• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "code_generator.h"
18 
19 #ifdef ART_ENABLE_CODEGEN_arm
20 #include "code_generator_arm_vixl.h"
21 #endif
22 
23 #ifdef ART_ENABLE_CODEGEN_arm64
24 #include "code_generator_arm64.h"
25 #endif
26 
27 #ifdef ART_ENABLE_CODEGEN_x86
28 #include "code_generator_x86.h"
29 #endif
30 
31 #ifdef ART_ENABLE_CODEGEN_x86_64
32 #include "code_generator_x86_64.h"
33 #endif
34 
35 #ifdef ART_ENABLE_CODEGEN_mips
36 #include "code_generator_mips.h"
37 #endif
38 
39 #ifdef ART_ENABLE_CODEGEN_mips64
40 #include "code_generator_mips64.h"
41 #endif
42 
43 #include "base/bit_utils.h"
44 #include "base/bit_utils_iterator.h"
45 #include "base/casts.h"
46 #include "base/leb128.h"
47 #include "class_linker.h"
48 #include "compiled_method.h"
49 #include "dex/bytecode_utils.h"
50 #include "dex/code_item_accessors-inl.h"
51 #include "dex/verified_method.h"
52 #include "graph_visualizer.h"
53 #include "image.h"
54 #include "gc/space/image_space.h"
55 #include "intern_table.h"
56 #include "intrinsics.h"
57 #include "mirror/array-inl.h"
58 #include "mirror/object_array-inl.h"
59 #include "mirror/object_reference.h"
60 #include "mirror/reference.h"
61 #include "mirror/string.h"
62 #include "parallel_move_resolver.h"
63 #include "scoped_thread_state_change-inl.h"
64 #include "ssa_liveness_analysis.h"
65 #include "stack_map.h"
66 #include "stack_map_stream.h"
67 #include "thread-current-inl.h"
68 #include "utils/assembler.h"
69 
70 namespace art {
71 
72 // Return whether a location is consistent with a type.
CheckType(DataType::Type type,Location location)73 static bool CheckType(DataType::Type type, Location location) {
74   if (location.IsFpuRegister()
75       || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) {
76     return (type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64);
77   } else if (location.IsRegister() ||
78              (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) {
79     return DataType::IsIntegralType(type) || (type == DataType::Type::kReference);
80   } else if (location.IsRegisterPair()) {
81     return type == DataType::Type::kInt64;
82   } else if (location.IsFpuRegisterPair()) {
83     return type == DataType::Type::kFloat64;
84   } else if (location.IsStackSlot()) {
85     return (DataType::IsIntegralType(type) && type != DataType::Type::kInt64)
86            || (type == DataType::Type::kFloat32)
87            || (type == DataType::Type::kReference);
88   } else if (location.IsDoubleStackSlot()) {
89     return (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64);
90   } else if (location.IsConstant()) {
91     if (location.GetConstant()->IsIntConstant()) {
92       return DataType::IsIntegralType(type) && (type != DataType::Type::kInt64);
93     } else if (location.GetConstant()->IsNullConstant()) {
94       return type == DataType::Type::kReference;
95     } else if (location.GetConstant()->IsLongConstant()) {
96       return type == DataType::Type::kInt64;
97     } else if (location.GetConstant()->IsFloatConstant()) {
98       return type == DataType::Type::kFloat32;
99     } else {
100       return location.GetConstant()->IsDoubleConstant()
101           && (type == DataType::Type::kFloat64);
102     }
103   } else {
104     return location.IsInvalid() || (location.GetPolicy() == Location::kAny);
105   }
106 }
107 
108 // Check that a location summary is consistent with an instruction.
CheckTypeConsistency(HInstruction * instruction)109 static bool CheckTypeConsistency(HInstruction* instruction) {
110   LocationSummary* locations = instruction->GetLocations();
111   if (locations == nullptr) {
112     return true;
113   }
114 
115   if (locations->Out().IsUnallocated()
116       && (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) {
117     DCHECK(CheckType(instruction->GetType(), locations->InAt(0)))
118         << instruction->GetType()
119         << " " << locations->InAt(0);
120   } else {
121     DCHECK(CheckType(instruction->GetType(), locations->Out()))
122         << instruction->GetType()
123         << " " << locations->Out();
124   }
125 
126   HConstInputsRef inputs = instruction->GetInputs();
127   for (size_t i = 0; i < inputs.size(); ++i) {
128     DCHECK(CheckType(inputs[i]->GetType(), locations->InAt(i)))
129       << inputs[i]->GetType() << " " << locations->InAt(i);
130   }
131 
132   HEnvironment* environment = instruction->GetEnvironment();
133   for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) {
134     if (environment->GetInstructionAt(i) != nullptr) {
135       DataType::Type type = environment->GetInstructionAt(i)->GetType();
136       DCHECK(CheckType(type, environment->GetLocationAt(i)))
137         << type << " " << environment->GetLocationAt(i);
138     } else {
139       DCHECK(environment->GetLocationAt(i).IsInvalid())
140         << environment->GetLocationAt(i);
141     }
142   }
143   return true;
144 }
145 
146 class CodeGenerator::CodeGenerationData : public DeletableArenaObject<kArenaAllocCodeGenerator> {
147  public:
Create(ArenaStack * arena_stack,InstructionSet instruction_set)148   static std::unique_ptr<CodeGenerationData> Create(ArenaStack* arena_stack,
149                                                     InstructionSet instruction_set) {
150     ScopedArenaAllocator allocator(arena_stack);
151     void* memory = allocator.Alloc<CodeGenerationData>(kArenaAllocCodeGenerator);
152     return std::unique_ptr<CodeGenerationData>(
153         ::new (memory) CodeGenerationData(std::move(allocator), instruction_set));
154   }
155 
GetScopedAllocator()156   ScopedArenaAllocator* GetScopedAllocator() {
157     return &allocator_;
158   }
159 
AddSlowPath(SlowPathCode * slow_path)160   void AddSlowPath(SlowPathCode* slow_path) {
161     slow_paths_.emplace_back(std::unique_ptr<SlowPathCode>(slow_path));
162   }
163 
GetSlowPaths() const164   ArrayRef<const std::unique_ptr<SlowPathCode>> GetSlowPaths() const {
165     return ArrayRef<const std::unique_ptr<SlowPathCode>>(slow_paths_);
166   }
167 
GetStackMapStream()168   StackMapStream* GetStackMapStream() { return &stack_map_stream_; }
169 
ReserveJitStringRoot(StringReference string_reference,Handle<mirror::String> string)170   void ReserveJitStringRoot(StringReference string_reference, Handle<mirror::String> string) {
171     jit_string_roots_.Overwrite(string_reference,
172                                 reinterpret_cast64<uint64_t>(string.GetReference()));
173   }
174 
GetJitStringRootIndex(StringReference string_reference) const175   uint64_t GetJitStringRootIndex(StringReference string_reference) const {
176     return jit_string_roots_.Get(string_reference);
177   }
178 
GetNumberOfJitStringRoots() const179   size_t GetNumberOfJitStringRoots() const {
180     return jit_string_roots_.size();
181   }
182 
ReserveJitClassRoot(TypeReference type_reference,Handle<mirror::Class> klass)183   void ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass) {
184     jit_class_roots_.Overwrite(type_reference, reinterpret_cast64<uint64_t>(klass.GetReference()));
185   }
186 
GetJitClassRootIndex(TypeReference type_reference) const187   uint64_t GetJitClassRootIndex(TypeReference type_reference) const {
188     return jit_class_roots_.Get(type_reference);
189   }
190 
GetNumberOfJitClassRoots() const191   size_t GetNumberOfJitClassRoots() const {
192     return jit_class_roots_.size();
193   }
194 
GetNumberOfJitRoots() const195   size_t GetNumberOfJitRoots() const {
196     return GetNumberOfJitStringRoots() + GetNumberOfJitClassRoots();
197   }
198 
199   void EmitJitRoots(/*out*/std::vector<Handle<mirror::Object>>* roots)
200       REQUIRES_SHARED(Locks::mutator_lock_);
201 
202  private:
CodeGenerationData(ScopedArenaAllocator && allocator,InstructionSet instruction_set)203   CodeGenerationData(ScopedArenaAllocator&& allocator, InstructionSet instruction_set)
204       : allocator_(std::move(allocator)),
205         stack_map_stream_(&allocator_, instruction_set),
206         slow_paths_(allocator_.Adapter(kArenaAllocCodeGenerator)),
207         jit_string_roots_(StringReferenceValueComparator(),
208                           allocator_.Adapter(kArenaAllocCodeGenerator)),
209         jit_class_roots_(TypeReferenceValueComparator(),
210                          allocator_.Adapter(kArenaAllocCodeGenerator)) {
211     slow_paths_.reserve(kDefaultSlowPathsCapacity);
212   }
213 
214   static constexpr size_t kDefaultSlowPathsCapacity = 8;
215 
216   ScopedArenaAllocator allocator_;
217   StackMapStream stack_map_stream_;
218   ScopedArenaVector<std::unique_ptr<SlowPathCode>> slow_paths_;
219 
220   // Maps a StringReference (dex_file, string_index) to the index in the literal table.
221   // Entries are intially added with a pointer in the handle zone, and `EmitJitRoots`
222   // will compute all the indices.
223   ScopedArenaSafeMap<StringReference, uint64_t, StringReferenceValueComparator> jit_string_roots_;
224 
225   // Maps a ClassReference (dex_file, type_index) to the index in the literal table.
