1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "interpreter.h"
18
19 #include <limits>
20 #include <string_view>
21
22 #include "common_dex_operations.h"
23 #include "common_throws.h"
24 #include "dex/dex_file_types.h"
25 #include "interpreter_common.h"
26 #include "interpreter_mterp_impl.h"
27 #include "interpreter_switch_impl.h"
28 #include "jit/jit.h"
29 #include "jit/jit_code_cache.h"
30 #include "jvalue-inl.h"
31 #include "mirror/string-inl.h"
32 #include "mterp/mterp.h"
33 #include "nativehelper/scoped_local_ref.h"
34 #include "scoped_thread_state_change-inl.h"
35 #include "shadow_frame-inl.h"
36 #include "stack.h"
37 #include "thread-inl.h"
38 #include "unstarted_runtime.h"
39
40 namespace art {
41 namespace interpreter {
42
ObjArg(uint32_t arg)43 ALWAYS_INLINE static ObjPtr<mirror::Object> ObjArg(uint32_t arg)
44 REQUIRES_SHARED(Locks::mutator_lock_) {
45 return reinterpret_cast<mirror::Object*>(arg);
46 }
47
InterpreterJni(Thread * self,ArtMethod * method,std::string_view shorty,ObjPtr<mirror::Object> receiver,uint32_t * args,JValue * result)48 static void InterpreterJni(Thread* self,
49 ArtMethod* method,
50 std::string_view shorty,
51 ObjPtr<mirror::Object> receiver,
52 uint32_t* args,
53 JValue* result)
54 REQUIRES_SHARED(Locks::mutator_lock_) {
55 // TODO: The following enters JNI code using a typedef-ed function rather than the JNI compiler,
56 // it should be removed and JNI compiled stubs used instead.
57 ScopedObjectAccessUnchecked soa(self);
58 if (method->IsStatic()) {
59 if (shorty == "L") {
60 using fntype = jobject(JNIEnv*, jclass);
61 fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
62 ScopedLocalRef<jclass> klass(soa.Env(),
63 soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
64 jobject jresult;
65 {
66 ScopedThreadStateChange tsc(self, kNative);
67 jresult = fn(soa.Env(), klass.get());
68 }
69 result->SetL(soa.Decode<mirror::Object>(jresult));
70 } else if (shorty == "V") {
71 using fntype = void(JNIEnv*, jclass);
72 fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
73 ScopedLocalRef<jclass> klass(soa.Env(),
74 soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
75 ScopedThreadStateChange tsc(self, kNative);
76 fn(soa.Env(), klass.get());
77 } else if (shorty == "Z") {
78 using fntype = jboolean(JNIEnv*, jclass);
79 fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
80 ScopedLocalRef<jclass> klass(soa.Env(),
81 soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
82 ScopedThreadStateChange tsc(self, kNative);
83 result->SetZ(fn(soa.Env(), klass.get()));
84 } else if (shorty == "BI") {
85 using fntype = jbyte(JNIEnv*, jclass, jint);
86 fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
87 ScopedLocalRef<jclass> klass(soa.Env(),
88 soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
89 ScopedThreadStateChange tsc(self, kNative);
90 result->SetB(fn(soa.Env(), klass.get(), args[0]));
91 } else if (shorty == "II") {
92 using fntype = jint(JNIEnv*, jclass, jint);
93 fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
94 ScopedLocalRef<jclass> klass(soa.Env(),
95 soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
96 ScopedThreadStateChange tsc(self, kNative);
97 result->SetI(fn(soa.Env(), klass.get(), args[0]));
98 } else if (shorty == "LL") {
99 using fntype = jobject(JNIEnv*, jclass, jobject);
100 fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
101 ScopedLocalRef<jclass> klass(soa.Env(),
102 soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
103 ScopedLocalRef<jobject> arg0(soa.Env(),
104 soa.AddLocalReference<jobject>(ObjArg(args[0])));
105 jobject jresult;
106 {
