1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeOrdering.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Analysis/DebugInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/Function.h"
21 #include "llvm/GlobalAlias.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Assembly/Writer.h"
26 #include "llvm/CallingConv.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineModuleInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Target/TargetLowering.h"
35 #include "llvm/Target/TargetSelectionDAGInfo.h"
36 #include "llvm/Target/TargetOptions.h"
37 #include "llvm/Target/TargetInstrInfo.h"
38 #include "llvm/Target/TargetIntrinsicInfo.h"
39 #include "llvm/Target/TargetMachine.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/ManagedStatic.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Support/Mutex.h"
47 #include "llvm/ADT/SetVector.h"
48 #include "llvm/ADT/SmallPtrSet.h"
49 #include "llvm/ADT/SmallSet.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include <algorithm>
53 #include <cmath>
54 using namespace llvm;
55
56 /// makeVTList - Return an instance of the SDVTList struct initialized with the
57 /// specified members.
makeVTList(const EVT * VTs,unsigned NumVTs)58 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59 SDVTList Res = {VTs, NumVTs};
60 return Res;
61 }
62
EVTToAPFloatSemantics(EVT VT)63 static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
64 switch (VT.getSimpleVT().SimpleTy) {
65 default: llvm_unreachable("Unknown FP format");
66 case MVT::f32: return &APFloat::IEEEsingle;
67 case MVT::f64: return &APFloat::IEEEdouble;
68 case MVT::f80: return &APFloat::x87DoubleExtended;
69 case MVT::f128: return &APFloat::IEEEquad;
70 case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
71 }
72 }
73
~DAGUpdateListener()74 SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
75
76 //===----------------------------------------------------------------------===//
77 // ConstantFPSDNode Class
78 //===----------------------------------------------------------------------===//
79
80 /// isExactlyValue - We don't rely on operator== working on double values, as
81 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
82 /// As such, this method can be used to do an exact bit-for-bit comparison of
83 /// two floating point values.
isExactlyValue(const APFloat & V) const84 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
85 return getValueAPF().bitwiseIsEqual(V);
86 }
87
isValueValidForType(EVT VT,const APFloat & Val)88 bool ConstantFPSDNode::isValueValidForType(EVT VT,
89 const APFloat& Val) {
90 assert(VT.isFloatingPoint() && "Can only convert between FP types");
91
92 // PPC long double cannot be converted to any other type.
93 if (VT == MVT::ppcf128 ||
94 &Val.getSemantics() == &APFloat::PPCDoubleDouble)
95 return false;
96
97 // convert modifies in place, so make a copy.
98 APFloat Val2 = APFloat(Val);
99 bool losesInfo;
100 (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
101 &losesInfo);
102 return !losesInfo;
103 }
104
105 //===----------------------------------------------------------------------===//
106 // ISD Namespace
107 //===----------------------------------------------------------------------===//
108
109 /// isBuildVectorAllOnes - Return true if the specified node is a
110 /// BUILD_VECTOR where all of the elements are ~0 or undef.
isBuildVectorAllOnes(const SDNode * N)111 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
112 // Look through a bit convert.
113 if (N->getOpcode() == ISD::BITCAST)
114 N = N->getOperand(0).getNode();
115
116 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
117
118 unsigned i = 0, e = N->getNumOperands();
119
120 // Skip over all of the undef values.
121 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
122 ++i;
123
124 // Do not accept an all-undef vector.
125 if (i == e) return false;
126
127 // Do not accept build_vectors that aren't all constants or which have non-~0
128 // elements.
129 SDValue NotZero = N->getOperand(i);
130 if (isa<ConstantSDNode>(NotZero)) {
131 if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
132 return false;
133 } else if (isa<ConstantFPSDNode>(NotZero)) {
134 if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
135 bitcastToAPInt().isAllOnesValue())
136 return false;
137 } else
138 return false;
139
140 // Okay, we have at least one ~0 value, check to see if the rest match or are
141 // undefs.
142 for (++i; i != e; ++i)
143 if (N->getOperand(i) != NotZero &&
144 N->getOperand(i).getOpcode() != ISD::UNDEF)
145 return false;
146 return true;
147 }
148
149
150 /// isBuildVectorAllZeros - Return true if the specified node is a
151 /// BUILD_VECTOR where all of the elements are 0 or undef.
isBuildVectorAllZeros(const SDNode * N)152 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
153 // Look through a bit convert.
154 if (N->getOpcode() == ISD::BITCAST)
155 N = N->getOperand(0).getNode();
156
157 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158
159 unsigned i = 0, e = N->getNumOperands();
160
161 // Skip over all of the undef values.
162 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
163 ++i;
164
165 // Do not accept an all-undef vector.
166 if (i == e) return false;
167
168 // Do not accept build_vectors that aren't all constants or which have non-0
169 // elements.
170 SDValue Zero = N->getOperand(i);
171 if (isa<ConstantSDNode>(Zero)) {
172 if (!cast<ConstantSDNode>(Zero)->isNullValue())
173 return false;
174 } else if (isa<ConstantFPSDNode>(Zero)) {
175 if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
176 return false;
177 } else
178 return false;
179
180 // Okay, we have at least one 0 value, check to see if the rest match or are
181 // undefs.
182 for (++i; i != e; ++i)
183 if (N->getOperand(i) != Zero &&
184 N->getOperand(i).getOpcode() != ISD::UNDEF)
185 return false;
186 return true;
187 }
188
189 /// isScalarToVector - Return true if the specified node is a
190 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191 /// element is not an undef.
isScalarToVector(const SDNode * N)192 bool ISD::isScalarToVector(const SDNode *N) {
193 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
194 return true;
195
196 if (N->getOpcode() != ISD::BUILD_VECTOR)
197 return false;
198 if (N->getOperand(0).getOpcode() == ISD::UNDEF)
199 return false;
200 unsigned NumElems = N->getNumOperands();
201 if (NumElems == 1)
202 return false;
203 for (unsigned i = 1; i < NumElems; ++i) {
204 SDValue V = N->getOperand(i);
205 if (V.getOpcode() != ISD::UNDEF)
206 return false;
207 }
208 return true;
209 }
210
211 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212 /// when given the operation for (X op Y).
getSetCCSwappedOperands(ISD::CondCode Operation)213 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214 // To perform this operation, we just need to swap the L and G bits of the
215 // operation.
216 unsigned OldL = (Operation >> 2) & 1;
217 unsigned OldG = (Operation >> 1) & 1;
218 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
219 (OldL << 1) | // New G bit
220 (OldG << 2)); // New L bit.
221 }
222
223 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224 /// 'op' is a valid SetCC operation.
getSetCCInverse(ISD::CondCode Op,bool isInteger)225 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226 unsigned Operation = Op;
227 if (isInteger)
228 Operation ^= 7; // Flip L, G, E bits, but not U.
229 else
230 Operation ^= 15; // Flip all of the condition bits.
231
232 if (Operation > ISD::SETTRUE2)
233 Operation &= ~8; // Don't let N and U bits get set.
234
235 return ISD::CondCode(Operation);
236 }
237
238
239 /// isSignedOp - For an integer comparison, return 1 if the comparison is a
240 /// signed operation and 2 if the result is an unsigned comparison. Return zero
241 /// if the operation does not depend on the sign of the input (setne and seteq).
isSignedOp(ISD::CondCode Opcode)242 static int isSignedOp(ISD::CondCode Opcode) {
243 switch (Opcode) {
244 default: llvm_unreachable("Illegal integer setcc operation!");
245 case ISD::SETEQ:
246 case ISD::SETNE: return 0;
247 case ISD::SETLT:
248 case ISD::SETLE:
249 case ISD::SETGT:
250 case ISD::SETGE: return 1;
251 case ISD::SETULT:
252 case ISD::SETULE:
253 case ISD::SETUGT:
254 case ISD::SETUGE: return 2;
255 }
256 }
257
258 /// getSetCCOrOperation - Return the result of a logical OR between different
259 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
260 /// returns SETCC_INVALID if it is not possible to represent the resultant
261 /// comparison.
getSetCCOrOperation(ISD::CondCode Op1,ISD::CondCode Op2,bool isInteger)262 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263 bool isInteger) {
264 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265 // Cannot fold a signed integer setcc with an unsigned integer setcc.
266 return ISD::SETCC_INVALID;
267
268 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
269
270 // If the N and U bits get set then the resultant comparison DOES suddenly
271 // care about orderedness, and is true when ordered.
272 if (Op > ISD::SETTRUE2)
273 Op &= ~16; // Clear the U bit if the N bit is set.
274
275 // Canonicalize illegal integer setcc's.
276 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
277 Op = ISD::SETNE;
278
279 return ISD::CondCode(Op);
280 }
281
282 /// getSetCCAndOperation - Return the result of a logical AND between different
283 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
284 /// function returns zero if it is not possible to represent the resultant
285 /// comparison.
getSetCCAndOperation(ISD::CondCode Op1,ISD::CondCode Op2,bool isInteger)286 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287 bool isInteger) {
288 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289 // Cannot fold a signed setcc with an unsigned setcc.
290 return ISD::SETCC_INVALID;
291
292 // Combine all of the condition bits.
293 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295 // Canonicalize illegal integer setcc's.
296 if (isInteger) {
297 switch (Result) {
298 default: break;
299 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
300 case ISD::SETOEQ: // SETEQ & SETU[LG]E
301 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
302 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
303 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
304 }
305 }
306
307 return Result;
308 }
309
310 //===----------------------------------------------------------------------===//
311 // SDNode Profile Support
312 //===----------------------------------------------------------------------===//
313
314 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315 ///
AddNodeIDOpcode(FoldingSetNodeID & ID,unsigned OpC)316 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
317 ID.AddInteger(OpC);
318 }
319
320 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321 /// solely with their pointer.
AddNodeIDValueTypes(FoldingSetNodeID & ID,SDVTList VTList)322 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323 ID.AddPointer(VTList.VTs);
324 }
325
326 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327 ///
AddNodeIDOperands(FoldingSetNodeID & ID,const SDValue * Ops,unsigned NumOps)328 static void AddNodeIDOperands(FoldingSetNodeID &ID,
329 const SDValue *Ops, unsigned NumOps) {
330 for (; NumOps; --NumOps, ++Ops) {
331 ID.AddPointer(Ops->getNode());
332 ID.AddInteger(Ops->getResNo());
333 }
334 }
335
336 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337 ///
AddNodeIDOperands(FoldingSetNodeID & ID,const SDUse * Ops,unsigned NumOps)338 static void AddNodeIDOperands(FoldingSetNodeID &ID,
339 const SDUse *Ops, unsigned NumOps) {
340 for (; NumOps; --NumOps, ++Ops) {
341 ID.AddPointer(Ops->getNode());
342 ID.AddInteger(Ops->getResNo());
343 }
344 }
345
AddNodeIDNode(FoldingSetNodeID & ID,unsigned short OpC,SDVTList VTList,const SDValue * OpList,unsigned N)346 static void AddNodeIDNode(FoldingSetNodeID &ID,
347 unsigned short OpC, SDVTList VTList,
348 const SDValue *OpList, unsigned N) {
349 AddNodeIDOpcode(ID, OpC);
350 AddNodeIDValueTypes(ID, VTList);
351 AddNodeIDOperands(ID, OpList, N);
352 }
353
354 /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355 /// the NodeID data.
AddNodeIDCustom(FoldingSetNodeID & ID,const SDNode * N)356 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357 switch (N->getOpcode()) {
358 case ISD::TargetExternalSymbol:
359 case ISD::ExternalSymbol:
360 llvm_unreachable("Should only be used on nodes with operands");
361 default: break; // Normal nodes don't need extra info.
362 case ISD::TargetConstant:
363 case ISD::Constant:
364 ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365 break;
366 case ISD::TargetConstantFP:
367 case ISD::ConstantFP: {
368 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369 break;
370 }
371 case ISD::TargetGlobalAddress:
372 case ISD::GlobalAddress:
373 case ISD::TargetGlobalTLSAddress:
374 case ISD::GlobalTLSAddress: {
375 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376 ID.AddPointer(GA->getGlobal());
377 ID.AddInteger(GA->getOffset());
378 ID.AddInteger(GA->getTargetFlags());
379 break;
380 }
381 case ISD::BasicBlock:
382 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383 break;
384 case ISD::Register:
385 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386 break;
387
388 case ISD::SRCVALUE:
389 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390 break;
391 case ISD::FrameIndex:
392 case ISD::TargetFrameIndex:
393 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394 break;
395 case ISD::JumpTable:
396 case ISD::TargetJumpTable:
397 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399 break;
400 case ISD::ConstantPool:
401 case ISD::TargetConstantPool: {
402 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403 ID.AddInteger(CP->getAlignment());
404 ID.AddInteger(CP->getOffset());
405 if (CP->isMachineConstantPoolEntry())
406 CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
407 else
408 ID.AddPointer(CP->getConstVal());
409 ID.AddInteger(CP->getTargetFlags());
410 break;
411 }
412 case ISD::LOAD: {
413 const LoadSDNode *LD = cast<LoadSDNode>(N);
414 ID.AddInteger(LD->getMemoryVT().getRawBits());
415 ID.AddInteger(LD->getRawSubclassData());
416 break;
417 }
418 case ISD::STORE: {
419 const StoreSDNode *ST = cast<StoreSDNode>(N);
420 ID.AddInteger(ST->getMemoryVT().getRawBits());
421 ID.AddInteger(ST->getRawSubclassData());
422 break;
423 }
424 case ISD::ATOMIC_CMP_SWAP:
425 case ISD::ATOMIC_SWAP:
426 case ISD::ATOMIC_LOAD_ADD:
427 case ISD::ATOMIC_LOAD_SUB:
428 case ISD::ATOMIC_LOAD_AND:
429 case ISD::ATOMIC_LOAD_OR:
430 case ISD::ATOMIC_LOAD_XOR:
431 case ISD::ATOMIC_LOAD_NAND:
432 case ISD::ATOMIC_LOAD_MIN:
433 case ISD::ATOMIC_LOAD_MAX:
434 case ISD::ATOMIC_LOAD_UMIN:
435 case ISD::ATOMIC_LOAD_UMAX:
436 case ISD::ATOMIC_LOAD:
437 case ISD::ATOMIC_STORE: {
438 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
439 ID.AddInteger(AT->getMemoryVT().getRawBits());
440 ID.AddInteger(AT->getRawSubclassData());
441 break;
442 }
443 case ISD::VECTOR_SHUFFLE: {
444 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
445 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
446 i != e; ++i)
447 ID.AddInteger(SVN->getMaskElt(i));
448 break;
449 }
450 case ISD::TargetBlockAddress:
451 case ISD::BlockAddress: {
452 ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
453 ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
454 break;
455 }
456 } // end switch (N->getOpcode())
457 }
458
459 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
460 /// data.
AddNodeIDNode(FoldingSetNodeID & ID,const SDNode * N)461 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
462 AddNodeIDOpcode(ID, N->getOpcode());
463 // Add the return value info.
464 AddNodeIDValueTypes(ID, N->getVTList());
465 // Add the operand info.
466 AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
467
468 // Handle SDNode leafs with special info.
469 AddNodeIDCustom(ID, N);
470 }
471
472 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
473 /// the CSE map that carries volatility, temporalness, indexing mode, and
474 /// extension/truncation information.
475 ///
476 static inline unsigned
encodeMemSDNodeFlags(int ConvType,ISD::MemIndexedMode AM,bool isVolatile,bool isNonTemporal)477 encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
478 bool isNonTemporal) {
479 assert((ConvType & 3) == ConvType &&
480 "ConvType may not require more than 2 bits!");
481 assert((AM & 7) == AM &&
482 "AM may not require more than 3 bits!");
483 return ConvType |
484 (AM << 2) |
485 (isVolatile << 5) |
486 (isNonTemporal << 6);
487 }
488
489 //===----------------------------------------------------------------------===//
490 // SelectionDAG Class
491 //===----------------------------------------------------------------------===//
492
493 /// doNotCSE - Return true if CSE should not be performed for this node.
doNotCSE(SDNode * N)494 static bool doNotCSE(SDNode *N) {
495 if (N->getValueType(0) == MVT::Glue)
496 return true; // Never CSE anything that produces a flag.
497
498 switch (N->getOpcode()) {
499 default: break;
500 case ISD::HANDLENODE:
501 case ISD::EH_LABEL:
502 return true; // Never CSE these nodes.
503 }
504
505 // Check that remaining values produced are not flags.
506 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
507 if (N->getValueType(i) == MVT::Glue)
508 return true; // Never CSE anything that produces a flag.
509
510 return false;
511 }
512
513 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
514 /// SelectionDAG.
RemoveDeadNodes()515 void SelectionDAG::RemoveDeadNodes() {
516 // Create a dummy node (which is not added to allnodes), that adds a reference
517 // to the root node, preventing it from being deleted.
518 HandleSDNode Dummy(getRoot());
519
520 SmallVector<SDNode*, 128> DeadNodes;
521
522 // Add all obviously-dead nodes to the DeadNodes worklist.
523 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
524 if (I->use_empty())
525 DeadNodes.push_back(I);
526
527 RemoveDeadNodes(DeadNodes);
528
529 // If the root changed (e.g. it was a dead load, update the root).
530 setRoot(Dummy.getValue());
531 }
532
533 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
534 /// given list, and any nodes that become unreachable as a result.
RemoveDeadNodes(SmallVectorImpl<SDNode * > & DeadNodes,DAGUpdateListener * UpdateListener)535 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
536 DAGUpdateListener *UpdateListener) {
537
538 // Process the worklist, deleting the nodes and adding their uses to the
539 // worklist.
540 while (!DeadNodes.empty()) {
541 SDNode *N = DeadNodes.pop_back_val();
542
543 if (UpdateListener)
544 UpdateListener->NodeDeleted(N, 0);
545
546 // Take the node out of the appropriate CSE map.
547 RemoveNodeFromCSEMaps(N);
548
549 // Next, brutally remove the operand list. This is safe to do, as there are
550 // no cycles in the graph.
551 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
552 SDUse &Use = *I++;
553 SDNode *Operand = Use.getNode();
554 Use.set(SDValue());
555
556 // Now that we removed this operand, see if there are no uses of it left.
557 if (Operand->use_empty())
558 DeadNodes.push_back(Operand);
559 }
560
561 DeallocateNode(N);
562 }
563 }
564
RemoveDeadNode(SDNode * N,DAGUpdateListener * UpdateListener)565 void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
566 SmallVector<SDNode*, 16> DeadNodes(1, N);
567 RemoveDeadNodes(DeadNodes, UpdateListener);
568 }
569
DeleteNode(SDNode * N)570 void SelectionDAG::DeleteNode(SDNode *N) {
571 // First take this out of the appropriate CSE map.
572 RemoveNodeFromCSEMaps(N);
573
574 // Finally, remove uses due to operands of this node, remove from the
575 // AllNodes list, and delete the node.
576 DeleteNodeNotInCSEMaps(N);
577 }
578
DeleteNodeNotInCSEMaps(SDNode * N)579 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
580 assert(N != AllNodes.begin() && "Cannot delete the entry node!");
581 assert(N->use_empty() && "Cannot delete a node that is not dead!");
582
583 // Drop all of the operands and decrement used node's use counts.
584 N->DropOperands();
585
586 DeallocateNode(N);
587 }
588
DeallocateNode(SDNode * N)589 void SelectionDAG::DeallocateNode(SDNode *N) {
590 if (N->OperandsNeedDelete)
591 delete[] N->OperandList;
592
593 // Set the opcode to DELETED_NODE to help catch bugs when node
594 // memory is reallocated.
595 N->NodeType = ISD::DELETED_NODE;
596
597 NodeAllocator.Deallocate(AllNodes.remove(N));
598
599 // Remove the ordering of this node.
600 Ordering->remove(N);
601
602 // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
603 ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N);
604 for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
605 DbgVals[i]->setIsInvalidated();
606 }
607
608 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
609 /// correspond to it. This is useful when we're about to delete or repurpose
610 /// the node. We don't want future request for structurally identical nodes
611 /// to return N anymore.
RemoveNodeFromCSEMaps(SDNode * N)612 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
613 bool Erased = false;
614 switch (N->getOpcode()) {
615 case ISD::HANDLENODE: return false; // noop.
616 case ISD::CONDCODE:
617 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
618 "Cond code doesn't exist!");
619 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
620 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
621 break;
622 case ISD::ExternalSymbol:
623 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624 break;
625 case ISD::TargetExternalSymbol: {
626 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
627 Erased = TargetExternalSymbols.erase(
628 std::pair<std::string,unsigned char>(ESN->getSymbol(),
629 ESN->getTargetFlags()));
630 break;
631 }
632 case ISD::VALUETYPE: {
633 EVT VT = cast<VTSDNode>(N)->getVT();
634 if (VT.isExtended()) {
635 Erased = ExtendedValueTypeNodes.erase(VT);
636 } else {
637 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
638 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
639 }
640 break;
641 }
642 default:
643 // Remove it from the CSE Map.
644 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
645 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
646 Erased = CSEMap.RemoveNode(N);
647 break;
648 }
649 #ifndef NDEBUG
650 // Verify that the node was actually in one of the CSE maps, unless it has a
651 // flag result (which cannot be CSE'd) or is one of the special cases that are
652 // not subject to CSE.
653 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
654 !N->isMachineOpcode() && !doNotCSE(N)) {
655 N->dump(this);
656 dbgs() << "\n";
657 llvm_unreachable("Node is not in map!");
658 }
659 #endif
660 return Erased;
661 }
662
663 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
664 /// maps and modified in place. Add it back to the CSE maps, unless an identical
665 /// node already exists, in which case transfer all its users to the existing
666 /// node. This transfer can potentially trigger recursive merging.
667 ///
668 void
AddModifiedNodeToCSEMaps(SDNode * N,DAGUpdateListener * UpdateListener)669 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
670 DAGUpdateListener *UpdateListener) {
671 // For node types that aren't CSE'd, just act as if no identical node
672 // already exists.
673 if (!doNotCSE(N)) {
674 SDNode *Existing = CSEMap.GetOrInsertNode(N);
675 if (Existing != N) {
676 // If there was already an existing matching node, use ReplaceAllUsesWith
677 // to replace the dead one with the existing one. This can cause
678 // recursive merging of other unrelated nodes down the line.
679 ReplaceAllUsesWith(N, Existing, UpdateListener);
680
681 // N is now dead. Inform the listener if it exists and delete it.
682 if (UpdateListener)
683 UpdateListener->NodeDeleted(N, Existing);
684 DeleteNodeNotInCSEMaps(N);
685 return;
686 }
687 }
688
689 // If the node doesn't already exist, we updated it. Inform a listener if
690 // it exists.
691 if (UpdateListener)
692 UpdateListener->NodeUpdated(N);
693 }
694
695 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
696 /// were replaced with those specified. If this node is never memoized,
697 /// return null, otherwise return a pointer to the slot it would take. If a
698 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,SDValue Op,void * & InsertPos)699 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
700 void *&InsertPos) {
701 if (doNotCSE(N))
702 return 0;
703
704 SDValue Ops[] = { Op };
705 FoldingSetNodeID ID;
706 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707 AddNodeIDCustom(ID, N);
708 SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
709 return Node;
710 }
711
712 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
713 /// were replaced with those specified. If this node is never memoized,
714 /// return null, otherwise return a pointer to the slot it would take. If a
715 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,SDValue Op1,SDValue Op2,void * & InsertPos)716 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
717 SDValue Op1, SDValue Op2,
718 void *&InsertPos) {
719 if (doNotCSE(N))
720 return 0;
721
722 SDValue Ops[] = { Op1, Op2 };
723 FoldingSetNodeID ID;
724 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
725 AddNodeIDCustom(ID, N);
726 SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
727 return Node;
728 }
729
730
731 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
732 /// were replaced with those specified. If this node is never memoized,
733 /// return null, otherwise return a pointer to the slot it would take. If a
734 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,const SDValue * Ops,unsigned NumOps,void * & InsertPos)735 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
736 const SDValue *Ops,unsigned NumOps,
737 void *&InsertPos) {
738 if (doNotCSE(N))
739 return 0;
740
741 FoldingSetNodeID ID;
742 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
743 AddNodeIDCustom(ID, N);
744 SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
745 return Node;
746 }
747
748 #ifndef NDEBUG
749 /// VerifyNodeCommon - Sanity check the given node. Aborts if it is invalid.
VerifyNodeCommon(SDNode * N)750 static void VerifyNodeCommon(SDNode *N) {
751 switch (N->getOpcode()) {
752 default:
753 break;
754 case ISD::BUILD_PAIR: {
755 EVT VT = N->getValueType(0);
756 assert(N->getNumValues() == 1 && "Too many results!");
757 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
758 "Wrong return type!");
759 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
760 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
761 "Mismatched operand types!");
762 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
763 "Wrong operand type!");
764 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
765 "Wrong return type size");
766 break;
767 }
768 case ISD::BUILD_VECTOR: {
769 assert(N->getNumValues() == 1 && "Too many results!");
770 assert(N->getValueType(0).isVector() && "Wrong return type!");
771 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
772 "Wrong number of operands!");
773 EVT EltVT = N->getValueType(0).getVectorElementType();
774 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
775 assert((I->getValueType() == EltVT ||
776 (EltVT.isInteger() && I->getValueType().isInteger() &&
777 EltVT.bitsLE(I->getValueType()))) &&
778 "Wrong operand type!");
779 assert(I->getValueType() == N->getOperand(0).getValueType() &&
780 "Operands must all have the same type");
781 }
782 break;
783 }
784 }
785 }
786
787 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid.
VerifySDNode(SDNode * N)788 static void VerifySDNode(SDNode *N) {
789 // The SDNode allocators cannot be used to allocate nodes with fields that are
790 // not present in an SDNode!
791 assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
792 assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
793 assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
794 assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
795 assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
796 assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
797 assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
798 assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
799 assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
800 assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
801 assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
802 assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
803 assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
804 assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
805 assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
806 assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
807 assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
808 assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
809 assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
810
811 VerifyNodeCommon(N);
812 }
813
814 /// VerifyMachineNode - Sanity check the given MachineNode. Aborts if it is
815 /// invalid.
VerifyMachineNode(SDNode * N)816 static void VerifyMachineNode(SDNode *N) {
817 // The MachineNode allocators cannot be used to allocate nodes with fields
818 // that are not present in a MachineNode!
819 // Currently there are no such nodes.
820
821 VerifyNodeCommon(N);
822 }
823 #endif // NDEBUG
824
825 /// getEVTAlignment - Compute the default alignment value for the
826 /// given type.
827 ///
getEVTAlignment(EVT VT) const828 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
829 Type *Ty = VT == MVT::iPTR ?
830 PointerType::get(Type::getInt8Ty(*getContext()), 0) :
831 VT.getTypeForEVT(*getContext());
832
833 return TLI.getTargetData()->getABITypeAlignment(Ty);
834 }
835
836 // EntryNode could meaningfully have debug info if we can find it...
SelectionDAG(const TargetMachine & tm)837 SelectionDAG::SelectionDAG(const TargetMachine &tm)
838 : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
839 EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
840 Root(getEntryNode()), Ordering(0) {
841 AllNodes.push_back(&EntryNode);
842 Ordering = new SDNodeOrdering();
843 DbgInfo = new SDDbgInfo();
844 }
845
init(MachineFunction & mf)846 void SelectionDAG::init(MachineFunction &mf) {
847 MF = &mf;
848 Context = &mf.getFunction()->getContext();
849 }
850
~SelectionDAG()851 SelectionDAG::~SelectionDAG() {
852 allnodes_clear();
853 delete Ordering;
854 delete DbgInfo;
855 }
856
allnodes_clear()857 void SelectionDAG::allnodes_clear() {
858 assert(&*AllNodes.begin() == &EntryNode);
859 AllNodes.remove(AllNodes.begin());
860 while (!AllNodes.empty())
861 DeallocateNode(AllNodes.begin());
862 }
863
clear()864 void SelectionDAG::clear() {
865 allnodes_clear();
866 OperandAllocator.Reset();
867 CSEMap.clear();
868
869 ExtendedValueTypeNodes.clear();
870 ExternalSymbols.clear();
871 TargetExternalSymbols.clear();
872 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
873 static_cast<CondCodeSDNode*>(0));
874 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
875 static_cast<SDNode*>(0));
876
877 EntryNode.UseList = 0;
878 AllNodes.push_back(&EntryNode);
879 Root = getEntryNode();
880 Ordering->clear();
881 DbgInfo->clear();
882 }
883
getAnyExtOrTrunc(SDValue Op,DebugLoc DL,EVT VT)884 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
885 return VT.bitsGT(Op.getValueType()) ?
886 getNode(ISD::ANY_EXTEND, DL, VT, Op) :
887 getNode(ISD::TRUNCATE, DL, VT, Op);
888 }
889
getSExtOrTrunc(SDValue Op,DebugLoc DL,EVT VT)890 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
891 return VT.bitsGT(Op.getValueType()) ?
892 getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
893 getNode(ISD::TRUNCATE, DL, VT, Op);
894 }
895
getZExtOrTrunc(SDValue Op,DebugLoc DL,EVT VT)896 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
897 return VT.bitsGT(Op.getValueType()) ?