226   // Entries are intially added with a pointer in the handle zone, and `EmitJitRoots`
227   // will compute all the indices.
228   ScopedArenaSafeMap<TypeReference, uint64_t, TypeReferenceValueComparator> jit_class_roots_;
229 };
230 
EmitJitRoots(std::vector<Handle<mirror::Object>> * roots)231 void CodeGenerator::CodeGenerationData::EmitJitRoots(
232     /*out*/std::vector<Handle<mirror::Object>>* roots) {
233   DCHECK(roots->empty());
234   roots->reserve(GetNumberOfJitRoots());
235   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
236   size_t index = 0;
237   for (auto& entry : jit_string_roots_) {
238     // Update the `roots` with the string, and replace the address temporarily
239     // stored to the index in the table.
240     uint64_t address = entry.second;
241     roots->emplace_back(reinterpret_cast<StackReference<mirror::Object>*>(address));
242     DCHECK(roots->back() != nullptr);
243     DCHECK(roots->back()->IsString());
244     entry.second = index;
245     // Ensure the string is strongly interned. This is a requirement on how the JIT
246     // handles strings. b/32995596
247     class_linker->GetInternTable()->InternStrong(roots->back()->AsString());
248     ++index;
249   }
250   for (auto& entry : jit_class_roots_) {
251     // Update the `roots` with the class, and replace the address temporarily
252     // stored to the index in the table.
253     uint64_t address = entry.second;
254     roots->emplace_back(reinterpret_cast<StackReference<mirror::Object>*>(address));
255     DCHECK(roots->back() != nullptr);
256     DCHECK(roots->back()->IsClass());
257     entry.second = index;
258     ++index;
259   }
260 }
261 
GetScopedAllocator()262 ScopedArenaAllocator* CodeGenerator::GetScopedAllocator() {
263   DCHECK(code_generation_data_ != nullptr);
264   return code_generation_data_->GetScopedAllocator();
265 }
266 
GetStackMapStream()267 StackMapStream* CodeGenerator::GetStackMapStream() {
268   DCHECK(code_generation_data_ != nullptr);
269   return code_generation_data_->GetStackMapStream();
270 }
271 
ReserveJitStringRoot(StringReference string_reference,Handle<mirror::String> string)272 void CodeGenerator::ReserveJitStringRoot(StringReference string_reference,
273                                          Handle<mirror::String> string) {
274   DCHECK(code_generation_data_ != nullptr);
275   code_generation_data_->ReserveJitStringRoot(string_reference, string);
276 }
277 
GetJitStringRootIndex(StringReference string_reference)278 uint64_t CodeGenerator::GetJitStringRootIndex(StringReference string_reference) {
279   DCHECK(code_generation_data_ != nullptr);
280   return code_generation_data_->GetJitStringRootIndex(string_reference);
281 }
282 
ReserveJitClassRoot(TypeReference type_reference,Handle<mirror::Class> klass)283 void CodeGenerator::ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass) {
284   DCHECK(code_generation_data_ != nullptr);
285   code_generation_data_->ReserveJitClassRoot(type_reference, klass);
286 }
287 
GetJitClassRootIndex(TypeReference type_reference)288 uint64_t CodeGenerator::GetJitClassRootIndex(TypeReference type_reference) {
289   DCHECK(code_generation_data_ != nullptr);
290   return code_generation_data_->GetJitClassRootIndex(type_reference);
291 }
292 
EmitJitRootPatches(uint8_t * code ATTRIBUTE_UNUSED,const uint8_t * roots_data ATTRIBUTE_UNUSED)293 void CodeGenerator::EmitJitRootPatches(uint8_t* code ATTRIBUTE_UNUSED,
294                                        const uint8_t* roots_data ATTRIBUTE_UNUSED) {
295   DCHECK(code_generation_data_ != nullptr);
296   DCHECK_EQ(code_generation_data_->GetNumberOfJitStringRoots(), 0u);
297   DCHECK_EQ(code_generation_data_->GetNumberOfJitClassRoots(), 0u);
298 }
299 
GetArrayLengthOffset(HArrayLength * array_length)300 uint32_t CodeGenerator::GetArrayLengthOffset(HArrayLength* array_length) {
301   return array_length->IsStringLength()
302       ? mirror::String::CountOffset().Uint32Value()
303       : mirror::Array::LengthOffset().Uint32Value();
304 }
305 
GetArrayDataOffset(HArrayGet * array_get)306 uint32_t CodeGenerator::GetArrayDataOffset(HArrayGet* array_get) {
307   DCHECK(array_get->GetType() == DataType::Type::kUint16 || !array_get->IsStringCharAt());
308   return array_get->IsStringCharAt()
309       ? mirror::String::ValueOffset().Uint32Value()
310       : mirror::Array::DataOffset(DataType::Size(array_get->GetType())).Uint32Value();
311 }
312 
GoesToNextBlock(HBasicBlock * current,HBasicBlock * next) const313 bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const {
314   DCHECK_EQ((*block_order_)[current_block_index_], current);
315   return GetNextBlockToEmit() == FirstNonEmptyBlock(next);
316 }
317 
GetNextBlockToEmit() const318 HBasicBlock* CodeGenerator::GetNextBlockToEmit() const {
319   for (size_t i = current_block_index_ + 1; i < block_order_->size(); ++i) {
320     HBasicBlock* block = (*block_order_)[i];
321     if (!block->IsSingleJump()) {
322       return block;
323     }
324   }
325   return nullptr;
326 }
327 
FirstNonEmptyBlock(HBasicBlock * block) const328 HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const {
329   while (block->IsSingleJump()) {
330     block = block->GetSuccessors()[0];
331   }
332   return block;
333 }
334 
335 class DisassemblyScope {
336  public:
DisassemblyScope(HInstruction * instruction,const CodeGenerator & codegen)337   DisassemblyScope(HInstruction* instruction, const CodeGenerator& codegen)
338       : codegen_(codegen), instruction_(instruction), start_offset_(static_cast<size_t>(-1)) {
339     if (codegen_.GetDisassemblyInformation() != nullptr) {
340       start_offset_ = codegen_.GetAssembler().CodeSize();
341     }
342   }
343 
~DisassemblyScope()344   ~DisassemblyScope() {
345     // We avoid building this data when we know it will not be used.
346     if (codegen_.GetDisassemblyInformation() != nullptr) {
347       codegen_.GetDisassemblyInformation()->AddInstructionInterval(
348           instruction_, start_offset_, codegen_.GetAssembler().CodeSize());
349     }
350   }
351 
352  private:
353   const CodeGenerator& codegen_;
354   HInstruction* instruction_;
355   size_t start_offset_;
356 };
357 
358 
GenerateSlowPaths()359 void CodeGenerator::GenerateSlowPaths() {
360   DCHECK(code_generation_data_ != nullptr);
361   size_t code_start = 0;
362   for (const std::unique_ptr<SlowPathCode>& slow_path_ptr : code_generation_data_->GetSlowPaths()) {
363     SlowPathCode* slow_path = slow_path_ptr.get();
364     current_slow_path_ = slow_path;
365     if (disasm_info_ != nullptr) {
366       code_start = GetAssembler()->CodeSize();
367     }
368     // Record the dex pc at start of slow path (required for java line number mapping).
369     MaybeRecordNativeDebugInfo(slow_path->GetInstruction(), slow_path->GetDexPc(), slow_path);
370     slow_path->EmitNativeCode(this);
371     if (disasm_info_ != nullptr) {
372       disasm_info_->AddSlowPathInterval(slow_path, code_start, GetAssembler()->CodeSize());
373     }
374   }
375   current_slow_path_ = nullptr;
376 }
377 
InitializeCodeGenerationData()378 void CodeGenerator::InitializeCodeGenerationData() {
379   DCHECK(code_generation_data_ == nullptr);
380   code_generation_data_ = CodeGenerationData::Create(graph_->GetArenaStack(), GetInstructionSet());
381 }
382 
Compile(CodeAllocator * allocator)383 void CodeGenerator::Compile(CodeAllocator* allocator) {
384   InitializeCodeGenerationData();
385 
386   // The register allocator already called `InitializeCodeGeneration`,
387   // where the frame size has been computed.
388   DCHECK(block_order_ != nullptr);
389   Initialize();
390 
391   HGraphVisitor* instruction_visitor = GetInstructionVisitor();
392   DCHECK_EQ(current_block_index_, 0u);
393 
394   GetStackMapStream()->BeginMethod(HasEmptyFrame() ? 0 : frame_size_,
395                                    core_spill_mask_,
396                                    fpu_spill_mask_,
397                                    GetGraph()->GetNumberOfVRegs());
398 
399   size_t frame_start = GetAssembler()->CodeSize();
400   GenerateFrameEntry();
401   DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_));
402   if (disasm_info_ != nullptr) {
403     disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize());
404   }
405 
406   for (size_t e = block_order_->size(); current_block_index_ < e; ++current_block_index_) {
407     HBasicBlock* block = (*block_order_)[current_block_index_];
408     // Don't generate code for an empty block. Its predecessors will branch to its successor
409     // directly. Also, the label of that block will not be emitted, so this helps catch
410     // errors where we reference that label.
411     if (block->IsSingleJump()) continue;
412     Bind(block);
413     // This ensures that we have correct native line mapping for all native instructions.
414     // It is necessary to make stepping over a statement work. Otherwise, any initial
415     // instructions (e.g. moves) would be assumed to be the start of next statement.