107 ScopedThreadStateChange tsc(self, kNative);
108 jresult = fn(soa.Env(), klass.get(), arg0.get());
109 }
110 result->SetL(soa.Decode<mirror::Object>(jresult));
111 } else if (shorty == "IIZ") {
112 using fntype = jint(JNIEnv*, jclass, jint, jboolean);
113 fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
114 ScopedLocalRef<jclass> klass(soa.Env(),
115 soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
116 ScopedThreadStateChange tsc(self, kNative);
117 result->SetI(fn(soa.Env(), klass.get(), args[0], args[1]));
118 } else if (shorty == "ILI") {
119 using fntype = jint(JNIEnv*, jclass, jobject, jint);
120 fntype* const fn = reinterpret_cast<fntype*>(const_cast<void*>(
121 method->GetEntryPointFromJni()));
122 ScopedLocalRef<jclass> klass(soa.Env(),
123 soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
124 ScopedLocalRef<jobject> arg0(soa.Env(),
125 soa.AddLocalReference<jobject>(ObjArg(args[0])));
126 ScopedThreadStateChange tsc(self, kNative);
127 result->SetI(fn(soa.Env(), klass.get(), arg0.get(), args[1]));
128 } else if (shorty == "SIZ") {
129 using fntype = jshort(JNIEnv*, jclass, jint, jboolean);
130 fntype* const fn =
131 reinterpret_cast<fntype*>(const_cast<void*>(method->GetEntryPointFromJni()));
132 ScopedLocalRef<jclass> klass(soa.Env(),
133 soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
134 ScopedThreadStateChange tsc(self, kNative);
135 result->SetS(fn(soa.Env(), klass.get(), args[0], args[1]));
136 } else if (shorty == "VIZ") {
137 using fntype = void(JNIEnv*, jclass, jint, jboolean);
138 fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
139 ScopedLocalRef<jclass> klass(soa.Env(),
140 soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
141 ScopedThreadStateChange tsc(self, kNative);
142 fn(soa.Env(), klass.get(), args[0], args[1]);
143 } else if (shorty == "ZLL") {
144 using fntype = jboolean(JNIEnv*, jclass, jobject, jobject);
145 fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
146 ScopedLocalRef<jclass> klass(soa.Env(),
147 soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
148 ScopedLocalRef<jobject> arg0(soa.Env(),
149 soa.AddLocalReference<jobject>(ObjArg(args[0])));
150 ScopedLocalRef<jobject> arg1(soa.Env(),
151 soa.AddLocalReference<jobject>(ObjArg(args[1])));
152 ScopedThreadStateChange tsc(self, kNative);
153 result->SetZ(fn(soa.Env(), klass.get(), arg0.get(), arg1.get()));
154 } else if (shorty == "ZILL") {
155 using fntype = jboolean(JNIEnv*, jclass, jint, jobject, jobject);
156 fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
157 ScopedLocalRef<jclass> klass(soa.Env(),
158 soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
159 ScopedLocalRef<jobject> arg1(soa.Env(),
160 soa.AddLocalReference<jobject>(ObjArg(args[1])));
161 ScopedLocalRef<jobject> arg2(soa.Env(),
162 soa.AddLocalReference<jobject>(ObjArg(args[2])));
163 ScopedThreadStateChange tsc(self, kNative);
164 result->SetZ(fn(soa.Env(), klass.get(), args[0], arg1.get(), arg2.get()));
165 } else if (shorty == "VILII") {
166 using fntype = void(JNIEnv*, jclass, jint, jobject, jint, jint);
167 fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
168 ScopedLocalRef<jclass> klass(soa.Env(),
169 soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
170 ScopedLocalRef<jobject> arg1(soa.Env(),
171 soa.AddLocalReference<jobject>(ObjArg(args[1])));
172 ScopedThreadStateChange tsc(self, kNative);
173 fn(soa.Env(), klass.get(), args[0], arg1.get(), args[2], args[3]);
174 } else if (shorty == "VLILII") {
175 using fntype = void(JNIEnv*, jclass, jobject, jint, jobject, jint, jint);
176 fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
177 ScopedLocalRef<jclass> klass(soa.Env(),