898 getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
899 getNode(ISD::TRUNCATE, DL, VT, Op);
900 }
901
getZeroExtendInReg(SDValue Op,DebugLoc DL,EVT VT)902 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
903 assert(!VT.isVector() &&
904 "getZeroExtendInReg should use the vector element type instead of "
905 "the vector type!");
906 if (Op.getValueType() == VT) return Op;
907 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
908 APInt Imm = APInt::getLowBitsSet(BitWidth,
909 VT.getSizeInBits());
910 return getNode(ISD::AND, DL, Op.getValueType(), Op,
911 getConstant(Imm, Op.getValueType()));
912 }
913
914 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
915 ///
getNOT(DebugLoc DL,SDValue Val,EVT VT)916 SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
917 EVT EltVT = VT.getScalarType();
918 SDValue NegOne =
919 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
920 return getNode(ISD::XOR, DL, VT, Val, NegOne);
921 }
922
getConstant(uint64_t Val,EVT VT,bool isT)923 SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
924 EVT EltVT = VT.getScalarType();
925 assert((EltVT.getSizeInBits() >= 64 ||
926 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
927 "getConstant with a uint64_t value that doesn't fit in the type!");
928 return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
929 }
930
getConstant(const APInt & Val,EVT VT,bool isT)931 SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
932 return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
933 }
934
getConstant(const ConstantInt & Val,EVT VT,bool isT)935 SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
936 assert(VT.isInteger() && "Cannot create FP integer constant!");
937
938 EVT EltVT = VT.getScalarType();
939 const ConstantInt *Elt = &Val;
940
941 // In some cases the vector type is legal but the element type is illegal and
942 // needs to be promoted, for example v8i8 on ARM. In this case, promote the
943 // inserted value (the type does not need to match the vector element type).
944 // Any extra bits introduced will be truncated away.
945 if (VT.isVector() && TLI.getTypeAction(*getContext(), EltVT) ==
946 TargetLowering::TypePromoteInteger) {
947 EltVT = TLI.getTypeToTransformTo(*getContext(), EltVT);
948 APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
949 Elt = ConstantInt::get(*getContext(), NewVal);
950 }
951
952 assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
953 "APInt size does not match type size!");
954 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
955 FoldingSetNodeID ID;
956 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
957 ID.AddPointer(Elt);
958 void *IP = 0;
959 SDNode *N = NULL;
960 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
961 if (!VT.isVector())
962 return SDValue(N, 0);
963
964 if (!N) {
965 N = new (NodeAllocator) ConstantSDNode(isT, Elt, EltVT);
966 CSEMap.InsertNode(N, IP);
967 AllNodes.push_back(N);
968 }
969
970 SDValue Result(N, 0);
971 if (VT.isVector()) {
972 SmallVector<SDValue, 8> Ops;
973 Ops.assign(VT.getVectorNumElements(), Result);
974 Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
975 }
976 return Result;
977 }
978
getIntPtrConstant(uint64_t Val,bool isTarget)979 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
980 return getConstant(Val, TLI.getPointerTy(), isTarget);
981 }
982
983
getConstantFP(const APFloat & V,EVT VT,bool isTarget)984 SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
985 return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
986 }
987
getConstantFP(const ConstantFP & V,EVT VT,bool isTarget)988 SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
989 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
990
991 EVT EltVT = VT.getScalarType();
992
993 // Do the map lookup using the actual bit pattern for the floating point
994 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
995 // we don't have issues with SNANs.
996 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
997 FoldingSetNodeID ID;
998 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
999 ID.AddPointer(&V);
1000 void *IP = 0;
1001 SDNode *N = NULL;
1002 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
1003 if (!VT.isVector())
1004 return SDValue(N, 0);
1005
1006 if (!N) {
1007 N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
1008 CSEMap.InsertNode(N, IP);
1009 AllNodes.push_back(N);
1010 }
1011
1012 SDValue Result(N, 0);
1013 if (VT.isVector()) {
1014 SmallVector<SDValue, 8> Ops;
1015 Ops.assign(VT.getVectorNumElements(), Result);
1016 // FIXME DebugLoc info might be appropriate here
1017 Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
1018 }
1019 return Result;
1020 }
1021
getConstantFP(double Val,EVT VT,bool isTarget)1022 SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1023 EVT EltVT = VT.getScalarType();
1024 if (EltVT==MVT::f32)
1025 return getConstantFP(APFloat((float)Val), VT, isTarget);
1026 else if (EltVT==MVT::f64)
1027 return getConstantFP(APFloat(Val), VT, isTarget);
1028 else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1029 bool ignored;
1030 APFloat apf = APFloat(Val);
1031 apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1032 &ignored);
1033 return getConstantFP(apf, VT, isTarget);
1034 } else {
1035 assert(0 && "Unsupported type in getConstantFP");
1036 return SDValue();
1037 }
1038 }
1039
getGlobalAddress(const GlobalValue * GV,DebugLoc DL,EVT VT,int64_t Offset,bool isTargetGA,unsigned char TargetFlags)1040 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1041 EVT VT, int64_t Offset,
1042 bool isTargetGA,
1043 unsigned char TargetFlags) {
1044 assert((TargetFlags == 0 || isTargetGA) &&
1045 "Cannot set target flags on target-independent globals");
1046
1047 // Truncate (with sign-extension) the offset value to the pointer size.
1048 EVT PTy = TLI.getPointerTy();
1049 unsigned BitWidth = PTy.getSizeInBits();
1050 if (BitWidth < 64)
1051 Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1052
1053 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1054 if (!GVar) {
1055 // If GV is an alias then use the aliasee for determining thread-localness.
1056 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1057 GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1058 }
1059
1060 unsigned Opc;
1061 if (GVar && GVar->isThreadLocal())
1062 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1063 else
1064 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1065
1066 FoldingSetNodeID ID;
1067 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1068 ID.AddPointer(GV);
1069 ID.AddInteger(Offset);
1070 ID.AddInteger(TargetFlags);
1071 void *IP = 0;
1072 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1073 return SDValue(E, 0);
1074
1075 SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1076 Offset, TargetFlags);
1077 CSEMap.InsertNode(N, IP);
1078 AllNodes.push_back(N);
1079 return SDValue(N, 0);
1080 }
1081
getFrameIndex(int FI,EVT VT,bool isTarget)1082 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1083 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1084 FoldingSetNodeID ID;
1085 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1086 ID.AddInteger(FI);
1087 void *IP = 0;
1088 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1089 return SDValue(E, 0);
1090
1091 SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1092 CSEMap.InsertNode(N, IP);
1093 AllNodes.push_back(N);
1094 return SDValue(N, 0);
1095 }
1096
getJumpTable(int JTI,EVT VT,bool isTarget,unsigned char TargetFlags)1097 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1098 unsigned char TargetFlags) {
1099 assert((TargetFlags == 0 || isTarget) &&
1100 "Cannot set target flags on target-independent jump tables");
1101 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1102 FoldingSetNodeID ID;
1103 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1104 ID.AddInteger(JTI);
1105 ID.AddInteger(TargetFlags);
1106 void *IP = 0;
1107 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1108 return SDValue(E, 0);
1109
1110 SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1111 TargetFlags);
1112 CSEMap.InsertNode(N, IP);
1113 AllNodes.push_back(N);
1114 return SDValue(N, 0);
1115 }
1116
getConstantPool(const Constant * C,EVT VT,unsigned Alignment,int Offset,bool isTarget,unsigned char TargetFlags)1117 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1118 unsigned Alignment, int Offset,
1119 bool isTarget,
1120 unsigned char TargetFlags) {
1121 assert((TargetFlags == 0 || isTarget) &&
1122 "Cannot set target flags on target-independent globals");
1123 if (Alignment == 0)
1124 Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1125 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1126 FoldingSetNodeID ID;
1127 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1128 ID.AddInteger(Alignment);
1129 ID.AddInteger(Offset);
1130 ID.AddPointer(C);
1131 ID.AddInteger(TargetFlags);
1132 void *IP = 0;
1133 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1134 return SDValue(E, 0);
1135
1136 SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1137 Alignment, TargetFlags);
1138 CSEMap.InsertNode(N, IP);
1139 AllNodes.push_back(N);
1140 return SDValue(N, 0);
1141 }
1142
1143
getConstantPool(MachineConstantPoolValue * C,EVT VT,unsigned Alignment,int Offset,bool isTarget,unsigned char TargetFlags)1144 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1145 unsigned Alignment, int Offset,
1146 bool isTarget,
1147 unsigned char TargetFlags) {
1148 assert((TargetFlags == 0 || isTarget) &&
1149 "Cannot set target flags on target-independent globals");
1150 if (Alignment == 0)
1151 Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1152 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1153 FoldingSetNodeID ID;
1154 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1155 ID.AddInteger(Alignment);
1156 ID.AddInteger(Offset);
1157 C->addSelectionDAGCSEId(ID);
1158 ID.AddInteger(TargetFlags);
1159 void *IP = 0;
1160 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1161 return SDValue(E, 0);
1162
1163 SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1164 Alignment, TargetFlags);
1165 CSEMap.InsertNode(N, IP);
1166 AllNodes.push_back(N);
1167 return SDValue(N, 0);
1168 }
1169
getBasicBlock(MachineBasicBlock * MBB)1170 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1171 FoldingSetNodeID ID;
1172 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1173 ID.AddPointer(MBB);
1174 void *IP = 0;
1175 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1176 return SDValue(E, 0);
1177
1178 SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1179 CSEMap.InsertNode(N, IP);
1180 AllNodes.push_back(N);
1181 return SDValue(N, 0);
1182 }
1183
getValueType(EVT VT)1184 SDValue SelectionDAG::getValueType(EVT VT) {
1185 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1186 ValueTypeNodes.size())
1187 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1188
1189 SDNode *&N = VT.isExtended() ?
1190 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1191
1192 if (N) return SDValue(N, 0);
1193 N = new (NodeAllocator) VTSDNode(VT);
1194 AllNodes.push_back(N);
1195 return SDValue(N, 0);
1196 }
1197
getExternalSymbol(const char * Sym,EVT VT)1198 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1199 SDNode *&N = ExternalSymbols[Sym];
1200 if (N) return SDValue(N, 0);
1201 N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1202 AllNodes.push_back(N);
1203 return SDValue(N, 0);
1204 }
1205
getTargetExternalSymbol(const char * Sym,EVT VT,unsigned char TargetFlags)1206 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1207 unsigned char TargetFlags) {
1208 SDNode *&N =
1209 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1210 TargetFlags)];
1211 if (N) return SDValue(N, 0);
1212 N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1213 AllNodes.push_back(N);
1214 return SDValue(N, 0);
1215 }
1216
getCondCode(ISD::CondCode Cond)1217 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1218 if ((unsigned)Cond >= CondCodeNodes.size())
1219 CondCodeNodes.resize(Cond+1);
1220
1221 if (CondCodeNodes[Cond] == 0) {
1222 CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1223 CondCodeNodes[Cond] = N;
1224 AllNodes.push_back(N);
1225 }
1226
1227 return SDValue(CondCodeNodes[Cond], 0);
1228 }
1229
1230 // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1231 // the shuffle mask M that point at N1 to point at N2, and indices that point
1232 // N2 to point at N1.
commuteShuffle(SDValue & N1,SDValue & N2,SmallVectorImpl<int> & M)1233 static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1234 std::swap(N1, N2);
1235 int NElts = M.size();
1236 for (int i = 0; i != NElts; ++i) {
1237 if (M[i] >= NElts)
1238 M[i] -= NElts;
1239 else if (M[i] >= 0)
1240 M[i] += NElts;
1241 }
1242 }
1243
getVectorShuffle(EVT VT,DebugLoc dl,SDValue N1,SDValue N2,const int * Mask)1244 SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1245 SDValue N2, const int *Mask) {
1246 assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1247 assert(VT.isVector() && N1.getValueType().isVector() &&
1248 "Vector Shuffle VTs must be a vectors");
1249 assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1250 && "Vector Shuffle VTs must have same element type");
1251
1252 // Canonicalize shuffle undef, undef -> undef
1253 if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1254 return getUNDEF(VT);
1255
1256 // Validate that all indices in Mask are within the range of the elements
1257 // input to the shuffle.
1258 unsigned NElts = VT.getVectorNumElements();
1259 SmallVector<int, 8> MaskVec;
1260 for (unsigned i = 0; i != NElts; ++i) {
1261 assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1262 MaskVec.push_back(Mask[i]);
1263 }
1264
1265 // Canonicalize shuffle v, v -> v, undef
1266 if (N1 == N2) {
1267 N2 = getUNDEF(VT);
1268 for (unsigned i = 0; i != NElts; ++i)
1269 if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1270 }
1271
1272 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1273 if (N1.getOpcode() == ISD::UNDEF)
1274 commuteShuffle(N1, N2, MaskVec);
1275
1276 // Canonicalize all index into lhs, -> shuffle lhs, undef
1277 // Canonicalize all index into rhs, -> shuffle rhs, undef
1278 bool AllLHS = true, AllRHS = true;
1279 bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1280 for (unsigned i = 0; i != NElts; ++i) {
1281 if (MaskVec[i] >= (int)NElts) {
1282 if (N2Undef)
1283 MaskVec[i] = -1;
1284 else
1285 AllLHS = false;
1286 } else if (MaskVec[i] >= 0) {
1287 AllRHS = false;
1288 }
1289 }
1290 if (AllLHS && AllRHS)
1291 return getUNDEF(VT);
1292 if (AllLHS && !N2Undef)
1293 N2 = getUNDEF(VT);
1294 if (AllRHS) {
1295 N1 = getUNDEF(VT);
1296 commuteShuffle(N1, N2, MaskVec);
1297 }
1298
1299 // If Identity shuffle, or all shuffle in to undef, return that node.
1300 bool AllUndef = true;
1301 bool Identity = true;
1302 for (unsigned i = 0; i != NElts; ++i) {
1303 if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1304 if (MaskVec[i] >= 0) AllUndef = false;
1305 }
1306 if (Identity && NElts == N1.getValueType().getVectorNumElements())
1307 return N1;
1308 if (AllUndef)
1309 return getUNDEF(VT);
1310
1311 FoldingSetNodeID ID;
1312 SDValue Ops[2] = { N1, N2 };
1313 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1314 for (unsigned i = 0; i != NElts; ++i)
1315 ID.AddInteger(MaskVec[i]);
1316
1317 void* IP = 0;
1318 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1319 return SDValue(E, 0);
1320
1321 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1322 // SDNode doesn't have access to it. This memory will be "leaked" when
1323 // the node is deallocated, but recovered when the NodeAllocator is released.
1324 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1325 memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1326
1327 ShuffleVectorSDNode *N =
1328 new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1329 CSEMap.InsertNode(N, IP);
1330 AllNodes.push_back(N);
1331 return SDValue(N, 0);
1332 }
1333
getConvertRndSat(EVT VT,DebugLoc dl,SDValue Val,SDValue DTy,SDValue STy,SDValue Rnd,SDValue Sat,ISD::CvtCode Code)1334 SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1335 SDValue Val, SDValue DTy,
1336 SDValue STy, SDValue Rnd, SDValue Sat,
1337 ISD::CvtCode Code) {
1338 // If the src and dest types are the same and the conversion is between
1339 // integer types of the same sign or two floats, no conversion is necessary.
1340 if (DTy == STy &&
1341 (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1342 return Val;
1343
1344 FoldingSetNodeID ID;
1345 SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1346 AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1347 void* IP = 0;
1348 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1349 return SDValue(E, 0);
1350
1351 CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1352 Code);
1353 CSEMap.InsertNode(N, IP);
1354 AllNodes.push_back(N);
1355 return SDValue(N, 0);
1356 }
1357
getRegister(unsigned RegNo,EVT VT)1358 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1359 FoldingSetNodeID ID;
1360 AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1361 ID.AddInteger(RegNo);
1362 void *IP = 0;
1363 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1364 return SDValue(E, 0);
1365
1366 SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1367 CSEMap.InsertNode(N, IP);
1368 AllNodes.push_back(N);
1369 return SDValue(N, 0);
1370 }
1371
getEHLabel(DebugLoc dl,SDValue Root,MCSymbol * Label)1372 SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1373 FoldingSetNodeID ID;
1374 SDValue Ops[] = { Root };
1375 AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1376 ID.AddPointer(Label);
1377 void *IP = 0;
1378 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1379 return SDValue(E, 0);
1380
1381 SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1382 CSEMap.InsertNode(N, IP);
1383 AllNodes.push_back(N);
1384 return SDValue(N, 0);
1385 }
1386
1387
getBlockAddress(const BlockAddress * BA,EVT VT,bool isTarget,unsigned char TargetFlags)1388 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1389 bool isTarget,
1390 unsigned char TargetFlags) {
1391 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1392
1393 FoldingSetNodeID ID;
1394 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1395 ID.AddPointer(BA);
1396 ID.AddInteger(TargetFlags);
1397 void *IP = 0;
1398 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1399 return SDValue(E, 0);
1400
1401 SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1402 CSEMap.InsertNode(N, IP);
1403 AllNodes.push_back(N);
1404 return SDValue(N, 0);
1405 }
1406
getSrcValue(const Value * V)1407 SDValue SelectionDAG::getSrcValue(const Value *V) {
1408 assert((!V || V->getType()->isPointerTy()) &&
1409 "SrcValue is not a pointer?");
1410
1411 FoldingSetNodeID ID;
1412 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1413 ID.AddPointer(V);
1414
1415 void *IP = 0;
1416 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1417 return SDValue(E, 0);
1418
1419 SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1420 CSEMap.InsertNode(N, IP);
1421 AllNodes.push_back(N);
1422 return SDValue(N, 0);
1423 }
1424
1425 /// getMDNode - Return an MDNodeSDNode which holds an MDNode.
getMDNode(const MDNode * MD)1426 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1427 FoldingSetNodeID ID;
1428 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1429 ID.AddPointer(MD);
1430
1431 void *IP = 0;
1432 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1433 return SDValue(E, 0);
1434
1435 SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1436 CSEMap.InsertNode(N, IP);
1437 AllNodes.push_back(N);
1438 return SDValue(N, 0);
1439 }
1440
1441
1442 /// getShiftAmountOperand - Return the specified value casted to
1443 /// the target's desired shift amount type.
getShiftAmountOperand(EVT LHSTy,SDValue Op)1444 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1445 EVT OpTy = Op.getValueType();
1446 MVT ShTy = TLI.getShiftAmountTy(LHSTy);
1447 if (OpTy == ShTy || OpTy.isVector()) return Op;
1448
1449 ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
1450 return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1451 }
1452
1453 /// CreateStackTemporary - Create a stack temporary, suitable for holding the
1454 /// specified value type.
CreateStackTemporary(EVT VT,unsigned minAlign)1455 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1456 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1457 unsigned ByteSize = VT.getStoreSize();
1458 Type *Ty = VT.getTypeForEVT(*getContext());
1459 unsigned StackAlign =
1460 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1461
1462 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1463 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1464 }
1465
1466 /// CreateStackTemporary - Create a stack temporary suitable for holding
1467 /// either of the specified value types.
CreateStackTemporary(EVT VT1,EVT VT2)1468 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1469 unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1470 VT2.getStoreSizeInBits())/8;
1471 Type *Ty1 = VT1.getTypeForEVT(*getContext());
1472 Type *Ty2 = VT2.getTypeForEVT(*getContext());
1473 const TargetData *TD = TLI.getTargetData();
1474 unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1475 TD->getPrefTypeAlignment(Ty2));
1476
1477 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1478 int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1479 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1480 }
1481
FoldSetCC(EVT VT,SDValue N1,SDValue N2,ISD::CondCode Cond,DebugLoc dl)1482 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1483 SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1484 // These setcc operations always fold.
1485 switch (Cond) {
1486 default: break;
1487 case ISD::SETFALSE:
1488 case ISD::SETFALSE2: return getConstant(0, VT);
1489 case ISD::SETTRUE:
1490 case ISD::SETTRUE2: return getConstant(1, VT);
1491
1492 case ISD::SETOEQ:
1493 case ISD::SETOGT:
1494 case ISD::SETOGE:
1495 case ISD::SETOLT:
1496 case ISD::SETOLE:
1497 case ISD::SETONE:
1498 case ISD::SETO:
1499 case ISD::SETUO:
1500 case ISD::SETUEQ:
1501 case ISD::SETUNE:
1502 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1503 break;
1504 }
1505
1506 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1507 const APInt &C2 = N2C->getAPIntValue();
1508 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1509 const APInt &C1 = N1C->getAPIntValue();
1510
1511 switch (Cond) {
1512 default: llvm_unreachable("Unknown integer setcc!");
1513 case ISD::SETEQ: return getConstant(C1 == C2, VT);
1514 case ISD::SETNE: return getConstant(C1 != C2, VT);
1515 case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1516 case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1517 case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1518 case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1519 case ISD::SETLT: return getConstant(C1.slt(C2), VT);
1520 case ISD::SETGT: return getConstant(C1.sgt(C2), VT);
1521 case ISD::SETLE: return getConstant(C1.sle(C2), VT);
1522 case ISD::SETGE: return getConstant(C1.sge(C2), VT);
1523 }
1524 }
1525 }
1526 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1527 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1528 // No compile time operations on this type yet.
1529 if (N1C->getValueType(0) == MVT::ppcf128)
1530 return SDValue();
1531
1532 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1533 switch (Cond) {
1534 default: break;
1535 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
1536 return getUNDEF(VT);
1537 // fall through
1538 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1539 case ISD::SETNE: if (R==APFloat::cmpUnordered)
1540 return getUNDEF(VT);
1541 // fall through
1542 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1543 R==APFloat::cmpLessThan, VT);
1544 case ISD::SETLT: if (R==APFloat::cmpUnordered)
1545 return getUNDEF(VT);
1546 // fall through
1547 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1548 case ISD::SETGT: if (R==APFloat::cmpUnordered)
1549 return getUNDEF(VT);
1550 // fall through
1551 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1552 case ISD::SETLE: if (R==APFloat::cmpUnordered)
1553 return getUNDEF(VT);
1554 // fall through
1555 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1556 R==APFloat::cmpEqual, VT);
1557 case ISD::SETGE: if (R==APFloat::cmpUnordered)
1558 return getUNDEF(VT);
1559 // fall through
1560 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1561 R==APFloat::cmpEqual, VT);
1562 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
1563 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
1564 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1565 R==APFloat::cmpEqual, VT);
1566 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1567 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1568 R==APFloat::cmpLessThan, VT);
1569 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1570 R==APFloat::cmpUnordered, VT);
1571 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1572 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1573 }
1574 } else {
1575 // Ensure that the constant occurs on the RHS.
1576 return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1577 }
1578 }
1579
1580 // Could not fold it.
1581 return SDValue();
1582 }
1583
1584 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
1585 /// use this predicate to simplify operations downstream.
SignBitIsZero(SDValue Op,unsigned Depth) const1586 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1587 // This predicate is not safe for vector operations.
1588 if (Op.getValueType().isVector())
1589 return false;
1590
1591 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1592 return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1593 }
1594
1595 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1596 /// this predicate to simplify operations downstream. Mask is known to be zero
1597 /// for bits that V cannot have.
MaskedValueIsZero(SDValue Op,const APInt & Mask,unsigned Depth) const1598 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1599 unsigned Depth) const {
1600 APInt KnownZero, KnownOne;
1601 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1602 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1603 return (KnownZero & Mask) == Mask;
1604 }
1605
1606 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
1607 /// known to be either zero or one and return them in the KnownZero/KnownOne
1608 /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1609 /// processing.
ComputeMaskedBits(SDValue Op,const APInt & Mask,APInt & KnownZero,APInt & KnownOne,unsigned Depth) const1610 void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1611 APInt &KnownZero, APInt &KnownOne,
1612 unsigned Depth) const {
1613 unsigned BitWidth = Mask.getBitWidth();
1614 assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1615 "Mask size mismatches value type size!");
1616
1617 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
1618 if (Depth == 6 || Mask == 0)
1619 return; // Limit search depth.
1620
1621 APInt KnownZero2, KnownOne2;
1622
1623 switch (Op.getOpcode()) {
1624 case ISD::Constant:
1625 // We know all of the bits for a constant!
1626 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1627 KnownZero = ~KnownOne & Mask;
1628 return;
1629 case ISD::AND:
1630 // If either the LHS or the RHS are Zero, the result is zero.
1631 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1632 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1633 KnownZero2, KnownOne2, Depth+1);
1634 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1635 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1636
1637 // Output known-1 bits are only known if set in both the LHS & RHS.
1638 KnownOne &= KnownOne2;
1639 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1640 KnownZero |= KnownZero2;
1641 return;
1642 case ISD::OR:
1643 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1644 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1645 KnownZero2, KnownOne2, Depth+1);
1646 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1647 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1648
1649 // Output known-0 bits are only known if clear in both the LHS & RHS.
1650 KnownZero &= KnownZero2;
1651 // Output known-1 are known to be set if set in either the LHS | RHS.
1652 KnownOne |= KnownOne2;
1653 return;
1654 case ISD::XOR: {
1655 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1656 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1657 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1658 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1659
1660 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1661 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1662 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1663 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1664 KnownZero = KnownZeroOut;
1665 return;
1666 }
1667 case ISD::MUL: {
1668 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1669 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1670 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1671 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1672 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1673
1674 // If low bits are zero in either operand, output low known-0 bits.
1675 // Also compute a conserative estimate for high known-0 bits.
1676 // More trickiness is possible, but this is sufficient for the
1677 // interesting case of alignment computation.
1678 KnownOne.clearAllBits();
1679 unsigned TrailZ = KnownZero.countTrailingOnes() +
1680 KnownZero2.countTrailingOnes();
1681 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
1682 KnownZero2.countLeadingOnes(),
1683 BitWidth) - BitWidth;
1684
1685 TrailZ = std::min(TrailZ, BitWidth);
1686 LeadZ = std::min(LeadZ, BitWidth);
1687 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1688 APInt::getHighBitsSet(BitWidth, LeadZ);
1689 KnownZero &= Mask;
1690 return;
1691 }
1692 case ISD::UDIV: {
1693 // For the purposes of computing leading zeros we can conservatively
1694 // treat a udiv as a logical right shift by the power of 2 known to
1695 // be less than the denominator.
1696 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1697 ComputeMaskedBits(Op.getOperand(0),
1698 AllOnes, KnownZero2, KnownOne2, Depth+1);
1699 unsigned LeadZ = KnownZero2.countLeadingOnes();
1700
1701 KnownOne2.clearAllBits();
1702 KnownZero2.clearAllBits();
1703 ComputeMaskedBits(Op.getOperand(1),
1704 AllOnes, KnownZero2, KnownOne2, Depth+1);
1705 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1706 if (RHSUnknownLeadingOnes != BitWidth)
1707 LeadZ = std::min(BitWidth,
1708 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1709
1710 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1711 return;
1712 }
1713 case ISD::SELECT:
1714 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1715 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1716 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1717 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1718
1719 // Only known if known in both the LHS and RHS.
1720 KnownOne &= KnownOne2;
1721 KnownZero &= KnownZero2;
1722 return;
1723 case ISD::SELECT_CC:
1724 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1725 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1726 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1727 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1728
1729 // Only known if known in both the LHS and RHS.
1730 KnownOne &= KnownOne2;
1731 KnownZero &= KnownZero2;
1732 return;
1733 case ISD::SADDO:
1734 case ISD::UADDO:
1735 case ISD::SSUBO:
1736 case ISD::USUBO:
1737 case ISD::SMULO:
1738 case ISD::UMULO:
1739 if (Op.getResNo() != 1)
1740 return;
1741 // The boolean result conforms to getBooleanContents. Fall through.
1742 case ISD::SETCC:
1743 // If we know the result of a setcc has the top bits zero, use this info.
1744 if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
1745 TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1)
1746 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1747 return;
1748 case ISD::SHL:
1749 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1750 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1751 unsigned ShAmt = SA->getZExtValue();
1752
1753 // If the shift count is an invalid immediate, don't do anything.
1754 if (ShAmt >= BitWidth)
1755 return;
1756
1757 ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1758 KnownZero, KnownOne, Depth+1);
1759 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1760 KnownZero <<= ShAmt;
1761 KnownOne <<= ShAmt;
1762 // low bits known zero.
1763 KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1764 }
1765 return;
1766 case ISD::SRL:
1767 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1768 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1769 unsigned ShAmt = SA->getZExtValue();
1770
1771 // If the shift count is an invalid immediate, don't do anything.
1772 if (ShAmt >= BitWidth)
1773 return;
1774
1775 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1776 KnownZero, KnownOne, Depth+1);
1777 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1778 KnownZero = KnownZero.lshr(ShAmt);
1779 KnownOne = KnownOne.lshr(ShAmt);
1780
1781 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1782 KnownZero |= HighBits; // High bits known zero.
1783 }
1784 return;
1785 case ISD::SRA:
1786 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1787 unsigned ShAmt = SA->getZExtValue();
1788
1789 // If the shift count is an invalid immediate, don't do anything.
1790 if (ShAmt >= BitWidth)
1791 return;
1792
1793 APInt InDemandedMask = (Mask << ShAmt);
1794 // If any of the demanded bits are produced by the sign extension, we also
1795 // demand the input sign bit.
1796 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1797 if (HighBits.getBoolValue())
1798 InDemandedMask |= APInt::getSignBit(BitWidth);
1799
1800 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1801 Depth+1);
1802 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1803 KnownZero = KnownZero.lshr(ShAmt);
1804 KnownOne = KnownOne.lshr(ShAmt);
1805
1806 // Handle the sign bits.
1807 APInt SignBit = APInt::getSignBit(BitWidth);
1808 SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask.
1809
1810 if (KnownZero.intersects(SignBit)) {
1811 KnownZero |= HighBits; // New bits are known zero.
1812 } else if (KnownOne.intersects(SignBit)) {
1813 KnownOne |= HighBits; // New bits are known one.
1814 }
1815 }
1816 return;
1817 case ISD::SIGN_EXTEND_INREG: {
1818 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1819 unsigned EBits = EVT.getScalarType().getSizeInBits();
1820
1821 // Sign extension. Compute the demanded bits in the result that are not
1822 // present in the input.
1823 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1824
1825 APInt InSignBit = APInt::getSignBit(EBits);
1826 APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1827
1828 // If the sign extended bits are demanded, we know that the sign
1829 // bit is demanded.
1830 InSignBit = InSignBit.zext(BitWidth);
1831 if (NewBits.getBoolValue())
1832 InputDemandedBits |= InSignBit;
1833
1834 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1835 KnownZero, KnownOne, Depth+1);
1836 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1837
1838 // If the sign bit of the input is known set or clear, then we know the
1839 // top bits of the result.