416     MaybeRecordNativeDebugInfo(/* instruction= */ nullptr, block->GetDexPc());
417     for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
418       HInstruction* current = it.Current();
419       if (current->HasEnvironment()) {
420         // Create stackmap for HNativeDebugInfo or any instruction which calls native code.
421         // Note that we need correct mapping for the native PC of the call instruction,
422         // so the runtime's stackmap is not sufficient since it is at PC after the call.
423         MaybeRecordNativeDebugInfo(current, block->GetDexPc());
424       }
425       DisassemblyScope disassembly_scope(current, *this);
426       DCHECK(CheckTypeConsistency(current));
427       current->Accept(instruction_visitor);
428     }
429   }
430 
431   GenerateSlowPaths();
432 
433   // Emit catch stack maps at the end of the stack map stream as expected by the
434   // runtime exception handler.
435   if (graph_->HasTryCatch()) {
436     RecordCatchBlockInfo();
437   }
438 
439   // Finalize instructions in assember;
440   Finalize(allocator);
441 
442   GetStackMapStream()->EndMethod();
443 }
444 
Finalize(CodeAllocator * allocator)445 void CodeGenerator::Finalize(CodeAllocator* allocator) {
446   size_t code_size = GetAssembler()->CodeSize();
447   uint8_t* buffer = allocator->Allocate(code_size);
448 
449   MemoryRegion code(buffer, code_size);
450   GetAssembler()->FinalizeInstructions(code);
451 }
452 
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches ATTRIBUTE_UNUSED)453 void CodeGenerator::EmitLinkerPatches(
454     ArenaVector<linker::LinkerPatch>* linker_patches ATTRIBUTE_UNUSED) {
455   // No linker patches by default.
456 }
457 
NeedsThunkCode(const linker::LinkerPatch & patch ATTRIBUTE_UNUSED) const458 bool CodeGenerator::NeedsThunkCode(const linker::LinkerPatch& patch ATTRIBUTE_UNUSED) const {
459   // Code generators that create patches requiring thunk compilation should override this function.
460   return false;
461 }
462 
EmitThunkCode(const linker::LinkerPatch & patch ATTRIBUTE_UNUSED,ArenaVector<uint8_t> * code ATTRIBUTE_UNUSED,std::string * debug_name ATTRIBUTE_UNUSED)463 void CodeGenerator::EmitThunkCode(const linker::LinkerPatch& patch ATTRIBUTE_UNUSED,
464                                   /*out*/ ArenaVector<uint8_t>* code ATTRIBUTE_UNUSED,
465                                   /*out*/ std::string* debug_name ATTRIBUTE_UNUSED) {
466   // Code generators that create patches requiring thunk compilation should override this function.
467   LOG(FATAL) << "Unexpected call to EmitThunkCode().";
468 }
469 
InitializeCodeGeneration(size_t number_of_spill_slots,size_t maximum_safepoint_spill_size,size_t number_of_out_slots,const ArenaVector<HBasicBlock * > & block_order)470 void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots,
471                                              size_t maximum_safepoint_spill_size,
472                                              size_t number_of_out_slots,
473                                              const ArenaVector<HBasicBlock*>& block_order) {
474   block_order_ = &block_order;
475   DCHECK(!block_order.empty());
476   DCHECK(block_order[0] == GetGraph()->GetEntryBlock());
477   ComputeSpillMask();
478   first_register_slot_in_slow_path_ = RoundUp(
479       (number_of_out_slots + number_of_spill_slots) * kVRegSize, GetPreferredSlotsAlignment());
480 
481   if (number_of_spill_slots == 0
482       && !HasAllocatedCalleeSaveRegisters()
483       && IsLeafMethod()
484       && !RequiresCurrentMethod()) {
485     DCHECK_EQ(maximum_safepoint_spill_size, 0u);
486     SetFrameSize(CallPushesPC() ? GetWordSize() : 0);
487   } else {
488     SetFrameSize(RoundUp(
489         first_register_slot_in_slow_path_
490         + maximum_safepoint_spill_size
491         + (GetGraph()->HasShouldDeoptimizeFlag() ? kShouldDeoptimizeFlagSize : 0)
492         + FrameEntrySpillSize(),
493         kStackAlignment));
494   }
495 }
496 
CreateCommonInvokeLocationSummary(HInvoke * invoke,InvokeDexCallingConventionVisitor * visitor)497 void CodeGenerator::CreateCommonInvokeLocationSummary(
498     HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) {
499   ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
500   LocationSummary* locations = new (allocator) LocationSummary(invoke,
501                                                                LocationSummary::kCallOnMainOnly);
502 
503   for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) {
504     HInstruction* input = invoke->InputAt(i);
505     locations->SetInAt(i, visitor->GetNextLocation(input->GetType()));
506   }
507 
508   locations->SetOut(visitor->GetReturnLocation(invoke->GetType()));
509 
510   if (invoke->IsInvokeStaticOrDirect()) {
511     HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect();
512     switch (call->GetMethodLoadKind()) {
513       case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
514         locations->SetInAt(call->GetSpecialInputIndex(), visitor->GetMethodLocation());
515         break;
516       case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall:
517         locations->AddTemp(visitor->GetMethodLocation());
518         locations->SetInAt(call->GetSpecialInputIndex(), Location::RequiresRegister());
519         break;
520       default:
521         locations->AddTemp(visitor->GetMethodLocation());
522         break;
523     }
524   } else if (!invoke->IsInvokePolymorphic()) {
525     locations->AddTemp(visitor->GetMethodLocation());
526   }
527 }
528 
GenerateInvokeStaticOrDirectRuntimeCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)529 void CodeGenerator::GenerateInvokeStaticOrDirectRuntimeCall(
530     HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
531   MoveConstant(temp, invoke->GetDexMethodIndex());
532 
533   // The access check is unnecessary but we do not want to introduce
534   // extra entrypoints for the codegens that do not support some
535   // invoke type and fall back to the runtime call.
536 
537   // Initialize to anything to silent compiler warnings.
538   QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
539   switch (invoke->GetInvokeType()) {
540     case kStatic:
541       entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
542       break;
543     case kDirect:
544       entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
545       break;
546     case kSuper:
547       entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
548       break;
549     case kVirtual:
550     case kInterface:
551     case kPolymorphic:
552     case kCustom:
553       LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
554       UNREACHABLE();
555   }
556 
557   InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), slow_path);
558 }
GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved * invoke)559 void CodeGenerator::GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke) {
560   MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetDexMethodIndex());
561 
562   // Initialize to anything to silent compiler warnings.
563   QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
564   switch (invoke->GetInvokeType()) {
565     case kStatic:
566       entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
567       break;
568     case kDirect:
569       entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
570       break;
571     case kVirtual:
572       entrypoint = kQuickInvokeVirtualTrampolineWithAccessCheck;
573       break;
574     case kSuper:
575       entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
576       break;
577     case kInterface:
578       entrypoint = kQuickInvokeInterfaceTrampolineWithAccessCheck;
579       break;
580     case kPolymorphic:
581     case kCustom:
582       LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
583       UNREACHABLE();
584   }
585   InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
586 }
587 
GenerateInvokePolymorphicCall(HInvokePolymorphic * invoke)588 void CodeGenerator::GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke) {
589   // invoke-polymorphic does not use a temporary to convey any additional information (e.g. a
590   // method index) since it requires multiple info from the instruction (registers A, B, H). Not
591   // using the reservation has no effect on the registers used in the runtime call.
592   QuickEntrypointEnum entrypoint = kQuickInvokePolymorphic;
593   InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
594 }
595 
GenerateInvokeCustomCall(HInvokeCustom * invoke)596 void CodeGenerator::GenerateInvokeCustomCall(HInvokeCustom* invoke) {
597   MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetCallSiteIndex());
598   QuickEntrypointEnum entrypoint = kQuickInvokeCustom;
599   InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
600 }
601 
CreateUnresolvedFieldLocationSummary(HInstruction * field_access,DataType::Type field_type,const FieldAccessCallingConvention & calling_convention)602 void CodeGenerator::CreateUnresolvedFieldLocationSummary(
603     HInstruction* field_access,
604     DataType::Type field_type,
605     const FieldAccessCallingConvention& calling_convention) {
606   bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
607       || field_access->IsUnresolvedInstanceFieldSet();
608   bool is_get = field_access->IsUnresolvedInstanceFieldGet()
609       || field_access->IsUnresolvedStaticFieldGet();
610 
611   ArenaAllocator* allocator = field_access->GetBlock()->GetGraph()->GetAllocator();
612   LocationSummary* locations =
613       new (allocator) LocationSummary(field_access, LocationSummary::kCallOnMainOnly);
614 
615   locations->AddTemp(calling_convention.GetFieldIndexLocation());
616 
617   if (is_instance) {
618     // Add the `this` object for instance field accesses.
619     locations->SetInAt(0, calling_convention.GetObjectLocation());
620   }
621 
622   // Note that pSetXXStatic/pGetXXStatic always takes/returns an int or int64
623   // regardless of the the type. Because of that we forced to special case
624   // the access to floating point values.
625   if (is_get) {
626     if (DataType::IsFloatingPointType(field_type)) {
627       // The return value will be stored in regular registers while register
628       // allocator expects it in a floating point register.
629       // Note We don't need to request additional temps because the return
630       // register(s) are already blocked due the call and they may overlap with
631       // the input or field index.
632       // The transfer between the two will be done at codegen level.
