasError())
2226 return false;
2227
2228 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2229 if (isLeaf()) {
2230 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2231 // If it's a regclass or something else known, include the type.
2232 bool MadeChange = false;
2233 for (unsigned i = 0, e = Types.size(); i != e; ++i)
2234 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2235 NotRegisters,
2236 !hasName(), TP), TP);
2237 return MadeChange;
2238 }
2239
2240 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2241 assert(Types.size() == 1 && "Invalid IntInit");
2242
2243 // Int inits are always integers. :)
2244 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2245
2246 if (!TP.getInfer().isConcrete(Types[0], false))
2247 return MadeChange;
2248
2249 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2250 for (auto &P : VVT) {
2251 MVT::SimpleValueType VT = P.second.SimpleTy;
2252 if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2253 continue;
2254 unsigned Size = MVT(VT).getSizeInBits();
2255 // Make sure that the value is representable for this type.
2256 if (Size >= 32)
2257 continue;
2258 // Check that the value doesn't use more bits than we have. It must
2259 // either be a sign- or zero-extended equivalent of the original.
2260 int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2261 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2262 SignBitAndAbove == 1)
2263 continue;
2264
2265 TP.error("Integer value '" + Twine(II->getValue()) +
2266 "' is out of range for type '" + getEnumName(VT) + "'!");
2267 break;
2268 }
2269 return MadeChange;
2270 }
2271
2272 return false;
2273 }
2274
2275 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2276 bool MadeChange = false;
2277
2278 // Apply the result type to the node.
2279 unsigned NumRetVTs = Int->IS.RetVTs.size();
2280 unsigned NumParamVTs = Int->IS.ParamVTs.size();
2281
2282 for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2283 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2284
2285 if (getNumChildren() != NumParamVTs + 1) {
2286 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2287 " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2288 return false;
2289 }
2290
2291 // Apply type info to the intrinsic ID.
2292 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2293
2294 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2295 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2296
2297 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2298 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2299 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2300 }
2301 return MadeChange;
2302 }
2303
2304 if (getOperator()->isSubClassOf("SDNode")) {
2305 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2306
2307 // Check that the number of operands is sane. Negative operands -> varargs.
2308 if (NI.getNumOperands() >= 0 &&
2309 getNumChildren() != (unsigned)NI.getNumOperands()) {
2310 TP.error(getOperator()->getName() + " node requires exactly " +
2311 Twine(NI.getNumOperands()) + " operands!");
2312 return false;
2313 }
2314
2315 bool MadeChange = false;
2316 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2317 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2318 MadeChange |= NI.ApplyTypeConstraints(this, TP);
2319 return MadeChange;
2320 }
2321
2322 if (getOperator()->isSubClassOf("Instruction")) {
2323 const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2324 CodeGenInstruction &InstInfo =
2325 CDP.getTargetInfo().getInstruction(getOperator());
2326
2327 bool MadeChange = false;
2328
2329 // Apply the result types to the node, these come from the things in the
2330 // (outs) list of the instruction.
2331 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2332 Inst.getNumResults());
2333 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2334 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2335
2336 // If the instruction has implicit defs, we apply the first one as a result.
2337 // FIXME: This sucks, it should apply all implicit defs.
2338 if (!InstInfo.ImplicitDefs.empty()) {
2339 unsigned ResNo = NumResultsToAdd;
2340
2341 // FIXME: Generalize to multiple possible types and multiple possible
2342 // ImplicitDefs.
2343 MVT::SimpleValueType VT =
2344 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2345
2346 if (VT != MVT::Other)
2347 MadeChange |= UpdateNodeType(ResNo, VT, TP);
2348 }
2349
2350 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2351 // be the same.
2352 if (getOperator()->getName() == "INSERT_SUBREG") {
2353 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2354 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2355 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2356 } else if (getOperator()->getName() == "REG_SEQUENCE") {
2357 // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2358 // variadic.
2359
2360 unsigned NChild = getNumChildren();
2361 if (NChild < 3) {
2362 TP.error("REG_SEQUENCE requires at least 3 operands!");
2363 return false;
2364 }
2365
2366 if (NChild % 2 == 0) {
2367 TP.error("REG_SEQUENCE requires an odd number of operands!");
2368 return false;
2369 }
2370
2371 if (!isOperandClass(getChild(0), "RegisterClass")) {
2372 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2373 return false;
2374 }
2375
2376 for (unsigned I = 1; I < NChild; I += 2) {
2377 TreePatternNode *SubIdxChild = getChild(I + 1);
2378 if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2379 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2380 Twine(I + 1) + "!");
2381 return false;
2382 }
2383 }
2384 }
2385
2386 unsigned ChildNo = 0;
2387 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2388 Record *OperandNode = Inst.getOperand(i);
2389
2390 // If the instruction expects a predicate or optional def operand, we
2391 // codegen this by setting the operand to it's default value if it has a
2392 // non-empty DefaultOps field.
2393 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
2394 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
2395 continue;
2396
2397 // Verify that we didn't run out of provided operands.
2398 if (ChildNo >= getNumChildren()) {
2399 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2400 return false;
2401 }
2402
2403 TreePatternNode *Child = getChild(ChildNo++);
2404 unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
2405
2406 // If the operand has sub-operands, they may be provided by distinct
2407 // child patterns, so attempt to match each sub-operand separately.
2408 if (OperandNode->isSubClassOf("Operand")) {
2409 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2410 if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2411 // But don't do that if the whole operand is being provided by
2412 // a single ComplexPattern-related Operand.
2413
2414 if (Child->getNumMIResults(CDP) < NumArgs) {
2415 // Match first sub-operand against the child we already have.
2416 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2417 MadeChange |=
2418 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2419
2420 // And the remaining sub-operands against subsequent children.
2421 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2422 if (ChildNo >= getNumChildren()) {
2423 emitTooFewOperandsError(TP, getOperator()->getName(),
2424 getNumChildren());
2425 return false;
2426 }
2427 Child = getChild(ChildNo++);
2428
2429 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2430 MadeChange |=
2431 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2432 }
2433 continue;
2434 }
2435 }
2436 }
2437
2438 // If we didn't match by pieces above, attempt to match the whole
2439 // operand now.
2440 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2441 }
2442
2443 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2444 emitTooManyOperandsError(TP, getOperator()->getName(),
2445 ChildNo, getNumChildren());
2446 return false;
2447 }
2448
2449 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2450 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2451 return MadeChange;
2452 }
2453
2454 if (getOperator()->isSubClassOf("ComplexPattern")) {
2455 bool MadeChange = false;
2456
2457 for (unsigned i = 0; i < getNumChildren(); ++i)
2458 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2459
2460 return MadeChange;
2461 }
2462
2463 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2464
2465 // Node transforms always take one operand.
2466 if (getNumChildren() != 1) {
2467 TP.error("Node transform '" + getOperator()->getName() +
2468 "' requires one operand!");
2469 return false;
2470 }
2471
2472 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2473 return MadeChange;
2474 }
2475
2476 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2477 /// RHS of a commutative operation, not the on LHS.
OnlyOnRHSOfCommutative(TreePatternNode * N)2478 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2479 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2480 return true;
2481 if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2482 return true;
2483 return false;
2484 }
2485
2486
2487 /// canPatternMatch - If it is impossible for this pattern to match on this
2488 /// target, fill in Reason and return false. Otherwise, return true. This is
2489 /// used as a sanity check for .td files (to prevent people from writing stuff
2490 /// that can never possibly work), and to prevent the pattern permuter from
2491 /// generating stuff that is useless.
canPatternMatch(std::string & Reason,const CodeGenDAGPatterns & CDP)2492 bool TreePatternNode::canPatternMatch(std::string &Reason,
2493 const CodeGenDAGPatterns &CDP) {
2494 if (isLeaf()) return true;
2495
2496 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2497 if (!getChild(i)->canPatternMatch(Reason, CDP))
2498 return false;
2499
2500 // If this is an intrinsic, handle cases that would make it not match. For
2501 // example, if an operand is required to be an immediate.
2502 if (getOperator()->isSubClassOf("Intrinsic")) {
2503 // TODO:
2504 return true;
2505 }
2506
2507 if (getOperator()->isSubClassOf("ComplexPattern"))
2508 return true;
2509
2510 // If this node is a commutative operator, check that the LHS isn't an
2511 // immediate.
2512 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2513 bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2514 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2515 // Scan all of the operands of the node and make sure that only the last one
2516 // is a constant node, unless the RHS also is.
2517 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2518 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2519 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2520 if (OnlyOnRHSOfCommutative(getChild(i))) {
2521 Reason="Immediate value must be on the RHS of commutative operators!";
2522 return false;
2523 }
2524 }
2525 }
2526
2527 return true;
2528 }
2529
2530 //===----------------------------------------------------------------------===//
2531 // TreePattern implementation
2532 //
2533
TreePattern(Record * TheRec,ListInit * RawPat,bool isInput,CodeGenDAGPatterns & cdp)2534 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2535 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2536 isInputPattern(isInput), HasError(false),
2537 Infer(*this) {
2538 for (Init *I : RawPat->getValues())
2539 Trees.push_back(ParseTreePattern(I, ""));
2540 }
2541
TreePattern(Record * TheRec,DagInit * Pat,bool isInput,CodeGenDAGPatterns & cdp)2542 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2543 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2544 isInputPattern(isInput), HasError(false),
2545 Infer(*this) {
2546 Trees.push_back(ParseTreePattern(Pat, ""));
2547 }
2548
TreePattern(Record * TheRec,TreePatternNodePtr Pat,bool isInput,CodeGenDAGPatterns & cdp)2549 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2550 CodeGenDAGPatterns &cdp)
2551 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2552 Infer(*this) {
2553 Trees.push_back(Pat);
2554 }
2555
error(const Twine & Msg)2556 void TreePattern::error(const Twine &Msg) {
2557 if (HasError)
2558 return;
2559 dump();
2560 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2561 HasError = true;
2562 }
2563
ComputeNamedNodes()2564 void TreePattern::ComputeNamedNodes() {
2565 for (TreePatternNodePtr &Tree : Trees)
2566 ComputeNamedNodes(Tree.get());
2567 }
2568
ComputeNamedNodes(TreePatternNode * N)2569 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2570 if (!N->getName().empty())
2571 NamedNodes[N->getName()].push_back(N);
2572
2573 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2574 ComputeNamedNodes(N->getChild(i));
2575 }
2576
ParseTreePattern(Init * TheInit,StringRef OpName)2577 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2578 StringRef OpName) {
2579 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2580 Record *R = DI->getDef();
2581
2582 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
2583 // TreePatternNode of its own. For example:
2584 /// (foo GPR, imm) -> (foo GPR, (imm))
2585 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2586 return ParseTreePattern(
2587 DagInit::get(DI, nullptr,
2588 std::vector<std::pair<Init*, StringInit*> >()),
2589 OpName);
2590
2591 // Input argument?