1840 if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear
1841 KnownZero |= NewBits;
1842 KnownOne &= ~NewBits;
1843 } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
1844 KnownOne |= NewBits;
1845 KnownZero &= ~NewBits;
1846 } else { // Input sign bit unknown
1847 KnownZero &= ~NewBits;
1848 KnownOne &= ~NewBits;
1849 }
1850 return;
1851 }
1852 case ISD::CTTZ:
1853 case ISD::CTLZ:
1854 case ISD::CTPOP: {
1855 unsigned LowBits = Log2_32(BitWidth)+1;
1856 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1857 KnownOne.clearAllBits();
1858 return;
1859 }
1860 case ISD::LOAD: {
1861 if (ISD::isZEXTLoad(Op.getNode())) {
1862 LoadSDNode *LD = cast<LoadSDNode>(Op);
1863 EVT VT = LD->getMemoryVT();
1864 unsigned MemBits = VT.getScalarType().getSizeInBits();
1865 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1866 }
1867 return;
1868 }
1869 case ISD::ZERO_EXTEND: {
1870 EVT InVT = Op.getOperand(0).getValueType();
1871 unsigned InBits = InVT.getScalarType().getSizeInBits();
1872 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1873 APInt InMask = Mask.trunc(InBits);
1874 KnownZero = KnownZero.trunc(InBits);
1875 KnownOne = KnownOne.trunc(InBits);
1876 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1877 KnownZero = KnownZero.zext(BitWidth);
1878 KnownOne = KnownOne.zext(BitWidth);
1879 KnownZero |= NewBits;
1880 return;
1881 }
1882 case ISD::SIGN_EXTEND: {
1883 EVT InVT = Op.getOperand(0).getValueType();
1884 unsigned InBits = InVT.getScalarType().getSizeInBits();
1885 APInt InSignBit = APInt::getSignBit(InBits);
1886 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1887 APInt InMask = Mask.trunc(InBits);
1888
1889 // If any of the sign extended bits are demanded, we know that the sign
1890 // bit is demanded. Temporarily set this bit in the mask for our callee.
1891 if (NewBits.getBoolValue())
1892 InMask |= InSignBit;
1893
1894 KnownZero = KnownZero.trunc(InBits);
1895 KnownOne = KnownOne.trunc(InBits);
1896 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1897
1898 // Note if the sign bit is known to be zero or one.
1899 bool SignBitKnownZero = KnownZero.isNegative();
1900 bool SignBitKnownOne = KnownOne.isNegative();
1901 assert(!(SignBitKnownZero && SignBitKnownOne) &&
1902 "Sign bit can't be known to be both zero and one!");
1903
1904 // If the sign bit wasn't actually demanded by our caller, we don't
1905 // want it set in the KnownZero and KnownOne result values. Reset the
1906 // mask and reapply it to the result values.
1907 InMask = Mask.trunc(InBits);
1908 KnownZero &= InMask;
1909 KnownOne &= InMask;
1910
1911 KnownZero = KnownZero.zext(BitWidth);
1912 KnownOne = KnownOne.zext(BitWidth);
1913
1914 // If the sign bit is known zero or one, the top bits match.
1915 if (SignBitKnownZero)
1916 KnownZero |= NewBits;
1917 else if (SignBitKnownOne)
1918 KnownOne |= NewBits;
1919 return;
1920 }
1921 case ISD::ANY_EXTEND: {
1922 EVT InVT = Op.getOperand(0).getValueType();
1923 unsigned InBits = InVT.getScalarType().getSizeInBits();
1924 APInt InMask = Mask.trunc(InBits);
1925 KnownZero = KnownZero.trunc(InBits);
1926 KnownOne = KnownOne.trunc(InBits);
1927 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1928 KnownZero = KnownZero.zext(BitWidth);
1929 KnownOne = KnownOne.zext(BitWidth);
1930 return;
1931 }
1932 case ISD::TRUNCATE: {
1933 EVT InVT = Op.getOperand(0).getValueType();
1934 unsigned InBits = InVT.getScalarType().getSizeInBits();
1935 APInt InMask = Mask.zext(InBits);
1936 KnownZero = KnownZero.zext(InBits);
1937 KnownOne = KnownOne.zext(InBits);
1938 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1939 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1940 KnownZero = KnownZero.trunc(BitWidth);
1941 KnownOne = KnownOne.trunc(BitWidth);
1942 break;
1943 }
1944 case ISD::AssertZext: {
1945 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1946 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1947 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1948 KnownOne, Depth+1);
1949 KnownZero |= (~InMask) & Mask;
1950 return;
1951 }
1952 case ISD::FGETSIGN:
1953 // All bits are zero except the low bit.
1954 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1955 return;
1956
1957 case ISD::SUB: {
1958 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1959 // We know that the top bits of C-X are clear if X contains less bits
1960 // than C (i.e. no wrap-around can happen). For example, 20-X is
1961 // positive if we can prove that X is >= 0 and < 16.
1962 if (CLHS->getAPIntValue().isNonNegative()) {
1963 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1964 // NLZ can't be BitWidth with no sign bit
1965 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1966 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1967 Depth+1);
1968
1969 // If all of the MaskV bits are known to be zero, then we know the
1970 // output top bits are zero, because we now know that the output is
1971 // from [0-C].
1972 if ((KnownZero2 & MaskV) == MaskV) {
1973 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1974 // Top bits known zero.
1975 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1976 }
1977 }
1978 }
1979 }
1980 // fall through
1981 case ISD::ADD:
1982 case ISD::ADDE: {
1983 // Output known-0 bits are known if clear or set in both the low clear bits
1984 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1985 // low 3 bits clear.
1986 APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1987 BitWidth - Mask.countLeadingZeros());
1988 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1989 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1990 unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1991
1992 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1993 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1994 KnownZeroOut = std::min(KnownZeroOut,
1995 KnownZero2.countTrailingOnes());
1996
1997 if (Op.getOpcode() == ISD::ADD) {
1998 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1999 return;
2000 }
2001
2002 // With ADDE, a carry bit may be added in, so we can only use this
2003 // information if we know (at least) that the low two bits are clear. We
2004 // then return to the caller that the low bit is unknown but that other bits
2005 // are known zero.
2006 if (KnownZeroOut >= 2) // ADDE
2007 KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
2008 return;
2009 }
2010 case ISD::SREM:
2011 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2012 const APInt &RA = Rem->getAPIntValue().abs();
2013 if (RA.isPowerOf2()) {
2014 APInt LowBits = RA - 1;
2015 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
2016 ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
2017
2018 // The low bits of the first operand are unchanged by the srem.
2019 KnownZero = KnownZero2 & LowBits;
2020 KnownOne = KnownOne2 & LowBits;
2021
2022 // If the first operand is non-negative or has all low bits zero, then
2023 // the upper bits are all zero.
2024 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2025 KnownZero |= ~LowBits;
2026
2027 // If the first operand is negative and not all low bits are zero, then
2028 // the upper bits are all one.
2029 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2030 KnownOne |= ~LowBits;
2031
2032 KnownZero &= Mask;
2033 KnownOne &= Mask;
2034
2035 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2036 }
2037 }
2038 return;
2039 case ISD::UREM: {
2040 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2041 const APInt &RA = Rem->getAPIntValue();
2042 if (RA.isPowerOf2()) {
2043 APInt LowBits = (RA - 1);
2044 APInt Mask2 = LowBits & Mask;
2045 KnownZero |= ~LowBits & Mask;
2046 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2047 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2048 break;
2049 }
2050 }
2051
2052 // Since the result is less than or equal to either operand, any leading
2053 // zero bits in either operand must also exist in the result.
2054 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2055 ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2056 Depth+1);
2057 ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2058 Depth+1);
2059
2060 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2061 KnownZero2.countLeadingOnes());
2062 KnownOne.clearAllBits();
2063 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2064 return;
2065 }
2066 case ISD::FrameIndex:
2067 case ISD::TargetFrameIndex:
2068 if (unsigned Align = InferPtrAlignment(Op)) {
2069 // The low bits are known zero if the pointer is aligned.
2070 KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2071 return;
2072 }
2073 break;
2074
2075 default:
2076 if (Op.getOpcode() < ISD::BUILTIN_OP_END)
2077 break;
2078 // Fallthrough
2079 case ISD::INTRINSIC_WO_CHAIN:
2080 case ISD::INTRINSIC_W_CHAIN:
2081 case ISD::INTRINSIC_VOID:
2082 // Allow the target to implement this method for its nodes.
2083 TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2084 Depth);
2085 return;
2086 }
2087 }
2088
2089 /// ComputeNumSignBits - Return the number of times the sign bit of the
2090 /// register is replicated into the other bits. We know that at least 1 bit
2091 /// is always equal to the sign bit (itself), but other cases can give us
2092 /// information. For example, immediately after an "SRA X, 2", we know that
2093 /// the top 3 bits are all equal to each other, so we return 3.
ComputeNumSignBits(SDValue Op,unsigned Depth) const2094 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2095 EVT VT = Op.getValueType();
2096 assert(VT.isInteger() && "Invalid VT!");
2097 unsigned VTBits = VT.getScalarType().getSizeInBits();
2098 unsigned Tmp, Tmp2;
2099 unsigned FirstAnswer = 1;
2100
2101 if (Depth == 6)
2102 return 1; // Limit search depth.
2103
2104 switch (Op.getOpcode()) {
2105 default: break;
2106 case ISD::AssertSext:
2107 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2108 return VTBits-Tmp+1;
2109 case ISD::AssertZext:
2110 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2111 return VTBits-Tmp;
2112
2113 case ISD::Constant: {
2114 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2115 return Val.getNumSignBits();
2116 }
2117
2118 case ISD::SIGN_EXTEND:
2119 Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2120 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2121
2122 case ISD::SIGN_EXTEND_INREG:
2123 // Max of the input and what this extends.
2124 Tmp =
2125 cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2126 Tmp = VTBits-Tmp+1;
2127
2128 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2129 return std::max(Tmp, Tmp2);
2130
2131 case ISD::SRA:
2132 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2133 // SRA X, C -> adds C sign bits.
2134 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2135 Tmp += C->getZExtValue();
2136 if (Tmp > VTBits) Tmp = VTBits;
2137 }
2138 return Tmp;
2139 case ISD::SHL:
2140 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2141 // shl destroys sign bits.
2142 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2143 if (C->getZExtValue() >= VTBits || // Bad shift.
2144 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
2145 return Tmp - C->getZExtValue();
2146 }
2147 break;
2148 case ISD::AND:
2149 case ISD::OR:
2150 case ISD::XOR: // NOT is handled here.
2151 // Logical binary ops preserve the number of sign bits at the worst.
2152 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2153 if (Tmp != 1) {
2154 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2155 FirstAnswer = std::min(Tmp, Tmp2);
2156 // We computed what we know about the sign bits as our first
2157 // answer. Now proceed to the generic code that uses
2158 // ComputeMaskedBits, and pick whichever answer is better.
2159 }
2160 break;
2161
2162 case ISD::SELECT:
2163 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2164 if (Tmp == 1) return 1; // Early out.
2165 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2166 return std::min(Tmp, Tmp2);
2167
2168 case ISD::SADDO:
2169 case ISD::UADDO:
2170 case ISD::SSUBO:
2171 case ISD::USUBO:
2172 case ISD::SMULO:
2173 case ISD::UMULO:
2174 if (Op.getResNo() != 1)
2175 break;
2176 // The boolean result conforms to getBooleanContents. Fall through.
2177 case ISD::SETCC:
2178 // If setcc returns 0/-1, all bits are sign bits.
2179 if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
2180 TargetLowering::ZeroOrNegativeOneBooleanContent)
2181 return VTBits;
2182 break;
2183 case ISD::ROTL:
2184 case ISD::ROTR:
2185 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2186 unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2187
2188 // Handle rotate right by N like a rotate left by 32-N.
2189 if (Op.getOpcode() == ISD::ROTR)
2190 RotAmt = (VTBits-RotAmt) & (VTBits-1);
2191
2192 // If we aren't rotating out all of the known-in sign bits, return the
2193 // number that are left. This handles rotl(sext(x), 1) for example.
2194 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2195 if (Tmp > RotAmt+1) return Tmp-RotAmt;
2196 }
2197 break;
2198 case ISD::ADD:
2199 // Add can have at most one carry bit. Thus we know that the output
2200 // is, at worst, one more bit than the inputs.
2201 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2202 if (Tmp == 1) return 1; // Early out.
2203
2204 // Special case decrementing a value (ADD X, -1):
2205 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2206 if (CRHS->isAllOnesValue()) {
2207 APInt KnownZero, KnownOne;
2208 APInt Mask = APInt::getAllOnesValue(VTBits);
2209 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2210
2211 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2212 // sign bits set.
2213 if ((KnownZero | APInt(VTBits, 1)) == Mask)
2214 return VTBits;
2215
2216 // If we are subtracting one from a positive number, there is no carry
2217 // out of the result.
2218 if (KnownZero.isNegative())
2219 return Tmp;
2220 }
2221
2222 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2223 if (Tmp2 == 1) return 1;
2224 return std::min(Tmp, Tmp2)-1;
2225 break;
2226
2227 case ISD::SUB:
2228 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2229 if (Tmp2 == 1) return 1;
2230
2231 // Handle NEG.
2232 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2233 if (CLHS->isNullValue()) {
2234 APInt KnownZero, KnownOne;
2235 APInt Mask = APInt::getAllOnesValue(VTBits);
2236 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2237 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2238 // sign bits set.
2239 if ((KnownZero | APInt(VTBits, 1)) == Mask)
2240 return VTBits;
2241
2242 // If the input is known to be positive (the sign bit is known clear),
2243 // the output of the NEG has the same number of sign bits as the input.
2244 if (KnownZero.isNegative())
2245 return Tmp2;
2246
2247 // Otherwise, we treat this like a SUB.
2248 }
2249
2250 // Sub can have at most one carry bit. Thus we know that the output
2251 // is, at worst, one more bit than the inputs.
2252 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2253 if (Tmp == 1) return 1; // Early out.
2254 return std::min(Tmp, Tmp2)-1;
2255 break;
2256 case ISD::TRUNCATE:
2257 // FIXME: it's tricky to do anything useful for this, but it is an important
2258 // case for targets like X86.
2259 break;
2260 }
2261
2262 // Handle LOADX separately here. EXTLOAD case will fallthrough.
2263 if (Op.getOpcode() == ISD::LOAD) {
2264 LoadSDNode *LD = cast<LoadSDNode>(Op);
2265 unsigned ExtType = LD->getExtensionType();
2266 switch (ExtType) {
2267 default: break;
2268 case ISD::SEXTLOAD: // '17' bits known
2269 Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2270 return VTBits-Tmp+1;
2271 case ISD::ZEXTLOAD: // '16' bits known
2272 Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2273 return VTBits-Tmp;
2274 }
2275 }
2276
2277 // Allow the target to implement this method for its nodes.
2278 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2279 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2280 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2281 Op.getOpcode() == ISD::INTRINSIC_VOID) {
2282 unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2283 if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2284 }
2285
2286 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2287 // use this information.
2288 APInt KnownZero, KnownOne;
2289 APInt Mask = APInt::getAllOnesValue(VTBits);
2290 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2291
2292 if (KnownZero.isNegative()) { // sign bit is 0
2293 Mask = KnownZero;
2294 } else if (KnownOne.isNegative()) { // sign bit is 1;
2295 Mask = KnownOne;
2296 } else {
2297 // Nothing known.
2298 return FirstAnswer;
2299 }
2300
2301 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2302 // the number of identical bits in the top of the input value.
2303 Mask = ~Mask;
2304 Mask <<= Mask.getBitWidth()-VTBits;
2305 // Return # leading zeros. We use 'min' here in case Val was zero before
2306 // shifting. We don't want to return '64' as for an i32 "0".
2307 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2308 }
2309
2310 /// isBaseWithConstantOffset - Return true if the specified operand is an
2311 /// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2312 /// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2313 /// semantics as an ADD. This handles the equivalence:
2314 /// X|Cst == X+Cst iff X&Cst = 0.
isBaseWithConstantOffset(SDValue Op) const2315 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2316 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2317 !isa<ConstantSDNode>(Op.getOperand(1)))
2318 return false;
2319
2320 if (Op.getOpcode() == ISD::OR &&
2321 !MaskedValueIsZero(Op.getOperand(0),
2322 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2323 return false;
2324
2325 return true;
2326 }
2327
2328
isKnownNeverNaN(SDValue Op) const2329 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2330 // If we're told that NaNs won't happen, assume they won't.
2331 if (NoNaNsFPMath)
2332 return true;
2333
2334 // If the value is a constant, we can obviously see if it is a NaN or not.
2335 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2336 return !C->getValueAPF().isNaN();
2337
2338 // TODO: Recognize more cases here.
2339
2340 return false;
2341 }
2342
isKnownNeverZero(SDValue Op) const2343 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2344 // If the value is a constant, we can obviously see if it is a zero or not.
2345 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2346 return !C->isZero();
2347
2348 // TODO: Recognize more cases here.
2349 switch (Op.getOpcode()) {
2350 default: break;
2351 case ISD::OR:
2352 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2353 return !C->isNullValue();
2354 break;
2355 }
2356
2357 return false;
2358 }
2359
isEqualTo(SDValue A,SDValue B) const2360 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2361 // Check the obvious case.
2362 if (A == B) return true;
2363
2364 // For for negative and positive zero.
2365 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2366 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2367 if (CA->isZero() && CB->isZero()) return true;
2368
2369 // Otherwise they may not be equal.
2370 return false;
2371 }
2372
2373 /// getNode - Gets or creates the specified node.
2374 ///
getNode(unsigned Opcode,DebugLoc DL,EVT VT)2375 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2376 FoldingSetNodeID ID;
2377 AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2378 void *IP = 0;
2379 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2380 return SDValue(E, 0);
2381
2382 SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2383 CSEMap.InsertNode(N, IP);
2384
2385 AllNodes.push_back(N);
2386 #ifndef NDEBUG
2387 VerifySDNode(N);
2388 #endif
2389 return SDValue(N, 0);
2390 }
2391
getNode(unsigned Opcode,DebugLoc DL,EVT VT,SDValue Operand)2392 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2393 EVT VT, SDValue Operand) {
2394 // Constant fold unary operations with an integer constant operand.
2395 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2396 const APInt &Val = C->getAPIntValue();
2397 switch (Opcode) {
2398 default: break;
2399 case ISD::SIGN_EXTEND:
2400 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2401 case ISD::ANY_EXTEND:
2402 case ISD::ZERO_EXTEND:
2403 case ISD::TRUNCATE:
2404 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2405 case ISD::UINT_TO_FP:
2406 case ISD::SINT_TO_FP: {
2407 // No compile time operations on ppcf128.
2408 if (VT == MVT::ppcf128) break;
2409 APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2410 (void)apf.convertFromAPInt(Val,
2411 Opcode==ISD::SINT_TO_FP,
2412 APFloat::rmNearestTiesToEven);
2413 return getConstantFP(apf, VT);
2414 }
2415 case ISD::BITCAST:
2416 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2417 return getConstantFP(Val.bitsToFloat(), VT);
2418 else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2419 return getConstantFP(Val.bitsToDouble(), VT);
2420 break;
2421 case ISD::BSWAP:
2422 return getConstant(Val.byteSwap(), VT);
2423 case ISD::CTPOP:
2424 return getConstant(Val.countPopulation(), VT);
2425 case ISD::CTLZ:
2426 return getConstant(Val.countLeadingZeros(), VT);
2427 case ISD::CTTZ:
2428 return getConstant(Val.countTrailingZeros(), VT);
2429 }
2430 }
2431
2432 // Constant fold unary operations with a floating point constant operand.
2433 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2434 APFloat V = C->getValueAPF(); // make copy
2435 if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2436 switch (Opcode) {
2437 case ISD::FNEG:
2438 V.changeSign();
2439 return getConstantFP(V, VT);
2440 case ISD::FABS:
2441 V.clearSign();
2442 return getConstantFP(V, VT);
2443 case ISD::FP_ROUND:
2444 case ISD::FP_EXTEND: {
2445 bool ignored;
2446 // This can return overflow, underflow, or inexact; we don't care.
2447 // FIXME need to be more flexible about rounding mode.
2448 (void)V.convert(*EVTToAPFloatSemantics(VT),
2449 APFloat::rmNearestTiesToEven, &ignored);
2450 return getConstantFP(V, VT);
2451 }
2452 case ISD::FP_TO_SINT:
2453 case ISD::FP_TO_UINT: {
2454 integerPart x[2];
2455 bool ignored;
2456 assert(integerPartWidth >= 64);
2457 // FIXME need to be more flexible about rounding mode.
2458 APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2459 Opcode==ISD::FP_TO_SINT,
2460 APFloat::rmTowardZero, &ignored);
2461 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
2462 break;
2463 APInt api(VT.getSizeInBits(), x);
2464 return getConstant(api, VT);
2465 }
2466 case ISD::BITCAST:
2467 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2468 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2469 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2470 return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2471 break;
2472 }
2473 }
2474 }
2475
2476 unsigned OpOpcode = Operand.getNode()->getOpcode();
2477 switch (Opcode) {
2478 case ISD::TokenFactor:
2479 case ISD::MERGE_VALUES:
2480 case ISD::CONCAT_VECTORS:
2481 return Operand; // Factor, merge or concat of one node? No need.
2482 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2483 case ISD::FP_EXTEND:
2484 assert(VT.isFloatingPoint() &&
2485 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2486 if (Operand.getValueType() == VT) return Operand; // noop conversion.
2487 assert((!VT.isVector() ||
2488 VT.getVectorNumElements() ==
2489 Operand.getValueType().getVectorNumElements()) &&
2490 "Vector element count mismatch!");
2491 if (Operand.getOpcode() == ISD::UNDEF)
2492 return getUNDEF(VT);
2493 break;
2494 case ISD::SIGN_EXTEND:
2495 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2496 "Invalid SIGN_EXTEND!");
2497 if (Operand.getValueType() == VT) return Operand; // noop extension
2498 assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2499 "Invalid sext node, dst < src!");
2500 assert((!VT.isVector() ||
2501 VT.getVectorNumElements() ==
2502 Operand.getValueType().getVectorNumElements()) &&
2503 "Vector element count mismatch!");
2504 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2505 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2506 else if (OpOpcode == ISD::UNDEF)
2507 // sext(undef) = 0, because the top bits will all be the same.
2508 return getConstant(0, VT);
2509 break;
2510 case ISD::ZERO_EXTEND:
2511 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2512 "Invalid ZERO_EXTEND!");
2513 if (Operand.getValueType() == VT) return Operand; // noop extension
2514 assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2515 "Invalid zext node, dst < src!");
2516 assert((!VT.isVector() ||
2517 VT.getVectorNumElements() ==
2518 Operand.getValueType().getVectorNumElements()) &&
2519 "Vector element count mismatch!");
2520 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
2521 return getNode(ISD::ZERO_EXTEND, DL, VT,
2522 Operand.getNode()->getOperand(0));
2523 else if (OpOpcode == ISD::UNDEF)
2524 // zext(undef) = 0, because the top bits will be zero.
2525 return getConstant(0, VT);
2526 break;
2527 case ISD::ANY_EXTEND:
2528 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2529 "Invalid ANY_EXTEND!");
2530 if (Operand.getValueType() == VT) return Operand; // noop extension
2531 assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2532 "Invalid anyext node, dst < src!");
2533 assert((!VT.isVector() ||
2534 VT.getVectorNumElements() ==
2535 Operand.getValueType().getVectorNumElements()) &&
2536 "Vector element count mismatch!");
2537
2538 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2539 OpOpcode == ISD::ANY_EXTEND)
2540 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
2541 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2542 else if (OpOpcode == ISD::UNDEF)
2543 return getUNDEF(VT);
2544
2545 // (ext (trunx x)) -> x
2546 if (OpOpcode == ISD::TRUNCATE) {
2547 SDValue OpOp = Operand.getNode()->getOperand(0);
2548 if (OpOp.getValueType() == VT)
2549 return OpOp;
2550 }
2551 break;
2552 case ISD::TRUNCATE:
2553 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2554 "Invalid TRUNCATE!");
2555 if (Operand.getValueType() == VT) return Operand; // noop truncate
2556 assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2557 "Invalid truncate node, src < dst!");
2558 assert((!VT.isVector() ||
2559 VT.getVectorNumElements() ==
2560 Operand.getValueType().getVectorNumElements()) &&
2561 "Vector element count mismatch!");
2562 if (OpOpcode == ISD::TRUNCATE)
2563 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2564 else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2565 OpOpcode == ISD::ANY_EXTEND) {
2566 // If the source is smaller than the dest, we still need an extend.
2567 if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2568 .bitsLT(VT.getScalarType()))
2569 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2570 else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2571 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2572 else
2573 return Operand.getNode()->getOperand(0);
2574 }
2575 break;
2576 case ISD::BITCAST:
2577 // Basic sanity checking.
2578 assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2579 && "Cannot BITCAST between types of different sizes!");
2580 if (VT == Operand.getValueType()) return Operand; // noop conversion.
2581 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
2582 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2583 if (OpOpcode == ISD::UNDEF)
2584 return getUNDEF(VT);
2585 break;
2586 case ISD::SCALAR_TO_VECTOR:
2587 assert(VT.isVector() && !Operand.getValueType().isVector() &&
2588 (VT.getVectorElementType() == Operand.getValueType() ||
2589 (VT.getVectorElementType().isInteger() &&
2590 Operand.getValueType().isInteger() &&
2591 VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2592 "Illegal SCALAR_TO_VECTOR node!");
2593 if (OpOpcode == ISD::UNDEF)
2594 return getUNDEF(VT);
2595 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2596 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2597 isa<ConstantSDNode>(Operand.getOperand(1)) &&
2598 Operand.getConstantOperandVal(1) == 0 &&
2599 Operand.getOperand(0).getValueType() == VT)
2600 return Operand.getOperand(0);
2601 break;
2602 case ISD::FNEG:
2603 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2604 if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2605 return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2606 Operand.getNode()->getOperand(0));
2607 if (OpOpcode == ISD::FNEG) // --X -> X
2608 return Operand.getNode()->getOperand(0);
2609 break;
2610 case ISD::FABS:
2611 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
2612 return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2613 break;
2614 }
2615
2616 SDNode *N;
2617 SDVTList VTs = getVTList(VT);
2618 if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2619 FoldingSetNodeID ID;
2620 SDValue Ops[1] = { Operand };
2621 AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2622 void *IP = 0;
2623 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2624 return SDValue(E, 0);
2625
2626 N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2627 CSEMap.InsertNode(N, IP);
2628 } else {
2629 N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2630 }
2631
2632 AllNodes.push_back(N);
2633 #ifndef NDEBUG
2634 VerifySDNode(N);
2635 #endif
2636 return SDValue(N, 0);
2637 }
2638
FoldConstantArithmetic(unsigned Opcode,EVT VT,ConstantSDNode * Cst1,ConstantSDNode * Cst2)2639 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2640 EVT VT,
2641 ConstantSDNode *Cst1,
2642 ConstantSDNode *Cst2) {
2643 const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2644
2645 switch (Opcode) {
2646 case ISD::ADD: return getConstant(C1 + C2, VT);
2647 case ISD::SUB: return getConstant(C1 - C2, VT);
2648 case ISD::MUL: return getConstant(C1 * C2, VT);
2649 case ISD::UDIV:
2650 if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2651 break;
2652 case ISD::UREM:
2653 if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2654 break;
2655 case ISD::SDIV:
2656 if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2657 break;
2658 case ISD::SREM:
2659 if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2660 break;
2661 case ISD::AND: return getConstant(C1 & C2, VT);
2662 case ISD::OR: return getConstant(C1 | C2, VT);
2663 case ISD::XOR: return getConstant(C1 ^ C2, VT);
2664 case ISD::SHL: return getConstant(C1 << C2, VT);
2665 case ISD::SRL: return getConstant(C1.lshr(C2), VT);
2666 case ISD::SRA: return getConstant(C1.ashr(C2), VT);
2667 case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2668 case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2669 default: break;
2670 }
2671
2672 return SDValue();
2673 }
2674
getNode(unsigned Opcode,DebugLoc DL,EVT VT,SDValue N1,SDValue N2)2675 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2676 SDValue N1, SDValue N2) {
2677 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2678 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2679 switch (Opcode) {
2680 default: break;
2681 case ISD::TokenFactor:
2682 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2683 N2.getValueType() == MVT::Other && "Invalid token factor!");
2684 // Fold trivial token factors.
2685 if (N1.getOpcode() == ISD::EntryToken) return N2;
2686 if (N2.getOpcode() == ISD::EntryToken) return N1;
2687 if (N1 == N2) return N1;
2688 break;
2689 case ISD::CONCAT_VECTORS:
2690 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2691 // one big BUILD_VECTOR.
2692 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2693 N2.getOpcode() == ISD::BUILD_VECTOR) {
2694 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2695 N1.getNode()->op_end());
2696 Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2697 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2698 }
2699 break;
2700 case ISD::AND:
2701 assert(VT.isInteger() && "This operator does not apply to FP types!");
2702 assert(N1.getValueType() == N2.getValueType() &&
2703 N1.getValueType() == VT && "Binary operator types must match!");
2704 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2705 // worth handling here.
2706 if (N2C && N2C->isNullValue())
2707 return N2;
2708 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
2709 return N1;
2710 break;
2711 case ISD::OR:
2712 case ISD::XOR:
2713 case ISD::ADD:
2714 case ISD::SUB:
2715 assert(VT.isInteger() && "This operator does not apply to FP types!");
2716 assert(N1.getValueType() == N2.getValueType() &&
2717 N1.getValueType() == VT && "Binary operator types must match!");
2718 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
2719 // it's worth handling here.