633       locations->SetOut(calling_convention.GetFpuLocation(field_type));
634     } else {
635       locations->SetOut(calling_convention.GetReturnLocation(field_type));
636     }
637   } else {
638      size_t set_index = is_instance ? 1 : 0;
639      if (DataType::IsFloatingPointType(field_type)) {
640       // The set value comes from a float location while the calling convention
641       // expects it in a regular register location. Allocate a temp for it and
642       // make the transfer at codegen.
643       AddLocationAsTemp(calling_convention.GetSetValueLocation(field_type, is_instance), locations);
644       locations->SetInAt(set_index, calling_convention.GetFpuLocation(field_type));
645     } else {
646       locations->SetInAt(set_index,
647           calling_convention.GetSetValueLocation(field_type, is_instance));
648     }
649   }
650 }
651 
GenerateUnresolvedFieldAccess(HInstruction * field_access,DataType::Type field_type,uint32_t field_index,uint32_t dex_pc,const FieldAccessCallingConvention & calling_convention)652 void CodeGenerator::GenerateUnresolvedFieldAccess(
653     HInstruction* field_access,
654     DataType::Type field_type,
655     uint32_t field_index,
656     uint32_t dex_pc,
657     const FieldAccessCallingConvention& calling_convention) {
658   LocationSummary* locations = field_access->GetLocations();
659 
660   MoveConstant(locations->GetTemp(0), field_index);
661 
662   bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
663       || field_access->IsUnresolvedInstanceFieldSet();
664   bool is_get = field_access->IsUnresolvedInstanceFieldGet()
665       || field_access->IsUnresolvedStaticFieldGet();
666 
667   if (!is_get && DataType::IsFloatingPointType(field_type)) {
668     // Copy the float value to be set into the calling convention register.
669     // Note that using directly the temp location is problematic as we don't
670     // support temp register pairs. To avoid boilerplate conversion code, use
671     // the location from the calling convention.
672     MoveLocation(calling_convention.GetSetValueLocation(field_type, is_instance),
673                  locations->InAt(is_instance ? 1 : 0),
674                  (DataType::Is64BitType(field_type) ? DataType::Type::kInt64
675                                                     : DataType::Type::kInt32));
676   }
677 
678   QuickEntrypointEnum entrypoint = kQuickSet8Static;  // Initialize to anything to avoid warnings.
679   switch (field_type) {
680     case DataType::Type::kBool:
681       entrypoint = is_instance
682           ? (is_get ? kQuickGetBooleanInstance : kQuickSet8Instance)
683           : (is_get ? kQuickGetBooleanStatic : kQuickSet8Static);
684       break;
685     case DataType::Type::kInt8:
686       entrypoint = is_instance
687           ? (is_get ? kQuickGetByteInstance : kQuickSet8Instance)
688           : (is_get ? kQuickGetByteStatic : kQuickSet8Static);
689       break;
690     case DataType::Type::kInt16:
691       entrypoint = is_instance
692           ? (is_get ? kQuickGetShortInstance : kQuickSet16Instance)
693           : (is_get ? kQuickGetShortStatic : kQuickSet16Static);
694       break;
695     case DataType::Type::kUint16:
696       entrypoint = is_instance
697           ? (is_get ? kQuickGetCharInstance : kQuickSet16Instance)
698           : (is_get ? kQuickGetCharStatic : kQuickSet16Static);
699       break;
700     case DataType::Type::kInt32:
701     case DataType::Type::kFloat32:
702       entrypoint = is_instance
703           ? (is_get ? kQuickGet32Instance : kQuickSet32Instance)
704           : (is_get ? kQuickGet32Static : kQuickSet32Static);
705       break;
706     case DataType::Type::kReference:
707       entrypoint = is_instance
708           ? (is_get ? kQuickGetObjInstance : kQuickSetObjInstance)
709           : (is_get ? kQuickGetObjStatic : kQuickSetObjStatic);
710       break;
711     case DataType::Type::kInt64:
712     case DataType::Type::kFloat64:
713       entrypoint = is_instance
714           ? (is_get ? kQuickGet64Instance : kQuickSet64Instance)
715           : (is_get ? kQuickGet64Static : kQuickSet64Static);
716       break;
717     default:
718       LOG(FATAL) << "Invalid type " << field_type;
719   }
720   InvokeRuntime(entrypoint, field_access, dex_pc, nullptr);
721 
722   if (is_get && DataType::IsFloatingPointType(field_type)) {
723     MoveLocation(locations->Out(), calling_convention.GetReturnLocation(field_type), field_type);
724   }
725 }
726 
CreateLoadClassRuntimeCallLocationSummary(HLoadClass * cls,Location runtime_type_index_location,Location runtime_return_location)727 void CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls,
728                                                               Location runtime_type_index_location,
729                                                               Location runtime_return_location) {
730   DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
731   DCHECK_EQ(cls->InputCount(), 1u);
732   LocationSummary* locations = new (cls->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
733       cls, LocationSummary::kCallOnMainOnly);
734   locations->SetInAt(0, Location::NoLocation());
735   locations->AddTemp(runtime_type_index_location);
736   locations->SetOut(runtime_return_location);
737 }
738 
GenerateLoadClassRuntimeCall(HLoadClass * cls)739 void CodeGenerator::GenerateLoadClassRuntimeCall(HLoadClass* cls) {
740   DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
741   DCHECK(!cls->MustGenerateClinitCheck());
742   LocationSummary* locations = cls->GetLocations();
743   MoveConstant(locations->GetTemp(0), cls->GetTypeIndex().index_);
744   if (cls->NeedsAccessCheck()) {
745     CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>();
746     InvokeRuntime(kQuickResolveTypeAndVerifyAccess, cls, cls->GetDexPc());
747   } else {
748     CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
749     InvokeRuntime(kQuickResolveType, cls, cls->GetDexPc());
750   }
751 }
752 
CreateLoadMethodHandleRuntimeCallLocationSummary(HLoadMethodHandle * method_handle,Location runtime_proto_index_location,Location runtime_return_location)753 void CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(
754     HLoadMethodHandle* method_handle,
755     Location runtime_proto_index_location,
756     Location runtime_return_location) {
757   DCHECK_EQ(method_handle->InputCount(), 1u);
758   LocationSummary* locations =
759       new (method_handle->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
760           method_handle, LocationSummary::kCallOnMainOnly);
761   locations->SetInAt(0, Location::NoLocation());
762   locations->AddTemp(runtime_proto_index_location);
763   locations->SetOut(runtime_return_location);
764 }
765 
GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle * method_handle)766 void CodeGenerator::GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle* method_handle) {
767   LocationSummary* locations = method_handle->GetLocations();
768   MoveConstant(locations->GetTemp(0), method_handle->GetMethodHandleIndex());
769   CheckEntrypointTypes<kQuickResolveMethodHandle, void*, uint32_t>();
770   InvokeRuntime(kQuickResolveMethodHandle, method_handle, method_handle->GetDexPc());
771 }
772 
CreateLoadMethodTypeRuntimeCallLocationSummary(HLoadMethodType * method_type,Location runtime_proto_index_location,Location runtime_return_location)773 void CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(
774     HLoadMethodType* method_type,
775     Location runtime_proto_index_location,
776     Location runtime_return_location) {
777   DCHECK_EQ(method_type->InputCount(), 1u);
778   LocationSummary* locations =
779       new (method_type->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
780           method_type, LocationSummary::kCallOnMainOnly);
781   locations->SetInAt(0, Location::NoLocation());
782   locations->AddTemp(runtime_proto_index_location);
783   locations->SetOut(runtime_return_location);
784 }
785 
GenerateLoadMethodTypeRuntimeCall(HLoadMethodType * method_type)786 void CodeGenerator::GenerateLoadMethodTypeRuntimeCall(HLoadMethodType* method_type) {
787   LocationSummary* locations = method_type->GetLocations();
788   MoveConstant(locations->GetTemp(0), method_type->GetProtoIndex().index_);
789   CheckEntrypointTypes<kQuickResolveMethodType, void*, uint32_t>();
790   InvokeRuntime(kQuickResolveMethodType, method_type, method_type->GetDexPc());
791 }
792 
GetBootImageOffsetImpl(const void * object,ImageHeader::ImageSections section)793 static uint32_t GetBootImageOffsetImpl(const void* object, ImageHeader::ImageSections section) {
794   Runtime* runtime = Runtime::Current();
795   DCHECK(runtime->IsAotCompiler());
796   const std::vector<gc::space::ImageSpace*>& boot_image_spaces =
797       runtime->GetHeap()->GetBootImageSpaces();
798   // Check that the `object` is in the expected section of one of the boot image files.
799   DCHECK(std::any_of(boot_image_spaces.begin(),
800                      boot_image_spaces.end(),
801                      [object, section](gc::space::ImageSpace* space) {
802                        uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
803                        uintptr_t offset = reinterpret_cast<uintptr_t>(object) - begin;
804                        return space->GetImageHeader().GetImageSection(section).Contains(offset);
805                      }));
806   uintptr_t begin = reinterpret_cast<uintptr_t>(boot_image_spaces.front()->Begin());
807   uintptr_t offset = reinterpret_cast<uintptr_t>(object) - begin;
808   return dchecked_integral_cast<uint32_t>(offset);
809 }
810 
811 // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image classes are non-moveable.