2592 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2593 if (R->getName() == "node" && !OpName.empty()) {
2594 if (OpName.empty())
2595 error("'node' argument requires a name to match with operand list");
2596 Args.push_back(OpName);
2597 }
2598
2599 Res->setName(OpName);
2600 return Res;
2601 }
2602
2603 // ?:$name or just $name.
2604 if (isa<UnsetInit>(TheInit)) {
2605 if (OpName.empty())
2606 error("'?' argument requires a name to match with operand list");
2607 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2608 Args.push_back(OpName);
2609 Res->setName(OpName);
2610 return Res;
2611 }
2612
2613 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2614 if (!OpName.empty())
2615 error("Constant int or bit argument should not have a name!");
2616 if (isa<BitInit>(TheInit))
2617 TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2618 return std::make_shared<TreePatternNode>(TheInit, 1);
2619 }
2620
2621 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2622 // Turn this into an IntInit.
2623 Init *II = BI->convertInitializerTo(IntRecTy::get());
2624 if (!II || !isa<IntInit>(II))
2625 error("Bits value must be constants!");
2626 return ParseTreePattern(II, OpName);
2627 }
2628
2629 DagInit *Dag = dyn_cast<DagInit>(TheInit);
2630 if (!Dag) {
2631 TheInit->print(errs());
2632 error("Pattern has unexpected init kind!");
2633 }
2634 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2635 if (!OpDef) error("Pattern has unexpected operator type!");
2636 Record *Operator = OpDef->getDef();
2637
2638 if (Operator->isSubClassOf("ValueType")) {
2639 // If the operator is a ValueType, then this must be "type cast" of a leaf
2640 // node.
2641 if (Dag->getNumArgs() != 1)
2642 error("Type cast only takes one operand!");
2643
2644 TreePatternNodePtr New =
2645 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2646
2647 // Apply the type cast.
2648 assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2649 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2650 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2651
2652 if (!OpName.empty())
2653 error("ValueType cast should not have a name!");
2654 return New;
2655 }
2656
2657 // Verify that this is something that makes sense for an operator.
2658 if (!Operator->isSubClassOf("PatFrags") &&
2659 !Operator->isSubClassOf("SDNode") &&
2660 !Operator->isSubClassOf("Instruction") &&
2661 !Operator->isSubClassOf("SDNodeXForm") &&
2662 !Operator->isSubClassOf("Intrinsic") &&
2663 !Operator->isSubClassOf("ComplexPattern") &&
2664 Operator->getName() != "set" &&
2665 Operator->getName() != "implicit")
2666 error("Unrecognized node '" + Operator->getName() + "'!");
2667
2668 // Check to see if this is something that is illegal in an input pattern.
2669 if (isInputPattern) {
2670 if (Operator->isSubClassOf("Instruction") ||
2671 Operator->isSubClassOf("SDNodeXForm"))
2672 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2673 } else {
2674 if (Operator->isSubClassOf("Intrinsic"))
2675 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2676
2677 if (Operator->isSubClassOf("SDNode") &&
2678 Operator->getName() != "imm" &&
2679 Operator->getName() != "fpimm" &&
2680 Operator->getName() != "tglobaltlsaddr" &&
2681 Operator->getName() != "tconstpool" &&
2682 Operator->getName() != "tjumptable" &&
2683 Operator->getName() != "tframeindex" &&
2684 Operator->getName() != "texternalsym" &&
2685 Operator->getName() != "tblockaddress" &&
2686 Operator->getName() != "tglobaladdr" &&
2687 Operator->getName() != "bb" &&
2688 Operator->getName() != "vt" &&
2689 Operator->getName() != "mcsym")
2690 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2691 }
2692
2693 std::vector<TreePatternNodePtr> Children;
2694
2695 // Parse all the operands.
2696 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2697 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2698
2699 // Get the actual number of results before Operator is converted to an intrinsic
2700 // node (which is hard-coded to have either zero or one result).
2701 unsigned NumResults = GetNumNodeResults(Operator, CDP);
2702
2703 // If the operator is an intrinsic, then this is just syntactic sugar for
2704 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
2705 // convert the intrinsic name to a number.
2706 if (Operator->isSubClassOf("Intrinsic")) {
2707 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2708 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2709
2710 // If this intrinsic returns void, it must have side-effects and thus a
2711 // chain.
2712 if (Int.IS.RetVTs.empty())
2713 Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2714 else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2715 // Has side-effects, requires chain.
2716 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2717 else // Otherwise, no chain.
2718 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2719
2720 Children.insert(Children.begin(),
2721 std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2722 }
2723
2724 if (Operator->isSubClassOf("ComplexPattern")) {
2725 for (unsigned i = 0; i < Children.size(); ++i) {
2726 TreePatternNodePtr Child = Children[i];
2727
2728 if (Child->getName().empty())
2729 error("All arguments to a ComplexPattern must be named");
2730
2731 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2732 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2733 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2734 auto OperandId = std::make_pair(Operator, i);
2735 auto PrevOp = ComplexPatternOperands.find(Child->getName());
2736 if (PrevOp != ComplexPatternOperands.end()) {
2737 if (PrevOp->getValue() != OperandId)
2738 error("All ComplexPattern operands must appear consistently: "
2739 "in the same order in just one ComplexPattern instance.");
2740 } else
2741 ComplexPatternOperands[Child->getName()] = OperandId;
2742 }
2743 }
2744
2745 TreePatternNodePtr Result =
2746 std::make_shared<TreePatternNode>(Operator, std::move(Children),
2747 NumResults);
2748 Result->setName(OpName);
2749
2750 if (Dag->getName()) {
2751 assert(Result->getName().empty());
2752 Result->setName(Dag->getNameStr());
2753 }
2754 return Result;
2755 }
2756
2757 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2758 /// will never match in favor of something obvious that will. This is here
2759 /// strictly as a convenience to target authors because it allows them to write
2760 /// more type generic things and have useless type casts fold away.
2761 ///
2762 /// This returns true if any change is made.
SimplifyTree(TreePatternNodePtr & N)2763 static bool SimplifyTree(TreePatternNodePtr &N) {
2764 if (N->isLeaf())
2765 return false;
2766
2767 // If we have a bitconvert with a resolved type and if the source and
2768 // destination types are the same, then the bitconvert is useless, remove it.
2769 if (N->getOperator()->getName() == "bitconvert" &&
2770 N->getExtType(0).isValueTypeByHwMode(false) &&
2771 N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2772 N->getName().empty()) {
2773 N = N->getChildShared(0);
2774 SimplifyTree(N);
2775 return true;
2776 }
2777
2778 // Walk all children.
2779 bool MadeChange = false;
2780 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2781 TreePatternNodePtr Child = N->getChildShared(i);
2782 MadeChange |= SimplifyTree(Child);
2783 N->setChild(i, std::move(Child));
2784 }
2785 return MadeChange;
2786 }
2787
2788
2789
2790 /// InferAllTypes - Infer/propagate as many types throughout the expression
2791 /// patterns as possible. Return true if all types are inferred, false
2792 /// otherwise. Flags an error if a type contradiction is found.
2793 bool TreePattern::
InferAllTypes(const StringMap<SmallVector<TreePatternNode *,1>> * InNamedTypes)2794 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2795 if (NamedNodes.empty())
2796 ComputeNamedNodes();
2797
2798 bool MadeChange = true;
2799 while (MadeChange) {
2800 MadeChange = false;
2801 for (TreePatternNodePtr &Tree : Trees) {
2802 MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2803 MadeChange |= SimplifyTree(Tree);
2804 }
2805
2806 // If there are constraints on our named nodes, apply them.
2807 for (auto &Entry : NamedNodes) {
2808 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2809
2810 // If we have input named node types, propagate their types to the named
2811 // values here.
2812 if (InNamedTypes) {
2813 if (!InNamedTypes->count(Entry.getKey())) {
2814 error("Node '" + std::string(Entry.getKey()) +
2815 "' in output pattern but not input pattern");
2816 return true;
2817 }
2818
2819 const SmallVectorImpl<TreePatternNode*> &InNodes =
2820 InNamedTypes->find(Entry.getKey())->second;
2821
2822 // The input types should be fully resolved by now.
2823 for (TreePatternNode *Node : Nodes) {
2824 // If this node is a register class, and it is the root of the pattern
2825 // then we're mapping something onto an input register. We allow
2826 // changing the type of the input register in this case. This allows
2827 // us to match things like:
2828 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2829 if (Node == Trees[0].get() && Node->isLeaf()) {
2830 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2831 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2832 DI->getDef()->isSubClassOf("RegisterOperand")))
2833 continue;
2834 }
2835
2836 assert(Node->getNumTypes() == 1 &&
2837 InNodes[0]->getNumTypes() == 1 &&
2838 "FIXME: cannot name multiple result nodes yet");
2839 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2840 *this);
2841 }
2842 }
2843
2844 // If there are multiple nodes with the same name, they must all have the
2845 // same type.