2720 if (N2C && N2C->isNullValue())
2721 return N1;
2722 break;
2723 case ISD::UDIV:
2724 case ISD::UREM:
2725 case ISD::MULHU:
2726 case ISD::MULHS:
2727 case ISD::MUL:
2728 case ISD::SDIV:
2729 case ISD::SREM:
2730 assert(VT.isInteger() && "This operator does not apply to FP types!");
2731 assert(N1.getValueType() == N2.getValueType() &&
2732 N1.getValueType() == VT && "Binary operator types must match!");
2733 break;
2734 case ISD::FADD:
2735 case ISD::FSUB:
2736 case ISD::FMUL:
2737 case ISD::FDIV:
2738 case ISD::FREM:
2739 if (UnsafeFPMath) {
2740 if (Opcode == ISD::FADD) {
2741 // 0+x --> x
2742 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2743 if (CFP->getValueAPF().isZero())
2744 return N2;
2745 // x+0 --> x
2746 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2747 if (CFP->getValueAPF().isZero())
2748 return N1;
2749 } else if (Opcode == ISD::FSUB) {
2750 // x-0 --> x
2751 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2752 if (CFP->getValueAPF().isZero())
2753 return N1;
2754 }
2755 }
2756 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2757 assert(N1.getValueType() == N2.getValueType() &&
2758 N1.getValueType() == VT && "Binary operator types must match!");
2759 break;
2760 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
2761 assert(N1.getValueType() == VT &&
2762 N1.getValueType().isFloatingPoint() &&
2763 N2.getValueType().isFloatingPoint() &&
2764 "Invalid FCOPYSIGN!");
2765 break;
2766 case ISD::SHL:
2767 case ISD::SRA:
2768 case ISD::SRL:
2769 case ISD::ROTL:
2770 case ISD::ROTR:
2771 assert(VT == N1.getValueType() &&
2772 "Shift operators return type must be the same as their first arg");
2773 assert(VT.isInteger() && N2.getValueType().isInteger() &&
2774 "Shifts only work on integers");
2775 // Verify that the shift amount VT is bit enough to hold valid shift
2776 // amounts. This catches things like trying to shift an i1024 value by an
2777 // i8, which is easy to fall into in generic code that uses
2778 // TLI.getShiftAmount().
2779 assert(N2.getValueType().getSizeInBits() >=
2780 Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2781 "Invalid use of small shift amount with oversized value!");
2782
2783 // Always fold shifts of i1 values so the code generator doesn't need to
2784 // handle them. Since we know the size of the shift has to be less than the
2785 // size of the value, the shift/rotate count is guaranteed to be zero.
2786 if (VT == MVT::i1)
2787 return N1;
2788 if (N2C && N2C->isNullValue())
2789 return N1;
2790 break;
2791 case ISD::FP_ROUND_INREG: {
2792 EVT EVT = cast<VTSDNode>(N2)->getVT();
2793 assert(VT == N1.getValueType() && "Not an inreg round!");
2794 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2795 "Cannot FP_ROUND_INREG integer types");
2796 assert(EVT.isVector() == VT.isVector() &&
2797 "FP_ROUND_INREG type should be vector iff the operand "
2798 "type is vector!");
2799 assert((!EVT.isVector() ||
2800 EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2801 "Vector element counts must match in FP_ROUND_INREG");
2802 assert(EVT.bitsLE(VT) && "Not rounding down!");
2803 (void)EVT;
2804 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
2805 break;
2806 }
2807 case ISD::FP_ROUND:
2808 assert(VT.isFloatingPoint() &&
2809 N1.getValueType().isFloatingPoint() &&
2810 VT.bitsLE(N1.getValueType()) &&
2811 isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2812 if (N1.getValueType() == VT) return N1; // noop conversion.
2813 break;
2814 case ISD::AssertSext:
2815 case ISD::AssertZext: {
2816 EVT EVT = cast<VTSDNode>(N2)->getVT();
2817 assert(VT == N1.getValueType() && "Not an inreg extend!");
2818 assert(VT.isInteger() && EVT.isInteger() &&
2819 "Cannot *_EXTEND_INREG FP types");
2820 assert(!EVT.isVector() &&
2821 "AssertSExt/AssertZExt type should be the vector element type "
2822 "rather than the vector type!");
2823 assert(EVT.bitsLE(VT) && "Not extending!");
2824 if (VT == EVT) return N1; // noop assertion.
2825 break;
2826 }
2827 case ISD::SIGN_EXTEND_INREG: {
2828 EVT EVT = cast<VTSDNode>(N2)->getVT();
2829 assert(VT == N1.getValueType() && "Not an inreg extend!");
2830 assert(VT.isInteger() && EVT.isInteger() &&
2831 "Cannot *_EXTEND_INREG FP types");
2832 assert(EVT.isVector() == VT.isVector() &&
2833 "SIGN_EXTEND_INREG type should be vector iff the operand "
2834 "type is vector!");
2835 assert((!EVT.isVector() ||
2836 EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2837 "Vector element counts must match in SIGN_EXTEND_INREG");
2838 assert(EVT.bitsLE(VT) && "Not extending!");
2839 if (EVT == VT) return N1; // Not actually extending
2840
2841 if (N1C) {
2842 APInt Val = N1C->getAPIntValue();
2843 unsigned FromBits = EVT.getScalarType().getSizeInBits();
2844 Val <<= Val.getBitWidth()-FromBits;
2845 Val = Val.ashr(Val.getBitWidth()-FromBits);
2846 return getConstant(Val, VT);
2847 }
2848 break;
2849 }
2850 case ISD::EXTRACT_VECTOR_ELT:
2851 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2852 if (N1.getOpcode() == ISD::UNDEF)
2853 return getUNDEF(VT);
2854
2855 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2856 // expanding copies of large vectors from registers.
2857 if (N2C &&
2858 N1.getOpcode() == ISD::CONCAT_VECTORS &&
2859 N1.getNumOperands() > 0) {
2860 unsigned Factor =
2861 N1.getOperand(0).getValueType().getVectorNumElements();
2862 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2863 N1.getOperand(N2C->getZExtValue() / Factor),
2864 getConstant(N2C->getZExtValue() % Factor,
2865 N2.getValueType()));
2866 }
2867
2868 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2869 // expanding large vector constants.
2870 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2871 SDValue Elt = N1.getOperand(N2C->getZExtValue());
2872 EVT VEltTy = N1.getValueType().getVectorElementType();
2873 if (Elt.getValueType() != VEltTy) {
2874 // If the vector element type is not legal, the BUILD_VECTOR operands
2875 // are promoted and implicitly truncated. Make that explicit here.
2876 Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2877 }
2878 if (VT != VEltTy) {
2879 // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2880 // result is implicitly extended.
2881 Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2882 }
2883 return Elt;
2884 }
2885
2886 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2887 // operations are lowered to scalars.
2888 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2889 // If the indices are the same, return the inserted element else
2890 // if the indices are known different, extract the element from
2891 // the original vector.
2892 SDValue N1Op2 = N1.getOperand(2);
2893 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2894
2895 if (N1Op2C && N2C) {
2896 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2897 if (VT == N1.getOperand(1).getValueType())
2898 return N1.getOperand(1);
2899 else
2900 return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2901 }
2902
2903 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2904 }
2905 }
2906 break;
2907 case ISD::EXTRACT_ELEMENT:
2908 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2909 assert(!N1.getValueType().isVector() && !VT.isVector() &&
2910 (N1.getValueType().isInteger() == VT.isInteger()) &&
2911 N1.getValueType() != VT &&
2912 "Wrong types for EXTRACT_ELEMENT!");
2913
2914 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2915 // 64-bit integers into 32-bit parts. Instead of building the extract of
2916 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2917 if (N1.getOpcode() == ISD::BUILD_PAIR)
2918 return N1.getOperand(N2C->getZExtValue());
2919
2920 // EXTRACT_ELEMENT of a constant int is also very common.
2921 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2922 unsigned ElementSize = VT.getSizeInBits();
2923 unsigned Shift = ElementSize * N2C->getZExtValue();
2924 APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2925 return getConstant(ShiftedVal.trunc(ElementSize), VT);
2926 }
2927 break;
2928 case ISD::EXTRACT_SUBVECTOR: {
2929 SDValue Index = N2;
2930 if (VT.isSimple() && N1.getValueType().isSimple()) {
2931 assert(VT.isVector() && N1.getValueType().isVector() &&
2932 "Extract subvector VTs must be a vectors!");
2933 assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
2934 "Extract subvector VTs must have the same element type!");
2935 assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
2936 "Extract subvector must be from larger vector to smaller vector!");
2937
2938 if (isa<ConstantSDNode>(Index.getNode())) {
2939 assert((VT.getVectorNumElements() +
2940 cast<ConstantSDNode>(Index.getNode())->getZExtValue()
2941 <= N1.getValueType().getVectorNumElements())
2942 && "Extract subvector overflow!");
2943 }
2944
2945 // Trivial extraction.
2946 if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
2947 return N1;
2948 }
2949 break;
2950 }
2951 }
2952
2953 if (N1C) {
2954 if (N2C) {
2955 SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2956 if (SV.getNode()) return SV;
2957 } else { // Cannonicalize constant to RHS if commutative
2958 if (isCommutativeBinOp(Opcode)) {
2959 std::swap(N1C, N2C);
2960 std::swap(N1, N2);
2961 }
2962 }
2963 }
2964
2965 // Constant fold FP operations.
2966 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2967 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2968 if (N1CFP) {
2969 if (!N2CFP && isCommutativeBinOp(Opcode)) {
2970 // Cannonicalize constant to RHS if commutative
2971 std::swap(N1CFP, N2CFP);
2972 std::swap(N1, N2);
2973 } else if (N2CFP && VT != MVT::ppcf128) {
2974 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2975 APFloat::opStatus s;
2976 switch (Opcode) {
2977 case ISD::FADD:
2978 s = V1.add(V2, APFloat::rmNearestTiesToEven);
2979 if (s != APFloat::opInvalidOp)
2980 return getConstantFP(V1, VT);
2981 break;
2982 case ISD::FSUB:
2983 s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2984 if (s!=APFloat::opInvalidOp)
2985 return getConstantFP(V1, VT);
2986 break;
2987 case ISD::FMUL:
2988 s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2989 if (s!=APFloat::opInvalidOp)
2990 return getConstantFP(V1, VT);
2991 break;
2992 case ISD::FDIV:
2993 s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2994 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2995 return getConstantFP(V1, VT);
2996 break;
2997 case ISD::FREM :
2998 s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2999 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
3000 return getConstantFP(V1, VT);
3001 break;
3002 case ISD::FCOPYSIGN:
3003 V1.copySign(V2);
3004 return getConstantFP(V1, VT);
3005 default: break;
3006 }
3007 }
3008 }
3009
3010 // Canonicalize an UNDEF to the RHS, even over a constant.
3011 if (N1.getOpcode() == ISD::UNDEF) {
3012 if (isCommutativeBinOp(Opcode)) {
3013 std::swap(N1, N2);
3014 } else {
3015 switch (Opcode) {
3016 case ISD::FP_ROUND_INREG:
3017 case ISD::SIGN_EXTEND_INREG:
3018 case ISD::SUB:
3019 case ISD::FSUB:
3020 case ISD::FDIV:
3021 case ISD::FREM:
3022 case ISD::SRA:
3023 return N1; // fold op(undef, arg2) -> undef
3024 case ISD::UDIV:
3025 case ISD::SDIV:
3026 case ISD::UREM:
3027 case ISD::SREM:
3028 case ISD::SRL:
3029 case ISD::SHL:
3030 if (!VT.isVector())
3031 return getConstant(0, VT); // fold op(undef, arg2) -> 0
3032 // For vectors, we can't easily build an all zero vector, just return
3033 // the LHS.
3034 return N2;
3035 }
3036 }
3037 }
3038
3039 // Fold a bunch of operators when the RHS is undef.
3040 if (N2.getOpcode() == ISD::UNDEF) {
3041 switch (Opcode) {
3042 case ISD::XOR:
3043 if (N1.getOpcode() == ISD::UNDEF)
3044 // Handle undef ^ undef -> 0 special case. This is a common
3045 // idiom (misuse).
3046 return getConstant(0, VT);
3047 // fallthrough
3048 case ISD::ADD:
3049 case ISD::ADDC:
3050 case ISD::ADDE:
3051 case ISD::SUB:
3052 case ISD::UDIV:
3053 case ISD::SDIV:
3054 case ISD::UREM:
3055 case ISD::SREM:
3056 return N2; // fold op(arg1, undef) -> undef
3057 case ISD::FADD:
3058 case ISD::FSUB:
3059 case ISD::FMUL:
3060 case ISD::FDIV:
3061 case ISD::FREM:
3062 if (UnsafeFPMath)
3063 return N2;
3064 break;
3065 case ISD::MUL:
3066 case ISD::AND:
3067 case ISD::SRL:
3068 case ISD::SHL:
3069 if (!VT.isVector())
3070 return getConstant(0, VT); // fold op(arg1, undef) -> 0
3071 // For vectors, we can't easily build an all zero vector, just return
3072 // the LHS.
3073 return N1;
3074 case ISD::OR:
3075 if (!VT.isVector())
3076 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3077 // For vectors, we can't easily build an all one vector, just return
3078 // the LHS.
3079 return N1;
3080 case ISD::SRA:
3081 return N1;
3082 }
3083 }
3084
3085 // Memoize this node if possible.
3086 SDNode *N;
3087 SDVTList VTs = getVTList(VT);
3088 if (VT != MVT::Glue) {
3089 SDValue Ops[] = { N1, N2 };
3090 FoldingSetNodeID ID;
3091 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3092 void *IP = 0;
3093 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3094 return SDValue(E, 0);
3095
3096 N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3097 CSEMap.InsertNode(N, IP);
3098 } else {
3099 N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3100 }
3101
3102 AllNodes.push_back(N);
3103 #ifndef NDEBUG
3104 VerifySDNode(N);
3105 #endif
3106 return SDValue(N, 0);
3107 }
3108
getNode(unsigned Opcode,DebugLoc DL,EVT VT,SDValue N1,SDValue N2,SDValue N3)3109 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3110 SDValue N1, SDValue N2, SDValue N3) {
3111 // Perform various simplifications.
3112 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3113 switch (Opcode) {
3114 case ISD::CONCAT_VECTORS:
3115 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3116 // one big BUILD_VECTOR.
3117 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3118 N2.getOpcode() == ISD::BUILD_VECTOR &&
3119 N3.getOpcode() == ISD::BUILD_VECTOR) {
3120 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3121 N1.getNode()->op_end());
3122 Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3123 Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3124 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3125 }
3126 break;
3127 case ISD::SETCC: {
3128 // Use FoldSetCC to simplify SETCC's.
3129 SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3130 if (Simp.getNode()) return Simp;
3131 break;
3132 }
3133 case ISD::SELECT:
3134 if (N1C) {
3135 if (N1C->getZExtValue())
3136 return N2; // select true, X, Y -> X
3137 else
3138 return N3; // select false, X, Y -> Y
3139 }
3140
3141 if (N2 == N3) return N2; // select C, X, X -> X
3142 break;
3143 case ISD::VECTOR_SHUFFLE:
3144 llvm_unreachable("should use getVectorShuffle constructor!");
3145 break;
3146 case ISD::INSERT_SUBVECTOR: {
3147 SDValue Index = N3;
3148 if (VT.isSimple() && N1.getValueType().isSimple()
3149 && N2.getValueType().isSimple()) {
3150 assert(VT.isVector() && N1.getValueType().isVector() &&
3151 N2.getValueType().isVector() &&
3152 "Insert subvector VTs must be a vectors");
3153 assert(VT == N1.getValueType() &&
3154 "Dest and insert subvector source types must match!");
3155 assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3156 "Insert subvector must be from smaller vector to larger vector!");
3157 if (isa<ConstantSDNode>(Index.getNode())) {
3158 assert((N2.getValueType().getVectorNumElements() +
3159 cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3160 <= VT.getVectorNumElements())
3161 && "Insert subvector overflow!");
3162 }
3163
3164 // Trivial insertion.
3165 if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3166 return N2;
3167 }
3168 break;
3169 }
3170 case ISD::BITCAST:
3171 // Fold bit_convert nodes from a type to themselves.
3172 if (N1.getValueType() == VT)
3173 return N1;
3174 break;
3175 }
3176
3177 // Memoize node if it doesn't produce a flag.
3178 SDNode *N;
3179 SDVTList VTs = getVTList(VT);
3180 if (VT != MVT::Glue) {
3181 SDValue Ops[] = { N1, N2, N3 };
3182 FoldingSetNodeID ID;
3183 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3184 void *IP = 0;
3185 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3186 return SDValue(E, 0);
3187
3188 N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3189 CSEMap.InsertNode(N, IP);
3190 } else {
3191 N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3192 }
3193
3194 AllNodes.push_back(N);
3195 #ifndef NDEBUG
3196 VerifySDNode(N);
3197 #endif
3198 return SDValue(N, 0);
3199 }
3200
getNode(unsigned Opcode,DebugLoc DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,SDValue N4)3201 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3202 SDValue N1, SDValue N2, SDValue N3,
3203 SDValue N4) {
3204 SDValue Ops[] = { N1, N2, N3, N4 };
3205 return getNode(Opcode, DL, VT, Ops, 4);
3206 }
3207
getNode(unsigned Opcode,DebugLoc DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,SDValue N4,SDValue N5)3208 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3209 SDValue N1, SDValue N2, SDValue N3,
3210 SDValue N4, SDValue N5) {
3211 SDValue Ops[] = { N1, N2, N3, N4, N5 };
3212 return getNode(Opcode, DL, VT, Ops, 5);
3213 }
3214
3215 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3216 /// the incoming stack arguments to be loaded from the stack.
getStackArgumentTokenFactor(SDValue Chain)3217 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3218 SmallVector<SDValue, 8> ArgChains;
3219
3220 // Include the original chain at the beginning of the list. When this is
3221 // used by target LowerCall hooks, this helps legalize find the
3222 // CALLSEQ_BEGIN node.
3223 ArgChains.push_back(Chain);
3224
3225 // Add a chain value for each stack argument.
3226 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3227 UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3228 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3229 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3230 if (FI->getIndex() < 0)
3231 ArgChains.push_back(SDValue(L, 1));
3232
3233 // Build a tokenfactor for all the chains.
3234 return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3235 &ArgChains[0], ArgChains.size());
3236 }
3237
3238 /// SplatByte - Distribute ByteVal over NumBits bits.
SplatByte(unsigned NumBits,uint8_t ByteVal)3239 static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
3240 APInt Val = APInt(NumBits, ByteVal);
3241 unsigned Shift = 8;
3242 for (unsigned i = NumBits; i > 8; i >>= 1) {
3243 Val = (Val << Shift) | Val;
3244 Shift <<= 1;
3245 }
3246 return Val;
3247 }
3248
3249 /// getMemsetValue - Vectorized representation of the memset value
3250 /// operand.
getMemsetValue(SDValue Value,EVT VT,SelectionDAG & DAG,DebugLoc dl)3251 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3252 DebugLoc dl) {
3253 assert(Value.getOpcode() != ISD::UNDEF);
3254
3255 unsigned NumBits = VT.getScalarType().getSizeInBits();
3256 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3257 APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
3258 if (VT.isInteger())
3259 return DAG.getConstant(Val, VT);
3260 return DAG.getConstantFP(APFloat(Val), VT);
3261 }
3262
3263 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3264 if (NumBits > 8) {
3265 // Use a multiplication with 0x010101... to extend the input to the
3266 // required length.
3267 APInt Magic = SplatByte(NumBits, 0x01);
3268 Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3269 }
3270
3271 return Value;
3272 }
3273
3274 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3275 /// used when a memcpy is turned into a memset when the source is a constant
3276 /// string ptr.
getMemsetStringVal(EVT VT,DebugLoc dl,SelectionDAG & DAG,const TargetLowering & TLI,std::string & Str,unsigned Offset)3277 static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3278 const TargetLowering &TLI,
3279 std::string &Str, unsigned Offset) {
3280 // Handle vector with all elements zero.
3281 if (Str.empty()) {
3282 if (VT.isInteger())
3283 return DAG.getConstant(0, VT);
3284 else if (VT == MVT::f32 || VT == MVT::f64)
3285 return DAG.getConstantFP(0.0, VT);
3286 else if (VT.isVector()) {
3287 unsigned NumElts = VT.getVectorNumElements();
3288 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3289 return DAG.getNode(ISD::BITCAST, dl, VT,
3290 DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3291 EltVT, NumElts)));
3292 } else
3293 llvm_unreachable("Expected type!");
3294 }
3295
3296 assert(!VT.isVector() && "Can't handle vector type here!");
3297 unsigned NumBits = VT.getSizeInBits();
3298 unsigned MSB = NumBits / 8;
3299 uint64_t Val = 0;
3300 if (TLI.isLittleEndian())
3301 Offset = Offset + MSB - 1;
3302 for (unsigned i = 0; i != MSB; ++i) {
3303 Val = (Val << 8) | (unsigned char)Str[Offset];
3304 Offset += TLI.isLittleEndian() ? -1 : 1;
3305 }
3306 return DAG.getConstant(Val, VT);
3307 }
3308
3309 /// getMemBasePlusOffset - Returns base and offset node for the
3310 ///
getMemBasePlusOffset(SDValue Base,unsigned Offset,SelectionDAG & DAG)3311 static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3312 SelectionDAG &DAG) {
3313 EVT VT = Base.getValueType();
3314 return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3315 VT, Base, DAG.getConstant(Offset, VT));
3316 }
3317
3318 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
3319 ///
isMemSrcFromString(SDValue Src,std::string & Str)3320 static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3321 unsigned SrcDelta = 0;
3322 GlobalAddressSDNode *G = NULL;
3323 if (Src.getOpcode() == ISD::GlobalAddress)
3324 G = cast<GlobalAddressSDNode>(Src);
3325 else if (Src.getOpcode() == ISD::ADD &&
3326 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3327 Src.getOperand(1).getOpcode() == ISD::Constant) {
3328 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3329 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3330 }
3331 if (!G)
3332 return false;
3333
3334 const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3335 if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3336 return true;
3337
3338 return false;
3339 }
3340
3341 /// FindOptimalMemOpLowering - Determines the optimial series memory ops
3342 /// to replace the memset / memcpy. Return true if the number of memory ops
3343 /// is below the threshold. It returns the types of the sequence of
3344 /// memory ops to perform memset / memcpy by reference.
FindOptimalMemOpLowering(std::vector<EVT> & MemOps,unsigned Limit,uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool NonScalarIntSafe,bool MemcpyStrSrc,SelectionDAG & DAG,const TargetLowering & TLI)3345 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3346 unsigned Limit, uint64_t Size,
3347 unsigned DstAlign, unsigned SrcAlign,
3348 bool NonScalarIntSafe,
3349 bool MemcpyStrSrc,
3350 SelectionDAG &DAG,
3351 const TargetLowering &TLI) {
3352 assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3353 "Expecting memcpy / memset source to meet alignment requirement!");
3354 // If 'SrcAlign' is zero, that means the memory operation does not need to
3355 // load the value, i.e. memset or memcpy from constant string. Otherwise,
3356 // it's the inferred alignment of the source. 'DstAlign', on the other hand,
3357 // is the specified alignment of the memory operation. If it is zero, that
3358 // means it's possible to change the alignment of the destination.
3359 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
3360 // not need to be loaded.
3361 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3362 NonScalarIntSafe, MemcpyStrSrc,
3363 DAG.getMachineFunction());
3364
3365 if (VT == MVT::Other) {
3366 if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3367 TLI.allowsUnalignedMemoryAccesses(VT)) {
3368 VT = TLI.getPointerTy();
3369 } else {
3370 switch (DstAlign & 7) {
3371 case 0: VT = MVT::i64; break;
3372 case 4: VT = MVT::i32; break;
3373 case 2: VT = MVT::i16; break;
3374 default: VT = MVT::i8; break;
3375 }
3376 }
3377
3378 MVT LVT = MVT::i64;
3379 while (!TLI.isTypeLegal(LVT))
3380 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3381 assert(LVT.isInteger());
3382
3383 if (VT.bitsGT(LVT))
3384 VT = LVT;
3385 }
3386
3387 unsigned NumMemOps = 0;
3388 while (Size != 0) {
3389 unsigned VTSize = VT.getSizeInBits() / 8;
3390 while (VTSize > Size) {
3391 // For now, only use non-vector load / store's for the left-over pieces.
3392 if (VT.isVector() || VT.isFloatingPoint()) {
3393 VT = MVT::i64;
3394 while (!TLI.isTypeLegal(VT))
3395 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3396 VTSize = VT.getSizeInBits() / 8;
3397 } else {
3398 // This can result in a type that is not legal on the target, e.g.
3399 // 1 or 2 bytes on PPC.
3400 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3401 VTSize >>= 1;
3402 }
3403 }
3404
3405 if (++NumMemOps > Limit)
3406 return false;
3407 MemOps.push_back(VT);
3408 Size -= VTSize;
3409 }
3410
3411 return true;
3412 }
3413
getMemcpyLoadsAndStores(SelectionDAG & DAG,DebugLoc dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,unsigned Align,bool isVol,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)3414 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3415 SDValue Chain, SDValue Dst,
3416 SDValue Src, uint64_t Size,
3417 unsigned Align, bool isVol,
3418 bool AlwaysInline,
3419 MachinePointerInfo DstPtrInfo,
3420 MachinePointerInfo SrcPtrInfo) {
3421 // Turn a memcpy of undef to nop.
3422 if (Src.getOpcode() == ISD::UNDEF)
3423 return Chain;
3424
3425 // Expand memcpy to a series of load and store ops if the size operand falls
3426 // below a certain threshold.
3427 // TODO: In the AlwaysInline case, if the size is big then generate a loop
3428 // rather than maybe a humongous number of loads and stores.
3429 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3430 std::vector<EVT> MemOps;
3431 bool DstAlignCanChange = false;
3432 MachineFunction &MF = DAG.getMachineFunction();
3433 MachineFrameInfo *MFI = MF.getFrameInfo();
3434 bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3435 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3436 if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3437 DstAlignCanChange = true;
3438 unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3439 if (Align > SrcAlign)
3440 SrcAlign = Align;
3441 std::string Str;
3442 bool CopyFromStr = isMemSrcFromString(Src, Str);
3443 bool isZeroStr = CopyFromStr && Str.empty();
3444 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3445
3446 if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3447 (DstAlignCanChange ? 0 : Align),
3448 (isZeroStr ? 0 : SrcAlign),
3449 true, CopyFromStr, DAG, TLI))
3450 return SDValue();
3451
3452 if (DstAlignCanChange) {
3453 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3454 unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3455 if (NewAlign > Align) {
3456 // Give the stack frame object a larger alignment if needed.
3457 if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3458 MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3459 Align = NewAlign;
3460 }
3461 }
3462
3463 SmallVector<SDValue, 8> OutChains;
3464 unsigned NumMemOps = MemOps.size();
3465 uint64_t SrcOff = 0, DstOff = 0;
3466 for (unsigned i = 0; i != NumMemOps; ++i) {
3467 EVT VT = MemOps[i];
3468 unsigned VTSize = VT.getSizeInBits() / 8;
3469 SDValue Value, Store;
3470
3471 if (CopyFromStr &&
3472 (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3473 // It's unlikely a store of a vector immediate can be done in a single
3474 // instruction. It would require a load from a constantpool first.
3475 // We only handle zero vectors here.
3476 // FIXME: Handle other cases where store of vector immediate is done in
3477 // a single instruction.
3478 Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3479 Store = DAG.getStore(Chain, dl, Value,
3480 getMemBasePlusOffset(Dst, DstOff, DAG),
3481 DstPtrInfo.getWithOffset(DstOff), isVol,
3482 false, Align);
3483 } else {
3484 // The type might not be legal for the target. This should only happen
3485 // if the type is smaller than a legal type, as on PPC, so the right
3486 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
3487 // to Load/Store if NVT==VT.
3488 // FIXME does the case above also need this?
3489 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3490 assert(NVT.bitsGE(VT));
3491 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3492 getMemBasePlusOffset(Src, SrcOff, DAG),
3493 SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3494 MinAlign(SrcAlign, SrcOff));
3495 Store = DAG.getTruncStore(Chain, dl, Value,
3496 getMemBasePlusOffset(Dst, DstOff, DAG),
3497 DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3498 false, Align);
3499 }
3500 OutChains.push_back(Store);
3501 SrcOff += VTSize;
3502 DstOff += VTSize;
3503 }
3504
3505 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3506 &OutChains[0], OutChains.size());
3507 }
3508
getMemmoveLoadsAndStores(SelectionDAG & DAG,DebugLoc dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,unsigned Align,bool isVol,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)3509 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3510 SDValue Chain, SDValue Dst,
3511 SDValue Src, uint64_t Size,
3512 unsigned Align, bool isVol,
3513 bool AlwaysInline,
3514 MachinePointerInfo DstPtrInfo,
3515 MachinePointerInfo SrcPtrInfo) {
3516 // Turn a memmove of undef to nop.
3517 if (Src.getOpcode() == ISD::UNDEF)
3518 return Chain;
3519
3520 // Expand memmove to a series of load and store ops if the size operand falls
3521 // below a certain threshold.
3522 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3523 std::vector<EVT> MemOps;
3524 bool DstAlignCanChange = false;
3525 MachineFunction &MF = DAG.getMachineFunction();
3526 MachineFrameInfo *MFI = MF.getFrameInfo();
3527 bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3528 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3529 if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3530 DstAlignCanChange = true;
3531 unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3532 if (Align > SrcAlign)
3533 SrcAlign = Align;
3534 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3535
3536 if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3537 (DstAlignCanChange ? 0 : Align),
3538 SrcAlign, true, false, DAG, TLI))
3539 return SDValue();
3540
3541 if (DstAlignCanChange) {
3542 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3543 unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3544 if (NewAlign > Align) {
3545 // Give the stack frame object a larger alignment if needed.