GetBootImageOffset(HLoadClass * load_class)812 uint32_t CodeGenerator::GetBootImageOffset(HLoadClass* load_class) NO_THREAD_SAFETY_ANALYSIS {
813   DCHECK_EQ(load_class->GetLoadKind(), HLoadClass::LoadKind::kBootImageRelRo);
814   ObjPtr<mirror::Class> klass = load_class->GetClass().Get();
815   DCHECK(klass != nullptr);
816   return GetBootImageOffsetImpl(klass.Ptr(), ImageHeader::kSectionObjects);
817 }
818 
819 // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image strings are non-moveable.
GetBootImageOffset(HLoadString * load_string)820 uint32_t CodeGenerator::GetBootImageOffset(HLoadString* load_string) NO_THREAD_SAFETY_ANALYSIS {
821   DCHECK_EQ(load_string->GetLoadKind(), HLoadString::LoadKind::kBootImageRelRo);
822   ObjPtr<mirror::String> string = load_string->GetString().Get();
823   DCHECK(string != nullptr);
824   return GetBootImageOffsetImpl(string.Ptr(), ImageHeader::kSectionObjects);
825 }
826 
GetBootImageOffset(HInvokeStaticOrDirect * invoke)827 uint32_t CodeGenerator::GetBootImageOffset(HInvokeStaticOrDirect* invoke) {
828   DCHECK_EQ(invoke->GetMethodLoadKind(), HInvokeStaticOrDirect::MethodLoadKind::kBootImageRelRo);
829   ArtMethod* method = invoke->GetResolvedMethod();
830   DCHECK(method != nullptr);
831   return GetBootImageOffsetImpl(method, ImageHeader::kSectionArtMethods);
832 }
833 
BlockIfInRegister(Location location,bool is_out) const834 void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const {
835   // The DCHECKS below check that a register is not specified twice in
836   // the summary. The out location can overlap with an input, so we need
837   // to special case it.
838   if (location.IsRegister()) {
839     DCHECK(is_out || !blocked_core_registers_[location.reg()]);
840     blocked_core_registers_[location.reg()] = true;
841   } else if (location.IsFpuRegister()) {
842     DCHECK(is_out || !blocked_fpu_registers_[location.reg()]);
843     blocked_fpu_registers_[location.reg()] = true;
844   } else if (location.IsFpuRegisterPair()) {
845     DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]);
846     blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true;
847     DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]);
848     blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true;
849   } else if (location.IsRegisterPair()) {
850     DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]);
851     blocked_core_registers_[location.AsRegisterPairLow<int>()] = true;
852     DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]);
853     blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true;
854   }
855 }
856 
AllocateLocations(HInstruction * instruction)857 void CodeGenerator::AllocateLocations(HInstruction* instruction) {
858   for (HEnvironment* env = instruction->GetEnvironment(); env != nullptr; env = env->GetParent()) {
859     env->AllocateLocations();
860   }
861   instruction->Accept(GetLocationBuilder());
862   DCHECK(CheckTypeConsistency(instruction));
863   LocationSummary* locations = instruction->GetLocations();
864   if (!instruction->IsSuspendCheckEntry()) {
865     if (locations != nullptr) {
866       if (locations->CanCall()) {
867         MarkNotLeaf();
868       } else if (locations->Intrinsified() &&
869                  instruction->IsInvokeStaticOrDirect() &&
870                  !instruction->AsInvokeStaticOrDirect()->HasCurrentMethodInput()) {
871         // A static method call that has been fully intrinsified, and cannot call on the slow
872         // path or refer to the current method directly, no longer needs current method.
873         return;
874       }
875     }
876     if (instruction->NeedsCurrentMethod()) {
877       SetRequiresCurrentMethod();
878     }
879   }
880 }
881 
Create(HGraph * graph,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)882 std::unique_ptr<CodeGenerator> CodeGenerator::Create(HGraph* graph,
883                                                      const CompilerOptions& compiler_options,
884                                                      OptimizingCompilerStats* stats) {
885   ArenaAllocator* allocator = graph->GetAllocator();
886   switch (compiler_options.GetInstructionSet()) {
887 #ifdef ART_ENABLE_CODEGEN_arm
888     case InstructionSet::kArm:
889     case InstructionSet::kThumb2: {
890       return std::unique_ptr<CodeGenerator>(
891           new (allocator) arm::CodeGeneratorARMVIXL(graph, compiler_options, stats));
892     }
893 #endif
894 #ifdef ART_ENABLE_CODEGEN_arm64
895     case InstructionSet::kArm64: {
896       return std::unique_ptr<CodeGenerator>(
897           new (allocator) arm64::CodeGeneratorARM64(graph, compiler_options, stats));
898     }
899 #endif
900 #ifdef ART_ENABLE_CODEGEN_mips
901     case InstructionSet::kMips: {
902       return std::unique_ptr<CodeGenerator>(
903           new (allocator) mips::CodeGeneratorMIPS(graph, compiler_options, stats));
904     }
905 #endif
906 #ifdef ART_ENABLE_CODEGEN_mips64
907     case InstructionSet::kMips64: {
908       return std::unique_ptr<CodeGenerator>(
909           new (allocator) mips64::CodeGeneratorMIPS64(graph, compiler_options, stats));
910     }
911 #endif
912 #ifdef ART_ENABLE_CODEGEN_x86
913     case InstructionSet::kX86: {
914       return std::unique_ptr<CodeGenerator>(
915           new (allocator) x86::CodeGeneratorX86(graph, compiler_options, stats));
916     }
917 #endif
918 #ifdef ART_ENABLE_CODEGEN_x86_64
919     case InstructionSet::kX86_64: {
920       return std::unique_ptr<CodeGenerator>(
921           new (allocator) x86_64::CodeGeneratorX86_64(graph, compiler_options, stats));
922     }
923 #endif
924     default:
925       return nullptr;
926   }
927 }
928 
CodeGenerator(HGraph * graph,size_t number_of_core_registers,size_t number_of_fpu_registers,size_t number_of_register_pairs,uint32_t core_callee_save_mask,uint32_t fpu_callee_save_mask,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)929 CodeGenerator::CodeGenerator(HGraph* graph,
930                              size_t number_of_core_registers,
931                              size_t number_of_fpu_registers,
932                              size_t number_of_register_pairs,
933                              uint32_t core_callee_save_mask,
934                              uint32_t fpu_callee_save_mask,
935                              const CompilerOptions& compiler_options,
936                              OptimizingCompilerStats* stats)
937     : frame_size_(0),
938       core_spill_mask_(0),
939       fpu_spill_mask_(0),
940       first_register_slot_in_slow_path_(0),
941       allocated_registers_(RegisterSet::Empty()),
942       blocked_core_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_core_registers,
943                                                                       kArenaAllocCodeGenerator)),
944       blocked_fpu_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_fpu_registers,
945                                                                      kArenaAllocCodeGenerator)),
946       number_of_core_registers_(number_of_core_registers),
947       number_of_fpu_registers_(number_of_fpu_registers),
948       number_of_register_pairs_(number_of_register_pairs),
949       core_callee_save_mask_(core_callee_save_mask),
950       fpu_callee_save_mask_(fpu_callee_save_mask),
951       block_order_(nullptr),
952       disasm_info_(nullptr),
953       stats_(stats),
954       graph_(graph),
955       compiler_options_(compiler_options),
956       current_slow_path_(nullptr),
957       current_block_index_(0),
958       is_leaf_(true),
959       requires_current_method_(false),
960       code_generation_data_() {
961 }
962 
~CodeGenerator()963 CodeGenerator::~CodeGenerator() {}
964 
GetNumberOfJitRoots() const965 size_t CodeGenerator::GetNumberOfJitRoots() const {
966   DCHECK(code_generation_data_ != nullptr);
967   return code_generation_data_->GetNumberOfJitRoots();
968 }
969 
CheckCovers(uint32_t dex_pc,const HGraph & graph,const CodeInfo & code_info,const ArenaVector<HSuspendCheck * > & loop_headers,ArenaVector<size_t> * covered)970 static void CheckCovers(uint32_t dex_pc,
971                         const HGraph& graph,
972                         const CodeInfo& code_info,
973                         const ArenaVector<HSuspendCheck*>& loop_headers,
974                         ArenaVector<size_t>* covered) {
975   for (size_t i = 0; i < loop_headers.size(); ++i) {
976     if (loop_headers[i]->GetDexPc() == dex_pc) {
977       if (graph.IsCompilingOsr()) {
978         DCHECK(code_info.GetOsrStackMapForDexPc(dex_pc).IsValid());
979       }
980       ++(*covered)[i];
981     }
982   }
983 }
984 
985 // Debug helper to ensure loop entries in compiled code are matched by
986 // dex branch instructions.
CheckLoopEntriesCanBeUsedForOsr(const HGraph & graph,const CodeInfo & code_info,const dex::CodeItem & code_item)987 static void CheckLoopEntriesCanBeUsedForOsr(const HGraph& graph,
988                                             const CodeInfo& code_info,
989                                             const dex::CodeItem& code_item) {
990   if (graph.HasTryCatch()) {
991     // One can write loops through try/catch, which we do not support for OSR anyway.