2846 if (Entry.second.size() > 1) {
2847 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2848 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2849 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2850 "FIXME: cannot name multiple result nodes yet");
2851
2852 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2853 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2854 }
2855 }
2856 }
2857 }
2858
2859 bool HasUnresolvedTypes = false;
2860 for (const TreePatternNodePtr &Tree : Trees)
2861 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2862 return !HasUnresolvedTypes;
2863 }
2864
print(raw_ostream & OS) const2865 void TreePattern::print(raw_ostream &OS) const {
2866 OS << getRecord()->getName();
2867 if (!Args.empty()) {
2868 OS << "(" << Args[0];
2869 for (unsigned i = 1, e = Args.size(); i != e; ++i)
2870 OS << ", " << Args[i];
2871 OS << ")";
2872 }
2873 OS << ": ";
2874
2875 if (Trees.size() > 1)
2876 OS << "[\n";
2877 for (const TreePatternNodePtr &Tree : Trees) {
2878 OS << "\t";
2879 Tree->print(OS);
2880 OS << "\n";
2881 }
2882
2883 if (Trees.size() > 1)
2884 OS << "]\n";
2885 }
2886
dump() const2887 void TreePattern::dump() const { print(errs()); }
2888
2889 //===----------------------------------------------------------------------===//
2890 // CodeGenDAGPatterns implementation
2891 //
2892
CodeGenDAGPatterns(RecordKeeper & R,PatternRewriterFn PatternRewriter)2893 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
2894 PatternRewriterFn PatternRewriter)
2895 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
2896 PatternRewriter(PatternRewriter) {
2897
2898 Intrinsics = CodeGenIntrinsicTable(Records, false);
2899 TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
2900 ParseNodeInfo();
2901 ParseNodeTransforms();
2902 ParseComplexPatterns();
2903 ParsePatternFragments();
2904 ParseDefaultOperands();
2905 ParseInstructions();
2906 ParsePatternFragments(/*OutFrags*/true);
2907 ParsePatterns();
2908
2909 // Break patterns with parameterized types into a series of patterns,
2910 // where each one has a fixed type and is predicated on the conditions
2911 // of the associated HW mode.
2912 ExpandHwModeBasedTypes();
2913
2914 // Generate variants. For example, commutative patterns can match
2915 // multiple ways. Add them to PatternsToMatch as well.
2916 GenerateVariants();
2917
2918 // Infer instruction flags. For example, we can detect loads,
2919 // stores, and side effects in many cases by examining an
2920 // instruction's pattern.
2921 InferInstructionFlags();
2922
2923 // Verify that instruction flags match the patterns.
2924 VerifyInstructionFlags();
2925 }
2926
getSDNodeNamed(const std::string & Name) const2927 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2928 Record *N = Records.getDef(Name);
2929 if (!N || !N->isSubClassOf("SDNode"))
2930 PrintFatalError("Error getting SDNode '" + Name + "'!");
2931
2932 return N;
2933 }
2934
2935 // Parse all of the SDNode definitions for the target, populating SDNodes.
ParseNodeInfo()2936 void CodeGenDAGPatterns::ParseNodeInfo() {
2937 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2938 const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
2939
2940 while (!Nodes.empty()) {
2941 Record *R = Nodes.back();
2942 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
2943 Nodes.pop_back();
2944 }
2945
2946 // Get the builtin intrinsic nodes.
2947 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
2948 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
2949 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2950 }
2951
2952 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2953 /// map, and emit them to the file as functions.
ParseNodeTransforms()2954 void CodeGenDAGPatterns::ParseNodeTransforms() {
2955 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2956 while (!Xforms.empty()) {
2957 Record *XFormNode = Xforms.back();
2958 Record *SDNode = XFormNode->getValueAsDef("Opcode");
2959 StringRef Code = XFormNode->getValueAsString("XFormFunction");
2960 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2961
2962 Xforms.pop_back();
2963 }
2964 }
2965
ParseComplexPatterns()2966 void CodeGenDAGPatterns::ParseComplexPatterns() {
2967 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2968 while (!AMs.empty()) {
2969 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2970 AMs.pop_back();
2971 }
2972 }
2973
2974
2975 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2976 /// file, building up the PatternFragments map. After we've collected them all,
2977 /// inline fragments together as necessary, so that there are no references left
2978 /// inside a pattern fragment to a pattern fragment.
2979 ///
ParsePatternFragments(bool OutFrags)2980 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
2981 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
2982
2983 // First step, parse all of the fragments.
2984 for (Record *Frag : Fragments) {
2985 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2986 continue;
2987
2988 ListInit *LI = Frag->getValueAsListInit("Fragments");
2989 TreePattern *P =
2990 (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
2991 Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
2992 *this)).get();
2993
2994 // Validate the argument list, converting it to set, to discard duplicates.
2995 std::vector<std::string> &Args = P->getArgList();
2996 // Copy the args so we can take StringRefs to them.
2997 auto ArgsCopy = Args;
2998 SmallDenseSet<StringRef, 4> OperandsSet;
2999 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3000
3001 if (OperandsSet.count(""))
3002 P->error("Cannot have unnamed 'node' values in pattern fragment!");
3003
3004 // Parse the operands list.
3005 DagInit *OpsList = Frag->getValueAsDag("Operands");
3006 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3007 // Special cases: ops == outs == ins. Different names are used to
3008 // improve readability.
3009 if (!OpsOp ||
3010 (OpsOp->getDef()->getName() != "ops" &&
3011 OpsOp->getDef()->getName() != "outs" &&
3012 OpsOp->getDef()->getName() != "ins"))
3013 P->error("Operands list should start with '(ops ... '!");
3014
3015 // Copy over the arguments.
3016 Args.clear();
3017 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3018 if (!isa<DefInit>(OpsList->getArg(j)) ||
3019 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3020 P->error("Operands list should all be 'node' values.");
3021 if (!OpsList->getArgName(j))
3022 P->error("Operands list should have names for each operand!");
3023 StringRef ArgNameStr = OpsList->getArgNameStr(j);
3024 if (!OperandsSet.count(ArgNameStr))
3025 P->error("'" + ArgNameStr +
3026 "' does not occur in pattern or was multiply specified!");
3027 OperandsSet.erase(ArgNameStr);
3028 Args.push_back(ArgNameStr);
3029 }
3030
3031 if (!OperandsSet.empty())
3032 P->error("Operands list does not contain an entry for operand '" +
3033 *OperandsSet.begin() + "'!");
3034
3035 // If there is a code init for this fragment, keep track of the fact that
3036 // this fragment uses it.
3037 TreePredicateFn PredFn(P);
3038 if (!PredFn.isAlwaysTrue())
3039 for (auto T : P->getTrees())
3040 T->addPredicateFn(PredFn);
3041
3042 // If there is a node transformation corresponding to this, keep track of
3043 // it.
3044 Record *Transform = Frag->getValueAsDef("OperandTransform");
3045 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
3046 for (auto T : P->getTrees())
3047 T->setTransformFn(Transform);
3048 }
3049
3050 // Now that we've parsed all of the tree fragments, do a closure on them so
3051 // that there are not references to PatFrags left inside of them.
3052 for (Record *Frag : Fragments) {
3053 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3054 continue;
3055
3056 TreePattern &ThePat = *PatternFragments[Frag];
3057 ThePat.InlinePatternFragments();
3058
3059 // Infer as many types as possible. Don't worry about it if we don't infer
3060 // all of them, some may depend on the inputs of the pattern. Also, don't
3061 // validate type sets; validation may cause spurious failures e.g. if a
3062 // fragment needs floating-point types but the current target does not have
3063 // any (this is only an error if that fragment is ever used!).
3064 {
3065 TypeInfer::SuppressValidation SV(ThePat.getInfer());
3066 ThePat.InferAllTypes();
3067 ThePat.resetError();
3068 }
3069
3070 // If debugging, print out the pattern fragment result.
3071 LLVM_DEBUG(ThePat.dump());
3072 }
3073 }
3074
ParseDefaultOperands()3075 void CodeGenDAGPatterns::ParseDefaultOperands() {
3076 std::vector<Record*> DefaultOps;
3077 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3078
3079 // Find some SDNode.
3080 assert(!SDNodes.empty() && "No SDNodes parsed?");
3081 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3082
3083 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3084 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3085
3086 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3087 // SomeSDnode so that we can parse this.
3088 std::vector<std::pair<Init*, StringInit*> > Ops;
3089 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3090 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3091 DefaultInfo->getArgName(op)));
3092 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3093
3094 // Create a TreePattern to parse this.
3095 TreePattern P(DefaultOps[i], DI, false, *this);
3096 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3097
3098 // Copy the operands over into a DAGDefaultOperand.
3099 DAGDefaultOperand DefaultOpInfo;
3100
3101 const TreePatternNodePtr &T = P.getTree(0);
3102 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3103 TreePatternNodePtr TPN = T->getChildShared(op);
3104 while (TPN->ApplyTypeConstraints(P, false))
3105 /* Resolve all types */;
3106
3107 if (TPN->ContainsUnresolvedType(P)) {
3108 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3109 DefaultOps[i]->getName() +
3110 "' doesn't have a concrete type!");
3111 }
3112 DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3113 }
3114
3115 // Insert it into the DefaultOperands map so we can find it later.
3116 DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3117 }
3118 }
3119
3120 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3121 /// instruction input. Return true if this is a real use.
HandleUse(TreePattern & I,TreePatternNodePtr Pat,std::map<std::string,TreePatternNodePtr> & InstInputs)3122 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3123 std::map<std::string, TreePatternNodePtr> &InstInputs) {
3124 // No name -> not interesting.