3546 if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3547 MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3548 Align = NewAlign;
3549 }
3550 }
3551
3552 uint64_t SrcOff = 0, DstOff = 0;
3553 SmallVector<SDValue, 8> LoadValues;
3554 SmallVector<SDValue, 8> LoadChains;
3555 SmallVector<SDValue, 8> OutChains;
3556 unsigned NumMemOps = MemOps.size();
3557 for (unsigned i = 0; i < NumMemOps; i++) {
3558 EVT VT = MemOps[i];
3559 unsigned VTSize = VT.getSizeInBits() / 8;
3560 SDValue Value, Store;
3561
3562 Value = DAG.getLoad(VT, dl, Chain,
3563 getMemBasePlusOffset(Src, SrcOff, DAG),
3564 SrcPtrInfo.getWithOffset(SrcOff), isVol,
3565 false, SrcAlign);
3566 LoadValues.push_back(Value);
3567 LoadChains.push_back(Value.getValue(1));
3568 SrcOff += VTSize;
3569 }
3570 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3571 &LoadChains[0], LoadChains.size());
3572 OutChains.clear();
3573 for (unsigned i = 0; i < NumMemOps; i++) {
3574 EVT VT = MemOps[i];
3575 unsigned VTSize = VT.getSizeInBits() / 8;
3576 SDValue Value, Store;
3577
3578 Store = DAG.getStore(Chain, dl, LoadValues[i],
3579 getMemBasePlusOffset(Dst, DstOff, DAG),
3580 DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3581 OutChains.push_back(Store);
3582 DstOff += VTSize;
3583 }
3584
3585 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3586 &OutChains[0], OutChains.size());
3587 }
3588
getMemsetStores(SelectionDAG & DAG,DebugLoc dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,unsigned Align,bool isVol,MachinePointerInfo DstPtrInfo)3589 static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3590 SDValue Chain, SDValue Dst,
3591 SDValue Src, uint64_t Size,
3592 unsigned Align, bool isVol,
3593 MachinePointerInfo DstPtrInfo) {
3594 // Turn a memset of undef to nop.
3595 if (Src.getOpcode() == ISD::UNDEF)
3596 return Chain;
3597
3598 // Expand memset to a series of load/store ops if the size operand
3599 // falls below a certain threshold.
3600 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3601 std::vector<EVT> MemOps;
3602 bool DstAlignCanChange = false;
3603 MachineFunction &MF = DAG.getMachineFunction();
3604 MachineFrameInfo *MFI = MF.getFrameInfo();
3605 bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3606 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3607 if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3608 DstAlignCanChange = true;
3609 bool NonScalarIntSafe =
3610 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3611 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3612 Size, (DstAlignCanChange ? 0 : Align), 0,
3613 NonScalarIntSafe, false, DAG, TLI))
3614 return SDValue();
3615
3616 if (DstAlignCanChange) {
3617 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3618 unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3619 if (NewAlign > Align) {
3620 // Give the stack frame object a larger alignment if needed.
3621 if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3622 MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3623 Align = NewAlign;
3624 }
3625 }
3626
3627 SmallVector<SDValue, 8> OutChains;
3628 uint64_t DstOff = 0;
3629 unsigned NumMemOps = MemOps.size();
3630
3631 // Find the largest store and generate the bit pattern for it.
3632 EVT LargestVT = MemOps[0];
3633 for (unsigned i = 1; i < NumMemOps; i++)
3634 if (MemOps[i].bitsGT(LargestVT))
3635 LargestVT = MemOps[i];
3636 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3637
3638 for (unsigned i = 0; i < NumMemOps; i++) {
3639 EVT VT = MemOps[i];
3640
3641 // If this store is smaller than the largest store see whether we can get
3642 // the smaller value for free with a truncate.
3643 SDValue Value = MemSetValue;
3644 if (VT.bitsLT(LargestVT)) {
3645 if (!LargestVT.isVector() && !VT.isVector() &&
3646 TLI.isTruncateFree(LargestVT, VT))
3647 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3648 else
3649 Value = getMemsetValue(Src, VT, DAG, dl);
3650 }
3651 assert(Value.getValueType() == VT && "Value with wrong type.");
3652 SDValue Store = DAG.getStore(Chain, dl, Value,
3653 getMemBasePlusOffset(Dst, DstOff, DAG),
3654 DstPtrInfo.getWithOffset(DstOff),
3655 isVol, false, Align);
3656 OutChains.push_back(Store);
3657 DstOff += VT.getSizeInBits() / 8;
3658 }
3659
3660 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3661 &OutChains[0], OutChains.size());
3662 }
3663
getMemcpy(SDValue Chain,DebugLoc dl,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool isVol,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)3664 SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3665 SDValue Src, SDValue Size,
3666 unsigned Align, bool isVol, bool AlwaysInline,
3667 MachinePointerInfo DstPtrInfo,
3668 MachinePointerInfo SrcPtrInfo) {
3669
3670 // Check to see if we should lower the memcpy to loads and stores first.
3671 // For cases within the target-specified limits, this is the best choice.
3672 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3673 if (ConstantSize) {
3674 // Memcpy with size zero? Just return the original chain.
3675 if (ConstantSize->isNullValue())
3676 return Chain;
3677
3678 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3679 ConstantSize->getZExtValue(),Align,
3680 isVol, false, DstPtrInfo, SrcPtrInfo);
3681 if (Result.getNode())
3682 return Result;
3683 }
3684
3685 // Then check to see if we should lower the memcpy with target-specific
3686 // code. If the target chooses to do this, this is the next best.
3687 SDValue Result =
3688 TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3689 isVol, AlwaysInline,
3690 DstPtrInfo, SrcPtrInfo);
3691 if (Result.getNode())
3692 return Result;
3693
3694 // If we really need inline code and the target declined to provide it,
3695 // use a (potentially long) sequence of loads and stores.
3696 if (AlwaysInline) {
3697 assert(ConstantSize && "AlwaysInline requires a constant size!");
3698 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3699 ConstantSize->getZExtValue(), Align, isVol,
3700 true, DstPtrInfo, SrcPtrInfo);
3701 }
3702
3703 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3704 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3705 // respect volatile, so they may do things like read or write memory
3706 // beyond the given memory regions. But fixing this isn't easy, and most
3707 // people don't care.
3708
3709 // Emit a library call.
3710 TargetLowering::ArgListTy Args;
3711 TargetLowering::ArgListEntry Entry;
3712 Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3713 Entry.Node = Dst; Args.push_back(Entry);
3714 Entry.Node = Src; Args.push_back(Entry);
3715 Entry.Node = Size; Args.push_back(Entry);
3716 // FIXME: pass in DebugLoc
3717 std::pair<SDValue,SDValue> CallResult =
3718 TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3719 false, false, false, false, 0,
3720 TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3721 /*isReturnValueUsed=*/false,
3722 getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3723 TLI.getPointerTy()),
3724 Args, *this, dl);
3725 return CallResult.second;
3726 }
3727
getMemmove(SDValue Chain,DebugLoc dl,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool isVol,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)3728 SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3729 SDValue Src, SDValue Size,
3730 unsigned Align, bool isVol,
3731 MachinePointerInfo DstPtrInfo,
3732 MachinePointerInfo SrcPtrInfo) {
3733
3734 // Check to see if we should lower the memmove to loads and stores first.
3735 // For cases within the target-specified limits, this is the best choice.
3736 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3737 if (ConstantSize) {
3738 // Memmove with size zero? Just return the original chain.
3739 if (ConstantSize->isNullValue())
3740 return Chain;
3741
3742 SDValue Result =
3743 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3744 ConstantSize->getZExtValue(), Align, isVol,
3745 false, DstPtrInfo, SrcPtrInfo);
3746 if (Result.getNode())
3747 return Result;
3748 }
3749
3750 // Then check to see if we should lower the memmove with target-specific
3751 // code. If the target chooses to do this, this is the next best.
3752 SDValue Result =
3753 TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3754 DstPtrInfo, SrcPtrInfo);
3755 if (Result.getNode())
3756 return Result;
3757
3758 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3759 // not be safe. See memcpy above for more details.
3760
3761 // Emit a library call.
3762 TargetLowering::ArgListTy Args;
3763 TargetLowering::ArgListEntry Entry;
3764 Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3765 Entry.Node = Dst; Args.push_back(Entry);
3766 Entry.Node = Src; Args.push_back(Entry);
3767 Entry.Node = Size; Args.push_back(Entry);
3768 // FIXME: pass in DebugLoc
3769 std::pair<SDValue,SDValue> CallResult =
3770 TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3771 false, false, false, false, 0,
3772 TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3773 /*isReturnValueUsed=*/false,
3774 getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3775 TLI.getPointerTy()),
3776 Args, *this, dl);
3777 return CallResult.second;
3778 }
3779
getMemset(SDValue Chain,DebugLoc dl,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool isVol,MachinePointerInfo DstPtrInfo)3780 SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3781 SDValue Src, SDValue Size,
3782 unsigned Align, bool isVol,
3783 MachinePointerInfo DstPtrInfo) {
3784
3785 // Check to see if we should lower the memset to stores first.
3786 // For cases within the target-specified limits, this is the best choice.
3787 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3788 if (ConstantSize) {
3789 // Memset with size zero? Just return the original chain.
3790 if (ConstantSize->isNullValue())
3791 return Chain;
3792
3793 SDValue Result =
3794 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3795 Align, isVol, DstPtrInfo);
3796
3797 if (Result.getNode())
3798 return Result;
3799 }
3800
3801 // Then check to see if we should lower the memset with target-specific
3802 // code. If the target chooses to do this, this is the next best.
3803 SDValue Result =
3804 TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3805 DstPtrInfo);
3806 if (Result.getNode())
3807 return Result;
3808
3809 // Emit a library call.
3810 Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3811 TargetLowering::ArgListTy Args;
3812 TargetLowering::ArgListEntry Entry;
3813 Entry.Node = Dst; Entry.Ty = IntPtrTy;
3814 Args.push_back(Entry);
3815 // Extend or truncate the argument to be an i32 value for the call.
3816 if (Src.getValueType().bitsGT(MVT::i32))
3817 Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3818 else
3819 Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3820 Entry.Node = Src;
3821 Entry.Ty = Type::getInt32Ty(*getContext());
3822 Entry.isSExt = true;
3823 Args.push_back(Entry);
3824 Entry.Node = Size;
3825 Entry.Ty = IntPtrTy;
3826 Entry.isSExt = false;
3827 Args.push_back(Entry);
3828 // FIXME: pass in DebugLoc
3829 std::pair<SDValue,SDValue> CallResult =
3830 TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3831 false, false, false, false, 0,
3832 TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3833 /*isReturnValueUsed=*/false,
3834 getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3835 TLI.getPointerTy()),
3836 Args, *this, dl);
3837 return CallResult.second;
3838 }
3839
getAtomic(unsigned Opcode,DebugLoc dl,EVT MemVT,SDValue Chain,SDValue Ptr,SDValue Cmp,SDValue Swp,MachinePointerInfo PtrInfo,unsigned Alignment,AtomicOrdering Ordering,SynchronizationScope SynchScope)3840 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3841 SDValue Chain, SDValue Ptr, SDValue Cmp,
3842 SDValue Swp, MachinePointerInfo PtrInfo,
3843 unsigned Alignment,
3844 AtomicOrdering Ordering,
3845 SynchronizationScope SynchScope) {
3846 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3847 Alignment = getEVTAlignment(MemVT);
3848
3849 MachineFunction &MF = getMachineFunction();
3850 unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3851
3852 // For now, atomics are considered to be volatile always.
3853 // FIXME: Volatile isn't really correct; we should keep track of atomic
3854 // orderings in the memoperand.
3855 Flags |= MachineMemOperand::MOVolatile;
3856
3857 MachineMemOperand *MMO =
3858 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3859
3860 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO,
3861 Ordering, SynchScope);
3862 }
3863
getAtomic(unsigned Opcode,DebugLoc dl,EVT MemVT,SDValue Chain,SDValue Ptr,SDValue Cmp,SDValue Swp,MachineMemOperand * MMO,AtomicOrdering Ordering,SynchronizationScope SynchScope)3864 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3865 SDValue Chain,
3866 SDValue Ptr, SDValue Cmp,
3867 SDValue Swp, MachineMemOperand *MMO,
3868 AtomicOrdering Ordering,
3869 SynchronizationScope SynchScope) {
3870 assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3871 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3872
3873 EVT VT = Cmp.getValueType();
3874
3875 SDVTList VTs = getVTList(VT, MVT::Other);
3876 FoldingSetNodeID ID;
3877 ID.AddInteger(MemVT.getRawBits());
3878 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3879 AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3880 void* IP = 0;
3881 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3882 cast<AtomicSDNode>(E)->refineAlignment(MMO);
3883 return SDValue(E, 0);
3884 }
3885 SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3886 Ptr, Cmp, Swp, MMO, Ordering,
3887 SynchScope);
3888 CSEMap.InsertNode(N, IP);
3889 AllNodes.push_back(N);
3890 return SDValue(N, 0);
3891 }
3892
getAtomic(unsigned Opcode,DebugLoc dl,EVT MemVT,SDValue Chain,SDValue Ptr,SDValue Val,const Value * PtrVal,unsigned Alignment,AtomicOrdering Ordering,SynchronizationScope SynchScope)3893 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3894 SDValue Chain,
3895 SDValue Ptr, SDValue Val,
3896 const Value* PtrVal,
3897 unsigned Alignment,
3898 AtomicOrdering Ordering,
3899 SynchronizationScope SynchScope) {
3900 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3901 Alignment = getEVTAlignment(MemVT);
3902
3903 MachineFunction &MF = getMachineFunction();
3904 // A monotonic store does not load; a release store "loads" in the sense
3905 // that other stores cannot be sunk past it.
3906 // (An atomicrmw obviously both loads and stores.)
3907 unsigned Flags = MachineMemOperand::MOStore;
3908 if (Opcode != ISD::ATOMIC_STORE || Ordering > Monotonic)
3909 Flags |= MachineMemOperand::MOLoad;
3910
3911 // For now, atomics are considered to be volatile always.
3912 // FIXME: Volatile isn't really correct; we should keep track of atomic
3913 // orderings in the memoperand.
3914 Flags |= MachineMemOperand::MOVolatile;
3915
3916 MachineMemOperand *MMO =
3917 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3918 MemVT.getStoreSize(), Alignment);
3919
3920 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
3921 Ordering, SynchScope);
3922 }
3923
getAtomic(unsigned Opcode,DebugLoc dl,EVT MemVT,SDValue Chain,SDValue Ptr,SDValue Val,MachineMemOperand * MMO,AtomicOrdering Ordering,SynchronizationScope SynchScope)3924 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3925 SDValue Chain,
3926 SDValue Ptr, SDValue Val,
3927 MachineMemOperand *MMO,
3928 AtomicOrdering Ordering,
3929 SynchronizationScope SynchScope) {
3930 assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3931 Opcode == ISD::ATOMIC_LOAD_SUB ||
3932 Opcode == ISD::ATOMIC_LOAD_AND ||
3933 Opcode == ISD::ATOMIC_LOAD_OR ||
3934 Opcode == ISD::ATOMIC_LOAD_XOR ||
3935 Opcode == ISD::ATOMIC_LOAD_NAND ||
3936 Opcode == ISD::ATOMIC_LOAD_MIN ||
3937 Opcode == ISD::ATOMIC_LOAD_MAX ||
3938 Opcode == ISD::ATOMIC_LOAD_UMIN ||
3939 Opcode == ISD::ATOMIC_LOAD_UMAX ||
3940 Opcode == ISD::ATOMIC_SWAP ||
3941 Opcode == ISD::ATOMIC_STORE) &&
3942 "Invalid Atomic Op");
3943
3944 EVT VT = Val.getValueType();
3945
3946 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
3947 getVTList(VT, MVT::Other);
3948 FoldingSetNodeID ID;
3949 ID.AddInteger(MemVT.getRawBits());
3950 SDValue Ops[] = {Chain, Ptr, Val};
3951 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3952 void* IP = 0;
3953 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3954 cast<AtomicSDNode>(E)->refineAlignment(MMO);
3955 return SDValue(E, 0);
3956 }
3957 SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3958 Ptr, Val, MMO,
3959 Ordering, SynchScope);
3960 CSEMap.InsertNode(N, IP);
3961 AllNodes.push_back(N);
3962 return SDValue(N, 0);
3963 }
3964
getAtomic(unsigned Opcode,DebugLoc dl,EVT MemVT,EVT VT,SDValue Chain,SDValue Ptr,const Value * PtrVal,unsigned Alignment,AtomicOrdering Ordering,SynchronizationScope SynchScope)3965 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3966 EVT VT, SDValue Chain,
3967 SDValue Ptr,
3968 const Value* PtrVal,
3969 unsigned Alignment,
3970 AtomicOrdering Ordering,
3971 SynchronizationScope SynchScope) {
3972 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3973 Alignment = getEVTAlignment(MemVT);
3974
3975 MachineFunction &MF = getMachineFunction();
3976 // A monotonic load does not store; an acquire load "stores" in the sense
3977 // that other loads cannot be hoisted past it.
3978 unsigned Flags = MachineMemOperand::MOLoad;
3979 if (Ordering > Monotonic)
3980 Flags |= MachineMemOperand::MOStore;
3981
3982 // For now, atomics are considered to be volatile always.
3983 // FIXME: Volatile isn't really correct; we should keep track of atomic
3984 // orderings in the memoperand.
3985 Flags |= MachineMemOperand::MOVolatile;
3986
3987 MachineMemOperand *MMO =
3988 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3989 MemVT.getStoreSize(), Alignment);
3990
3991 return getAtomic(Opcode, dl, MemVT, VT, Chain, Ptr, MMO,
3992 Ordering, SynchScope);
3993 }
3994
getAtomic(unsigned Opcode,DebugLoc dl,EVT MemVT,EVT VT,SDValue Chain,SDValue Ptr,MachineMemOperand * MMO,AtomicOrdering Ordering,SynchronizationScope SynchScope)3995 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3996 EVT VT, SDValue Chain,
3997 SDValue Ptr,
3998 MachineMemOperand *MMO,
3999 AtomicOrdering Ordering,
4000 SynchronizationScope SynchScope) {
4001 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
4002
4003 SDVTList VTs = getVTList(VT, MVT::Other);
4004 FoldingSetNodeID ID;
4005 ID.AddInteger(MemVT.getRawBits());
4006 SDValue Ops[] = {Chain, Ptr};
4007 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
4008 void* IP = 0;
4009 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4010 cast<AtomicSDNode>(E)->refineAlignment(MMO);
4011 return SDValue(E, 0);
4012 }
4013 SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
4014 Ptr, MMO, Ordering, SynchScope);
4015 CSEMap.InsertNode(N, IP);
4016 AllNodes.push_back(N);
4017 return SDValue(N, 0);
4018 }
4019
4020 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
getMergeValues(const SDValue * Ops,unsigned NumOps,DebugLoc dl)4021 SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
4022 DebugLoc dl) {
4023 if (NumOps == 1)
4024 return Ops[0];
4025
4026 SmallVector<EVT, 4> VTs;
4027 VTs.reserve(NumOps);
4028 for (unsigned i = 0; i < NumOps; ++i)
4029 VTs.push_back(Ops[i].getValueType());
4030 return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
4031 Ops, NumOps);
4032 }
4033
4034 SDValue
getMemIntrinsicNode(unsigned Opcode,DebugLoc dl,const EVT * VTs,unsigned NumVTs,const SDValue * Ops,unsigned NumOps,EVT MemVT,MachinePointerInfo PtrInfo,unsigned Align,bool Vol,bool ReadMem,bool WriteMem)4035 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
4036 const EVT *VTs, unsigned NumVTs,
4037 const SDValue *Ops, unsigned NumOps,
4038 EVT MemVT, MachinePointerInfo PtrInfo,
4039 unsigned Align, bool Vol,
4040 bool ReadMem, bool WriteMem) {
4041 return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
4042 MemVT, PtrInfo, Align, Vol,
4043 ReadMem, WriteMem);
4044 }
4045
4046 SDValue
getMemIntrinsicNode(unsigned Opcode,DebugLoc dl,SDVTList VTList,const SDValue * Ops,unsigned NumOps,EVT MemVT,MachinePointerInfo PtrInfo,unsigned Align,bool Vol,bool ReadMem,bool WriteMem)4047 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4048 const SDValue *Ops, unsigned NumOps,
4049 EVT MemVT, MachinePointerInfo PtrInfo,
4050 unsigned Align, bool Vol,
4051 bool ReadMem, bool WriteMem) {
4052 if (Align == 0) // Ensure that codegen never sees alignment 0
4053 Align = getEVTAlignment(MemVT);
4054
4055 MachineFunction &MF = getMachineFunction();
4056 unsigned Flags = 0;
4057 if (WriteMem)
4058 Flags |= MachineMemOperand::MOStore;
4059 if (ReadMem)
4060 Flags |= MachineMemOperand::MOLoad;
4061 if (Vol)
4062 Flags |= MachineMemOperand::MOVolatile;
4063 MachineMemOperand *MMO =
4064 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
4065
4066 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
4067 }
4068
4069 SDValue
getMemIntrinsicNode(unsigned Opcode,DebugLoc dl,SDVTList VTList,const SDValue * Ops,unsigned NumOps,EVT MemVT,MachineMemOperand * MMO)4070 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4071 const SDValue *Ops, unsigned NumOps,
4072 EVT MemVT, MachineMemOperand *MMO) {
4073 assert((Opcode == ISD::INTRINSIC_VOID ||
4074 Opcode == ISD::INTRINSIC_W_CHAIN ||
4075 Opcode == ISD::PREFETCH ||
4076 (Opcode <= INT_MAX &&
4077 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
4078 "Opcode is not a memory-accessing opcode!");
4079
4080 // Memoize the node unless it returns a flag.
4081 MemIntrinsicSDNode *N;
4082 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4083 FoldingSetNodeID ID;
4084 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4085 void *IP = 0;
4086 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4087 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
4088 return SDValue(E, 0);
4089 }
4090
4091 N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4092 MemVT, MMO);
4093 CSEMap.InsertNode(N, IP);
4094 } else {
4095 N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4096 MemVT, MMO);
4097 }
4098 AllNodes.push_back(N);
4099 return SDValue(N, 0);
4100 }
4101
4102 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4103 /// MachinePointerInfo record from it. This is particularly useful because the
4104 /// code generator has many cases where it doesn't bother passing in a
4105 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
InferPointerInfo(SDValue Ptr,int64_t Offset=0)4106 static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
4107 // If this is FI+Offset, we can model it.
4108 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4109 return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4110
4111 // If this is (FI+Offset1)+Offset2, we can model it.
4112 if (Ptr.getOpcode() != ISD::ADD ||
4113 !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4114 !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4115 return MachinePointerInfo();
4116
4117 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4118 return MachinePointerInfo::getFixedStack(FI, Offset+
4119 cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4120 }
4121
4122 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4123 /// MachinePointerInfo record from it. This is particularly useful because the
4124 /// code generator has many cases where it doesn't bother passing in a
4125 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
InferPointerInfo(SDValue Ptr,SDValue OffsetOp)4126 static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4127 // If the 'Offset' value isn't a constant, we can't handle this.
4128 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4129 return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4130 if (OffsetOp.getOpcode() == ISD::UNDEF)
4131 return InferPointerInfo(Ptr);
4132 return MachinePointerInfo();
4133 }
4134
4135
4136 SDValue
getLoad(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,DebugLoc dl,SDValue Chain,SDValue Ptr,SDValue Offset,MachinePointerInfo PtrInfo,EVT MemVT,bool isVolatile,bool isNonTemporal,unsigned Alignment,const MDNode * TBAAInfo)4137 SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4138 EVT VT, DebugLoc dl, SDValue Chain,
4139 SDValue Ptr, SDValue Offset,
4140 MachinePointerInfo PtrInfo, EVT MemVT,
4141 bool isVolatile, bool isNonTemporal,
4142 unsigned Alignment, const MDNode *TBAAInfo) {
4143 assert(Chain.getValueType() == MVT::Other &&
4144 "Invalid chain type");
4145 if (Alignment == 0) // Ensure that codegen never sees alignment 0
4146 Alignment = getEVTAlignment(VT);
4147
4148 unsigned Flags = MachineMemOperand::MOLoad;
4149 if (isVolatile)
4150 Flags |= MachineMemOperand::MOVolatile;
4151 if (isNonTemporal)
4152 Flags |= MachineMemOperand::MONonTemporal;
4153
4154 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4155 // clients.
4156 if (PtrInfo.V == 0)
4157 PtrInfo = InferPointerInfo(Ptr, Offset);
4158
4159 MachineFunction &MF = getMachineFunction();
4160 MachineMemOperand *MMO =
4161 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4162 TBAAInfo);
4163 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4164 }
4165
4166 SDValue
getLoad(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,DebugLoc dl,SDValue Chain,SDValue Ptr,SDValue Offset,EVT MemVT,MachineMemOperand * MMO)4167 SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4168 EVT VT, DebugLoc dl, SDValue Chain,
4169 SDValue Ptr, SDValue Offset, EVT MemVT,
4170 MachineMemOperand *MMO) {
4171 if (VT == MemVT) {
4172 ExtType = ISD::NON_EXTLOAD;
4173 } else if (ExtType == ISD::NON_EXTLOAD) {
4174 assert(VT == MemVT && "Non-extending load from different memory type!");
4175 } else {
4176 // Extending load.
4177 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4178 "Should only be an extending load, not truncating!");
4179 assert(VT.isInteger() == MemVT.isInteger() &&
4180 "Cannot convert from FP to Int or Int -> FP!");
4181 assert(VT.isVector() == MemVT.isVector() &&
4182 "Cannot use trunc store to convert to or from a vector!");
4183 assert((!VT.isVector() ||
4184 VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4185 "Cannot use trunc store to change the number of vector elements!");
4186 }
4187
4188 bool Indexed = AM != ISD::UNINDEXED;
4189 assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4190 "Unindexed load with an offset!");