178 soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
179 ScopedLocalRef<jobject> arg0(soa.Env(),
180 soa.AddLocalReference<jobject>(ObjArg(args[0])));
181 ScopedLocalRef<jobject> arg2(soa.Env(),
182 soa.AddLocalReference<jobject>(ObjArg(args[2])));
183 ScopedThreadStateChange tsc(self, kNative);
184 fn(soa.Env(), klass.get(), arg0.get(), args[1], arg2.get(), args[3], args[4]);
185 } else {
186 LOG(FATAL) << "Do something with static native method: " << method->PrettyMethod()
187 << " shorty: " << shorty;
188 }
189 } else {
190 if (shorty == "L") {
191 using fntype = jobject(JNIEnv*, jobject);
192 fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
193 ScopedLocalRef<jobject> rcvr(soa.Env(),
194 soa.AddLocalReference<jobject>(receiver));
195 jobject jresult;
196 {
197 ScopedThreadStateChange tsc(self, kNative);
198 jresult = fn(soa.Env(), rcvr.get());
199 }
200 result->SetL(soa.Decode<mirror::Object>(jresult));
201 } else if (shorty == "V") {
202 using fntype = void(JNIEnv*, jobject);
203 fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
204 ScopedLocalRef<jobject> rcvr(soa.Env(),
205 soa.AddLocalReference<jobject>(receiver));
206 ScopedThreadStateChange tsc(self, kNative);
207 fn(soa.Env(), rcvr.get());
208 } else if (shorty == "LL") {
209 using fntype = jobject(JNIEnv*, jobject, jobject);
210 fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
211 ScopedLocalRef<jobject> rcvr(soa.Env(),
212 soa.AddLocalReference<jobject>(receiver));
213 ScopedLocalRef<jobject> arg0(soa.Env(),
214 soa.AddLocalReference<jobject>(ObjArg(args[0])));
215 jobject jresult;
216 {
217 ScopedThreadStateChange tsc(self, kNative);
218 jresult = fn(soa.Env(), rcvr.get(), arg0.get());
219 }
220 result->SetL(soa.Decode<mirror::Object>(jresult));
221 ScopedThreadStateChange tsc(self, kNative);
222 } else if (shorty == "III") {
223 using fntype = jint(JNIEnv*, jobject, jint, jint);
224 fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
225 ScopedLocalRef<jobject> rcvr(soa.Env(),
226 soa.AddLocalReference<jobject>(receiver));
227 ScopedThreadStateChange tsc(self, kNative);
228 result->SetI(fn(soa.Env(), rcvr.get(), args[0], args[1]));
229 } else {
230 LOG(FATAL) << "Do something with native method: " << method->PrettyMethod()
231 << " shorty: " << shorty;
232 }
233 }
234 }
235
236 enum InterpreterImplKind {
237 kSwitchImplKind, // Switch-based interpreter implementation.
238 kMterpImplKind // Assembly interpreter
239 };
240
241 #if ART_USE_CXX_INTERPRETER
242 static constexpr InterpreterImplKind kInterpreterImplKind = kSwitchImplKind;
243 #else
244 static constexpr InterpreterImplKind kInterpreterImplKind = kMterpImplKind;
245 #endif
246
Execute(Thread * self,const CodeItemDataAccessor & accessor,ShadowFrame & shadow_frame,JValue result_register,bool stay_in_interpreter=false,bool from_deoptimize=false)247 static inline JValue Execute(
248 Thread* self,
249 const CodeItemDataAccessor& accessor,
250 ShadowFrame& shadow_frame,
251 JValue result_register,
252 bool stay_in_interpreter = false,
253 bool from_deoptimize = false) REQUIRES_SHARED(Locks::mutator_lock_) {
254 DCHECK(!shadow_frame.GetMethod()->IsAbstract());
255 DCHECK(!shadow_frame.GetMethod()->IsNative());
256
257 // Check that we are using the right interpreter.
258 if (kIsDebugBuild && self->UseMterp() != CanUseMterp()) {
259 // The flag might be currently being updated on all threads. Retry with lock.
260 MutexLock tll_mu(self, *Locks::thread_list_lock_);
261 DCHECK_EQ(self->UseMterp(), CanUseMterp());
262 }
263
264 if (LIKELY(!from_deoptimize)) { // Entering the method, but not via deoptimization.