3125 if (Pat->getName().empty()) {
3126 if (Pat->isLeaf()) {
3127 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3128 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3129 DI->getDef()->isSubClassOf("RegisterOperand")))
3130 I.error("Input " + DI->getDef()->getName() + " must be named!");
3131 }
3132 return false;
3133 }
3134
3135 Record *Rec;
3136 if (Pat->isLeaf()) {
3137 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3138 if (!DI)
3139 I.error("Input $" + Pat->getName() + " must be an identifier!");
3140 Rec = DI->getDef();
3141 } else {
3142 Rec = Pat->getOperator();
3143 }
3144
3145 // SRCVALUE nodes are ignored.
3146 if (Rec->getName() == "srcvalue")
3147 return false;
3148
3149 TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3150 if (!Slot) {
3151 Slot = Pat;
3152 return true;
3153 }
3154 Record *SlotRec;
3155 if (Slot->isLeaf()) {
3156 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3157 } else {
3158 assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3159 SlotRec = Slot->getOperator();
3160 }
3161
3162 // Ensure that the inputs agree if we've already seen this input.
3163 if (Rec != SlotRec)
3164 I.error("All $" + Pat->getName() + " inputs must agree with each other");
3165 // Ensure that the types can agree as well.
3166 Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3167 Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3168 if (Slot->getExtTypes() != Pat->getExtTypes())
3169 I.error("All $" + Pat->getName() + " inputs must agree with each other");
3170 return true;
3171 }
3172
3173 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3174 /// part of "I", the instruction), computing the set of inputs and outputs of
3175 /// the pattern. Report errors if we see anything naughty.
FindPatternInputsAndOutputs(TreePattern & I,TreePatternNodePtr Pat,std::map<std::string,TreePatternNodePtr> & InstInputs,std::map<std::string,TreePatternNodePtr> & InstResults,std::vector<Record * > & InstImpResults)3176 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3177 TreePattern &I, TreePatternNodePtr Pat,
3178 std::map<std::string, TreePatternNodePtr> &InstInputs,
3179 std::map<std::string, TreePatternNodePtr> &InstResults,
3180 std::vector<Record *> &InstImpResults) {
3181
3182 // The instruction pattern still has unresolved fragments. For *named*
3183 // nodes we must resolve those here. This may not result in multiple
3184 // alternatives.
3185 if (!Pat->getName().empty()) {
3186 TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3187 SrcPattern.InlinePatternFragments();
3188 SrcPattern.InferAllTypes();
3189 Pat = SrcPattern.getOnlyTree();
3190 }
3191
3192 if (Pat->isLeaf()) {
3193 bool isUse = HandleUse(I, Pat, InstInputs);
3194 if (!isUse && Pat->getTransformFn())
3195 I.error("Cannot specify a transform function for a non-input value!");
3196 return;
3197 }
3198
3199 if (Pat->getOperator()->getName() == "implicit") {
3200 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3201 TreePatternNode *Dest = Pat->getChild(i);
3202 if (!Dest->isLeaf())
3203 I.error("implicitly defined value should be a register!");
3204
3205 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3206 if (!Val || !Val->getDef()->isSubClassOf("Register"))
3207 I.error("implicitly defined value should be a register!");
3208 InstImpResults.push_back(Val->getDef());
3209 }
3210 return;
3211 }
3212
3213 if (Pat->getOperator()->getName() != "set") {
3214 // If this is not a set, verify that the children nodes are not void typed,
3215 // and recurse.
3216 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3217 if (Pat->getChild(i)->getNumTypes() == 0)
3218 I.error("Cannot have void nodes inside of patterns!");
3219 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3220 InstResults, InstImpResults);
3221 }
3222
3223 // If this is a non-leaf node with no children, treat it basically as if
3224 // it were a leaf. This handles nodes like (imm).
3225 bool isUse = HandleUse(I, Pat, InstInputs);
3226
3227 if (!isUse && Pat->getTransformFn())
3228 I.error("Cannot specify a transform function for a non-input value!");
3229 return;
3230 }
3231
3232 // Otherwise, this is a set, validate and collect instruction results.
3233 if (Pat->getNumChildren() == 0)
3234 I.error("set requires operands!");
3235
3236 if (Pat->getTransformFn())
3237 I.error("Cannot specify a transform function on a set node!");
3238
3239 // Check the set destinations.
3240 unsigned NumDests = Pat->getNumChildren()-1;
3241 for (unsigned i = 0; i != NumDests; ++i) {
3242 TreePatternNodePtr Dest = Pat->getChildShared(i);
3243 // For set destinations we also must resolve fragments here.
3244 TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3245 DestPattern.InlinePatternFragments();
3246 DestPattern.InferAllTypes();
3247 Dest = DestPattern.getOnlyTree();
3248
3249 if (!Dest->isLeaf())
3250 I.error("set destination should be a register!");
3251
3252 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3253 if (!Val) {
3254 I.error("set destination should be a register!");
3255 continue;
3256 }
3257
3258 if (Val->getDef()->isSubClassOf("RegisterClass") ||
3259 Val->getDef()->isSubClassOf("ValueType") ||
3260 Val->getDef()->isSubClassOf("RegisterOperand") ||
3261 Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3262 if (Dest->getName().empty())
3263 I.error("set destination must have a name!");
3264 if (InstResults.count(Dest->getName()))
3265 I.error("cannot set '" + Dest->getName() + "' multiple times");
3266 InstResults[Dest->getName()] = Dest;
3267 } else if (Val->getDef()->isSubClassOf("Register")) {
3268 InstImpResults.push_back(Val->getDef());
3269 } else {
3270 I.error("set destination should be a register!");
3271 }
3272 }
3273
3274 // Verify and collect info from the computation.
3275 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3276 InstResults, InstImpResults);
3277 }
3278
3279 //===----------------------------------------------------------------------===//
3280 // Instruction Analysis
3281 //===----------------------------------------------------------------------===//
3282
3283 class InstAnalyzer {
3284 const CodeGenDAGPatterns &CDP;
3285 public:
3286 bool hasSideEffects;
3287 bool mayStore;
3288 bool mayLoad;
3289 bool isBitcast;
3290 bool isVariadic;
3291 bool hasChain;
3292
InstAnalyzer(const CodeGenDAGPatterns & cdp)3293 InstAnalyzer(const CodeGenDAGPatterns &cdp)
3294 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3295 isBitcast(false), isVariadic(false), hasChain(false) {}
3296
Analyze(const PatternToMatch & Pat)3297 void Analyze(const PatternToMatch &Pat) {
3298 const TreePatternNode *N = Pat.getSrcPattern();
3299 AnalyzeNode(N);
3300 // These properties are detected only on the root node.
3301 isBitcast = IsNodeBitcast(N);
3302 }
3303
3304 private:
IsNodeBitcast(const TreePatternNode * N) const3305 bool IsNodeBitcast(const TreePatternNode *N) const {
3306 if (hasSideEffects || mayLoad || mayStore || isVariadic)
3307 return false;
3308
3309 if (N->isLeaf())
3310 return false;
3311 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3312 return false;
3313
3314 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3315 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3316 return false;
3317 return OpInfo.getEnumName() == "ISD::BITCAST";
3318 }
3319
3320 public:
AnalyzeNode(const TreePatternNode * N)3321 void AnalyzeNode(const TreePatternNode *N) {
3322 if (N->isLeaf()) {
3323 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3324 Record *LeafRec = DI->getDef();
3325 // Handle ComplexPattern leaves.
3326 if (LeafRec->isSubClassOf("ComplexPattern")) {
3327 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3328 if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3329 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3330 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3331 }
3332 }
3333 return;
3334 }
3335
3336 // Analyze children.
3337 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3338 AnalyzeNode(N->getChild(i));
3339
3340 // Notice properties of the node.
3341 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3342 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3343 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3344 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3345 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3346
3347 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3348 // If this is an intrinsic, analyze it.
3349 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3350 mayLoad = true;// These may load memory.
3351
3352 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3353 mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3354
3355 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3356 IntInfo->hasSideEffects)
3357 // ReadWriteMem intrinsics can have other strange effects.
3358 hasSideEffects = true;
3359 }
3360 }
3361
3362 };
3363
InferFromPattern(CodeGenInstruction & InstInfo,const InstAnalyzer & PatInfo,Record * PatDef)3364 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3365 const InstAnalyzer &PatInfo,
3366 Record *PatDef) {
3367 bool Error = false;
3368
3369 // Remember where InstInfo got its flags.
3370 if (InstInfo.hasUndefFlags())
3371 InstInfo.InferredFrom = PatDef;
3372
3373 // Check explicitly set flags for consistency.
3374 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3375 !InstInfo.hasSideEffects_Unset) {
3376 // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3377 // the pattern has no side effects. That could be useful for div/rem
3378 // instructions that may trap.
3379 if (!InstInfo.hasSideEffects) {
3380 Error = true;
3381 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3382 Twine(InstInfo.hasSideEffects));
3383 }
3384 }
3385
3386 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3387 Error = true;
3388 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3389 Twine(InstInfo.mayStore));
3390 }
3391
3392 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3393 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3394 // Some targets translate immediates to loads.
3395 if (!InstInfo.mayLoad) {
3396 Error = true;
3397 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3398 Twine(InstInfo.mayLoad));
3399 }
3400 }
3401
3402 // Transfer inferred flags.
3403 InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3404 InstInfo.mayStore |= PatInfo.mayStore;
3405 InstInfo.mayLoad |= PatInfo.mayLoad;
3406
3407 // These flags are silently added without any verification.
3408 // FIXME: To match historical behavior of TableGen, for now add those flags
3409 // only when we're inferring from the primary instruction pattern.
3410 if (PatDef->isSubClassOf("Instruction")) {
3411 InstInfo.isBitcast |= PatInfo.isBitcast;
3412 InstInfo.hasChain |= PatInfo.hasChain;
3413 InstInfo.hasChain_Inferred = true;
3414 }
3415
3416 // Don't infer isVariadic. This flag means something different on SDNodes and
3417 // instructions. For example, a CALL SDNode is variadic because it has the
3418 // call arguments as operands, but a CALL instruction is not variadic - it
3419 // has argument registers as implicit, not explicit uses.