4191
4192 SDVTList VTs = Indexed ?
4193 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4194 SDValue Ops[] = { Chain, Ptr, Offset };
4195 FoldingSetNodeID ID;
4196 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4197 ID.AddInteger(MemVT.getRawBits());
4198 ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4199 MMO->isNonTemporal()));
4200 void *IP = 0;
4201 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4202 cast<LoadSDNode>(E)->refineAlignment(MMO);
4203 return SDValue(E, 0);
4204 }
4205 SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4206 MemVT, MMO);
4207 CSEMap.InsertNode(N, IP);
4208 AllNodes.push_back(N);
4209 return SDValue(N, 0);
4210 }
4211
getLoad(EVT VT,DebugLoc dl,SDValue Chain,SDValue Ptr,MachinePointerInfo PtrInfo,bool isVolatile,bool isNonTemporal,unsigned Alignment,const MDNode * TBAAInfo)4212 SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4213 SDValue Chain, SDValue Ptr,
4214 MachinePointerInfo PtrInfo,
4215 bool isVolatile, bool isNonTemporal,
4216 unsigned Alignment, const MDNode *TBAAInfo) {
4217 SDValue Undef = getUNDEF(Ptr.getValueType());
4218 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4219 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
4220 }
4221
getExtLoad(ISD::LoadExtType ExtType,DebugLoc dl,EVT VT,SDValue Chain,SDValue Ptr,MachinePointerInfo PtrInfo,EVT MemVT,bool isVolatile,bool isNonTemporal,unsigned Alignment,const MDNode * TBAAInfo)4222 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
4223 SDValue Chain, SDValue Ptr,
4224 MachinePointerInfo PtrInfo, EVT MemVT,
4225 bool isVolatile, bool isNonTemporal,
4226 unsigned Alignment, const MDNode *TBAAInfo) {
4227 SDValue Undef = getUNDEF(Ptr.getValueType());
4228 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4229 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
4230 TBAAInfo);
4231 }
4232
4233
4234 SDValue
getIndexedLoad(SDValue OrigLoad,DebugLoc dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)4235 SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4236 SDValue Offset, ISD::MemIndexedMode AM) {
4237 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4238 assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4239 "Load is already a indexed load!");
4240 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4241 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4242 LD->getMemoryVT(),
4243 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4244 }
4245
getStore(SDValue Chain,DebugLoc dl,SDValue Val,SDValue Ptr,MachinePointerInfo PtrInfo,bool isVolatile,bool isNonTemporal,unsigned Alignment,const MDNode * TBAAInfo)4246 SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4247 SDValue Ptr, MachinePointerInfo PtrInfo,
4248 bool isVolatile, bool isNonTemporal,
4249 unsigned Alignment, const MDNode *TBAAInfo) {
4250 assert(Chain.getValueType() == MVT::Other &&
4251 "Invalid chain type");
4252 if (Alignment == 0) // Ensure that codegen never sees alignment 0
4253 Alignment = getEVTAlignment(Val.getValueType());
4254
4255 unsigned Flags = MachineMemOperand::MOStore;
4256 if (isVolatile)
4257 Flags |= MachineMemOperand::MOVolatile;
4258 if (isNonTemporal)
4259 Flags |= MachineMemOperand::MONonTemporal;
4260
4261 if (PtrInfo.V == 0)
4262 PtrInfo = InferPointerInfo(Ptr);
4263
4264 MachineFunction &MF = getMachineFunction();
4265 MachineMemOperand *MMO =
4266 MF.getMachineMemOperand(PtrInfo, Flags,
4267 Val.getValueType().getStoreSize(), Alignment,
4268 TBAAInfo);
4269
4270 return getStore(Chain, dl, Val, Ptr, MMO);
4271 }
4272
getStore(SDValue Chain,DebugLoc dl,SDValue Val,SDValue Ptr,MachineMemOperand * MMO)4273 SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4274 SDValue Ptr, MachineMemOperand *MMO) {
4275 assert(Chain.getValueType() == MVT::Other &&
4276 "Invalid chain type");
4277 EVT VT = Val.getValueType();
4278 SDVTList VTs = getVTList(MVT::Other);
4279 SDValue Undef = getUNDEF(Ptr.getValueType());
4280 SDValue Ops[] = { Chain, Val, Ptr, Undef };
4281 FoldingSetNodeID ID;
4282 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4283 ID.AddInteger(VT.getRawBits());
4284 ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4285 MMO->isNonTemporal()));
4286 void *IP = 0;
4287 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4288 cast<StoreSDNode>(E)->refineAlignment(MMO);
4289 return SDValue(E, 0);
4290 }
4291 SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4292 false, VT, MMO);
4293 CSEMap.InsertNode(N, IP);
4294 AllNodes.push_back(N);
4295 return SDValue(N, 0);
4296 }
4297
getTruncStore(SDValue Chain,DebugLoc dl,SDValue Val,SDValue Ptr,MachinePointerInfo PtrInfo,EVT SVT,bool isVolatile,bool isNonTemporal,unsigned Alignment,const MDNode * TBAAInfo)4298 SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4299 SDValue Ptr, MachinePointerInfo PtrInfo,
4300 EVT SVT,bool isVolatile, bool isNonTemporal,
4301 unsigned Alignment,
4302 const MDNode *TBAAInfo) {
4303 assert(Chain.getValueType() == MVT::Other &&
4304 "Invalid chain type");
4305 if (Alignment == 0) // Ensure that codegen never sees alignment 0
4306 Alignment = getEVTAlignment(SVT);
4307
4308 unsigned Flags = MachineMemOperand::MOStore;
4309 if (isVolatile)
4310 Flags |= MachineMemOperand::MOVolatile;
4311 if (isNonTemporal)
4312 Flags |= MachineMemOperand::MONonTemporal;
4313
4314 if (PtrInfo.V == 0)
4315 PtrInfo = InferPointerInfo(Ptr);
4316
4317 MachineFunction &MF = getMachineFunction();
4318 MachineMemOperand *MMO =
4319 MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4320 TBAAInfo);
4321
4322 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4323 }
4324
getTruncStore(SDValue Chain,DebugLoc dl,SDValue Val,SDValue Ptr,EVT SVT,MachineMemOperand * MMO)4325 SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4326 SDValue Ptr, EVT SVT,
4327 MachineMemOperand *MMO) {
4328 EVT VT = Val.getValueType();
4329
4330 assert(Chain.getValueType() == MVT::Other &&
4331 "Invalid chain type");
4332 if (VT == SVT)
4333 return getStore(Chain, dl, Val, Ptr, MMO);
4334
4335 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4336 "Should only be a truncating store, not extending!");
4337 assert(VT.isInteger() == SVT.isInteger() &&
4338 "Can't do FP-INT conversion!");
4339 assert(VT.isVector() == SVT.isVector() &&
4340 "Cannot use trunc store to convert to or from a vector!");
4341 assert((!VT.isVector() ||
4342 VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4343 "Cannot use trunc store to change the number of vector elements!");
4344
4345 SDVTList VTs = getVTList(MVT::Other);
4346 SDValue Undef = getUNDEF(Ptr.getValueType());
4347 SDValue Ops[] = { Chain, Val, Ptr, Undef };
4348 FoldingSetNodeID ID;
4349 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4350 ID.AddInteger(SVT.getRawBits());
4351 ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4352 MMO->isNonTemporal()));
4353 void *IP = 0;
4354 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4355 cast<StoreSDNode>(E)->refineAlignment(MMO);
4356 return SDValue(E, 0);
4357 }
4358 SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4359 true, SVT, MMO);
4360 CSEMap.InsertNode(N, IP);
4361 AllNodes.push_back(N);
4362 return SDValue(N, 0);
4363 }
4364
4365 SDValue
getIndexedStore(SDValue OrigStore,DebugLoc dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)4366 SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4367 SDValue Offset, ISD::MemIndexedMode AM) {
4368 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4369 assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4370 "Store is already a indexed store!");
4371 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4372 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4373 FoldingSetNodeID ID;
4374 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4375 ID.AddInteger(ST->getMemoryVT().getRawBits());
4376 ID.AddInteger(ST->getRawSubclassData());
4377 void *IP = 0;
4378 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4379 return SDValue(E, 0);
4380
4381 SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4382 ST->isTruncatingStore(),
4383 ST->getMemoryVT(),
4384 ST->getMemOperand());
4385 CSEMap.InsertNode(N, IP);
4386 AllNodes.push_back(N);
4387 return SDValue(N, 0);
4388 }
4389
getVAArg(EVT VT,DebugLoc dl,SDValue Chain,SDValue Ptr,SDValue SV,unsigned Align)4390 SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4391 SDValue Chain, SDValue Ptr,
4392 SDValue SV,
4393 unsigned Align) {
4394 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4395 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4396 }
4397
getNode(unsigned Opcode,DebugLoc DL,EVT VT,const SDUse * Ops,unsigned NumOps)4398 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4399 const SDUse *Ops, unsigned NumOps) {
4400 switch (NumOps) {
4401 case 0: return getNode(Opcode, DL, VT);
4402 case 1: return getNode(Opcode, DL, VT, Ops[0]);
4403 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4404 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4405 default: break;
4406 }
4407
4408 // Copy from an SDUse array into an SDValue array for use with
4409 // the regular getNode logic.
4410 SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4411 return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4412 }
4413
getNode(unsigned Opcode,DebugLoc DL,EVT VT,const SDValue * Ops,unsigned NumOps)4414 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4415 const SDValue *Ops, unsigned NumOps) {
4416 switch (NumOps) {
4417 case 0: return getNode(Opcode, DL, VT);
4418 case 1: return getNode(Opcode, DL, VT, Ops[0]);
4419 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4420 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4421 default: break;
4422 }
4423
4424 switch (Opcode) {
4425 default: break;
4426 case ISD::SELECT_CC: {
4427 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4428 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4429 "LHS and RHS of condition must have same type!");
4430 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4431 "True and False arms of SelectCC must have same type!");
4432 assert(Ops[2].getValueType() == VT &&
4433 "select_cc node must be of same type as true and false value!");
4434 break;
4435 }
4436 case ISD::BR_CC: {
4437 assert(NumOps == 5 && "BR_CC takes 5 operands!");
4438 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4439 "LHS/RHS of comparison should match types!");
4440 break;
4441 }
4442 }
4443
4444 // Memoize nodes.
4445 SDNode *N;
4446 SDVTList VTs = getVTList(VT);
4447
4448 if (VT != MVT::Glue) {
4449 FoldingSetNodeID ID;
4450 AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4451 void *IP = 0;
4452
4453 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4454 return SDValue(E, 0);
4455
4456 N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4457 CSEMap.InsertNode(N, IP);
4458 } else {
4459 N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4460 }
4461
4462 AllNodes.push_back(N);
4463 #ifndef NDEBUG
4464 VerifySDNode(N);
4465 #endif
4466 return SDValue(N, 0);
4467 }
4468
getNode(unsigned Opcode,DebugLoc DL,const std::vector<EVT> & ResultTys,const SDValue * Ops,unsigned NumOps)4469 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4470 const std::vector<EVT> &ResultTys,
4471 const SDValue *Ops, unsigned NumOps) {
4472 return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4473 Ops, NumOps);
4474 }
4475
getNode(unsigned Opcode,DebugLoc DL,const EVT * VTs,unsigned NumVTs,const SDValue * Ops,unsigned NumOps)4476 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4477 const EVT *VTs, unsigned NumVTs,
4478 const SDValue *Ops, unsigned NumOps) {
4479 if (NumVTs == 1)
4480 return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4481 return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4482 }
4483
getNode(unsigned Opcode,DebugLoc DL,SDVTList VTList,const SDValue * Ops,unsigned NumOps)4484 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4485 const SDValue *Ops, unsigned NumOps) {
4486 if (VTList.NumVTs == 1)
4487 return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4488
4489 #if 0
4490 switch (Opcode) {
4491 // FIXME: figure out how to safely handle things like
4492 // int foo(int x) { return 1 << (x & 255); }
4493 // int bar() { return foo(256); }
4494 case ISD::SRA_PARTS:
4495 case ISD::SRL_PARTS:
4496 case ISD::SHL_PARTS:
4497 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4498 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4499 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4500 else if (N3.getOpcode() == ISD::AND)
4501 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4502 // If the and is only masking out bits that cannot effect the shift,
4503 // eliminate the and.
4504 unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4505 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4506 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4507 }
4508 break;
4509 }
4510 #endif
4511
4512 // Memoize the node unless it returns a flag.
4513 SDNode *N;
4514 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4515 FoldingSetNodeID ID;
4516 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4517 void *IP = 0;
4518 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4519 return SDValue(E, 0);
4520
4521 if (NumOps == 1) {
4522 N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4523 } else if (NumOps == 2) {
4524 N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4525 } else if (NumOps == 3) {
4526 N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4527 Ops[2]);
4528 } else {
4529 N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4530 }
4531 CSEMap.InsertNode(N, IP);
4532 } else {
4533 if (NumOps == 1) {
4534 N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4535 } else if (NumOps == 2) {
4536 N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4537 } else if (NumOps == 3) {
4538 N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4539 Ops[2]);
4540 } else {
4541 N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4542 }
4543 }
4544 AllNodes.push_back(N);
4545 #ifndef NDEBUG
4546 VerifySDNode(N);
4547 #endif
4548 return SDValue(N, 0);
4549 }
4550
getNode(unsigned Opcode,DebugLoc DL,SDVTList VTList)4551 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4552 return getNode(Opcode, DL, VTList, 0, 0);
4553 }
4554
getNode(unsigned Opcode,DebugLoc DL,SDVTList VTList,SDValue N1)4555 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4556 SDValue N1) {
4557 SDValue Ops[] = { N1 };
4558 return getNode(Opcode, DL, VTList, Ops, 1);
4559 }
4560
getNode(unsigned Opcode,DebugLoc DL,SDVTList VTList,SDValue N1,SDValue N2)4561 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4562 SDValue N1, SDValue N2) {
4563 SDValue Ops[] = { N1, N2 };
4564 return getNode(Opcode, DL, VTList, Ops, 2);
4565 }
4566
getNode(unsigned Opcode,DebugLoc DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3)4567 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4568 SDValue N1, SDValue N2, SDValue N3) {
4569 SDValue Ops[] = { N1, N2, N3 };
4570 return getNode(Opcode, DL, VTList, Ops, 3);
4571 }
4572
getNode(unsigned Opcode,DebugLoc DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3,SDValue N4)4573 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4574 SDValue N1, SDValue N2, SDValue N3,
4575 SDValue N4) {
4576 SDValue Ops[] = { N1, N2, N3, N4 };
4577 return getNode(Opcode, DL, VTList, Ops, 4);
4578 }
4579
getNode(unsigned Opcode,DebugLoc DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3,SDValue N4,SDValue N5)4580 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4581 SDValue N1, SDValue N2, SDValue N3,
4582 SDValue N4, SDValue N5) {
4583 SDValue Ops[] = { N1, N2, N3, N4, N5 };
4584 return getNode(Opcode, DL, VTList, Ops, 5);
4585 }
4586
getVTList(EVT VT)4587 SDVTList SelectionDAG::getVTList(EVT VT) {
4588 return makeVTList(SDNode::getValueTypeList(VT), 1);
4589 }
4590
getVTList(EVT VT1,EVT VT2)4591 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4592 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4593 E = VTList.rend(); I != E; ++I)
4594 if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4595 return *I;
4596
4597 EVT *Array = Allocator.Allocate<EVT>(2);
4598 Array[0] = VT1;
4599 Array[1] = VT2;
4600 SDVTList Result = makeVTList(Array, 2);
4601 VTList.push_back(Result);
4602 return Result;
4603 }
4604
getVTList(EVT VT1,EVT VT2,EVT VT3)4605 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4606 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4607 E = VTList.rend(); I != E; ++I)
4608 if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4609 I->VTs[2] == VT3)
4610 return *I;
4611
4612 EVT *Array = Allocator.Allocate<EVT>(3);
4613 Array[0] = VT1;
4614 Array[1] = VT2;
4615 Array[2] = VT3;
4616 SDVTList Result = makeVTList(Array, 3);
4617 VTList.push_back(Result);
4618 return Result;
4619 }
4620
getVTList(EVT VT1,EVT VT2,EVT VT3,EVT VT4)4621 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4622 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4623 E = VTList.rend(); I != E; ++I)
4624 if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4625 I->VTs[2] == VT3 && I->VTs[3] == VT4)
4626 return *I;
4627
4628 EVT *Array = Allocator.Allocate<EVT>(4);
4629 Array[0] = VT1;
4630 Array[1] = VT2;
4631 Array[2] = VT3;
4632 Array[3] = VT4;
4633 SDVTList Result = makeVTList(Array, 4);
4634 VTList.push_back(Result);
4635 return Result;
4636 }
4637
getVTList(const EVT * VTs,unsigned NumVTs)4638 SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4639 switch (NumVTs) {
4640 case 0: llvm_unreachable("Cannot have nodes without results!");
4641 case 1: return getVTList(VTs[0]);
4642 case 2: return getVTList(VTs[0], VTs[1]);
4643 case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4644 case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4645 default: break;
4646 }
4647
4648 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4649 E = VTList.rend(); I != E; ++I) {
4650 if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4651 continue;
4652
4653 bool NoMatch = false;
4654 for (unsigned i = 2; i != NumVTs; ++i)
4655 if (VTs[i] != I->VTs[i]) {
4656 NoMatch = true;
4657 break;
4658 }
4659 if (!NoMatch)
4660 return *I;
4661 }
4662
4663 EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4664 std::copy(VTs, VTs+NumVTs, Array);
4665 SDVTList Result = makeVTList(Array, NumVTs);
4666 VTList.push_back(Result);
4667 return Result;
4668 }
4669
4670
4671 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4672 /// specified operands. If the resultant node already exists in the DAG,
4673 /// this does not modify the specified node, instead it returns the node that
4674 /// already exists. If the resultant node does not exist in the DAG, the
4675 /// input node is returned. As a degenerate case, if you specify the same
4676 /// input operands as the node already has, the input node is returned.
UpdateNodeOperands(SDNode * N,SDValue Op)4677 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4678 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4679
4680 // Check to see if there is no change.
4681 if (Op == N->getOperand(0)) return N;
4682
4683 // See if the modified node already exists.
4684 void *InsertPos = 0;
4685 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4686 return Existing;
4687
4688 // Nope it doesn't. Remove the node from its current place in the maps.
4689 if (InsertPos)
4690 if (!RemoveNodeFromCSEMaps(N))
4691 InsertPos = 0;
4692
4693 // Now we update the operands.
4694 N->OperandList[0].set(Op);
4695
4696 // If this gets put into a CSE map, add it.
4697 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4698 return N;
4699 }
4700
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2)4701 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4702 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4703
4704 // Check to see if there is no change.
4705 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4706 return N; // No operands changed, just return the input node.
4707
4708 // See if the modified node already exists.
4709 void *InsertPos = 0;
4710 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4711 return Existing;
4712
4713 // Nope it doesn't. Remove the node from its current place in the maps.
4714 if (InsertPos)
4715 if (!RemoveNodeFromCSEMaps(N))
4716 InsertPos = 0;
4717
4718 // Now we update the operands.
4719 if (N->OperandList[0] != Op1)
4720 N->OperandList[0].set(Op1);
4721 if (N->OperandList[1] != Op2)
4722 N->OperandList[1].set(Op2);
4723
4724 // If this gets put into a CSE map, add it.
4725 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4726 return N;
4727 }
4728
4729 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3)4730 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4731 SDValue Ops[] = { Op1, Op2, Op3 };
4732 return UpdateNodeOperands(N, Ops, 3);
4733 }
4734
4735 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3,SDValue Op4)4736 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4737 SDValue Op3, SDValue Op4) {
4738 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4739 return UpdateNodeOperands(N, Ops, 4);
4740 }
4741
4742 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3,SDValue Op4,SDValue Op5)4743 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4744 SDValue Op3, SDValue Op4, SDValue Op5) {
4745 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4746 return UpdateNodeOperands(N, Ops, 5);
4747 }
4748
4749 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,const SDValue * Ops,unsigned NumOps)4750 UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4751 assert(N->getNumOperands() == NumOps &&
4752 "Update with wrong number of operands");
4753
4754 // Check to see if there is no change.
4755 bool AnyChange = false;
4756 for (unsigned i = 0; i != NumOps; ++i) {
4757 if (Ops[i] != N->getOperand(i)) {
4758 AnyChange = true;
4759 break;
4760 }
4761 }
4762
4763 // No operands changed, just return the input node.
4764 if (!AnyChange) return N;
4765
4766 // See if the modified node already exists.
4767 void *InsertPos = 0;
4768 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4769 return Existing;
4770
4771 // Nope it doesn't. Remove the node from its current place in the maps.
4772 if (InsertPos)
4773 if (!RemoveNodeFromCSEMaps(N))
4774 InsertPos = 0;
4775
4776 // Now we update the operands.
4777 for (unsigned i = 0; i != NumOps; ++i)
4778 if (N->OperandList[i] != Ops[i])
4779 N->OperandList[i].set(Ops[i]);
4780
4781 // If this gets put into a CSE map, add it.
4782 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4783 return N;
4784 }
4785
4786 /// DropOperands - Release the operands and set this node to have
4787 /// zero operands.
DropOperands()4788 void SDNode::DropOperands() {
4789 // Unlike the code in MorphNodeTo that does this, we don't need to
4790 // watch for dead nodes here.
4791 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4792 SDUse &Use = *I++;
4793 Use.set(SDValue());
4794 }
4795 }
4796
4797 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4798 /// machine opcode.
4799 ///
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT)4800 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4801 EVT VT) {
4802 SDVTList VTs = getVTList(VT);
4803 return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4804 }
4805
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1)4806 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4807 EVT VT, SDValue Op1) {
4808 SDVTList VTs = getVTList(VT);
4809 SDValue Ops[] = { Op1 };
4810 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4811 }
4812
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1,SDValue Op2)4813 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4814 EVT VT, SDValue Op1,
4815 SDValue Op2) {
4816 SDVTList VTs = getVTList(VT);
4817 SDValue Ops[] = { Op1, Op2 };
4818 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4819 }
4820
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1,SDValue Op2,SDValue Op3)4821 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4822 EVT VT, SDValue Op1,
4823 SDValue Op2, SDValue Op3) {
4824 SDVTList VTs = getVTList(VT);
4825 SDValue Ops[] = { Op1, Op2, Op3 };
4826 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4827 }
4828
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,const SDValue * Ops,unsigned NumOps)4829 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4830 EVT VT, const SDValue *Ops,
4831 unsigned NumOps) {
4832 SDVTList VTs = getVTList(VT);
4833 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4834 }
4835
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,const SDValue * Ops,unsigned NumOps)4836 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4837 EVT VT1, EVT VT2, const SDValue *Ops,
4838 unsigned NumOps) {
4839 SDVTList VTs = getVTList(VT1, VT2);
4840 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4841 }
4842
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2)4843 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4844 EVT VT1, EVT VT2) {
4845 SDVTList VTs = getVTList(VT1, VT2);
4846 return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4847 }
4848
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,EVT VT3,const SDValue * Ops,unsigned NumOps)4849 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4850 EVT VT1, EVT VT2, EVT VT3,
4851 const SDValue *Ops, unsigned NumOps) {
4852 SDVTList VTs = getVTList(VT1, VT2, VT3);
4853 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4854 }
4855
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,EVT VT3,EVT VT4,const SDValue * Ops,unsigned NumOps)4856 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4857 EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4858 const SDValue *Ops, unsigned NumOps) {
4859 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4860 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4861 }
4862
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,SDValue Op1)4863 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4864 EVT VT1, EVT VT2,
4865 SDValue Op1) {
4866 SDVTList VTs = getVTList(VT1, VT2);
4867 SDValue Ops[] = { Op1 };
4868 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4869 }
4870
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2)4871 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4872 EVT VT1, EVT VT2,
4873 SDValue Op1, SDValue Op2) {
4874 SDVTList VTs = getVTList(VT1, VT2);
4875 SDValue Ops[] = { Op1, Op2 };
4876 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4877 }
4878
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2,SDValue Op3)4879 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4880 EVT VT1, EVT VT2,
4881 SDValue Op1, SDValue Op2,
4882 SDValue Op3) {
4883 SDVTList VTs = getVTList(VT1, VT2);
4884 SDValue Ops[] = { Op1, Op2, Op3 };
4885 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4886 }
4887
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2,SDValue Op3)4888 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4889 EVT VT1, EVT VT2, EVT VT3,
4890 SDValue Op1, SDValue Op2,
4891 SDValue Op3) {
4892 SDVTList VTs = getVTList(VT1, VT2, VT3);
4893 SDValue Ops[] = { Op1, Op2, Op3 };
4894 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4895 }
4896
SelectNodeTo(SDNode * N,unsigned MachineOpc,SDVTList VTs,const SDValue * Ops,unsigned NumOps)4897 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4898 SDVTList VTs, const SDValue *Ops,
4899 unsigned NumOps) {
4900 N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4901 // Reset the NodeID to -1.
4902 N->setNodeId(-1);
4903 return N;
4904 }
4905
4906 /// MorphNodeTo - This *mutates* the specified node to have the specified
4907 /// return type, opcode, and operands.
4908 ///
4909 /// Note that MorphNodeTo returns the resultant node. If there is already a
4910 /// node of the specified opcode and operands, it returns that node instead of
4911 /// the current one. Note that the DebugLoc need not be the same.
4912 ///
4913 /// Using MorphNodeTo is faster than creating a new node and swapping it in
4914 /// with ReplaceAllUsesWith both because it often avoids allocating a new
4915 /// node, and because it doesn't require CSE recalculation for any of
4916 /// the node's users.
4917 ///
MorphNodeTo(SDNode * N,unsigned Opc,SDVTList VTs,const SDValue * Ops,unsigned NumOps)4918 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4919 SDVTList VTs, const SDValue *Ops,
4920 unsigned NumOps) {
4921 // If an identical node already exists, use it.
4922 void *IP = 0;
4923 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
4924 FoldingSetNodeID ID;
4925 AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4926 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4927 return ON;
4928 }
4929
4930 if (!RemoveNodeFromCSEMaps(N))
4931 IP = 0;
4932
4933 // Start the morphing.
4934 N->NodeType = Opc;
4935 N->ValueList = VTs.VTs;
4936 N->NumValues = VTs.NumVTs;
4937
4938 // Clear the operands list, updating used nodes to remove this from their
4939 // use list. Keep track of any operands that become dead as a result.
4940 SmallPtrSet<SDNode*, 16> DeadNodeSet;
4941 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4942 SDUse &Use = *I++;
4943 SDNode *Used = Use.getNode();
4944 Use.set(SDValue());
4945 if (Used->use_empty())
4946 DeadNodeSet.insert(Used);
4947 }
4948
4949 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4950 // Initialize the memory references information.
4951 MN->setMemRefs(0, 0);
4952 // If NumOps is larger than the # of operands we can have in a
4953 // MachineSDNode, reallocate the operand list.
4954 if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4955 if (MN->OperandsNeedDelete)
4956 delete[] MN->OperandList;
4957 if (NumOps > array_lengthof(MN->LocalOperands))
4958 // We're creating a final node that will live unmorphed for the
4959 // remainder of the current SelectionDAG iteration, so we can allocate
4960 // the operands directly out of a pool with no recycling metadata.
4961 MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4962 Ops, NumOps);
4963 else
4964 MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4965 MN->OperandsNeedDelete = false;
4966 } else
4967 MN->InitOperands(MN->OperandList, Ops, NumOps);
4968 } else {
4969 // If NumOps is larger than the # of operands we currently have, reallocate
4970 // the operand list.
4971 if (NumOps > N->NumOperands) {
4972 if (N->OperandsNeedDelete)
4973 delete[] N->OperandList;
4974 N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4975 N->OperandsNeedDelete = true;
4976 } else
4977 N->InitOperands(N->OperandList, Ops, NumOps);
4978 }
4979
4980 // Delete any nodes that are still dead after adding the uses for the
4981 // new operands.
4982 if (!DeadNodeSet.empty()) {
4983 SmallVector<SDNode *, 16> DeadNodes;
4984 for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4985 E = DeadNodeSet.end(); I != E; ++I)
4986 if ((*I)->use_empty())
4987 DeadNodes.push_back(*I);
4988 RemoveDeadNodes(DeadNodes);
4989 }
4990
4991 if (IP)
4992 CSEMap.InsertNode(N, IP); // Memoize the new node.
4993 return N;
4994 }
4995
4996
4997 /// getMachineNode - These are used for target selectors to create a new node
4998 /// with specified return type(s), MachineInstr opcode, and operands.
4999 ///
5000 /// Note that getMachineNode returns the resultant node. If there is already a
5001 /// node of the specified opcode and operands, it returns that node instead of
5002 /// the current one.
5003 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT)5004 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
5005 SDVTList VTs = getVTList(VT);
5006 return getMachineNode(Opcode, dl, VTs, 0, 0);
5007 }
5008
5009 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT,SDValue Op1)5010 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
5011 SDVTList VTs = getVTList(VT);
5012 SDValue Ops[] = { Op1 };
5013 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5014 }
5015
5016 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT,SDValue Op1,SDValue Op2)5017 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5018 SDValue Op1, SDValue Op2) {
5019 SDVTList VTs = getVTList(VT);
5020 SDValue Ops[] = { Op1, Op2 };
5021 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5022 }
5023
5024 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT,SDValue Op1,SDValue Op2,SDValue Op3)5025 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5026 SDValue Op1, SDValue Op2, SDValue Op3) {
5027 SDVTList VTs = getVTList(VT);
5028 SDValue Ops[] = { Op1, Op2, Op3 };
5029 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5030 }
5031
5032 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT,const SDValue * Ops,unsigned NumOps)5033 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5034 const SDValue *Ops, unsigned NumOps) {
5035 SDVTList VTs = getVTList(VT);
5036 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5037 }
5038
5039 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT1,EVT VT2)5040 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
5041 SDVTList VTs = getVTList(VT1, VT2);
5042 return getMachineNode(Opcode, dl, VTs, 0, 0);
5043 }
5044
5045 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT1,EVT VT2,SDValue Op1)5046 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5047 EVT VT1, EVT VT2, SDValue Op1) {
5048 SDVTList VTs = getVTList(VT1, VT2);
5049 SDValue Ops[] = { Op1 };
5050 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5051 }
5052
5053 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2)5054 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5055 EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
5056 SDVTList VTs = getVTList(VT1, VT2);
5057 SDValue Ops[] = { Op1, Op2 };
5058 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5059 }
5060
5061 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2,SDValue Op3)5062 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5063 EVT VT1, EVT VT2, SDValue Op1,
5064 SDValue Op2, SDValue Op3) {
5065 SDVTList VTs = getVTList(VT1, VT2);
5066 SDValue Ops[] = { Op1, Op2, Op3 };
5067 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5068 }
5069
5070 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT1,EVT VT2,const SDValue * Ops,unsigned NumOps)5071 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5072 EVT VT1, EVT VT2,
5073 const SDValue *Ops, unsigned NumOps) {
5074 SDVTList VTs = getVTList(VT1, VT2);
5075 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5076 }
5077
5078 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2)5079 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5080 EVT VT1, EVT VT2, EVT VT3,
5081 SDValue Op1, SDValue Op2) {
5082 SDVTList VTs = getVTList(VT1, VT2, VT3);
5083 SDValue Ops[] = { Op1, Op2 };
5084 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5085 }
5086
5087 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2,SDValue Op3)5088 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5089 EVT VT1, EVT VT2, EVT VT3,
5090 SDValue Op1, SDValue Op2, SDValue Op3) {
5091 SDVTList VTs = getVTList(VT1, VT2, VT3);
5092 SDValue Ops[] = { Op1, Op2, Op3 };
5093 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5094 }
5095
5096 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT1,EVT VT2,EVT VT3,const SDValue * Ops,unsigned NumOps)5097 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5098 EVT VT1, EVT VT2, EVT VT3,
5099 const SDValue *Ops, unsigned NumOps) {
5100 SDVTList VTs = getVTList(VT1, VT2, VT3);
5101 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5102 }
5103
5104 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT1,EVT VT2,EVT VT3,EVT VT4,const SDValue * Ops,unsigned NumOps)5105 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
5106 EVT VT2, EVT VT3, EVT VT4,
5107 const SDValue *Ops, unsigned NumOps) {
5108 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
5109 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5110 }
5111
5112 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,const std::vector<EVT> & ResultTys,const SDValue * Ops,unsigned NumOps)5113 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5114 const std::vector<EVT> &ResultTys,
5115 const SDValue *Ops, unsigned NumOps) {
5116 SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
5117 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5118 }
5119
5120 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc DL,SDVTList VTs,const SDValue * Ops,unsigned NumOps)5121 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
5122 const SDValue *Ops, unsigned NumOps) {
5123 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5124 MachineSDNode *N;
5125 void *IP = 0;
5126
5127 if (DoCSE) {
5128 FoldingSetNodeID ID;
5129 AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5130 IP = 0;
5131 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5132 return cast<MachineSDNode>(E);
5133 }
5134
5135 // Allocate a new MachineSDNode.
5136 N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
5137
5138 // Initialize the operands list.
5139 if (NumOps > array_lengthof(N->LocalOperands))
5140 // We're creating a final node that will live unmorphed for the
5141 // remainder of the current SelectionDAG iteration, so we can allocate
5142 // the operands directly out of a pool with no recycling metadata.
5143 N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5144 Ops, NumOps);
5145 else
5146 N->InitOperands(N->LocalOperands, Ops, NumOps);
5147 N->OperandsNeedDelete = false;
5148
5149 if (DoCSE)
5150 CSEMap.InsertNode(N, IP);
5151
5152 AllNodes.push_back(N);
5153 #ifndef NDEBUG
5154 VerifyMachineNode(N);
5155 #endif
5156 return N;
5157 }
5158
5159 /// getTargetExtractSubreg - A convenience function for creating
5160 /// TargetOpcode::EXTRACT_SUBREG nodes.
5161 SDValue
getTargetExtractSubreg(int SRIdx,DebugLoc DL,EVT VT,SDValue Operand)5162 SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5163 SDValue Operand) {
5164 SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5165 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5166 VT, Operand, SRIdxVal);
5167 return SDValue(Subreg, 0);
5168 }
5169
5170 /// getTargetInsertSubreg - A convenience function for creating
5171 /// TargetOpcode::INSERT_SUBREG nodes.