992     return;
993   }
994   ArenaVector<HSuspendCheck*> loop_headers(graph.GetAllocator()->Adapter(kArenaAllocMisc));
995   for (HBasicBlock* block : graph.GetReversePostOrder()) {
996     if (block->IsLoopHeader()) {
997       HSuspendCheck* suspend_check = block->GetLoopInformation()->GetSuspendCheck();
998       if (!suspend_check->GetEnvironment()->IsFromInlinedInvoke()) {
999         loop_headers.push_back(suspend_check);
1000       }
1001     }
1002   }
1003   ArenaVector<size_t> covered(
1004       loop_headers.size(), 0, graph.GetAllocator()->Adapter(kArenaAllocMisc));
1005   for (const DexInstructionPcPair& pair : CodeItemInstructionAccessor(graph.GetDexFile(),
1006                                                                       &code_item)) {
1007     const uint32_t dex_pc = pair.DexPc();
1008     const Instruction& instruction = pair.Inst();
1009     if (instruction.IsBranch()) {
1010       uint32_t target = dex_pc + instruction.GetTargetOffset();
1011       CheckCovers(target, graph, code_info, loop_headers, &covered);
1012     } else if (instruction.IsSwitch()) {
1013       DexSwitchTable table(instruction, dex_pc);
1014       uint16_t num_entries = table.GetNumEntries();
1015       size_t offset = table.GetFirstValueIndex();
1016 
1017       // Use a larger loop counter type to avoid overflow issues.
1018       for (size_t i = 0; i < num_entries; ++i) {
1019         // The target of the case.
1020         uint32_t target = dex_pc + table.GetEntryAt(i + offset);
1021         CheckCovers(target, graph, code_info, loop_headers, &covered);
1022       }
1023     }
1024   }
1025 
1026   for (size_t i = 0; i < covered.size(); ++i) {
1027     DCHECK_NE(covered[i], 0u) << "Loop in compiled code has no dex branch equivalent";
1028   }
1029 }
1030 
BuildStackMaps(const dex::CodeItem * code_item)1031 ScopedArenaVector<uint8_t> CodeGenerator::BuildStackMaps(const dex::CodeItem* code_item) {
1032   ScopedArenaVector<uint8_t> stack_map = GetStackMapStream()->Encode();
1033   if (kIsDebugBuild && code_item != nullptr) {
1034     CheckLoopEntriesCanBeUsedForOsr(*graph_, CodeInfo(stack_map.data()), *code_item);
1035   }
1036   return stack_map;
1037 }
1038 
RecordPcInfo(HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path,bool native_debug_info)1039 void CodeGenerator::RecordPcInfo(HInstruction* instruction,
1040                                  uint32_t dex_pc,
1041                                  SlowPathCode* slow_path,
1042                                  bool native_debug_info) {
1043   if (instruction != nullptr) {
1044     // The code generated for some type conversions
1045     // may call the runtime, thus normally requiring a subsequent
1046     // call to this method. However, the method verifier does not
1047     // produce PC information for certain instructions, which are
1048     // considered "atomic" (they cannot join a GC).
1049     // Therefore we do not currently record PC information for such
1050     // instructions.  As this may change later, we added this special
1051     // case so that code generators may nevertheless call
1052     // CodeGenerator::RecordPcInfo without triggering an error in
1053     // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x")
1054     // thereafter.
1055     if (instruction->IsTypeConversion()) {
1056       return;
1057     }
1058     if (instruction->IsRem()) {
1059       DataType::Type type = instruction->AsRem()->GetResultType();
1060       if ((type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64)) {
1061         return;
1062       }
1063     }
1064   }
1065 
1066   // Collect PC infos for the mapping table.
1067   uint32_t native_pc = GetAssembler()->CodePosition();
1068 
1069   StackMapStream* stack_map_stream = GetStackMapStream();
1070   if (instruction == nullptr) {
1071     // For stack overflow checks and native-debug-info entries without dex register
1072     // mapping (i.e. start of basic block or start of slow path).
1073     stack_map_stream->BeginStackMapEntry(dex_pc, native_pc);
1074     stack_map_stream->EndStackMapEntry();
1075     return;
1076   }
1077 
1078   LocationSummary* locations = instruction->GetLocations();
1079   uint32_t register_mask = locations->GetRegisterMask();
1080   DCHECK_EQ(register_mask & ~locations->GetLiveRegisters()->GetCoreRegisters(), 0u);
1081   if (locations->OnlyCallsOnSlowPath()) {
1082     // In case of slow path, we currently set the location of caller-save registers
1083     // to register (instead of their stack location when pushed before the slow-path
1084     // call). Therefore register_mask contains both callee-save and caller-save
1085     // registers that hold objects. We must remove the spilled caller-save from the
1086     // mask, since they will be overwritten by the callee.
1087     uint32_t spills = GetSlowPathSpills(locations, /* core_registers= */ true);
1088     register_mask &= ~spills;
1089   } else {
1090     // The register mask must be a subset of callee-save registers.
1091     DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask);
1092   }
1093 
1094   uint32_t outer_dex_pc = dex_pc;
1095   uint32_t outer_environment_size = 0u;
1096   uint32_t inlining_depth = 0;
1097   HEnvironment* const environment = instruction->GetEnvironment();
1098   if (environment != nullptr) {
1099     HEnvironment* outer_environment = environment;
1100     while (outer_environment->GetParent() != nullptr) {
1101       outer_environment = outer_environment->GetParent();
1102       ++inlining_depth;
1103     }
1104     outer_dex_pc = outer_environment->GetDexPc();
1105     outer_environment_size = outer_environment->Size();
1106   }
1107 
1108   HLoopInformation* info = instruction->GetBlock()->GetLoopInformation();
1109   bool osr =
1110       instruction->IsSuspendCheck() &&
1111       (info != nullptr) &&
1112       graph_->IsCompilingOsr() &&
1113       (inlining_depth == 0);
1114   StackMap::Kind kind = native_debug_info
1115       ? StackMap::Kind::Debug
1116       : (osr ? StackMap::Kind::OSR : StackMap::Kind::Default);
1117   stack_map_stream->BeginStackMapEntry(outer_dex_pc,
1118                                        native_pc,
1119                                        register_mask,
1120                                        locations->GetStackMask(),
1121                                        kind);
1122   EmitEnvironment(environment, slow_path);
1123   stack_map_stream->EndStackMapEntry();
1124 
1125   if (osr) {
1126     DCHECK_EQ(info->GetSuspendCheck(), instruction);
1127     DCHECK(info->IsIrreducible());
1128     DCHECK(environment != nullptr);
1129     if (kIsDebugBuild) {
1130       for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
1131         HInstruction* in_environment = environment->GetInstructionAt(i);
1132         if (in_environment != nullptr) {
1133           DCHECK(in_environment->IsPhi() || in_environment->IsConstant());
1134           Location location = environment->GetLocationAt(i);
1135           DCHECK(location.IsStackSlot() ||
1136                  location.IsDoubleStackSlot() ||
1137                  location.IsConstant() ||
1138                  location.IsInvalid());
1139           if (location.IsStackSlot() || location.IsDoubleStackSlot()) {
1140             DCHECK_LT(location.GetStackIndex(), static_cast<int32_t>(GetFrameSize()));
1141           }
1142         }
1143       }
1144     }
1145   }
1146 }
1147 
HasStackMapAtCurrentPc()1148 bool CodeGenerator::HasStackMapAtCurrentPc() {
1149   uint32_t pc = GetAssembler()->CodeSize();
1150   StackMapStream* stack_map_stream = GetStackMapStream();
1151   size_t count = stack_map_stream->GetNumberOfStackMaps();
1152   if (count == 0) {
1153     return false;
1154   }
1155   return stack_map_stream->GetStackMapNativePcOffset(count - 1) == pc;
1156 }
1157 
MaybeRecordNativeDebugInfo(HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)1158 void CodeGenerator::MaybeRecordNativeDebugInfo(HInstruction* instruction,
1159                                                uint32_t dex_pc,
1160                                                SlowPathCode* slow_path) {
1161   if (GetCompilerOptions().GetNativeDebuggable() && dex_pc != kNoDexPc) {
1162     if (HasStackMapAtCurrentPc()) {
1163       // Ensure that we do not collide with the stack map of the previous instruction.
1164       GenerateNop();
1165     }
1166     RecordPcInfo(instruction, dex_pc, slow_path, /* native_debug_info= */ true);
1167   }
1168 }
1169 
RecordCatchBlockInfo()1170 void CodeGenerator::RecordCatchBlockInfo() {
1171   StackMapStream* stack_map_stream = GetStackMapStream();
1172 
1173   for (HBasicBlock* block : *block_order_) {
1174     if (!block->IsCatchBlock()) {
1175       continue;
1176     }
1177 
1178     uint32_t dex_pc = block->GetDexPc();
1179     uint32_t num_vregs = graph_->GetNumberOfVRegs();
1180     uint32_t native_pc = GetAddressOf(block);
1181 
1182     stack_map_stream->BeginStackMapEntry(dex_pc,
1183                                          native_pc,
1184                                          /* register_mask= */ 0,
1185                                          /* sp_mask= */ nullptr,
1186                                          StackMap::Kind::Catch);
1187 
1188     HInstruction* current_phi = block->GetFirstPhi();
1189     for (size_t vreg = 0; vreg < num_vregs; ++vreg) {
1190       while (current_phi != nullptr && current_phi->AsPhi()->GetRegNumber() < vreg) {
1191         HInstruction* next_phi = current_phi->GetNext();
1192         DCHECK(next_phi == nullptr ||
1193                current_phi->AsPhi()->GetRegNumber() <= next_phi->AsPhi()->GetRegNumber())
1194             << "Phis need to be sorted by vreg number to keep this a linear-time loop.";
1195         current_phi = next_phi;
1196       }
1197 
1198       if (current_phi == nullptr || current_phi->AsPhi()->GetRegNumber() != vreg) {
1199         stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
1200       } else {
1201         Location location = current_phi->GetLocations()->Out();
1202         switch (location.GetKind()) {
1203           case Location::kStackSlot: {
1204             stack_map_stream->AddDexRegisterEntry(
1205                 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
1206             break;
1207           }
1208           case Location::kDoubleStackSlot: {
1209             stack_map_stream->AddDexRegisterEntry(
1210                 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
1211             stack_map_stream->AddDexRegisterEntry(
1212                 DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize));
1213             ++vreg;
1214             DCHECK_LT(vreg, num_vregs);
1215             break;
1216           }
1217           default: {
1218             // All catch phis must be allocated to a stack slot.