3420
3421 return Error;
3422 }
3423
3424 /// hasNullFragReference - Return true if the DAG has any reference to the
3425 /// null_frag operator.
hasNullFragReference(DagInit * DI)3426 static bool hasNullFragReference(DagInit *DI) {
3427 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3428 if (!OpDef) return false;
3429 Record *Operator = OpDef->getDef();
3430
3431 // If this is the null fragment, return true.
3432 if (Operator->getName() == "null_frag") return true;
3433 // If any of the arguments reference the null fragment, return true.
3434 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3435 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3436 if (Arg && hasNullFragReference(Arg))
3437 return true;
3438 }
3439
3440 return false;
3441 }
3442
3443 /// hasNullFragReference - Return true if any DAG in the list references
3444 /// the null_frag operator.
hasNullFragReference(ListInit * LI)3445 static bool hasNullFragReference(ListInit *LI) {
3446 for (Init *I : LI->getValues()) {
3447 DagInit *DI = dyn_cast<DagInit>(I);
3448 assert(DI && "non-dag in an instruction Pattern list?!");
3449 if (hasNullFragReference(DI))
3450 return true;
3451 }
3452 return false;
3453 }
3454
3455 /// Get all the instructions in a tree.
3456 static void
getInstructionsInTree(TreePatternNode * Tree,SmallVectorImpl<Record * > & Instrs)3457 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3458 if (Tree->isLeaf())
3459 return;
3460 if (Tree->getOperator()->isSubClassOf("Instruction"))
3461 Instrs.push_back(Tree->getOperator());
3462 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3463 getInstructionsInTree(Tree->getChild(i), Instrs);
3464 }
3465
3466 /// Check the class of a pattern leaf node against the instruction operand it
3467 /// represents.
checkOperandClass(CGIOperandList::OperandInfo & OI,Record * Leaf)3468 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3469 Record *Leaf) {
3470 if (OI.Rec == Leaf)
3471 return true;
3472
3473 // Allow direct value types to be used in instruction set patterns.
3474 // The type will be checked later.
3475 if (Leaf->isSubClassOf("ValueType"))
3476 return true;
3477
3478 // Patterns can also be ComplexPattern instances.
3479 if (Leaf->isSubClassOf("ComplexPattern"))
3480 return true;
3481
3482 return false;
3483 }
3484
parseInstructionPattern(CodeGenInstruction & CGI,ListInit * Pat,DAGInstMap & DAGInsts)3485 void CodeGenDAGPatterns::parseInstructionPattern(
3486 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3487
3488 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3489
3490 // Parse the instruction.
3491 TreePattern I(CGI.TheDef, Pat, true, *this);
3492
3493 // InstInputs - Keep track of all of the inputs of the instruction, along
3494 // with the record they are declared as.
3495 std::map<std::string, TreePatternNodePtr> InstInputs;
3496
3497 // InstResults - Keep track of all the virtual registers that are 'set'
3498 // in the instruction, including what reg class they are.
3499 std::map<std::string, TreePatternNodePtr> InstResults;
3500
3501 std::vector<Record*> InstImpResults;
3502
3503 // Verify that the top-level forms in the instruction are of void type, and
3504 // fill in the InstResults map.
3505 SmallString<32> TypesString;
3506 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3507 TypesString.clear();
3508 TreePatternNodePtr Pat = I.getTree(j);
3509 if (Pat->getNumTypes() != 0) {
3510 raw_svector_ostream OS(TypesString);
3511 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3512 if (k > 0)
3513 OS << ", ";
3514 Pat->getExtType(k).writeToStream(OS);
3515 }
3516 I.error("Top-level forms in instruction pattern should have"
3517 " void types, has types " +
3518 OS.str());
3519 }
3520
3521 // Find inputs and outputs, and verify the structure of the uses/defs.
3522 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3523 InstImpResults);
3524 }
3525
3526 // Now that we have inputs and outputs of the pattern, inspect the operands
3527 // list for the instruction. This determines the order that operands are
3528 // added to the machine instruction the node corresponds to.
3529 unsigned NumResults = InstResults.size();
3530
3531 // Parse the operands list from the (ops) list, validating it.
3532 assert(I.getArgList().empty() && "Args list should still be empty here!");
3533
3534 // Check that all of the results occur first in the list.
3535 std::vector<Record*> Results;
3536 SmallVector<TreePatternNodePtr, 2> ResNodes;
3537 for (unsigned i = 0; i != NumResults; ++i) {
3538 if (i == CGI.Operands.size())
3539 I.error("'" + InstResults.begin()->first +
3540 "' set but does not appear in operand list!");
3541 const std::string &OpName = CGI.Operands[i].Name;
3542
3543 // Check that it exists in InstResults.
3544 TreePatternNodePtr RNode = InstResults[OpName];
3545 if (!RNode)
3546 I.error("Operand $" + OpName + " does not exist in operand list!");
3547
3548
3549 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3550 ResNodes.push_back(std::move(RNode));
3551 if (!R)
3552 I.error("Operand $" + OpName + " should be a set destination: all "
3553 "outputs must occur before inputs in operand list!");
3554
3555 if (!checkOperandClass(CGI.Operands[i], R))
3556 I.error("Operand $" + OpName + " class mismatch!");
3557
3558 // Remember the return type.
3559 Results.push_back(CGI.Operands[i].Rec);
3560
3561 // Okay, this one checks out.
3562 InstResults.erase(OpName);
3563 }
3564
3565 // Loop over the inputs next.
3566 std::vector<TreePatternNodePtr> ResultNodeOperands;
3567 std::vector<Record*> Operands;
3568 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3569 CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3570 const std::string &OpName = Op.Name;
3571 if (OpName.empty())
3572 I.error("Operand #" + Twine(i) + " in operands list has no name!");
3573
3574 if (!InstInputs.count(OpName)) {
3575 // If this is an operand with a DefaultOps set filled in, we can ignore
3576 // this. When we codegen it, we will do so as always executed.
3577 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3578 // Does it have a non-empty DefaultOps field? If so, ignore this
3579 // operand.
3580 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3581 continue;
3582 }
3583 I.error("Operand $" + OpName +
3584 " does not appear in the instruction pattern");
3585 }
3586 TreePatternNodePtr InVal = InstInputs[OpName];
3587 InstInputs.erase(OpName); // It occurred, remove from map.
3588
3589 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3590 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3591 if (!checkOperandClass(Op, InRec))
3592 I.error("Operand $" + OpName + "'s register class disagrees"
3593 " between the operand and pattern");
3594 }
3595 Operands.push_back(Op.Rec);
3596
3597 // Construct the result for the dest-pattern operand list.
3598 TreePatternNodePtr OpNode = InVal->clone();
3599
3600 // No predicate is useful on the result.
3601 OpNode->clearPredicateFns();
3602
3603 // Promote the xform function to be an explicit node if set.
3604 if (Record *Xform = OpNode->getTransformFn()) {
3605 OpNode->setTransformFn(nullptr);
3606 std::vector<TreePatternNodePtr> Children;
3607 Children.push_back(OpNode);
3608 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3609 OpNode->getNumTypes());
3610 }
3611
3612 ResultNodeOperands.push_back(std::move(OpNode));
3613 }
3614
3615 if (!InstInputs.empty())
3616 I.error("Input operand $" + InstInputs.begin()->first +
3617 " occurs in pattern but not in operands list!");
3618
3619 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3620 I.getRecord(), std::move(ResultNodeOperands),
3621 GetNumNodeResults(I.getRecord(), *this));
3622 // Copy fully inferred output node types to instruction result pattern.
3623 for (unsigned i = 0; i != NumResults; ++i) {
3624 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3625 ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3626 }
3627
3628 // FIXME: Assume only the first tree is the pattern. The others are clobber
3629 // nodes.
3630 TreePatternNodePtr Pattern = I.getTree(0);
3631 TreePatternNodePtr SrcPattern;
3632 if (Pattern->getOperator()->getName() == "set") {
3633 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3634 } else{
3635 // Not a set (store or something?)
3636 SrcPattern = Pattern;
3637 }
3638
3639 // Create and insert the instruction.
3640 // FIXME: InstImpResults should not be part of DAGInstruction.
3641 Record *R = I.getRecord();
3642 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3643 std::forward_as_tuple(Results, Operands, InstImpResults,
3644 SrcPattern, ResultPattern));
3645
3646 LLVM_DEBUG(I.dump());
3647 }
3648
3649 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3650 /// any fragments involved. This populates the Instructions list with fully
3651 /// resolved instructions.
ParseInstructions()3652 void CodeGenDAGPatterns::ParseInstructions() {
3653 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3654
3655 for (Record *Instr : Instrs) {
3656 ListInit *LI = nullptr;
3657
3658 if (isa<ListInit>(Instr->getValueInit("Pattern")))
3659 LI = Instr->getValueAsListInit("Pattern");
3660
3661 // If there is no pattern, only collect minimal information about the
3662 // instruction for its operand list. We have to assume that there is one
3663 // result, as we have no detailed info. A pattern which references the
3664 // null_frag operator is as-if no pattern were specified. Normally this
3665 // is from a multiclass expansion w/ a SDPatternOperator passed in as
3666 // null_frag.
3667 if (!LI || LI->empty() || hasNullFragReference(LI)) {
3668 std::vector<Record*> Results;
3669 std::vector<Record*> Operands;
3670
3671 CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3672
3673 if (InstInfo.Operands.size() != 0) {
3674 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3675 Results.push_back(InstInfo.Operands[j].Rec);
3676
3677 // The rest are inputs.
3678 for (unsigned j = InstInfo.Operands.NumDefs,
3679 e = InstInfo.Operands.size(); j < e; ++j)
3680 Operands.push_back(InstInfo.Operands[j].Rec);
3681 }
3682
3683 // Create and insert the instruction.
3684 std::vector<Record*> ImpResults;
3685 Instructions.insert(std::make_pair(Instr,
3686 DAGInstruction(Results, Operands, ImpResults)));
3687 continue; // no pattern.