265 if (kIsDebugBuild) {
266 CHECK_EQ(shadow_frame.GetDexPC(), 0u);
267 self->AssertNoPendingException();
268 }
269 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
270 ArtMethod *method = shadow_frame.GetMethod();
271
272 if (UNLIKELY(instrumentation->HasMethodEntryListeners())) {
273 instrumentation->MethodEnterEvent(self,
274 shadow_frame.GetThisObject(accessor.InsSize()),
275 method,
276 0);
277 if (UNLIKELY(shadow_frame.GetForcePopFrame())) {
278 // The caller will retry this invoke. Just return immediately without any value.
279 DCHECK(Runtime::Current()->AreNonStandardExitsEnabled());
280 DCHECK(PrevFrameWillRetry(self, shadow_frame));
281 return JValue();
282 }
283 if (UNLIKELY(self->IsExceptionPending())) {
284 instrumentation->MethodUnwindEvent(self,
285 shadow_frame.GetThisObject(accessor.InsSize()),
286 method,
287 0);
288 return JValue();
289 }
290 }
291
292 if (!stay_in_interpreter && !self->IsForceInterpreter()) {
293 jit::Jit* jit = Runtime::Current()->GetJit();
294 if (jit != nullptr) {
295 jit->MethodEntered(self, shadow_frame.GetMethod());
296 if (jit->CanInvokeCompiledCode(method)) {
297 JValue result;
298
299 // Pop the shadow frame before calling into compiled code.
300 self->PopShadowFrame();
301 // Calculate the offset of the first input reg. The input registers are in the high regs.
302 // It's ok to access the code item here since JIT code will have been touched by the
303 // interpreter and compiler already.
304 uint16_t arg_offset = accessor.RegistersSize() - accessor.InsSize();
305 ArtInterpreterToCompiledCodeBridge(self, nullptr, &shadow_frame, arg_offset, &result);
306 // Push the shadow frame back as the caller will expect it.
307 self->PushShadowFrame(&shadow_frame);
308
309 return result;
310 }
311 }
312 }
313 }
314
315 ArtMethod* method = shadow_frame.GetMethod();
316
317 DCheckStaticState(self, method);
318
319 // Lock counting is a special version of accessibility checks, and for simplicity and
320 // reduction of template parameters, we gate it behind access-checks mode.
321 DCHECK(!method->SkipAccessChecks() || !method->MustCountLocks());
322
323 bool transaction_active = Runtime::Current()->IsActiveTransaction();
324 if (LIKELY(method->SkipAccessChecks())) {
325 // Enter the "without access check" interpreter.
326 if (kInterpreterImplKind == kMterpImplKind) {
327 if (transaction_active) {
328 // No Mterp variant - just use the switch interpreter.
329 return ExecuteSwitchImpl<false, true>(self, accessor, shadow_frame, result_register,
330 false);
331 } else if (UNLIKELY(!Runtime::Current()->IsStarted())) {
332 return ExecuteSwitchImpl<false, false>(self, accessor, shadow_frame, result_register,
333 false);
334 } else {
335 while (true) {
336 // Mterp does not support all instrumentation/debugging.
337 if (!self->UseMterp()) {
338 return ExecuteSwitchImpl<false, false>(self, accessor, shadow_frame, result_register,
339 false);
340 }
341 bool returned = ExecuteMterpImpl(self,
342 accessor.Insns(),
343 &shadow_frame,
344 &result_register);
345 if (returned) {
346 return result_register;
347 } else {
348 // Mterp didn't like that instruction. Single-step it with the reference interpreter.
349 result_register = ExecuteSwitchImpl<false, false>(self, accessor, shadow_frame,
350 result_register, true);
351 if (shadow_frame.GetDexPC() == dex::kDexNoIndex) {
352 // Single-stepped a return or an exception not handled locally. Return to caller.
353 return result_register;
354 }
355 }
356 }
357 }
358 } else {
359 DCHECK_EQ(kInterpreterImplKind, kSwitchImplKind);
360 if (transaction_active) {
361 return ExecuteSwitchImpl<false, true>(self, accessor, shadow_frame, result_register,
362 false);
363 } else {
364 return ExecuteSwitchImpl<false, false>(self, accessor, shadow_frame, result_register,
365 false);
366 }
367 }
368 } else {
369 // Enter the "with access check" interpreter.
370
371 // The boot classpath should really not have to run access checks.