5172 SDValue
getTargetInsertSubreg(int SRIdx,DebugLoc DL,EVT VT,SDValue Operand,SDValue Subreg)5173 SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5174 SDValue Operand, SDValue Subreg) {
5175 SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5176 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5177 VT, Operand, Subreg, SRIdxVal);
5178 return SDValue(Result, 0);
5179 }
5180
5181 /// getNodeIfExists - Get the specified node if it's already available, or
5182 /// else return NULL.
getNodeIfExists(unsigned Opcode,SDVTList VTList,const SDValue * Ops,unsigned NumOps)5183 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5184 const SDValue *Ops, unsigned NumOps) {
5185 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5186 FoldingSetNodeID ID;
5187 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5188 void *IP = 0;
5189 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5190 return E;
5191 }
5192 return NULL;
5193 }
5194
5195 /// getDbgValue - Creates a SDDbgValue node.
5196 ///
5197 SDDbgValue *
getDbgValue(MDNode * MDPtr,SDNode * N,unsigned R,uint64_t Off,DebugLoc DL,unsigned O)5198 SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5199 DebugLoc DL, unsigned O) {
5200 return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5201 }
5202
5203 SDDbgValue *
getDbgValue(MDNode * MDPtr,const Value * C,uint64_t Off,DebugLoc DL,unsigned O)5204 SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5205 DebugLoc DL, unsigned O) {
5206 return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5207 }
5208
5209 SDDbgValue *
getDbgValue(MDNode * MDPtr,unsigned FI,uint64_t Off,DebugLoc DL,unsigned O)5210 SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5211 DebugLoc DL, unsigned O) {
5212 return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5213 }
5214
5215 namespace {
5216
5217 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5218 /// pointed to by a use iterator is deleted, increment the use iterator
5219 /// so that it doesn't dangle.
5220 ///
5221 /// This class also manages a "downlink" DAGUpdateListener, to forward
5222 /// messages to ReplaceAllUsesWith's callers.
5223 ///
5224 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5225 SelectionDAG::DAGUpdateListener *DownLink;
5226 SDNode::use_iterator &UI;
5227 SDNode::use_iterator &UE;
5228
NodeDeleted(SDNode * N,SDNode * E)5229 virtual void NodeDeleted(SDNode *N, SDNode *E) {
5230 // Increment the iterator as needed.
5231 while (UI != UE && N == *UI)
5232 ++UI;
5233
5234 // Then forward the message.
5235 if (DownLink) DownLink->NodeDeleted(N, E);
5236 }
5237
NodeUpdated(SDNode * N)5238 virtual void NodeUpdated(SDNode *N) {
5239 // Just forward the message.
5240 if (DownLink) DownLink->NodeUpdated(N);
5241 }
5242
5243 public:
RAUWUpdateListener(SelectionDAG::DAGUpdateListener * dl,SDNode::use_iterator & ui,SDNode::use_iterator & ue)5244 RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5245 SDNode::use_iterator &ui,
5246 SDNode::use_iterator &ue)
5247 : DownLink(dl), UI(ui), UE(ue) {}
5248 };
5249
5250 }
5251
5252 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5253 /// This can cause recursive merging of nodes in the DAG.
5254 ///
5255 /// This version assumes From has a single result value.
5256 ///
ReplaceAllUsesWith(SDValue FromN,SDValue To,DAGUpdateListener * UpdateListener)5257 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5258 DAGUpdateListener *UpdateListener) {
5259 SDNode *From = FromN.getNode();
5260 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5261 "Cannot replace with this method!");
5262 assert(From != To.getNode() && "Cannot replace uses of with self");
5263
5264 // Iterate over all the existing uses of From. New uses will be added
5265 // to the beginning of the use list, which we avoid visiting.
5266 // This specifically avoids visiting uses of From that arise while the
5267 // replacement is happening, because any such uses would be the result
5268 // of CSE: If an existing node looks like From after one of its operands
5269 // is replaced by To, we don't want to replace of all its users with To
5270 // too. See PR3018 for more info.
5271 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5272 RAUWUpdateListener Listener(UpdateListener, UI, UE);
5273 while (UI != UE) {
5274 SDNode *User = *UI;
5275
5276 // This node is about to morph, remove its old self from the CSE maps.
5277 RemoveNodeFromCSEMaps(User);
5278
5279 // A user can appear in a use list multiple times, and when this
5280 // happens the uses are usually next to each other in the list.
5281 // To help reduce the number of CSE recomputations, process all
5282 // the uses of this user that we can find this way.
5283 do {
5284 SDUse &Use = UI.getUse();
5285 ++UI;
5286 Use.set(To);
5287 } while (UI != UE && *UI == User);
5288
5289 // Now that we have modified User, add it back to the CSE maps. If it
5290 // already exists there, recursively merge the results together.
5291 AddModifiedNodeToCSEMaps(User, &Listener);
5292 }
5293 }
5294
5295 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5296 /// This can cause recursive merging of nodes in the DAG.
5297 ///
5298 /// This version assumes that for each value of From, there is a
5299 /// corresponding value in To in the same position with the same type.
5300 ///
ReplaceAllUsesWith(SDNode * From,SDNode * To,DAGUpdateListener * UpdateListener)5301 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5302 DAGUpdateListener *UpdateListener) {
5303 #ifndef NDEBUG
5304 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5305 assert((!From->hasAnyUseOfValue(i) ||
5306 From->getValueType(i) == To->getValueType(i)) &&
5307 "Cannot use this version of ReplaceAllUsesWith!");
5308 #endif
5309
5310 // Handle the trivial case.
5311 if (From == To)
5312 return;
5313
5314 // Iterate over just the existing users of From. See the comments in
5315 // the ReplaceAllUsesWith above.
5316 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5317 RAUWUpdateListener Listener(UpdateListener, UI, UE);
5318 while (UI != UE) {
5319 SDNode *User = *UI;
5320
5321 // This node is about to morph, remove its old self from the CSE maps.
5322 RemoveNodeFromCSEMaps(User);
5323
5324 // A user can appear in a use list multiple times, and when this
5325 // happens the uses are usually next to each other in the list.
5326 // To help reduce the number of CSE recomputations, process all
5327 // the uses of this user that we can find this way.
5328 do {
5329 SDUse &Use = UI.getUse();
5330 ++UI;
5331 Use.setNode(To);
5332 } while (UI != UE && *UI == User);
5333
5334 // Now that we have modified User, add it back to the CSE maps. If it
5335 // already exists there, recursively merge the results together.
5336 AddModifiedNodeToCSEMaps(User, &Listener);
5337 }
5338 }
5339
5340 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5341 /// This can cause recursive merging of nodes in the DAG.
5342 ///
5343 /// This version can replace From with any result values. To must match the
5344 /// number and types of values returned by From.
ReplaceAllUsesWith(SDNode * From,const SDValue * To,DAGUpdateListener * UpdateListener)5345 void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5346 const SDValue *To,
5347 DAGUpdateListener *UpdateListener) {
5348 if (From->getNumValues() == 1) // Handle the simple case efficiently.
5349 return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5350
5351 // Iterate over just the existing users of From. See the comments in
5352 // the ReplaceAllUsesWith above.
5353 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5354 RAUWUpdateListener Listener(UpdateListener, UI, UE);
5355 while (UI != UE) {
5356 SDNode *User = *UI;
5357
5358 // This node is about to morph, remove its old self from the CSE maps.
5359 RemoveNodeFromCSEMaps(User);
5360
5361 // A user can appear in a use list multiple times, and when this
5362 // happens the uses are usually next to each other in the list.
5363 // To help reduce the number of CSE recomputations, process all
5364 // the uses of this user that we can find this way.
5365 do {
5366 SDUse &Use = UI.getUse();
5367 const SDValue &ToOp = To[Use.getResNo()];
5368 ++UI;
5369 Use.set(ToOp);
5370 } while (UI != UE && *UI == User);
5371
5372 // Now that we have modified User, add it back to the CSE maps. If it
5373 // already exists there, recursively merge the results together.
5374 AddModifiedNodeToCSEMaps(User, &Listener);
5375 }
5376 }
5377
5378 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5379 /// uses of other values produced by From.getNode() alone. The Deleted
5380 /// vector is handled the same way as for ReplaceAllUsesWith.
ReplaceAllUsesOfValueWith(SDValue From,SDValue To,DAGUpdateListener * UpdateListener)5381 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5382 DAGUpdateListener *UpdateListener){
5383 // Handle the really simple, really trivial case efficiently.
5384 if (From == To) return;
5385
5386 // Handle the simple, trivial, case efficiently.
5387 if (From.getNode()->getNumValues() == 1) {
5388 ReplaceAllUsesWith(From, To, UpdateListener);
5389 return;
5390 }
5391
5392 // Iterate over just the existing users of From. See the comments in
5393 // the ReplaceAllUsesWith above.
5394 SDNode::use_iterator UI = From.getNode()->use_begin(),
5395 UE = From.getNode()->use_end();
5396 RAUWUpdateListener Listener(UpdateListener, UI, UE);
5397 while (UI != UE) {
5398 SDNode *User = *UI;
5399 bool UserRemovedFromCSEMaps = false;
5400
5401 // A user can appear in a use list multiple times, and when this
5402 // happens the uses are usually next to each other in the list.
5403 // To help reduce the number of CSE recomputations, process all
5404 // the uses of this user that we can find this way.
5405 do {
5406 SDUse &Use = UI.getUse();
5407
5408 // Skip uses of different values from the same node.
5409 if (Use.getResNo() != From.getResNo()) {
5410 ++UI;
5411 continue;
5412 }
5413
5414 // If this node hasn't been modified yet, it's still in the CSE maps,
5415 // so remove its old self from the CSE maps.
5416 if (!UserRemovedFromCSEMaps) {
5417 RemoveNodeFromCSEMaps(User);
5418 UserRemovedFromCSEMaps = true;
5419 }
5420
5421 ++UI;
5422 Use.set(To);
5423 } while (UI != UE && *UI == User);
5424
5425 // We are iterating over all uses of the From node, so if a use
5426 // doesn't use the specific value, no changes are made.
5427 if (!UserRemovedFromCSEMaps)
5428 continue;
5429
5430 // Now that we have modified User, add it back to the CSE maps. If it
5431 // already exists there, recursively merge the results together.
5432 AddModifiedNodeToCSEMaps(User, &Listener);
5433 }
5434 }
5435
5436 namespace {
5437 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5438 /// to record information about a use.
5439 struct UseMemo {
5440 SDNode *User;
5441 unsigned Index;
5442 SDUse *Use;
5443 };
5444
5445 /// operator< - Sort Memos by User.
operator <(const UseMemo & L,const UseMemo & R)5446 bool operator<(const UseMemo &L, const UseMemo &R) {
5447 return (intptr_t)L.User < (intptr_t)R.User;
5448 }
5449 }
5450
5451 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5452 /// uses of other values produced by From.getNode() alone. The same value
5453 /// may appear in both the From and To list. The Deleted vector is
5454 /// handled the same way as for ReplaceAllUsesWith.
ReplaceAllUsesOfValuesWith(const SDValue * From,const SDValue * To,unsigned Num,DAGUpdateListener * UpdateListener)5455 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5456 const SDValue *To,
5457 unsigned Num,
5458 DAGUpdateListener *UpdateListener){
5459 // Handle the simple, trivial case efficiently.
5460 if (Num == 1)
5461 return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5462
5463 // Read up all the uses and make records of them. This helps
5464 // processing new uses that are introduced during the
5465 // replacement process.
5466 SmallVector<UseMemo, 4> Uses;
5467 for (unsigned i = 0; i != Num; ++i) {
5468 unsigned FromResNo = From[i].getResNo();
5469 SDNode *FromNode = From[i].getNode();
5470 for (SDNode::use_iterator UI = FromNode->use_begin(),
5471 E = FromNode->use_end(); UI != E; ++UI) {
5472 SDUse &Use = UI.getUse();
5473 if (Use.getResNo() == FromResNo) {
5474 UseMemo Memo = { *UI, i, &Use };
5475 Uses.push_back(Memo);
5476 }
5477 }
5478 }
5479
5480 // Sort the uses, so that all the uses from a given User are together.
5481 std::sort(Uses.begin(), Uses.end());
5482
5483 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5484 UseIndex != UseIndexEnd; ) {
5485 // We know that this user uses some value of From. If it is the right
5486 // value, update it.
5487 SDNode *User = Uses[UseIndex].User;
5488
5489 // This node is about to morph, remove its old self from the CSE maps.
5490 RemoveNodeFromCSEMaps(User);
5491
5492 // The Uses array is sorted, so all the uses for a given User
5493 // are next to each other in the list.
5494 // To help reduce the number of CSE recomputations, process all
5495 // the uses of this user that we can find this way.
5496 do {
5497 unsigned i = Uses[UseIndex].Index;
5498 SDUse &Use = *Uses[UseIndex].Use;
5499 ++UseIndex;
5500
5501 Use.set(To[i]);
5502 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5503
5504 // Now that we have modified User, add it back to the CSE maps. If it
5505 // already exists there, recursively merge the results together.
5506 AddModifiedNodeToCSEMaps(User, UpdateListener);
5507 }
5508 }
5509
5510 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5511 /// based on their topological order. It returns the maximum id and a vector
5512 /// of the SDNodes* in assigned order by reference.
AssignTopologicalOrder()5513 unsigned SelectionDAG::AssignTopologicalOrder() {
5514
5515 unsigned DAGSize = 0;
5516
5517 // SortedPos tracks the progress of the algorithm. Nodes before it are
5518 // sorted, nodes after it are unsorted. When the algorithm completes
5519 // it is at the end of the list.
5520 allnodes_iterator SortedPos = allnodes_begin();
5521
5522 // Visit all the nodes. Move nodes with no operands to the front of
5523 // the list immediately. Annotate nodes that do have operands with their
5524 // operand count. Before we do this, the Node Id fields of the nodes
5525 // may contain arbitrary values. After, the Node Id fields for nodes
5526 // before SortedPos will contain the topological sort index, and the
5527 // Node Id fields for nodes At SortedPos and after will contain the
5528 // count of outstanding operands.
5529 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5530 SDNode *N = I++;
5531 checkForCycles(N);
5532 unsigned Degree = N->getNumOperands();
5533 if (Degree == 0) {
5534 // A node with no uses, add it to the result array immediately.
5535 N->setNodeId(DAGSize++);
5536 allnodes_iterator Q = N;
5537 if (Q != SortedPos)
5538 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5539 assert(SortedPos != AllNodes.end() && "Overran node list");
5540 ++SortedPos;
5541 } else {
5542 // Temporarily use the Node Id as scratch space for the degree count.
5543 N->setNodeId(Degree);
5544 }
5545 }
5546
5547 // Visit all the nodes. As we iterate, moves nodes into sorted order,
5548 // such that by the time the end is reached all nodes will be sorted.
5549 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5550 SDNode *N = I;
5551 checkForCycles(N);
5552 // N is in sorted position, so all its uses have one less operand
5553 // that needs to be sorted.
5554 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5555 UI != UE; ++UI) {
5556 SDNode *P = *UI;
5557 unsigned Degree = P->getNodeId();
5558 assert(Degree != 0 && "Invalid node degree");
5559 --Degree;
5560 if (Degree == 0) {
5561 // All of P's operands are sorted, so P may sorted now.
5562 P->setNodeId(DAGSize++);
5563 if (P != SortedPos)
5564 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5565 assert(SortedPos != AllNodes.end() && "Overran node list");
5566 ++SortedPos;
5567 } else {
5568 // Update P's outstanding operand count.
5569 P->setNodeId(Degree);
5570 }
5571 }
5572 if (I == SortedPos) {
5573 #ifndef NDEBUG
5574 SDNode *S = ++I;
5575 dbgs() << "Overran sorted position:\n";
5576 S->dumprFull();
5577 #endif
5578 llvm_unreachable(0);
5579 }
5580 }
5581
5582 assert(SortedPos == AllNodes.end() &&
5583 "Topological sort incomplete!");
5584 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5585 "First node in topological sort is not the entry token!");
5586 assert(AllNodes.front().getNodeId() == 0 &&
5587 "First node in topological sort has non-zero id!");
5588 assert(AllNodes.front().getNumOperands() == 0 &&
5589 "First node in topological sort has operands!");
5590 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5591 "Last node in topologic sort has unexpected id!");
5592 assert(AllNodes.back().use_empty() &&
5593 "Last node in topologic sort has users!");
5594 assert(DAGSize == allnodes_size() && "Node count mismatch!");
5595 return DAGSize;
5596 }
5597
5598 /// AssignOrdering - Assign an order to the SDNode.
AssignOrdering(const SDNode * SD,unsigned Order)5599 void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5600 assert(SD && "Trying to assign an order to a null node!");
5601 Ordering->add(SD, Order);
5602 }
5603
5604 /// GetOrdering - Get the order for the SDNode.
GetOrdering(const SDNode * SD) const5605 unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5606 assert(SD && "Trying to get the order of a null node!");
5607 return Ordering->getOrder(SD);
5608 }
5609
5610 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5611 /// value is produced by SD.
AddDbgValue(SDDbgValue * DB,SDNode * SD,bool isParameter)5612 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5613 DbgInfo->add(DB, SD, isParameter);
5614 if (SD)
5615 SD->setHasDebugValue(true);
5616 }
5617
5618 /// TransferDbgValues - Transfer SDDbgValues.
TransferDbgValues(SDValue From,SDValue To)5619 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5620 if (From == To || !From.getNode()->getHasDebugValue())
5621 return;
5622 SDNode *FromNode = From.getNode();
5623 SDNode *ToNode = To.getNode();
5624 ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
5625 SmallVector<SDDbgValue *, 2> ClonedDVs;
5626 for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
5627 I != E; ++I) {
5628 SDDbgValue *Dbg = *I;
5629 if (Dbg->getKind() == SDDbgValue::SDNODE) {
5630 SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
5631 Dbg->getOffset(), Dbg->getDebugLoc(),
5632 Dbg->getOrder());
5633 ClonedDVs.push_back(Clone);
5634 }
5635 }
5636 for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
5637 E = ClonedDVs.end(); I != E; ++I)
5638 AddDbgValue(*I, ToNode, false);
5639 }
5640
5641 //===----------------------------------------------------------------------===//
5642 // SDNode Class
5643 //===----------------------------------------------------------------------===//
5644
~HandleSDNode()5645 HandleSDNode::~HandleSDNode() {
5646 DropOperands();
5647 }
5648
GlobalAddressSDNode(unsigned Opc,DebugLoc DL,const GlobalValue * GA,EVT VT,int64_t o,unsigned char TF)5649 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5650 const GlobalValue *GA,
5651 EVT VT, int64_t o, unsigned char TF)
5652 : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5653 TheGlobal = GA;
5654 }
5655
MemSDNode(unsigned Opc,DebugLoc dl,SDVTList VTs,EVT memvt,MachineMemOperand * mmo)5656 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5657 MachineMemOperand *mmo)
5658 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5659 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5660 MMO->isNonTemporal());
5661 assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5662 assert(isNonTemporal() == MMO->isNonTemporal() &&
5663 "Non-temporal encoding error!");
5664 assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5665 }
5666
MemSDNode(unsigned Opc,DebugLoc dl,SDVTList VTs,const SDValue * Ops,unsigned NumOps,EVT memvt,MachineMemOperand * mmo)5667 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5668 const SDValue *Ops, unsigned NumOps, EVT memvt,
5669 MachineMemOperand *mmo)
5670 : SDNode(Opc, dl, VTs, Ops, NumOps),
5671 MemoryVT(memvt), MMO(mmo) {
5672 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5673 MMO->isNonTemporal());
5674 assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5675 assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5676 }
5677
5678 /// Profile - Gather unique data for the node.
5679 ///
Profile(FoldingSetNodeID & ID) const5680 void SDNode::Profile(FoldingSetNodeID &ID) const {
5681 AddNodeIDNode(ID, this);
5682 }
5683
5684 namespace {
5685 struct EVTArray {
5686 std::vector<EVT> VTs;
5687
EVTArray__anon80837fde0311::EVTArray5688 EVTArray() {
5689 VTs.reserve(MVT::LAST_VALUETYPE);
5690 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5691 VTs.push_back(MVT((MVT::SimpleValueType)i));
5692 }
5693 };
5694 }
5695
5696 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5697 static ManagedStatic<EVTArray> SimpleVTArray;
5698 static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5699
5700 /// getValueTypeList - Return a pointer to the specified value type.
5701 ///
getValueTypeList(EVT VT)5702 const EVT *SDNode::getValueTypeList(EVT VT) {
5703 if (VT.isExtended()) {
5704 sys::SmartScopedLock<true> Lock(*VTMutex);
5705 return &(*EVTs->insert(VT).first);
5706 } else {
5707 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5708 "Value type out of range!");
5709 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5710 }
5711 }
5712
5713 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5714 /// indicated value. This method ignores uses of other values defined by this
5715 /// operation.
hasNUsesOfValue(unsigned NUses,unsigned Value) const5716 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5717 assert(Value < getNumValues() && "Bad value!");
5718
5719 // TODO: Only iterate over uses of a given value of the node
5720 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5721 if (UI.getUse().getResNo() == Value) {
5722 if (NUses == 0)
5723 return false;
5724 --NUses;
5725 }
5726 }
5727
5728 // Found exactly the right number of uses?
5729 return NUses == 0;
5730 }
5731
5732
5733 /// hasAnyUseOfValue - Return true if there are any use of the indicated
5734 /// value. This method ignores uses of other values defined by this operation.
hasAnyUseOfValue(unsigned Value) const5735 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5736 assert(Value < getNumValues() && "Bad value!");
5737
5738 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5739 if (UI.getUse().getResNo() == Value)
5740 return true;
5741
5742 return false;
5743 }
5744
5745
5746 /// isOnlyUserOf - Return true if this node is the only use of N.
5747 ///
isOnlyUserOf(SDNode * N) const5748 bool SDNode::isOnlyUserOf(SDNode *N) const {
5749 bool Seen = false;
5750 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5751 SDNode *User = *I;
5752 if (User == this)
5753 Seen = true;
5754 else
5755 return false;
5756 }
5757
5758 return Seen;
5759 }
5760
5761 /// isOperand - Return true if this node is an operand of N.
5762 ///
isOperandOf(SDNode * N) const5763 bool SDValue::isOperandOf(SDNode *N) const {
5764 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5765 if (*this == N->getOperand(i))
5766 return true;
5767 return false;
5768 }
5769
isOperandOf(SDNode * N) const5770 bool SDNode::isOperandOf(SDNode *N) const {
5771 for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5772 if (this == N->OperandList[i].getNode())
5773 return true;
5774 return false;
5775 }
5776
5777 /// reachesChainWithoutSideEffects - Return true if this operand (which must
5778 /// be a chain) reaches the specified operand without crossing any
5779 /// side-effecting instructions on any chain path. In practice, this looks
5780 /// through token factors and non-volatile loads. In order to remain efficient,
5781 /// this only looks a couple of nodes in, it does not do an exhaustive search.
reachesChainWithoutSideEffects(SDValue Dest,unsigned Depth) const5782 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5783 unsigned Depth) const {
5784 if (*this == Dest) return true;
5785
5786 // Don't search too deeply, we just want to be able to see through
5787 // TokenFactor's etc.
5788 if (Depth == 0) return false;
5789
5790 // If this is a token factor, all inputs to the TF happen in parallel. If any
5791 // of the operands of the TF does not reach dest, then we cannot do the xform.
5792 if (getOpcode() == ISD::TokenFactor) {
5793 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5794 if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5795 return false;
5796 return true;
5797 }
5798
5799 // Loads don't have side effects, look through them.
5800 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5801 if (!Ld->isVolatile())
5802 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5803 }
5804 return false;
5805 }
5806
5807 /// hasPredecessor - Return true if N is a predecessor of this node.
5808 /// N is either an operand of this node, or can be reached by recursively
5809 /// traversing up the operands.
5810 /// NOTE: This is an expensive method. Use it carefully.
hasPredecessor(const SDNode * N) const5811 bool SDNode::hasPredecessor(const SDNode *N) const {
5812 SmallPtrSet<const SDNode *, 32> Visited;
5813 SmallVector<const SDNode *, 16> Worklist;
5814 return hasPredecessorHelper(N, Visited, Worklist);
5815 }
5816
hasPredecessorHelper(const SDNode * N,SmallPtrSet<const SDNode *,32> & Visited,SmallVector<const SDNode *,16> & Worklist) const5817 bool SDNode::hasPredecessorHelper(const SDNode *N,
5818 SmallPtrSet<const SDNode *, 32> &Visited,
5819 SmallVector<const SDNode *, 16> &Worklist) const {
5820 if (Visited.empty()) {
5821 Worklist.push_back(this);
5822 } else {
5823 // Take a look in the visited set. If we've already encountered this node
5824 // we needn't search further.
5825 if (Visited.count(N))
5826 return true;
5827 }
5828
5829 // Haven't visited N yet. Continue the search.
5830 while (!Worklist.empty()) {
5831 const SDNode *M = Worklist.pop_back_val();
5832 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
5833 SDNode *Op = M->getOperand(i).getNode();
5834 if (Visited.insert(Op))
5835 Worklist.push_back(Op);
5836 if (Op == N)
5837 return true;
5838 }
5839 }
5840
5841 return false;
5842 }
5843
getConstantOperandVal(unsigned Num) const5844 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5845 assert(Num < NumOperands && "Invalid child # of SDNode!");
5846 return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5847 }
5848
getOperationName(const SelectionDAG * G) const5849 std::string SDNode::getOperationName(const SelectionDAG *G) const {
5850 switch (getOpcode()) {
5851 default:
5852 if (getOpcode() < ISD::BUILTIN_OP_END)
5853 return "<<Unknown DAG Node>>";
5854 if (isMachineOpcode()) {
5855 if (G)
5856 if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5857 if (getMachineOpcode() < TII->getNumOpcodes())
5858 return TII->get(getMachineOpcode()).getName();
5859 return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5860 }
5861 if (G) {
5862 const TargetLowering &TLI = G->getTargetLoweringInfo();
5863 const char *Name = TLI.getTargetNodeName(getOpcode());
5864 if (Name) return Name;
5865 return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5866 }
5867 return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5868
5869 #ifndef NDEBUG
5870 case ISD::DELETED_NODE:
5871 return "<<Deleted Node!>>";
5872 #endif
5873 case ISD::PREFETCH: return "Prefetch";
5874 case ISD::MEMBARRIER: return "MemBarrier";
5875 case ISD::ATOMIC_FENCE: return "AtomicFence";
5876 case ISD::ATOMIC_CMP_SWAP: return "AtomicCmpSwap";
5877 case ISD::ATOMIC_SWAP: return "AtomicSwap";
5878 case ISD::ATOMIC_LOAD_ADD: return "AtomicLoadAdd";
5879 case ISD::ATOMIC_LOAD_SUB: return "AtomicLoadSub";
5880 case ISD::ATOMIC_LOAD_AND: return "AtomicLoadAnd";
5881 case ISD::ATOMIC_LOAD_OR: return "AtomicLoadOr";
5882 case ISD::ATOMIC_LOAD_XOR: return "AtomicLoadXor";
5883 case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
5884 case ISD::ATOMIC_LOAD_MIN: return "AtomicLoadMin";
5885 case ISD::ATOMIC_LOAD_MAX: return "AtomicLoadMax";
5886 case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
5887 case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
5888 case ISD::ATOMIC_LOAD: return "AtomicLoad";
5889 case ISD::ATOMIC_STORE: return "AtomicStore";
5890 case ISD::PCMARKER: return "PCMarker";
5891 case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5892 case ISD::SRCVALUE: return "SrcValue";
5893 case ISD::MDNODE_SDNODE: return "MDNode";
5894 case ISD::EntryToken: return "EntryToken";
5895 case ISD::TokenFactor: return "TokenFactor";
5896 case ISD::AssertSext: return "AssertSext";
5897 case ISD::AssertZext: return "AssertZext";
5898
5899 case ISD::BasicBlock: return "BasicBlock";
5900 case ISD::VALUETYPE: return "ValueType";
5901 case ISD::Register: return "Register";
5902
5903 case ISD::Constant: return "Constant";
5904 case ISD::ConstantFP: return "ConstantFP";
5905 case ISD::GlobalAddress: return "GlobalAddress";
5906 case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5907 case ISD::FrameIndex: return "FrameIndex";
5908 case ISD::JumpTable: return "JumpTable";
5909 case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5910 case ISD::RETURNADDR: return "RETURNADDR";
5911 case ISD::FRAMEADDR: return "FRAMEADDR";
5912 case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5913 case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5914 case ISD::LSDAADDR: return "LSDAADDR";
5915 case ISD::EHSELECTION: return "EHSELECTION";
5916 case ISD::EH_RETURN: return "EH_RETURN";
5917 case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5918 case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5919 case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5920 case ISD::ConstantPool: return "ConstantPool";
5921 case ISD::ExternalSymbol: return "ExternalSymbol";
5922 case ISD::BlockAddress: return "BlockAddress";
5923 case ISD::INTRINSIC_WO_CHAIN:
5924 case ISD::INTRINSIC_VOID:
5925 case ISD::INTRINSIC_W_CHAIN: {
5926 unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5927 unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5928 if (IID < Intrinsic::num_intrinsics)
5929 return Intrinsic::getName((Intrinsic::ID)IID);
5930 else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5931 return TII->getName(IID);
5932 llvm_unreachable("Invalid intrinsic ID");
5933 }
5934
5935 case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
5936 case ISD::TargetConstant: return "TargetConstant";
5937 case ISD::TargetConstantFP:return "TargetConstantFP";
5938 case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5939 case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5940 case ISD::TargetFrameIndex: return "TargetFrameIndex";
5941 case ISD::TargetJumpTable: return "TargetJumpTable";
5942 case ISD::TargetConstantPool: return "TargetConstantPool";
5943 case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5944 case ISD::TargetBlockAddress: return "TargetBlockAddress";
5945
5946 case ISD::CopyToReg: return "CopyToReg";
5947 case ISD::CopyFromReg: return "CopyFromReg";
5948 case ISD::UNDEF: return "undef";
5949 case ISD::MERGE_VALUES: return "merge_values";
5950 case ISD::INLINEASM: return "inlineasm";
5951 case ISD::EH_LABEL: return "eh_label";
5952 case ISD::HANDLENODE: return "handlenode";
5953
5954 // Unary operators
5955 case ISD::FABS: return "fabs";
5956 case ISD::FNEG: return "fneg";
5957 case ISD::FSQRT: return "fsqrt";
5958 case ISD::FSIN: return "fsin";
5959 case ISD::FCOS: return "fcos";
5960 case ISD::FTRUNC: return "ftrunc";
5961 case ISD::FFLOOR: return "ffloor";
5962 case ISD::FCEIL: return "fceil";
5963 case ISD::FRINT: return "frint";
5964 case ISD::FNEARBYINT: return "fnearbyint";
5965 case ISD::FEXP: return "fexp";
5966 case ISD::FEXP2: return "fexp2";
5967 case ISD::FLOG: return "flog";
5968 case ISD::FLOG2: return "flog2";
5969 case ISD::FLOG10: return "flog10";
5970
5971 // Binary operators
5972 case ISD::ADD: return "add";
5973 case ISD::SUB: return "sub";
5974 case ISD::MUL: return "mul";
5975 case ISD::MULHU: return "mulhu";
5976 case ISD::MULHS: return "mulhs";
5977 case ISD::SDIV: return "sdiv";
5978 case ISD::UDIV: return "udiv";
5979 case ISD::SREM: return "srem";
5980 case ISD::UREM: return "urem";
5981 case ISD::SMUL_LOHI: return "smul_lohi";
5982 case ISD::UMUL_LOHI: return "umul_lohi";
5983 case ISD::SDIVREM: return "sdivrem";
5984 case ISD::UDIVREM: return "udivrem";
5985 case ISD::AND: return "and";
5986 case ISD::OR: return "or";
5987 case ISD::XOR: return "xor";
5988 case ISD::SHL: return "shl";
5989 case ISD::SRA: return "sra";
5990 case ISD::SRL: return "srl";
5991 case ISD::ROTL: return "rotl";
5992 case ISD::ROTR: return "rotr";
5993 case ISD::FADD: return "fadd";
5994 case ISD::FSUB: return "fsub";
5995 case ISD::FMUL: return "fmul";
5996 case ISD::FDIV: return "fdiv";
5997 case ISD::FMA: return "fma";
5998 case ISD::FREM: return "frem";
5999 case ISD::FCOPYSIGN: return "fcopysign";
6000 case ISD::FGETSIGN: return "fgetsign";
6001 case ISD::FPOW: return "fpow";
6002
6003 case ISD::FPOWI: return "fpowi";
6004 case ISD::SETCC: return "setcc";
6005 case ISD::SELECT: return "select";
6006 case ISD::VSELECT: return "vselect";
6007 case ISD::SELECT_CC: return "select_cc";
6008 case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
6009 case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
6010 case ISD::CONCAT_VECTORS: return "concat_vectors";
6011 case ISD::INSERT_SUBVECTOR: return "insert_subvector";
6012 case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
6013 case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
6014 case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
6015 case ISD::CARRY_FALSE: return "carry_false";
6016 case ISD::ADDC: return "addc";
6017 case ISD::ADDE: return "adde";
6018 case ISD::SADDO: return "saddo";
6019 case ISD::UADDO: return "uaddo";
6020 case ISD::SSUBO: return "ssubo";
6021 case ISD::USUBO: return "usubo";
6022 case ISD::SMULO: return "smulo";
6023 case ISD::UMULO: return "umulo";
6024 case ISD::SUBC: return "subc";
6025 case ISD::SUBE: return "sube";
6026 case ISD::SHL_PARTS: return "shl_parts";
6027 case ISD::SRA_PARTS: return "sra_parts";
6028 case ISD::SRL_PARTS: return "srl_parts";
6029
6030 // Conversion operators.