3688 }
3689
3690 CodeGenInstruction &CGI = Target.getInstruction(Instr);
3691 parseInstructionPattern(CGI, LI, Instructions);
3692 }
3693
3694 // If we can, convert the instructions to be patterns that are matched!
3695 for (auto &Entry : Instructions) {
3696 Record *Instr = Entry.first;
3697 DAGInstruction &TheInst = Entry.second;
3698 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3699 TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3700
3701 if (SrcPattern && ResultPattern) {
3702 TreePattern Pattern(Instr, SrcPattern, true, *this);
3703 TreePattern Result(Instr, ResultPattern, false, *this);
3704 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3705 }
3706 }
3707 }
3708
3709 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3710
FindNames(TreePatternNode * P,std::map<std::string,NameRecord> & Names,TreePattern * PatternTop)3711 static void FindNames(TreePatternNode *P,
3712 std::map<std::string, NameRecord> &Names,
3713 TreePattern *PatternTop) {
3714 if (!P->getName().empty()) {
3715 NameRecord &Rec = Names[P->getName()];
3716 // If this is the first instance of the name, remember the node.
3717 if (Rec.second++ == 0)
3718 Rec.first = P;
3719 else if (Rec.first->getExtTypes() != P->getExtTypes())
3720 PatternTop->error("repetition of value: $" + P->getName() +
3721 " where different uses have different types!");
3722 }
3723
3724 if (!P->isLeaf()) {
3725 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3726 FindNames(P->getChild(i), Names, PatternTop);
3727 }
3728 }
3729
makePredList(ListInit * L)3730 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3731 std::vector<Predicate> Preds;
3732 for (Init *I : L->getValues()) {
3733 if (DefInit *Pred = dyn_cast<DefInit>(I))
3734 Preds.push_back(Pred->getDef());
3735 else
3736 llvm_unreachable("Non-def on the list");
3737 }
3738
3739 // Sort so that different orders get canonicalized to the same string.
3740 llvm::sort(Preds.begin(), Preds.end());
3741 return Preds;
3742 }
3743
AddPatternToMatch(TreePattern * Pattern,PatternToMatch && PTM)3744 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3745 PatternToMatch &&PTM) {
3746 // Do some sanity checking on the pattern we're about to match.
3747 std::string Reason;
3748 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3749 PrintWarning(Pattern->getRecord()->getLoc(),
3750 Twine("Pattern can never match: ") + Reason);
3751 return;
3752 }
3753
3754 // If the source pattern's root is a complex pattern, that complex pattern
3755 // must specify the nodes it can potentially match.
3756 if (const ComplexPattern *CP =
3757 PTM.getSrcPattern()->getComplexPatternInfo(*this))
3758 if (CP->getRootNodes().empty())
3759 Pattern->error("ComplexPattern at root must specify list of opcodes it"
3760 " could match");
3761
3762
3763 // Find all of the named values in the input and output, ensure they have the
3764 // same type.
3765 std::map<std::string, NameRecord> SrcNames, DstNames;
3766 FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3767 FindNames(PTM.getDstPattern(), DstNames, Pattern);
3768
3769 // Scan all of the named values in the destination pattern, rejecting them if
3770 // they don't exist in the input pattern.
3771 for (const auto &Entry : DstNames) {
3772 if (SrcNames[Entry.first].first == nullptr)
3773 Pattern->error("Pattern has input without matching name in output: $" +
3774 Entry.first);
3775 }
3776
3777 // Scan all of the named values in the source pattern, rejecting them if the
3778 // name isn't used in the dest, and isn't used to tie two values together.
3779 for (const auto &Entry : SrcNames)
3780 if (DstNames[Entry.first].first == nullptr &&
3781 SrcNames[Entry.first].second == 1)
3782 Pattern->error("Pattern has dead named input: $" + Entry.first);
3783
3784 PatternsToMatch.push_back(PTM);
3785 }
3786
InferInstructionFlags()3787 void CodeGenDAGPatterns::InferInstructionFlags() {
3788 ArrayRef<const CodeGenInstruction*> Instructions =
3789 Target.getInstructionsByEnumValue();
3790
3791 unsigned Errors = 0;
3792
3793 // Try to infer flags from all patterns in PatternToMatch. These include
3794 // both the primary instruction patterns (which always come first) and
3795 // patterns defined outside the instruction.
3796 for (const PatternToMatch &PTM : ptms()) {
3797 // We can only infer from single-instruction patterns, otherwise we won't
3798 // know which instruction should get the flags.
3799 SmallVector<Record*, 8> PatInstrs;
3800 getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3801 if (PatInstrs.size() != 1)
3802 continue;
3803
3804 // Get the single instruction.
3805 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3806
3807 // Only infer properties from the first pattern. We'll verify the others.
3808 if (InstInfo.InferredFrom)
3809 continue;
3810
3811 InstAnalyzer PatInfo(*this);
3812 PatInfo.Analyze(PTM);
3813 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3814 }
3815
3816 if (Errors)
3817 PrintFatalError("pattern conflicts");
3818
3819 // If requested by the target, guess any undefined properties.
3820 if (Target.guessInstructionProperties()) {
3821 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3822 CodeGenInstruction *InstInfo =
3823 const_cast<CodeGenInstruction *>(Instructions[i]);
3824 if (InstInfo->InferredFrom)
3825 continue;
3826 // The mayLoad and mayStore flags default to false.
3827 // Conservatively assume hasSideEffects if it wasn't explicit.
3828 if (InstInfo->hasSideEffects_Unset)
3829 InstInfo->hasSideEffects = true;
3830 }
3831 return;
3832 }
3833
3834 // Complain about any flags that are still undefined.
3835 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3836 CodeGenInstruction *InstInfo =
3837 const_cast<CodeGenInstruction *>(Instructions[i]);
3838 if (InstInfo->InferredFrom)
3839 continue;
3840 if (InstInfo->hasSideEffects_Unset)
3841 PrintError(InstInfo->TheDef->getLoc(),
3842 "Can't infer hasSideEffects from patterns");
3843 if (InstInfo->mayStore_Unset)
3844 PrintError(InstInfo->TheDef->getLoc(),
3845 "Can't infer mayStore from patterns");
3846 if (InstInfo->mayLoad_Unset)
3847 PrintError(InstInfo->TheDef->getLoc(),
3848 "Can't infer mayLoad from patterns");
3849 }
3850 }
3851
3852
3853 /// Verify instruction flags against pattern node properties.
VerifyInstructionFlags()3854 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3855 unsigned Errors = 0;
3856 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3857 const PatternToMatch &PTM = *I;
3858 SmallVector<Record*, 8> Instrs;
3859 getInstructionsInTree(PTM.getDstPattern(), Instrs);
3860 if (Instrs.empty())
3861 continue;
3862
3863 // Count the number of instructions with each flag set.
3864 unsigned NumSideEffects = 0;
3865 unsigned NumStores = 0;
3866 unsigned NumLoads = 0;
3867 for (const Record *Instr : Instrs) {
3868 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3869 NumSideEffects += InstInfo.hasSideEffects;
3870 NumStores += InstInfo.mayStore;
3871 NumLoads += InstInfo.mayLoad;
3872 }
3873
3874 // Analyze the source pattern.
3875 InstAnalyzer PatInfo(*this);
3876 PatInfo.Analyze(PTM);
3877
3878 // Collect error messages.
3879 SmallVector<std::string, 4> Msgs;
3880
3881 // Check for missing flags in the output.
3882 // Permit extra flags for now at least.
3883 if (PatInfo.hasSideEffects && !NumSideEffects)
3884 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3885
3886 // Don't verify store flags on instructions with side effects. At least for
3887 // intrinsics, side effects implies mayStore.
3888 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3889 Msgs.push_back("pattern may store, but mayStore isn't set");
3890
3891 // Similarly, mayStore implies mayLoad on intrinsics.
3892 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3893 Msgs.push_back("pattern may load, but mayLoad isn't set");
3894
3895 // Print error messages.
3896 if (Msgs.empty())
3897 continue;
3898 ++Errors;
3899
3900 for (const std::string &Msg : Msgs)
3901 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3902 (Instrs.size() == 1 ?
3903 "instruction" : "output instructions"));
3904 // Provide the location of the relevant instruction definitions.
3905 for (const Record *Instr : Instrs) {
3906 if (Instr != PTM.getSrcRecord())
3907 PrintError(Instr->getLoc(), "defined here");
3908 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3909 if (InstInfo.InferredFrom &&
3910 InstInfo.InferredFrom != InstInfo.TheDef &&
3911 InstInfo.InferredFrom != PTM.getSrcRecord())
3912 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3913 }
3914 }
3915 if (Errors)
3916 PrintFatalError("Errors in DAG patterns");
3917 }
3918
3919 /// Given a pattern result with an unresolved type, see if we can find one
3920 /// instruction with an unresolved result type. Force this result type to an
3921 /// arbitrary element if it's possible types to converge results.
ForceArbitraryInstResultType(TreePatternNode * N,TreePattern & TP)3922 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3923 if (N->isLeaf())
3924 return false;
3925
3926 // Analyze children.
3927 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3928 if (ForceArbitraryInstResultType(N->getChild(i), TP))
3929 return true;
3930
3931 if (!N->getOperator()->isSubClassOf("Instruction"))
3932 return false;
3933
3934 // If this type is already concrete or completely unknown we can't do
3935 // anything.
3936 TypeInfer &TI = TP.getInfer();
3937 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3938 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
3939 continue;
3940
3941 // Otherwise, force its type to an arbitrary choice.
3942 if (TI.forceArbitrary(N->getExtType(i)))
3943 return true;
3944 }
3945
3946 return false;
3947 }
3948
3949 // Promote xform function to be an explicit node wherever set.