372 DCHECK(method->GetDeclaringClass()->GetClassLoader() != nullptr
373 || Runtime::Current()->IsVerificationSoftFail()
374 || Runtime::Current()->IsAotCompiler())
375 << method->PrettyMethod();
376
377 if (kInterpreterImplKind == kMterpImplKind) {
378 // No access check variants for Mterp. Just use the switch version.
379 if (transaction_active) {
380 return ExecuteSwitchImpl<true, true>(self, accessor, shadow_frame, result_register,
381 false);
382 } else {
383 return ExecuteSwitchImpl<true, false>(self, accessor, shadow_frame, result_register,
384 false);
385 }
386 } else {
387 DCHECK_EQ(kInterpreterImplKind, kSwitchImplKind);
388 if (transaction_active) {
389 return ExecuteSwitchImpl<true, true>(self, accessor, shadow_frame, result_register,
390 false);
391 } else {
392 return ExecuteSwitchImpl<true, false>(self, accessor, shadow_frame, result_register,
393 false);
394 }
395 }
396 }
397 }
398
EnterInterpreterFromInvoke(Thread * self,ArtMethod * method,ObjPtr<mirror::Object> receiver,uint32_t * args,JValue * result,bool stay_in_interpreter)399 void EnterInterpreterFromInvoke(Thread* self,
400 ArtMethod* method,
401 ObjPtr<mirror::Object> receiver,
402 uint32_t* args,
403 JValue* result,
404 bool stay_in_interpreter) {
405 DCHECK_EQ(self, Thread::Current());
406 bool implicit_check = !Runtime::Current()->ExplicitStackOverflowChecks();
407 if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEndForInterpreter(implicit_check))) {
408 ThrowStackOverflowError(self);
409 return;
410 }
411
412 // This can happen if we are in forced interpreter mode and an obsolete method is called using
413 // reflection.
414 if (UNLIKELY(method->IsObsolete())) {
415 ThrowInternalError("Attempting to invoke obsolete version of '%s'.",
416 method->PrettyMethod().c_str());
417 return;
418 }
419
420 const char* old_cause = self->StartAssertNoThreadSuspension("EnterInterpreterFromInvoke");
421 CodeItemDataAccessor accessor(method->DexInstructionData());
422 uint16_t num_regs;
423 uint16_t num_ins;
424 if (accessor.HasCodeItem()) {
425 num_regs = accessor.RegistersSize();
426 num_ins = accessor.InsSize();
427 } else if (!method->IsInvokable()) {
428 self->EndAssertNoThreadSuspension(old_cause);
429 method->ThrowInvocationTimeError();
430 return;
431 } else {
432 DCHECK(method->IsNative());
433 num_regs = num_ins = ArtMethod::NumArgRegisters(method->GetShorty());
434 if (!method->IsStatic()) {
435 num_regs++;
436 num_ins++;
437 }
438 }
439 // Set up shadow frame with matching number of reference slots to vregs.
440 ShadowFrame* last_shadow_frame = self->GetManagedStack()->GetTopShadowFrame();
441 ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
442 CREATE_SHADOW_FRAME(num_regs, last_shadow_frame, method, /* dex pc */ 0);
443 ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
444 self->PushShadowFrame(shadow_frame);
445
446 size_t cur_reg = num_regs - num_ins;
447 if (!method->IsStatic()) {
448 CHECK(receiver != nullptr);
449 shadow_frame->SetVRegReference(cur_reg, receiver);
450 ++cur_reg;
451 }
452 uint32_t shorty_len = 0;
453 const char* shorty = method->GetShorty(&shorty_len);
454 for (size_t shorty_pos = 0, arg_pos = 0; cur_reg < num_regs; ++shorty_pos, ++arg_pos, cur_reg++) {
455 DCHECK_LT(shorty_pos + 1, shorty_len);
456 switch (shorty[shorty_pos + 1]) {
457 case 'L': {
458 ObjPtr<mirror::Object> o =
459 reinterpret_cast<StackReference<mirror::Object>*>(&args[arg_pos])->AsMirrorPtr();
460 shadow_frame->SetVRegReference(cur_reg, o);
461 break;
462 }
463 case 'J': case 'D': {
464 uint64_t wide_value = (static_cast<uint64_t>(args[arg_pos + 1]) << 32) | args[arg_pos];
465 shadow_frame->SetVRegLong(cur_reg, wide_value);
466 cur_reg++;
467 arg_pos++;
468 break;
469 }
470 default:
471 shadow_frame->SetVReg(cur_reg, args[arg_pos]);
472 break;
473 }
474 }
475 self->EndAssertNoThreadSuspension(old_cause);
476 // Do this after populating the shadow frame in case EnsureInitialized causes a GC.