6031 case ISD::SIGN_EXTEND: return "sign_extend";
6032 case ISD::ZERO_EXTEND: return "zero_extend";
6033 case ISD::ANY_EXTEND: return "any_extend";
6034 case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
6035 case ISD::TRUNCATE: return "truncate";
6036 case ISD::FP_ROUND: return "fp_round";
6037 case ISD::FLT_ROUNDS_: return "flt_rounds";
6038 case ISD::FP_ROUND_INREG: return "fp_round_inreg";
6039 case ISD::FP_EXTEND: return "fp_extend";
6040
6041 case ISD::SINT_TO_FP: return "sint_to_fp";
6042 case ISD::UINT_TO_FP: return "uint_to_fp";
6043 case ISD::FP_TO_SINT: return "fp_to_sint";
6044 case ISD::FP_TO_UINT: return "fp_to_uint";
6045 case ISD::BITCAST: return "bitcast";
6046 case ISD::FP16_TO_FP32: return "fp16_to_fp32";
6047 case ISD::FP32_TO_FP16: return "fp32_to_fp16";
6048
6049 case ISD::CONVERT_RNDSAT: {
6050 switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
6051 default: llvm_unreachable("Unknown cvt code!");
6052 case ISD::CVT_FF: return "cvt_ff";
6053 case ISD::CVT_FS: return "cvt_fs";
6054 case ISD::CVT_FU: return "cvt_fu";
6055 case ISD::CVT_SF: return "cvt_sf";
6056 case ISD::CVT_UF: return "cvt_uf";
6057 case ISD::CVT_SS: return "cvt_ss";
6058 case ISD::CVT_SU: return "cvt_su";
6059 case ISD::CVT_US: return "cvt_us";
6060 case ISD::CVT_UU: return "cvt_uu";
6061 }
6062 }
6063
6064 // Control flow instructions
6065 case ISD::BR: return "br";
6066 case ISD::BRIND: return "brind";
6067 case ISD::BR_JT: return "br_jt";
6068 case ISD::BRCOND: return "brcond";
6069 case ISD::BR_CC: return "br_cc";
6070 case ISD::CALLSEQ_START: return "callseq_start";
6071 case ISD::CALLSEQ_END: return "callseq_end";
6072
6073 // Other operators
6074 case ISD::LOAD: return "load";
6075 case ISD::STORE: return "store";
6076 case ISD::VAARG: return "vaarg";
6077 case ISD::VACOPY: return "vacopy";
6078 case ISD::VAEND: return "vaend";
6079 case ISD::VASTART: return "vastart";
6080 case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
6081 case ISD::EXTRACT_ELEMENT: return "extract_element";
6082 case ISD::BUILD_PAIR: return "build_pair";
6083 case ISD::STACKSAVE: return "stacksave";
6084 case ISD::STACKRESTORE: return "stackrestore";
6085 case ISD::TRAP: return "trap";
6086
6087 // Bit manipulation
6088 case ISD::BSWAP: return "bswap";
6089 case ISD::CTPOP: return "ctpop";
6090 case ISD::CTTZ: return "cttz";
6091 case ISD::CTLZ: return "ctlz";
6092
6093 // Trampolines
6094 case ISD::INIT_TRAMPOLINE: return "init_trampoline";
6095 case ISD::ADJUST_TRAMPOLINE: return "adjust_trampoline";
6096
6097 case ISD::CONDCODE:
6098 switch (cast<CondCodeSDNode>(this)->get()) {
6099 default: llvm_unreachable("Unknown setcc condition!");
6100 case ISD::SETOEQ: return "setoeq";
6101 case ISD::SETOGT: return "setogt";
6102 case ISD::SETOGE: return "setoge";
6103 case ISD::SETOLT: return "setolt";
6104 case ISD::SETOLE: return "setole";
6105 case ISD::SETONE: return "setone";
6106
6107 case ISD::SETO: return "seto";
6108 case ISD::SETUO: return "setuo";
6109 case ISD::SETUEQ: return "setue";
6110 case ISD::SETUGT: return "setugt";
6111 case ISD::SETUGE: return "setuge";
6112 case ISD::SETULT: return "setult";
6113 case ISD::SETULE: return "setule";
6114 case ISD::SETUNE: return "setune";
6115
6116 case ISD::SETEQ: return "seteq";
6117 case ISD::SETGT: return "setgt";
6118 case ISD::SETGE: return "setge";
6119 case ISD::SETLT: return "setlt";
6120 case ISD::SETLE: return "setle";
6121 case ISD::SETNE: return "setne";
6122 }
6123 }
6124 }
6125
getIndexedModeName(ISD::MemIndexedMode AM)6126 const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
6127 switch (AM) {
6128 default:
6129 return "";
6130 case ISD::PRE_INC:
6131 return "<pre-inc>";
6132 case ISD::PRE_DEC:
6133 return "<pre-dec>";
6134 case ISD::POST_INC:
6135 return "<post-inc>";
6136 case ISD::POST_DEC:
6137 return "<post-dec>";
6138 }
6139 }
6140
getArgFlagsString()6141 std::string ISD::ArgFlagsTy::getArgFlagsString() {
6142 std::string S = "< ";
6143
6144 if (isZExt())
6145 S += "zext ";
6146 if (isSExt())
6147 S += "sext ";
6148 if (isInReg())
6149 S += "inreg ";
6150 if (isSRet())
6151 S += "sret ";
6152 if (isByVal())
6153 S += "byval ";
6154 if (isNest())
6155 S += "nest ";
6156 if (getByValAlign())
6157 S += "byval-align:" + utostr(getByValAlign()) + " ";
6158 if (getOrigAlign())
6159 S += "orig-align:" + utostr(getOrigAlign()) + " ";
6160 if (getByValSize())
6161 S += "byval-size:" + utostr(getByValSize()) + " ";
6162 return S + ">";
6163 }
6164
dump() const6165 void SDNode::dump() const { dump(0); }
dump(const SelectionDAG * G) const6166 void SDNode::dump(const SelectionDAG *G) const {
6167 print(dbgs(), G);
6168 dbgs() << '\n';
6169 }
6170
print_types(raw_ostream & OS,const SelectionDAG * G) const6171 void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
6172 OS << (void*)this << ": ";
6173
6174 for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
6175 if (i) OS << ",";
6176 if (getValueType(i) == MVT::Other)
6177 OS << "ch";
6178 else
6179 OS << getValueType(i).getEVTString();
6180 }
6181 OS << " = " << getOperationName(G);
6182 }
6183
print_details(raw_ostream & OS,const SelectionDAG * G) const6184 void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
6185 if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
6186 if (!MN->memoperands_empty()) {
6187 OS << "<";
6188 OS << "Mem:";
6189 for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
6190 e = MN->memoperands_end(); i != e; ++i) {
6191 OS << **i;
6192 if (llvm::next(i) != e)
6193 OS << " ";
6194 }
6195 OS << ">";
6196 }
6197 } else if (const ShuffleVectorSDNode *SVN =
6198 dyn_cast<ShuffleVectorSDNode>(this)) {
6199 OS << "<";
6200 for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
6201 int Idx = SVN->getMaskElt(i);
6202 if (i) OS << ",";
6203 if (Idx < 0)
6204 OS << "u";
6205 else
6206 OS << Idx;
6207 }
6208 OS << ">";
6209 } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
6210 OS << '<' << CSDN->getAPIntValue() << '>';
6211 } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
6212 if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
6213 OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
6214 else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
6215 OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
6216 else {
6217 OS << "<APFloat(";
6218 CSDN->getValueAPF().bitcastToAPInt().dump();
6219 OS << ")>";
6220 }
6221 } else if (const GlobalAddressSDNode *GADN =
6222 dyn_cast<GlobalAddressSDNode>(this)) {
6223 int64_t offset = GADN->getOffset();
6224 OS << '<';
6225 WriteAsOperand(OS, GADN->getGlobal());
6226 OS << '>';
6227 if (offset > 0)
6228 OS << " + " << offset;
6229 else
6230 OS << " " << offset;
6231 if (unsigned int TF = GADN->getTargetFlags())
6232 OS << " [TF=" << TF << ']';
6233 } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
6234 OS << "<" << FIDN->getIndex() << ">";
6235 } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
6236 OS << "<" << JTDN->getIndex() << ">";
6237 if (unsigned int TF = JTDN->getTargetFlags())
6238 OS << " [TF=" << TF << ']';
6239 } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
6240 int offset = CP->getOffset();
6241 if (CP->isMachineConstantPoolEntry())
6242 OS << "<" << *CP->getMachineCPVal() << ">";
6243 else
6244 OS << "<" << *CP->getConstVal() << ">";
6245 if (offset > 0)
6246 OS << " + " << offset;
6247 else
6248 OS << " " << offset;
6249 if (unsigned int TF = CP->getTargetFlags())
6250 OS << " [TF=" << TF << ']';
6251 } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
6252 OS << "<";
6253 const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
6254 if (LBB)
6255 OS << LBB->getName() << " ";
6256 OS << (const void*)BBDN->getBasicBlock() << ">";
6257 } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
6258 OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
6259 } else if (const ExternalSymbolSDNode *ES =
6260 dyn_cast<ExternalSymbolSDNode>(this)) {
6261 OS << "'" << ES->getSymbol() << "'";
6262 if (unsigned int TF = ES->getTargetFlags())
6263 OS << " [TF=" << TF << ']';
6264 } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
6265 if (M->getValue())
6266 OS << "<" << M->getValue() << ">";
6267 else
6268 OS << "<null>";
6269 } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
6270 if (MD->getMD())
6271 OS << "<" << MD->getMD() << ">";
6272 else
6273 OS << "<null>";
6274 } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6275 OS << ":" << N->getVT().getEVTString();
6276 }
6277 else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6278 OS << "<" << *LD->getMemOperand();
6279
6280 bool doExt = true;
6281 switch (LD->getExtensionType()) {
6282 default: doExt = false; break;
6283 case ISD::EXTLOAD: OS << ", anyext"; break;
6284 case ISD::SEXTLOAD: OS << ", sext"; break;
6285 case ISD::ZEXTLOAD: OS << ", zext"; break;
6286 }
6287 if (doExt)
6288 OS << " from " << LD->getMemoryVT().getEVTString();
6289
6290 const char *AM = getIndexedModeName(LD->getAddressingMode());
6291 if (*AM)
6292 OS << ", " << AM;
6293
6294 OS << ">";
6295 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6296 OS << "<" << *ST->getMemOperand();
6297
6298 if (ST->isTruncatingStore())
6299 OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6300
6301 const char *AM = getIndexedModeName(ST->getAddressingMode());
6302 if (*AM)
6303 OS << ", " << AM;
6304
6305 OS << ">";
6306 } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6307 OS << "<" << *M->getMemOperand() << ">";
6308 } else if (const BlockAddressSDNode *BA =
6309 dyn_cast<BlockAddressSDNode>(this)) {
6310 OS << "<";
6311 WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6312 OS << ", ";
6313 WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6314 OS << ">";
6315 if (unsigned int TF = BA->getTargetFlags())
6316 OS << " [TF=" << TF << ']';
6317 }
6318
6319 if (G)
6320 if (unsigned Order = G->GetOrdering(this))
6321 OS << " [ORD=" << Order << ']';
6322
6323 if (getNodeId() != -1)
6324 OS << " [ID=" << getNodeId() << ']';
6325
6326 DebugLoc dl = getDebugLoc();
6327 if (G && !dl.isUnknown()) {
6328 DIScope
6329 Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6330 OS << " dbg:";
6331 // Omit the directory, since it's usually long and uninteresting.
6332 if (Scope.Verify())
6333 OS << Scope.getFilename();
6334 else
6335 OS << "<unknown>";
6336 OS << ':' << dl.getLine();
6337 if (dl.getCol() != 0)
6338 OS << ':' << dl.getCol();
6339 }
6340 }
6341
print(raw_ostream & OS,const SelectionDAG * G) const6342 void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6343 print_types(OS, G);
6344 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6345 if (i) OS << ", "; else OS << " ";
6346 OS << (void*)getOperand(i).getNode();
6347 if (unsigned RN = getOperand(i).getResNo())
6348 OS << ":" << RN;
6349 }
6350 print_details(OS, G);
6351 }
6352
printrWithDepthHelper(raw_ostream & OS,const SDNode * N,const SelectionDAG * G,unsigned depth,unsigned indent)6353 static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6354 const SelectionDAG *G, unsigned depth,
6355 unsigned indent) {
6356 if (depth == 0)
6357 return;
6358
6359 OS.indent(indent);
6360
6361 N->print(OS, G);
6362
6363 if (depth < 1)
6364 return;
6365
6366 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6367 // Don't follow chain operands.
6368 if (N->getOperand(i).getValueType() == MVT::Other)
6369 continue;
6370 OS << '\n';
6371 printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6372 }
6373 }
6374
printrWithDepth(raw_ostream & OS,const SelectionDAG * G,unsigned depth) const6375 void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6376 unsigned depth) const {
6377 printrWithDepthHelper(OS, this, G, depth, 0);
6378 }
6379
printrFull(raw_ostream & OS,const SelectionDAG * G) const6380 void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6381 // Don't print impossibly deep things.
6382 printrWithDepth(OS, G, 10);
6383 }
6384
dumprWithDepth(const SelectionDAG * G,unsigned depth) const6385 void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6386 printrWithDepth(dbgs(), G, depth);
6387 }
6388
dumprFull(const SelectionDAG * G) const6389 void SDNode::dumprFull(const SelectionDAG *G) const {
6390 // Don't print impossibly deep things.
6391 dumprWithDepth(G, 10);
6392 }
6393
DumpNodes(const SDNode * N,unsigned indent,const SelectionDAG * G)6394 static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6395 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6396 if (N->getOperand(i).getNode()->hasOneUse())
6397 DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6398 else
6399 dbgs() << "\n" << std::string(indent+2, ' ')
6400 << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6401
6402
6403 dbgs() << "\n";
6404 dbgs().indent(indent);
6405 N->dump(G);
6406 }
6407
UnrollVectorOp(SDNode * N,unsigned ResNE)6408 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6409 assert(N->getNumValues() == 1 &&
6410 "Can't unroll a vector with multiple results!");
6411
6412 EVT VT = N->getValueType(0);
6413 unsigned NE = VT.getVectorNumElements();
6414 EVT EltVT = VT.getVectorElementType();
6415 DebugLoc dl = N->getDebugLoc();
6416
6417 SmallVector<SDValue, 8> Scalars;
6418 SmallVector<SDValue, 4> Operands(N->getNumOperands());
6419
6420 // If ResNE is 0, fully unroll the vector op.
6421 if (ResNE == 0)
6422 ResNE = NE;
6423 else if (NE > ResNE)
6424 NE = ResNE;
6425
6426 unsigned i;
6427 for (i= 0; i != NE; ++i) {
6428 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6429 SDValue Operand = N->getOperand(j);
6430 EVT OperandVT = Operand.getValueType();
6431 if (OperandVT.isVector()) {
6432 // A vector operand; extract a single element.
6433 EVT OperandEltVT = OperandVT.getVectorElementType();
6434 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6435 OperandEltVT,
6436 Operand,
6437 getConstant(i, TLI.getPointerTy()));
6438 } else {
6439 // A scalar operand; just use it as is.
6440 Operands[j] = Operand;
6441 }
6442 }
6443
6444 switch (N->getOpcode()) {
6445 default:
6446 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6447 &Operands[0], Operands.size()));
6448 break;
6449 case ISD::VSELECT:
6450 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT,
6451 &Operands[0], Operands.size()));
6452 break;
6453 case ISD::SHL:
6454 case ISD::SRA:
6455 case ISD::SRL:
6456 case ISD::ROTL:
6457 case ISD::ROTR:
6458 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6459 getShiftAmountOperand(Operands[0].getValueType(),
6460 Operands[1])));
6461 break;
6462 case ISD::SIGN_EXTEND_INREG:
6463 case ISD::FP_ROUND_INREG: {
6464 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6465 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6466 Operands[0],
6467 getValueType(ExtVT)));
6468 }
6469 }
6470 }
6471
6472 for (; i < ResNE; ++i)
6473 Scalars.push_back(getUNDEF(EltVT));
6474
6475 return getNode(ISD::BUILD_VECTOR, dl,
6476 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6477 &Scalars[0], Scalars.size());
6478 }
6479
6480
6481 /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6482 /// location that is 'Dist' units away from the location that the 'Base' load
6483 /// is loading from.
isConsecutiveLoad(LoadSDNode * LD,LoadSDNode * Base,unsigned Bytes,int Dist) const6484 bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6485 unsigned Bytes, int Dist) const {
6486 if (LD->getChain() != Base->getChain())
6487 return false;
6488 EVT VT = LD->getValueType(0);
6489 if (VT.getSizeInBits() / 8 != Bytes)
6490 return false;
6491
6492 SDValue Loc = LD->getOperand(1);
6493 SDValue BaseLoc = Base->getOperand(1);
6494 if (Loc.getOpcode() == ISD::FrameIndex) {
6495 if (BaseLoc.getOpcode() != ISD::FrameIndex)
6496 return false;
6497 const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6498 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
6499 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6500 int FS = MFI->getObjectSize(FI);
6501 int BFS = MFI->getObjectSize(BFI);
6502 if (FS != BFS || FS != (int)Bytes) return false;
6503 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6504 }
6505
6506 // Handle X+C
6507 if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6508 cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6509 return true;
6510
6511 const GlobalValue *GV1 = NULL;
6512 const GlobalValue *GV2 = NULL;
6513 int64_t Offset1 = 0;
6514 int64_t Offset2 = 0;
6515 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6516 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6517 if (isGA1 && isGA2 && GV1 == GV2)
6518 return Offset1 == (Offset2 + Dist*Bytes);
6519 return false;
6520 }
6521
6522
6523 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6524 /// it cannot be inferred.
InferPtrAlignment(SDValue Ptr) const6525 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6526 // If this is a GlobalAddress + cst, return the alignment.
6527 const GlobalValue *GV;
6528 int64_t GVOffset = 0;
6529 if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6530 // If GV has specified alignment, then use it. Otherwise, use the preferred
6531 // alignment.
6532 unsigned Align = GV->getAlignment();
6533 if (!Align) {
6534 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6535 if (GVar->hasInitializer()) {
6536 const TargetData *TD = TLI.getTargetData();
6537 Align = TD->getPreferredAlignment(GVar);
6538 }
6539 }
6540 if (!Align)
6541 Align = TLI.getTargetData()->getABITypeAlignment(GV->getType());
6542 }
6543 return MinAlign(Align, GVOffset);
6544 }
6545
6546 // If this is a direct reference to a stack slot, use information about the
6547 // stack slot's alignment.
6548 int FrameIdx = 1 << 31;
6549 int64_t FrameOffset = 0;
6550 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6551 FrameIdx = FI->getIndex();
6552 } else if (isBaseWithConstantOffset(Ptr) &&
6553 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6554 // Handle FI+Cst
6555 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6556 FrameOffset = Ptr.getConstantOperandVal(1);
6557 }
6558
6559 if (FrameIdx != (1 << 31)) {
6560 const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6561 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6562 FrameOffset);
6563 return FIInfoAlign;
6564 }
6565
6566 return 0;
6567 }
6568
dump() const6569 void SelectionDAG::dump() const {
6570 dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6571
6572 for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6573 I != E; ++I) {
6574 const SDNode *N = I;
6575 if (!N->hasOneUse() && N != getRoot().getNode())
6576 DumpNodes(N, 2, this);
6577 }
6578
6579 if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6580
6581 dbgs() << "\n\n";
6582 }
6583
printr(raw_ostream & OS,const SelectionDAG * G) const6584 void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6585 print_types(OS, G);
6586 print_details(OS, G);
6587 }
6588
6589 typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
DumpNodesr(raw_ostream & OS,const SDNode * N,unsigned indent,const SelectionDAG * G,VisitedSDNodeSet & once)6590 static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6591 const SelectionDAG *G, VisitedSDNodeSet &once) {
6592 if (!once.insert(N)) // If we've been here before, return now.
6593 return;
6594
6595 // Dump the current SDNode, but don't end the line yet.
6596 OS << std::string(indent, ' ');
6597 N->printr(OS, G);
6598
6599 // Having printed this SDNode, walk the children:
6600 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6601 const SDNode *child = N->getOperand(i).getNode();
6602
6603 if (i) OS << ",";
6604 OS << " ";
6605
6606 if (child->getNumOperands() == 0) {
6607 // This child has no grandchildren; print it inline right here.
6608 child->printr(OS, G);
6609 once.insert(child);
6610 } else { // Just the address. FIXME: also print the child's opcode.
6611 OS << (void*)child;
6612 if (unsigned RN = N->getOperand(i).getResNo())
6613 OS << ":" << RN;
6614 }
6615 }
6616
6617 OS << "\n";
6618
6619 // Dump children that have grandchildren on their own line(s).
6620 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6621 const SDNode *child = N->getOperand(i).getNode();
6622 DumpNodesr(OS, child, indent+2, G, once);
6623 }
6624 }
6625
dumpr() const6626 void SDNode::dumpr() const {
6627 VisitedSDNodeSet once;
6628 DumpNodesr(dbgs(), this, 0, 0, once);
6629 }
6630
dumpr(const SelectionDAG * G) const6631 void SDNode::dumpr(const SelectionDAG *G) const {
6632 VisitedSDNodeSet once;
6633 DumpNodesr(dbgs(), this, 0, G, once);
6634 }
6635
6636
6637 // getAddressSpace - Return the address space this GlobalAddress belongs to.
getAddressSpace() const6638 unsigned GlobalAddressSDNode::getAddressSpace() const {
6639 return getGlobal()->getType()->getAddressSpace();
6640 }
6641
6642
getType() const6643 Type *ConstantPoolSDNode::getType() const {
6644 if (isMachineConstantPoolEntry())
6645 return Val.MachineCPVal->getType();
6646 return Val.ConstVal->getType();
6647 }
6648
isConstantSplat(APInt & SplatValue,APInt & SplatUndef,unsigned & SplatBitSize,bool & HasAnyUndefs,unsigned MinSplatBits,bool isBigEndian)6649 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6650 APInt &SplatUndef,
6651 unsigned &SplatBitSize,
6652 bool &HasAnyUndefs,
6653 unsigned MinSplatBits,
6654 bool isBigEndian) {
6655 EVT VT = getValueType(0);
6656 assert(VT.isVector() && "Expected a vector type");
6657 unsigned sz = VT.getSizeInBits();
6658 if (MinSplatBits > sz)
6659 return false;
6660
6661 SplatValue = APInt(sz, 0);
6662 SplatUndef = APInt(sz, 0);
6663
6664 // Get the bits. Bits with undefined values (when the corresponding element
6665 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6666 // in SplatValue. If any of the values are not constant, give up and return
6667 // false.
6668 unsigned int nOps = getNumOperands();
6669 assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6670 unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6671
6672 for (unsigned j = 0; j < nOps; ++j) {
6673 unsigned i = isBigEndian ? nOps-1-j : j;
6674 SDValue OpVal = getOperand(i);
6675 unsigned BitPos = j * EltBitSize;
6676
6677 if (OpVal.getOpcode() == ISD::UNDEF)
6678 SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6679 else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6680 SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6681 zextOrTrunc(sz) << BitPos;
6682 else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6683 SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6684 else
6685 return false;
6686 }
6687
6688 // The build_vector is all constants or undefs. Find the smallest element
6689 // size that splats the vector.
6690
6691 HasAnyUndefs = (SplatUndef != 0);
6692 while (sz > 8) {
6693
6694 unsigned HalfSize = sz / 2;
6695 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6696 APInt LowValue = SplatValue.trunc(HalfSize);
6697 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6698 APInt LowUndef = SplatUndef.trunc(HalfSize);
6699
6700 // If the two halves do not match (ignoring undef bits), stop here.
6701 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6702 MinSplatBits > HalfSize)
6703 break;
6704
6705 SplatValue = HighValue | LowValue;
6706 SplatUndef = HighUndef & LowUndef;
6707
6708 sz = HalfSize;
6709 }
6710
6711 SplatBitSize = sz;
6712 return true;
6713 }
6714
isSplatMask(const int * Mask,EVT VT)6715 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6716 // Find the first non-undef value in the shuffle mask.
6717 unsigned i, e;
6718 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6719 /* search */;
6720
6721 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6722
6723 // Make sure all remaining elements are either undef or the same as the first
6724 // non-undef value.
6725 for (int Idx = Mask[i]; i != e; ++i)
6726 if (Mask[i] >= 0 && Mask[i] != Idx)
6727 return false;
6728 return true;
6729 }
6730
6731 #ifdef XDEBUG
checkForCyclesHelper(const SDNode * N,SmallPtrSet<const SDNode *,32> & Visited,SmallPtrSet<const SDNode *,32> & Checked)6732 static void checkForCyclesHelper(const SDNode *N,
6733 SmallPtrSet<const SDNode*, 32> &Visited,
6734 SmallPtrSet<const SDNode*, 32> &Checked) {
6735 // If this node has already been checked, don't check it again.
6736 if (Checked.count(N))
6737 return;
6738
6739 // If a node has already been visited on this depth-first walk, reject it as
6740 // a cycle.
6741 if (!Visited.insert(N)) {
6742 dbgs() << "Offending node:\n";
6743 N->dumprFull();
6744 errs() << "Detected cycle in SelectionDAG\n";
6745 abort();
6746 }
6747
6748 for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6749 checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6750
6751 Checked.insert(N);
6752 Visited.erase(N);
6753 }
6754 #endif
6755
checkForCycles(const llvm::SDNode * N)6756 void llvm::checkForCycles(const llvm::SDNode *N) {
6757 #ifdef XDEBUG
6758 assert(N && "Checking nonexistant SDNode");
6759 SmallPtrSet<const SDNode*, 32> visited;
6760 SmallPtrSet<const SDNode*, 32> checked;
6761 checkForCyclesHelper(N, visited, checked);
6762 #endif
6763 }
6764
checkForCycles(const llvm::SelectionDAG * DAG)6765 void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6766 checkForCycles(DAG->getRoot().getNode());
6767 }
6768