PromoteXForms(TreePatternNodePtr N)3950 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
3951 if (Record *Xform = N->getTransformFn()) {
3952 N->setTransformFn(nullptr);
3953 std::vector<TreePatternNodePtr> Children;
3954 Children.push_back(PromoteXForms(N));
3955 return std::make_shared<TreePatternNode>(Xform, std::move(Children),
3956 N->getNumTypes());
3957 }
3958
3959 if (!N->isLeaf())
3960 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3961 TreePatternNodePtr Child = N->getChildShared(i);
3962 N->setChild(i, PromoteXForms(Child));
3963 }
3964 return N;
3965 }
3966
ParseOnePattern(Record * TheDef,TreePattern & Pattern,TreePattern & Result,const std::vector<Record * > & InstImpResults)3967 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
3968 TreePattern &Pattern, TreePattern &Result,
3969 const std::vector<Record *> &InstImpResults) {
3970
3971 // Inline pattern fragments and expand multiple alternatives.
3972 Pattern.InlinePatternFragments();
3973 Result.InlinePatternFragments();
3974
3975 if (Result.getNumTrees() != 1)
3976 Result.error("Cannot use multi-alternative fragments in result pattern!");
3977
3978 // Infer types.
3979 bool IterateInference;
3980 bool InferredAllPatternTypes, InferredAllResultTypes;
3981 do {
3982 // Infer as many types as possible. If we cannot infer all of them, we
3983 // can never do anything with this pattern: report it to the user.
3984 InferredAllPatternTypes =
3985 Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
3986
3987 // Infer as many types as possible. If we cannot infer all of them, we
3988 // can never do anything with this pattern: report it to the user.
3989 InferredAllResultTypes =
3990 Result.InferAllTypes(&Pattern.getNamedNodesMap());
3991
3992 IterateInference = false;
3993
3994 // Apply the type of the result to the source pattern. This helps us
3995 // resolve cases where the input type is known to be a pointer type (which
3996 // is considered resolved), but the result knows it needs to be 32- or
3997 // 64-bits. Infer the other way for good measure.
3998 for (auto T : Pattern.getTrees())
3999 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4000 T->getNumTypes());
4001 i != e; ++i) {
4002 IterateInference |= T->UpdateNodeType(
4003 i, Result.getOnlyTree()->getExtType(i), Result);
4004 IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4005 i, T->getExtType(i), Result);
4006 }
4007
4008 // If our iteration has converged and the input pattern's types are fully
4009 // resolved but the result pattern is not fully resolved, we may have a
4010 // situation where we have two instructions in the result pattern and
4011 // the instructions require a common register class, but don't care about
4012 // what actual MVT is used. This is actually a bug in our modelling:
4013 // output patterns should have register classes, not MVTs.
4014 //
4015 // In any case, to handle this, we just go through and disambiguate some
4016 // arbitrary types to the result pattern's nodes.
4017 if (!IterateInference && InferredAllPatternTypes &&
4018 !InferredAllResultTypes)
4019 IterateInference =
4020 ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4021 } while (IterateInference);
4022
4023 // Verify that we inferred enough types that we can do something with the
4024 // pattern and result. If these fire the user has to add type casts.
4025 if (!InferredAllPatternTypes)
4026 Pattern.error("Could not infer all types in pattern!");
4027 if (!InferredAllResultTypes) {
4028 Pattern.dump();
4029 Result.error("Could not infer all types in pattern result!");
4030 }
4031
4032 // Promote xform function to be an explicit node wherever set.
4033 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4034
4035 TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4036 Temp.InferAllTypes();
4037
4038 ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4039 int Complexity = TheDef->getValueAsInt("AddedComplexity");
4040
4041 if (PatternRewriter)
4042 PatternRewriter(&Pattern);
4043
4044 // A pattern may end up with an "impossible" type, i.e. a situation
4045 // where all types have been eliminated for some node in this pattern.
4046 // This could occur for intrinsics that only make sense for a specific
4047 // value type, and use a specific register class. If, for some mode,
4048 // that register class does not accept that type, the type inference
4049 // will lead to a contradiction, which is not an error however, but
4050 // a sign that this pattern will simply never match.
4051 if (Temp.getOnlyTree()->hasPossibleType())
4052 for (auto T : Pattern.getTrees())
4053 if (T->hasPossibleType())
4054 AddPatternToMatch(&Pattern,
4055 PatternToMatch(TheDef, makePredList(Preds),
4056 T, Temp.getOnlyTree(),
4057 InstImpResults, Complexity,
4058 TheDef->getID()));
4059 }
4060
ParsePatterns()4061 void CodeGenDAGPatterns::ParsePatterns() {
4062 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4063
4064 for (Record *CurPattern : Patterns) {
4065 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4066
4067 // If the pattern references the null_frag, there's nothing to do.
4068 if (hasNullFragReference(Tree))
4069 continue;
4070
4071 TreePattern Pattern(CurPattern, Tree, true, *this);
4072
4073 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4074 if (LI->empty()) continue; // no pattern.
4075
4076 // Parse the instruction.
4077 TreePattern Result(CurPattern, LI, false, *this);
4078
4079 if (Result.getNumTrees() != 1)
4080 Result.error("Cannot handle instructions producing instructions "
4081 "with temporaries yet!");
4082
4083 // Validate that the input pattern is correct.
4084 std::map<std::string, TreePatternNodePtr> InstInputs;
4085 std::map<std::string, TreePatternNodePtr> InstResults;
4086 std::vector<Record*> InstImpResults;
4087 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4088 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4089 InstResults, InstImpResults);
4090
4091 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4092 }
4093 }
4094
collectModes(std::set<unsigned> & Modes,const TreePatternNode * N)4095 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4096 for (const TypeSetByHwMode &VTS : N->getExtTypes())
4097 for (const auto &I : VTS)
4098 Modes.insert(I.first);
4099
4100 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4101 collectModes(Modes, N->getChild(i));
4102 }
4103
ExpandHwModeBasedTypes()4104 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4105 const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4106 std::map<unsigned,std::vector<Predicate>> ModeChecks;
4107 std::vector<PatternToMatch> Copy = PatternsToMatch;
4108 PatternsToMatch.clear();
4109
4110 auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4111 TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4112 TreePatternNodePtr NewDst = P.DstPattern->clone();
4113 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4114 return;
4115 }
4116
4117 std::vector<Predicate> Preds = P.Predicates;
4118 const std::vector<Predicate> &MC = ModeChecks[Mode];
4119 Preds.insert(Preds.end(), MC.begin(), MC.end());
4120 PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4121 std::move(NewDst), P.getDstRegs(),
4122 P.getAddedComplexity(), Record::getNewUID(),
4123 Mode);
4124 };
4125
4126 for (PatternToMatch &P : Copy) {
4127 TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4128 if (P.SrcPattern->hasProperTypeByHwMode())
4129 SrcP = P.SrcPattern;
4130 if (P.DstPattern->hasProperTypeByHwMode())
4131 DstP = P.DstPattern;
4132 if (!SrcP && !DstP) {
4133 PatternsToMatch.push_back(P);
4134 continue;
4135 }
4136
4137 std::set<unsigned> Modes;
4138 if (SrcP)
4139 collectModes(Modes, SrcP.get());
4140 if (DstP)
4141 collectModes(Modes, DstP.get());
4142
4143 // The predicate for the default mode needs to be constructed for each
4144 // pattern separately.
4145 // Since not all modes must be present in each pattern, if a mode m is
4146 // absent, then there is no point in constructing a check for m. If such
4147 // a check was created, it would be equivalent to checking the default
4148 // mode, except not all modes' predicates would be a part of the checking
4149 // code. The subsequently generated check for the default mode would then
4150 // have the exact same patterns, but a different predicate code. To avoid
4151 // duplicated patterns with different predicate checks, construct the
4152 // default check as a negation of all predicates that are actually present
4153 // in the source/destination patterns.
4154 std::vector<Predicate> DefaultPred;
4155
4156 for (unsigned M : Modes) {
4157 if (M == DefaultMode)
4158 continue;
4159 if (ModeChecks.find(M) != ModeChecks.end())
4160 continue;
4161
4162 // Fill the map entry for this mode.
4163 const HwMode &HM = CGH.getMode(M);
4164 ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4165
4166 // Add negations of the HM's predicates to the default predicate.
4167 DefaultPred.emplace_back(Predicate(HM.Features, false));
4168 }
4169
4170 for (unsigned M : Modes) {
4171 if (M == DefaultMode)
4172 continue;
4173 AppendPattern(P, M);
4174 }
4175
4176 bool HasDefault = Modes.count(DefaultMode);
4177 if (HasDefault)
4178 AppendPattern(P, DefaultMode);
4179 }
4180 }
4181
4182 /// Dependent variable map for CodeGenDAGPattern variant generation
4183 typedef StringMap<int> DepVarMap;
4184
FindDepVarsOf(TreePatternNode * N,DepVarMap & DepMap)4185 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4186 if (N->isLeaf()) {
4187 if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4188 DepMap[N->getName()]++;
4189 } else {
4190 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4191 FindDepVarsOf(N->getChild(i), DepMap);
4192 }
4193 }
4194
4195 /// Find dependent variables within child patterns
FindDepVars(TreePatternNode * N,MultipleUseVarSet & DepVars)4196 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4197 DepVarMap depcounts;
4198 FindDepVarsOf(N, depcounts);
4199 for (const auto &Pair : depcounts) {
4200 if (Pair.getValue() > 1)
4201 DepVars.insert(Pair.getKey());
4202 }
4203 }
4204
4205 #ifndef NDEBUG
4206 /// Dump the dependent variable set:
DumpDepVars(MultipleUseVarSet & DepVars)4207 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4208 if (DepVars.empty()) {
4209 LLVM_DEBUG(errs() << "<empty set>");
4210 } else {
4211 LLVM_DEBUG(errs() << "[ ");
4212 for (const auto &DepVar : DepVars) {
4213 LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4214 }
4215 LLVM_DEBUG(errs() << "]");
4216 }
4217 }
4218 #endif
4219
4220
4221 /// CombineChildVariants - Given a bunch of permutations of each child of the
4222 /// 'operator' node, put them together in all possible ways.