477 if (method->IsStatic() && UNLIKELY(!method->GetDeclaringClass()->IsInitialized())) {
478 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
479 StackHandleScope<1> hs(self);
480 Handle<mirror::Class> h_class(hs.NewHandle(method->GetDeclaringClass()));
481 if (UNLIKELY(!class_linker->EnsureInitialized(self, h_class, true, true))) {
482 CHECK(self->IsExceptionPending());
483 self->PopShadowFrame();
484 return;
485 }
486 }
487 if (LIKELY(!method->IsNative())) {
488 JValue r = Execute(self, accessor, *shadow_frame, JValue(), stay_in_interpreter);
489 if (result != nullptr) {
490 *result = r;
491 }
492 } else {
493 // We don't expect to be asked to interpret native code (which is entered via a JNI compiler
494 // generated stub) except during testing and image writing.
495 // Update args to be the args in the shadow frame since the input ones could hold stale
496 // references pointers due to moving GC.
497 args = shadow_frame->GetVRegArgs(method->IsStatic() ? 0 : 1);
498 if (!Runtime::Current()->IsStarted()) {
499 UnstartedRuntime::Jni(self, method, receiver.Ptr(), args, result);
500 } else {
501 InterpreterJni(self, method, shorty, receiver, args, result);
502 }
503 }
504 self->PopShadowFrame();
505 }
506
GetReceiverRegisterForStringInit(const Instruction * instr)507 static int16_t GetReceiverRegisterForStringInit(const Instruction* instr) {
508 DCHECK(instr->Opcode() == Instruction::INVOKE_DIRECT_RANGE ||
509 instr->Opcode() == Instruction::INVOKE_DIRECT);
510 return (instr->Opcode() == Instruction::INVOKE_DIRECT_RANGE) ?
511 instr->VRegC_3rc() : instr->VRegC_35c();
512 }
513
EnterInterpreterFromDeoptimize(Thread * self,ShadowFrame * shadow_frame,JValue * ret_val,bool from_code,DeoptimizationMethodType deopt_method_type)514 void EnterInterpreterFromDeoptimize(Thread* self,
515 ShadowFrame* shadow_frame,
516 JValue* ret_val,
517 bool from_code,
518 DeoptimizationMethodType deopt_method_type)
519 REQUIRES_SHARED(Locks::mutator_lock_) {
520 JValue value;
521 // Set value to last known result in case the shadow frame chain is empty.
522 value.SetJ(ret_val->GetJ());
523 // How many frames we have executed.
524 size_t frame_cnt = 0;
525 while (shadow_frame != nullptr) {
526 // We do not want to recover lock state for lock counting when deoptimizing. Currently,
527 // the compiler should not have compiled a method that failed structured-locking checks.
528 DCHECK(!shadow_frame->GetMethod()->MustCountLocks());
529
530 self->SetTopOfShadowStack(shadow_frame);
531 CodeItemDataAccessor accessor(shadow_frame->GetMethod()->DexInstructionData());
532 const uint32_t dex_pc = shadow_frame->GetDexPC();
533 uint32_t new_dex_pc = dex_pc;
534 if (UNLIKELY(self->IsExceptionPending())) {
535 // If we deoptimize from the QuickExceptionHandler, we already reported the exception to
536 // the instrumentation. To prevent from reporting it a second time, we simply pass a
537 // null Instrumentation*.
538 const instrumentation::Instrumentation* const instrumentation =
539 frame_cnt == 0 ? nullptr : Runtime::Current()->GetInstrumentation();
540 new_dex_pc = MoveToExceptionHandler(
541 self, *shadow_frame, instrumentation) ? shadow_frame->GetDexPC() : dex::kDexNoIndex;
542 } else if (!from_code) {
543 // Deoptimization is not called from code directly.