1219             LOG(FATAL) << "Unexpected kind " << location.GetKind();
1220             UNREACHABLE();
1221           }
1222         }
1223       }
1224     }
1225 
1226     stack_map_stream->EndStackMapEntry();
1227   }
1228 }
1229 
AddSlowPath(SlowPathCode * slow_path)1230 void CodeGenerator::AddSlowPath(SlowPathCode* slow_path) {
1231   DCHECK(code_generation_data_ != nullptr);
1232   code_generation_data_->AddSlowPath(slow_path);
1233 }
1234 
EmitEnvironment(HEnvironment * environment,SlowPathCode * slow_path)1235 void CodeGenerator::EmitEnvironment(HEnvironment* environment, SlowPathCode* slow_path) {
1236   if (environment == nullptr) return;
1237 
1238   StackMapStream* stack_map_stream = GetStackMapStream();
1239   if (environment->GetParent() != nullptr) {
1240     // We emit the parent environment first.
1241     EmitEnvironment(environment->GetParent(), slow_path);
1242     stack_map_stream->BeginInlineInfoEntry(environment->GetMethod(),
1243                                            environment->GetDexPc(),
1244                                            environment->Size(),
1245                                            &graph_->GetDexFile());
1246   }
1247 
1248   // Walk over the environment, and record the location of dex registers.
1249   for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
1250     HInstruction* current = environment->GetInstructionAt(i);
1251     if (current == nullptr) {
1252       stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
1253       continue;
1254     }
1255 
1256     using Kind = DexRegisterLocation::Kind;
1257     Location location = environment->GetLocationAt(i);
1258     switch (location.GetKind()) {
1259       case Location::kConstant: {
1260         DCHECK_EQ(current, location.GetConstant());
1261         if (current->IsLongConstant()) {
1262           int64_t value = current->AsLongConstant()->GetValue();
1263           stack_map_stream->AddDexRegisterEntry(Kind::kConstant, Low32Bits(value));
1264           stack_map_stream->AddDexRegisterEntry(Kind::kConstant, High32Bits(value));
1265           ++i;
1266           DCHECK_LT(i, environment_size);
1267         } else if (current->IsDoubleConstant()) {
1268           int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue());
1269           stack_map_stream->AddDexRegisterEntry(Kind::kConstant, Low32Bits(value));
1270           stack_map_stream->AddDexRegisterEntry(Kind::kConstant, High32Bits(value));
1271           ++i;
1272           DCHECK_LT(i, environment_size);
1273         } else if (current->IsIntConstant()) {
1274           int32_t value = current->AsIntConstant()->GetValue();
1275           stack_map_stream->AddDexRegisterEntry(Kind::kConstant, value);
1276         } else if (current->IsNullConstant()) {
1277           stack_map_stream->AddDexRegisterEntry(Kind::kConstant, 0);
1278         } else {
1279           DCHECK(current->IsFloatConstant()) << current->DebugName();
1280           int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue());
1281           stack_map_stream->AddDexRegisterEntry(Kind::kConstant, value);
1282         }
1283         break;
1284       }
1285 
1286       case Location::kStackSlot: {
1287         stack_map_stream->AddDexRegisterEntry(Kind::kInStack, location.GetStackIndex());
1288         break;
1289       }
1290 
1291       case Location::kDoubleStackSlot: {
1292         stack_map_stream->AddDexRegisterEntry(Kind::kInStack, location.GetStackIndex());
1293         stack_map_stream->AddDexRegisterEntry(
1294             Kind::kInStack, location.GetHighStackIndex(kVRegSize));
1295         ++i;
1296         DCHECK_LT(i, environment_size);
1297         break;
1298       }
1299 
1300       case Location::kRegister : {
1301         int id = location.reg();
1302         if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) {
1303           uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id);
1304           stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1305           if (current->GetType() == DataType::Type::kInt64) {
1306             stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset + kVRegSize);
1307             ++i;
1308             DCHECK_LT(i, environment_size);
1309           }
1310         } else {
1311           stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, id);
1312           if (current->GetType() == DataType::Type::kInt64) {
1313             stack_map_stream->AddDexRegisterEntry(Kind::kInRegisterHigh, id);
1314             ++i;
1315             DCHECK_LT(i, environment_size);
1316           }
1317         }
1318         break;
1319       }
1320 
1321       case Location::kFpuRegister : {
1322         int id = location.reg();
1323         if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) {
1324           uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id);
1325           stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1326           if (current->GetType() == DataType::Type::kFloat64) {
1327             stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset + kVRegSize);
1328             ++i;
1329             DCHECK_LT(i, environment_size);
1330           }
1331         } else {
1332           stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, id);
1333           if (current->GetType() == DataType::Type::kFloat64) {
1334             stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegisterHigh, id);
1335             ++i;
1336             DCHECK_LT(i, environment_size);
1337           }
1338         }
1339         break;
1340       }
1341 
1342       case Location::kFpuRegisterPair : {
1343         int low = location.low();
1344         int high = location.high();
1345         if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) {
1346           uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low);
1347           stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1348         } else {
1349           stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, low);
1350         }
1351         if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) {
1352           uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high);
1353           stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1354           ++i;
1355         } else {
1356           stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, high);
1357           ++i;
1358         }
1359         DCHECK_LT(i, environment_size);
1360         break;
1361       }
1362 
1363       case Location::kRegisterPair : {
1364         int low = location.low();
1365         int high = location.high();
1366         if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) {
1367           uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low);
1368           stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1369         } else {
1370           stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, low);
1371         }
1372         if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) {
1373           uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high);
1374           stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1375         } else {
1376           stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, high);
1377         }
1378         ++i;
1379         DCHECK_LT(i, environment_size);
1380         break;
1381       }
1382 
1383       case Location::kInvalid: {
1384         stack_map_stream->AddDexRegisterEntry(Kind::kNone, 0);
1385         break;
1386       }
1387 
1388       default:
1389         LOG(FATAL) << "Unexpected kind " << location.GetKind();
1390     }
1391   }
1392 
1393   if (environment->GetParent() != nullptr) {
1394     stack_map_stream->EndInlineInfoEntry();
1395   }
1396 }
1397 
CanMoveNullCheckToUser(HNullCheck * null_check)1398 bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) {
1399   return null_check->IsEmittedAtUseSite();
1400 }
1401 
MaybeRecordImplicitNullCheck(HInstruction * instr)1402 void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) {
1403   HNullCheck* null_check = instr->GetImplicitNullCheck();
1404   if (null_check != nullptr) {
1405     RecordPcInfo(null_check, null_check->GetDexPc());
1406   }
1407 }
1408 
CreateThrowingSlowPathLocations(HInstruction * instruction,RegisterSet caller_saves)1409 LocationSummary* CodeGenerator::CreateThrowingSlowPathLocations(HInstruction* instruction,
1410                                                                 RegisterSet caller_saves) {
1411   // Note: Using kNoCall allows the method to be treated as leaf (and eliminate the
1412   // HSuspendCheck from entry block). However, it will still get a valid stack frame
1413   // because the HNullCheck needs an environment.
1414   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
1415   // When throwing from a try block, we may need to retrieve dalvik registers from
1416   // physical registers and we also need to set up stack mask for GC. This is
1417   // implicitly achieved by passing kCallOnSlowPath to the LocationSummary.
1418   bool can_throw_into_catch_block = instruction->CanThrowIntoCatchBlock();
1419   if (can_throw_into_catch_block) {
1420     call_kind = LocationSummary::kCallOnSlowPath;
1421   }
1422   LocationSummary* locations =
1423       new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
1424   if (can_throw_into_catch_block && compiler_options_.GetImplicitNullChecks()) {
1425     locations->SetCustomSlowPathCallerSaves(caller_saves);  // Default: no caller-save registers.
1426   }
1427   DCHECK(!instruction->HasUses());
1428   return locations;
1429 }
1430 
GenerateNullCheck(HNullCheck * instruction)1431 void CodeGenerator::GenerateNullCheck(HNullCheck* instruction) {
1432   if (compiler_options_.GetImplicitNullChecks()) {
1433     MaybeRecordStat(stats_, MethodCompilationStat::kImplicitNullCheckGenerated);
1434     GenerateImplicitNullCheck(instruction);
1435   } else {
1436     MaybeRecordStat(stats_, MethodCompilationStat::kExplicitNullCheckGenerated);
1437     GenerateExplicitNullCheck(instruction);
1438   }
1439 }
1440 
ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck * suspend_check,HParallelMove * spills) const1441 void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check,
1442                                                           HParallelMove* spills) const {
1443   LocationSummary* locations = suspend_check->GetLocations();
1444   HBasicBlock* block = suspend_check->GetBlock();
1445   DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check);
1446   DCHECK(block->IsLoopHeader());
1447   DCHECK(block->GetFirstInstruction() == spills);
1448 
1449   for (size_t i = 0, num_moves = spills->NumMoves(); i != num_moves; ++i) {
1450     Location dest = spills->MoveOperandsAt(i)->GetDestination();
1451     // All parallel moves in loop headers are spills.