CombineChildVariants(TreePatternNodePtr Orig,const std::vector<std::vector<TreePatternNodePtr>> & ChildVariants,std::vector<TreePatternNodePtr> & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)4223 static void CombineChildVariants(
4224 TreePatternNodePtr Orig,
4225 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4226 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4227 const MultipleUseVarSet &DepVars) {
4228 // Make sure that each operand has at least one variant to choose from.
4229 for (const auto &Variants : ChildVariants)
4230 if (Variants.empty())
4231 return;
4232
4233 // The end result is an all-pairs construction of the resultant pattern.
4234 std::vector<unsigned> Idxs;
4235 Idxs.resize(ChildVariants.size());
4236 bool NotDone;
4237 do {
4238 #ifndef NDEBUG
4239 LLVM_DEBUG(if (!Idxs.empty()) {
4240 errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4241 for (unsigned Idx : Idxs) {
4242 errs() << Idx << " ";
4243 }
4244 errs() << "]\n";
4245 });
4246 #endif
4247 // Create the variant and add it to the output list.
4248 std::vector<TreePatternNodePtr> NewChildren;
4249 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4250 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4251 TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4252 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4253
4254 // Copy over properties.
4255 R->setName(Orig->getName());
4256 R->setPredicateFns(Orig->getPredicateFns());
4257 R->setTransformFn(Orig->getTransformFn());
4258 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4259 R->setType(i, Orig->getExtType(i));
4260
4261 // If this pattern cannot match, do not include it as a variant.
4262 std::string ErrString;
4263 // Scan to see if this pattern has already been emitted. We can get
4264 // duplication due to things like commuting:
4265 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4266 // which are the same pattern. Ignore the dups.
4267 if (R->canPatternMatch(ErrString, CDP) &&
4268 none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4269 return R->isIsomorphicTo(Variant.get(), DepVars);
4270 }))
4271 OutVariants.push_back(R);
4272
4273 // Increment indices to the next permutation by incrementing the
4274 // indices from last index backward, e.g., generate the sequence
4275 // [0, 0], [0, 1], [1, 0], [1, 1].
4276 int IdxsIdx;
4277 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4278 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4279 Idxs[IdxsIdx] = 0;
4280 else
4281 break;
4282 }
4283 NotDone = (IdxsIdx >= 0);
4284 } while (NotDone);
4285 }
4286
4287 /// CombineChildVariants - A helper function for binary operators.
4288 ///
CombineChildVariants(TreePatternNodePtr Orig,const std::vector<TreePatternNodePtr> & LHS,const std::vector<TreePatternNodePtr> & RHS,std::vector<TreePatternNodePtr> & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)4289 static void CombineChildVariants(TreePatternNodePtr Orig,
4290 const std::vector<TreePatternNodePtr> &LHS,
4291 const std::vector<TreePatternNodePtr> &RHS,
4292 std::vector<TreePatternNodePtr> &OutVariants,
4293 CodeGenDAGPatterns &CDP,
4294 const MultipleUseVarSet &DepVars) {
4295 std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4296 ChildVariants.push_back(LHS);
4297 ChildVariants.push_back(RHS);
4298 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4299 }
4300
4301 static void
GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,std::vector<TreePatternNodePtr> & Children)4302 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4303 std::vector<TreePatternNodePtr> &Children) {
4304 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4305 Record *Operator = N->getOperator();
4306
4307 // Only permit raw nodes.
4308 if (!N->getName().empty() || !N->getPredicateFns().empty() ||
4309 N->getTransformFn()) {
4310 Children.push_back(N);
4311 return;
4312 }
4313
4314 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4315 Children.push_back(N->getChildShared(0));
4316 else
4317 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4318
4319 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4320 Children.push_back(N->getChildShared(1));
4321 else
4322 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4323 }
4324
4325 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4326 /// the (potentially recursive) pattern by using algebraic laws.
4327 ///
GenerateVariantsOf(TreePatternNodePtr N,std::vector<TreePatternNodePtr> & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)4328 static void GenerateVariantsOf(TreePatternNodePtr N,
4329 std::vector<TreePatternNodePtr> &OutVariants,
4330 CodeGenDAGPatterns &CDP,
4331 const MultipleUseVarSet &DepVars) {
4332 // We cannot permute leaves or ComplexPattern uses.
4333 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4334 OutVariants.push_back(N);
4335 return;
4336 }
4337
4338 // Look up interesting info about the node.
4339 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4340
4341 // If this node is associative, re-associate.
4342 if (NodeInfo.hasProperty(SDNPAssociative)) {
4343 // Re-associate by pulling together all of the linked operators
4344 std::vector<TreePatternNodePtr> MaximalChildren;
4345 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4346
4347 // Only handle child sizes of 3. Otherwise we'll end up trying too many
4348 // permutations.
4349 if (MaximalChildren.size() == 3) {
4350 // Find the variants of all of our maximal children.
4351 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4352 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4353 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4354 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4355
4356 // There are only two ways we can permute the tree:
4357 // (A op B) op C and A op (B op C)
4358 // Within these forms, we can also permute A/B/C.
4359
4360 // Generate legal pair permutations of A/B/C.
4361 std::vector<TreePatternNodePtr> ABVariants;
4362 std::vector<TreePatternNodePtr> BAVariants;
4363 std::vector<TreePatternNodePtr> ACVariants;
4364 std::vector<TreePatternNodePtr> CAVariants;
4365 std::vector<TreePatternNodePtr> BCVariants;
4366 std::vector<TreePatternNodePtr> CBVariants;
4367 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4368 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4369 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4370 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4371 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4372 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4373
4374 // Combine those into the result: (x op x) op x
4375 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4376 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4377 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4378 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4379 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4380 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4381
4382 // Combine those into the result: x op (x op x)
4383 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4384 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4385 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4386 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4387 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4388 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4389 return;
4390 }
4391 }
4392
4393 // Compute permutations of all children.
4394 std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4395 ChildVariants.resize(N->getNumChildren());
4396 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4397 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4398
4399 // Build all permutations based on how the children were formed.
4400 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4401
4402 // If this node is commutative, consider the commuted order.
4403 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4404 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4405 assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4406 "Commutative but doesn't have 2 children!");
4407 // Don't count children which are actually register references.
4408 unsigned NC = 0;
4409 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4410 TreePatternNode *Child = N->getChild(i);
4411 if (Child->isLeaf())
4412 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4413 Record *RR = DI->getDef();
4414 if (RR->isSubClassOf("Register"))
4415 continue;
4416 }
4417 NC++;
4418 }
4419 // Consider the commuted order.
4420 if (isCommIntrinsic) {
4421 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4422 // operands are the commutative operands, and there might be more operands
4423 // after those.
4424 assert(NC >= 3 &&
4425 "Commutative intrinsic should have at least 3 children!");
4426 std::vector<std::vector<TreePatternNodePtr>> Variants;
4427 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4428 Variants.push_back(std::move(ChildVariants[2]));
4429 Variants.push_back(std::move(ChildVariants[1]));
4430 for (unsigned i = 3; i != NC; ++i)
4431 Variants.push_back(std::move(ChildVariants[i]));
4432 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4433 } else if (NC == N->getNumChildren()) {
4434 std::vector<std::vector<TreePatternNodePtr>> Variants;
4435 Variants.push_back(std::move(ChildVariants[1]));
4436 Variants.push_back(std::move(ChildVariants[0]));
4437 for (unsigned i = 2; i != NC; ++i)
4438 Variants.push_back(std::move(ChildVariants[i]));
4439 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4440 }
4441 }
4442 }
4443
4444
4445 // GenerateVariants - Generate variants. For example, commutative patterns can
4446 // match multiple ways. Add them to PatternsToMatch as well.
GenerateVariants()4447 void CodeGenDAGPatterns::GenerateVariants() {
4448 LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4449
4450 // Loop over all of the patterns we've collected, checking to see if we can
4451 // generate variants of the instruction, through the exploitation of
4452 // identities. This permits the target to provide aggressive matching without
4453 // the .td file having to contain tons of variants of instructions.
4454 //
4455 // Note that this loop adds new patterns to the PatternsToMatch list, but we
4456 // intentionally do not reconsider these. Any variants of added patterns have
4457 // already been added.
4458 //
4459 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4460 MultipleUseVarSet DepVars;
4461 std::vector<TreePatternNodePtr> Variants;
4462 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4463 LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4464 LLVM_DEBUG(DumpDepVars(DepVars));
4465 LLVM_DEBUG(errs() << "\n");
4466 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4467 *this, DepVars);
4468
4469 assert(!Variants.empty() && "Must create at least original variant!");
4470 if (Variants.size() == 1) // No additional variants for this pattern.
4471 continue;
4472
4473 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4474 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4475
4476 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4477 TreePatternNodePtr Variant = Variants[v];
4478
4479 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump();
4480 errs() << "\n");
4481
4482 // Scan to see if an instruction or explicit pattern already matches this.
4483 bool AlreadyExists = false;
4484 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4485 // Skip if the top level predicates do not match.
4486 if (PatternsToMatch[i].getPredicates() !=
4487 PatternsToMatch[p].getPredicates())
4488 continue;
4489 // Check to see if this variant already exists.
4490 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4491 DepVars)) {
4492 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
4493 AlreadyExists = true;
4494 break;
4495 }
4496 }
4497 // If we already have it, ignore the variant.
4498 if (AlreadyExists) continue;
4499
4500 // Otherwise, add it to the list of patterns we have.
4501 PatternsToMatch.push_back(PatternToMatch(
4502 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4503 Variant, PatternsToMatch[i].getDstPatternShared(),
4504 PatternsToMatch[i].getDstRegs(),
4505 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4506 }
4507
4508 LLVM_DEBUG(errs() << "\n");
4509 }
4510 }
4511