544 const Instruction* instr = &accessor.InstructionAt(dex_pc);
545 if (deopt_method_type == DeoptimizationMethodType::kKeepDexPc ||
546 shadow_frame->GetForceRetryInstruction()) {
547 DCHECK(frame_cnt == 0 || (frame_cnt == 1 && shadow_frame->GetForceRetryInstruction()))
548 << "frame_cnt: " << frame_cnt
549 << " force-retry: " << shadow_frame->GetForceRetryInstruction();
550 // Need to re-execute the dex instruction.
551 // (1) An invocation might be split into class initialization and invoke.
552 // In this case, the invoke should not be skipped.
553 // (2) A suspend check should also execute the dex instruction at the
554 // corresponding dex pc.
555 // If the ForceRetryInstruction bit is set this must be the second frame (the first being
556 // the one that is being popped).
557 DCHECK_EQ(new_dex_pc, dex_pc);
558 shadow_frame->SetForceRetryInstruction(false);
559 } else if (instr->Opcode() == Instruction::MONITOR_ENTER ||
560 instr->Opcode() == Instruction::MONITOR_EXIT) {
561 DCHECK(deopt_method_type == DeoptimizationMethodType::kDefault);
562 DCHECK_EQ(frame_cnt, 0u);
563 // Non-idempotent dex instruction should not be re-executed.
564 // On the other hand, if a MONITOR_ENTER is at the dex_pc of a suspend
565 // check, that MONITOR_ENTER should be executed. That case is handled
566 // above.
567 new_dex_pc = dex_pc + instr->SizeInCodeUnits();
568 } else if (instr->IsInvoke()) {
569 DCHECK(deopt_method_type == DeoptimizationMethodType::kDefault);
570 if (IsStringInit(instr, shadow_frame->GetMethod())) {
571 uint16_t this_obj_vreg = GetReceiverRegisterForStringInit(instr);
572 // Move the StringFactory.newStringFromChars() result into the register representing
573 // "this object" when invoking the string constructor in the original dex instruction.
574 // Also move the result into all aliases.
575 DCHECK(value.GetL()->IsString());
576 SetStringInitValueToAllAliases(shadow_frame, this_obj_vreg, value);
577 // Calling string constructor in the original dex code doesn't generate a result value.
578 value.SetJ(0);
579 }
580 new_dex_pc = dex_pc + instr->SizeInCodeUnits();
581 } else if (instr->Opcode() == Instruction::NEW_INSTANCE) {
582 // A NEW_INSTANCE is simply re-executed, including
583 // "new-instance String" which is compiled into a call into
584 // StringFactory.newEmptyString().
585 DCHECK_EQ(new_dex_pc, dex_pc);
586 } else {
587 DCHECK(deopt_method_type == DeoptimizationMethodType::kDefault);
588 DCHECK_EQ(frame_cnt, 0u);
589 // By default, we re-execute the dex instruction since if they are not
590 // an invoke, so that we don't have to decode the dex instruction to move
591 // result into the right vreg. All slow paths have been audited to be
592 // idempotent except monitor-enter/exit and invocation stubs.
593 // TODO: move result and advance dex pc. That also requires that we
594 // can tell the return type of a runtime method, possibly by decoding
595 // the dex instruction at the caller.
596 DCHECK_EQ(new_dex_pc, dex_pc);
597 }
598 } else {
599 // Nothing to do, the dex_pc is the one at which the code requested
600 // the deoptimization.
601 DCHECK_EQ(frame_cnt, 0u);
602 DCHECK_EQ(new_dex_pc, dex_pc);
603 }
604 if (new_dex_pc != dex::kDexNoIndex) {
605 shadow_frame->SetDexPC(new_dex_pc);
606 value = Execute(self,
607 accessor,
608 *shadow_frame,
609 value,
610 /* stay_in_interpreter= */ true,
611 /* from_deoptimize= */ true);
612 }
613 ShadowFrame* old_frame = shadow_frame;
614 shadow_frame = shadow_frame->GetLink();
615 ShadowFrame::DeleteDeoptimizedFrame(old_frame);
616 // Following deoptimizations of shadow frames must be at invocation point
617 // and should advance dex pc past the invoke instruction.