1452     DCHECK(dest.IsStackSlot() || dest.IsDoubleStackSlot() || dest.IsSIMDStackSlot()) << dest;
1453     // Clear the stack bit marking a reference. Do not bother to check if the spill is
1454     // actually a reference spill, clearing bits that are already zero is harmless.
1455     locations->ClearStackBit(dest.GetStackIndex() / kVRegSize);
1456   }
1457 }
1458 
EmitParallelMoves(Location from1,Location to1,DataType::Type type1,Location from2,Location to2,DataType::Type type2)1459 void CodeGenerator::EmitParallelMoves(Location from1,
1460                                       Location to1,
1461                                       DataType::Type type1,
1462                                       Location from2,
1463                                       Location to2,
1464                                       DataType::Type type2) {
1465   HParallelMove parallel_move(GetGraph()->GetAllocator());
1466   parallel_move.AddMove(from1, to1, type1, nullptr);
1467   parallel_move.AddMove(from2, to2, type2, nullptr);
1468   GetMoveResolver()->EmitNativeCode(&parallel_move);
1469 }
1470 
ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,SlowPathCode * slow_path)1471 void CodeGenerator::ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,
1472                                           HInstruction* instruction,
1473                                           SlowPathCode* slow_path) {
1474   // Ensure that the call kind indication given to the register allocator is
1475   // coherent with the runtime call generated.
1476   if (slow_path == nullptr) {
1477     DCHECK(instruction->GetLocations()->WillCall())
1478         << "instruction->DebugName()=" << instruction->DebugName();
1479   } else {
1480     DCHECK(instruction->GetLocations()->CallsOnSlowPath() || slow_path->IsFatal())
1481         << "instruction->DebugName()=" << instruction->DebugName()
1482         << " slow_path->GetDescription()=" << slow_path->GetDescription();
1483   }
1484 
1485   // Check that the GC side effect is set when required.
1486   // TODO: Reverse EntrypointCanTriggerGC
1487   if (EntrypointCanTriggerGC(entrypoint)) {
1488     if (slow_path == nullptr) {
1489       DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()))
1490           << "instruction->DebugName()=" << instruction->DebugName()
1491           << " instruction->GetSideEffects().ToString()="
1492           << instruction->GetSideEffects().ToString();
1493     } else {
1494       // 'CanTriggerGC' side effect is used to restrict optimization of instructions which depend
1495       // on GC (e.g. IntermediateAddress) - to ensure they are not alive across GC points. However
1496       // if execution never returns to the compiled code from a GC point this restriction is
1497       // unnecessary - in particular for fatal slow paths which might trigger GC.
1498       DCHECK((slow_path->IsFatal() && !instruction->GetLocations()->WillCall()) ||
1499              instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()) ||
1500              // When (non-Baker) read barriers are enabled, some instructions
1501              // use a slow path to emit a read barrier, which does not trigger
1502              // GC.
1503              (kEmitCompilerReadBarrier &&
1504               !kUseBakerReadBarrier &&
1505               (instruction->IsInstanceFieldGet() ||
1506                instruction->IsStaticFieldGet() ||
1507                instruction->IsArrayGet() ||
1508                instruction->IsLoadClass() ||
1509                instruction->IsLoadString() ||
1510                instruction->IsInstanceOf() ||
1511                instruction->IsCheckCast() ||
1512                (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()))))
1513           << "instruction->DebugName()=" << instruction->DebugName()
1514           << " instruction->GetSideEffects().ToString()="
1515           << instruction->GetSideEffects().ToString()
1516           << " slow_path->GetDescription()=" << slow_path->GetDescription();
1517     }
1518   } else {
1519     // The GC side effect is not required for the instruction. But the instruction might still have
1520     // it, for example if it calls other entrypoints requiring it.
1521   }
1522 
1523   // Check the coherency of leaf information.
1524   DCHECK(instruction->IsSuspendCheck()
1525          || ((slow_path != nullptr) && slow_path->IsFatal())
1526          || instruction->GetLocations()->CanCall()
1527          || !IsLeafMethod())
1528       << instruction->DebugName() << ((slow_path != nullptr) ? slow_path->GetDescription() : "");
1529 }
1530 
ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction * instruction,SlowPathCode * slow_path)1531 void CodeGenerator::ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction,
1532                                                                 SlowPathCode* slow_path) {
1533   DCHECK(instruction->GetLocations()->OnlyCallsOnSlowPath())
1534       << "instruction->DebugName()=" << instruction->DebugName()
1535       << " slow_path->GetDescription()=" << slow_path->GetDescription();
1536   // Only the Baker read barrier marking slow path used by certains
1537   // instructions is expected to invoke the runtime without recording
1538   // PC-related information.
1539   DCHECK(kUseBakerReadBarrier);
1540   DCHECK(instruction->IsInstanceFieldGet() ||
1541          instruction->IsStaticFieldGet() ||
1542          instruction->IsArrayGet() ||
1543          instruction->IsArraySet() ||
1544          instruction->IsLoadClass() ||
1545          instruction->IsLoadString() ||
1546          instruction->IsInstanceOf() ||
1547          instruction->IsCheckCast() ||
1548          (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()) ||
1549          (instruction->IsInvokeStaticOrDirect() && instruction->GetLocations()->Intrinsified()))
1550       << "instruction->DebugName()=" << instruction->DebugName()
1551       << " slow_path->GetDescription()=" << slow_path->GetDescription();
1552 }
1553 
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)1554 void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1555   size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1556 
1557   const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
1558   for (uint32_t i : LowToHighBits(core_spills)) {
1559     // If the register holds an object, update the stack mask.
1560     if (locations->RegisterContainsObject(i)) {
1561       locations->SetStackBit(stack_offset / kVRegSize);
1562     }
1563     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1564     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1565     saved_core_stack_offsets_[i] = stack_offset;
1566     stack_offset += codegen->SaveCoreRegister(stack_offset, i);
1567   }
1568 
1569   const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
1570   for (uint32_t i : LowToHighBits(fp_spills)) {
1571     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1572     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1573     saved_fpu_stack_offsets_[i] = stack_offset;
1574     stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i);
1575   }
1576 }
1577 
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)1578 void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1579   size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1580 
1581   const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
1582   for (uint32_t i : LowToHighBits(core_spills)) {
1583     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1584     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1585     stack_offset += codegen->RestoreCoreRegister(stack_offset, i);
1586   }
1587 
1588   const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
1589   for (uint32_t i : LowToHighBits(fp_spills)) {
1590     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1591     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1592     stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i);
1593   }
1594 }
1595 
CreateSystemArrayCopyLocationSummary(HInvoke * invoke)1596 void CodeGenerator::CreateSystemArrayCopyLocationSummary(HInvoke* invoke) {
1597   // Check to see if we have known failures that will cause us to have to bail out
1598   // to the runtime, and just generate the runtime call directly.
1599   HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
1600   HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
1601 
1602   // The positions must be non-negative.
1603   if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
1604       (dest_pos != nullptr && dest_pos->GetValue() < 0)) {
1605     // We will have to fail anyways.
1606     return;
1607   }
1608 
1609   // The length must be >= 0.
1610   HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
1611   if (length != nullptr) {
1612     int32_t len = length->GetValue();
1613     if (len < 0) {
1614       // Just call as normal.
1615       return;
1616     }
1617   }
1618 
1619   SystemArrayCopyOptimizations optimizations(invoke);
1620 
1621   if (optimizations.GetDestinationIsSource()) {
1622     if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) {
1623       // We only support backward copying if source and destination are the same.
1624       return;
1625     }
1626   }
1627 
1628   if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) {
1629     // We currently don't intrinsify primitive copying.
1630     return;
1631   }
1632 
1633   ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
1634   LocationSummary* locations = new (allocator) LocationSummary(invoke,
1635                                                                LocationSummary::kCallOnSlowPath,
1636                                                                kIntrinsified);
1637   // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
1638   locations->SetInAt(0, Location::RequiresRegister());
1639   locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
1640   locations->SetInAt(2, Location::RequiresRegister());
1641   locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
1642   locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
1643 
1644   locations->AddTemp(Location::RequiresRegister());
1645   locations->AddTemp(Location::RequiresRegister());
1646   locations->AddTemp(Location::RequiresRegister());
1647 }
1648 
EmitJitRoots(uint8_t * code,const uint8_t * roots_data,std::vector<Handle<mirror::Object>> * roots)1649 void CodeGenerator::EmitJitRoots(uint8_t* code,
1650                                  const uint8_t* roots_data,
1651                                  /*out*/std::vector<Handle<mirror::Object>>* roots) {
1652   code_generation_data_->EmitJitRoots(roots);
1653   EmitJitRootPatches(code, roots_data);
1654 }
1655 
GetArrayAllocationEntrypoint(HNewArray * new_array)1656 QuickEntrypointEnum CodeGenerator::GetArrayAllocationEntrypoint(HNewArray* new_array) {
1657   switch (new_array->GetComponentSizeShift()) {
1658     case 0: return kQuickAllocArrayResolved8;
1659     case 1: return kQuickAllocArrayResolved16;
1660     case 2: return kQuickAllocArrayResolved32;
1661     case 3: return kQuickAllocArrayResolved64;
1662   }
1663   LOG(FATAL) << "Unreachable";
1664   UNREACHABLE();
1665 }
1666 
1667 }  // namespace art
1668