618 from_code = false;
619 deopt_method_type = DeoptimizationMethodType::kDefault;
620 frame_cnt++;
621 }
622 ret_val->SetJ(value.GetJ());
623 }
624
EnterInterpreterFromEntryPoint(Thread * self,const CodeItemDataAccessor & accessor,ShadowFrame * shadow_frame)625 JValue EnterInterpreterFromEntryPoint(Thread* self, const CodeItemDataAccessor& accessor,
626 ShadowFrame* shadow_frame) {
627 DCHECK_EQ(self, Thread::Current());
628 bool implicit_check = !Runtime::Current()->ExplicitStackOverflowChecks();
629 if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEndForInterpreter(implicit_check))) {
630 ThrowStackOverflowError(self);
631 return JValue();
632 }
633
634 jit::Jit* jit = Runtime::Current()->GetJit();
635 if (jit != nullptr) {
636 jit->NotifyCompiledCodeToInterpreterTransition(self, shadow_frame->GetMethod());
637 }
638 return Execute(self, accessor, *shadow_frame, JValue());
639 }
640
ArtInterpreterToInterpreterBridge(Thread * self,const CodeItemDataAccessor & accessor,ShadowFrame * shadow_frame,JValue * result)641 void ArtInterpreterToInterpreterBridge(Thread* self,
642 const CodeItemDataAccessor& accessor,
643 ShadowFrame* shadow_frame,
644 JValue* result) {
645 bool implicit_check = !Runtime::Current()->ExplicitStackOverflowChecks();
646 if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEndForInterpreter(implicit_check))) {
647 ThrowStackOverflowError(self);
648 return;
649 }
650
651 self->PushShadowFrame(shadow_frame);
652 ArtMethod* method = shadow_frame->GetMethod();
653 // Ensure static methods are initialized.
654 const bool is_static = method->IsStatic();
655 if (is_static) {
656 ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass();
657 if (UNLIKELY(!declaring_class->IsInitialized())) {
658 StackHandleScope<1> hs(self);
659 HandleWrapperObjPtr<mirror::Class> h_declaring_class(hs.NewHandleWrapper(&declaring_class));
660 if (UNLIKELY(!Runtime::Current()->GetClassLinker()->EnsureInitialized(
661 self, h_declaring_class, true, true))) {
662 DCHECK(self->IsExceptionPending());
663 self->PopShadowFrame();
664 return;
665 }
666 CHECK(h_declaring_class->IsInitializing());
667 }
668 }
669
670 if (LIKELY(!shadow_frame->GetMethod()->IsNative())) {
671 result->SetJ(Execute(self, accessor, *shadow_frame, JValue()).GetJ());
672 } else {
673 // We don't expect to be asked to interpret native code (which is entered via a JNI compiler
674 // generated stub) except during testing and image writing.
675 CHECK(!Runtime::Current()->IsStarted());
676 ObjPtr<mirror::Object> receiver = is_static ? nullptr : shadow_frame->GetVRegReference(0);
677 uint32_t* args = shadow_frame->GetVRegArgs(is_static ? 0 : 1);
678 UnstartedRuntime::Jni(self, shadow_frame->GetMethod(), receiver.Ptr(), args, result);
679 }
680
681 self->PopShadowFrame();
682 }
683
CheckInterpreterAsmConstants()684 void CheckInterpreterAsmConstants() {
685 CheckMterpAsmConstants();
686 }
687
InitInterpreterTls(Thread * self)688 void InitInterpreterTls(Thread* self) {
689 InitMterpTls(self);
690 }
691
PrevFrameWillRetry(Thread * self,const ShadowFrame & frame)692 bool PrevFrameWillRetry(Thread* self, const ShadowFrame& frame) {
693 ShadowFrame* prev_frame = frame.GetLink();
694 if (prev_frame == nullptr) {
695 NthCallerVisitor vis(self, 1, false);
696 vis.WalkStack();
697 prev_frame = vis.GetCurrentShadowFrame();
698 if (prev_frame == nullptr) {
699 prev_frame = self->FindDebuggerShadowFrame(vis.GetFrameId());
700 }
701 }
702 return prev_frame != nullptr && prev_frame->GetForceRetryInstruction();
703 }
704
705 } // namespace interpreter
706 } // namespace art
707