• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright (C) 2012 The Android Open Source Project
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //      http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 
17 #include "update_engine/payload_generator/cycle_breaker.h"
18 
19 #include <inttypes.h>
20 
21 #include <limits>
22 #include <set>
23 #include <string>
24 #include <utility>
25 
26 #include <base/stl_util.h>
27 #include <base/strings/string_util.h>
28 #include <base/strings/stringprintf.h>
29 
30 #include "update_engine/payload_generator/graph_utils.h"
31 #include "update_engine/payload_generator/tarjan.h"
32 
33 using std::make_pair;
34 using std::set;
35 using std::vector;
36 
37 namespace chromeos_update_engine {
38 
39 // This is the outer function from the original paper.
BreakCycles(const Graph & graph,set<Edge> * out_cut_edges)40 void CycleBreaker::BreakCycles(const Graph& graph, set<Edge>* out_cut_edges) {
41   cut_edges_.clear();
42 
43   // Make a copy, which we will modify by removing edges. Thus, in each
44   // iteration subgraph_ is the current subgraph or the original with
45   // vertices we desire. This variable was "A_K" in the original paper.
46   subgraph_ = graph;
47 
48   // The paper calls for the "adjacency structure (i.e., graph) of
49   // strong (-ly connected) component K with least vertex in subgraph
50   // induced by {s, s + 1, ..., n}".
51   // We arbitrarily order each vertex by its index in the graph. Thus,
52   // each iteration, we are looking at the subgraph {s, s + 1, ..., n}
53   // and looking for the strongly connected component with vertex s.
54 
55   TarjanAlgorithm tarjan;
56   skipped_ops_ = 0;
57 
58   for (Graph::size_type i = 0; i < subgraph_.size(); i++) {
59     InstallOperation::Type op_type = graph[i].aop.op.type();
60     if (op_type == InstallOperation::REPLACE ||
61         op_type == InstallOperation::REPLACE_BZ) {
62       skipped_ops_++;
63       continue;
64     }
65 
66     if (i > 0) {
67       // Erase node (i - 1) from subgraph_. First, erase what it points to
68       subgraph_[i - 1].out_edges.clear();
69       // Now, erase any pointers to node (i - 1)
70       for (Graph::size_type j = i; j < subgraph_.size(); j++) {
71         subgraph_[j].out_edges.erase(i - 1);
72       }
73     }
74 
75     // Calculate SCC (strongly connected component) with vertex i.
76     vector<Vertex::Index> component_indexes;
77     tarjan.Execute(i, &subgraph_, &component_indexes);
78 
79     // Set subgraph edges for the components in the SCC.
80     for (vector<Vertex::Index>::iterator it = component_indexes.begin();
81          it != component_indexes.end();
82          ++it) {
83       subgraph_[*it].subgraph_edges.clear();
84       for (vector<Vertex::Index>::iterator jt = component_indexes.begin();
85            jt != component_indexes.end();
86            ++jt) {
87         // If there's a link from *it -> *jt in the graph,
88         // add a subgraph_ edge
89         if (base::ContainsKey(subgraph_[*it].out_edges, *jt))
90           subgraph_[*it].subgraph_edges.insert(*jt);
91       }
92     }
93 
94     current_vertex_ = i;
95     blocked_.clear();
96     blocked_.resize(subgraph_.size());
97     blocked_graph_.clear();
98     blocked_graph_.resize(subgraph_.size());
99     Circuit(current_vertex_, 0);
100   }
101 
102   out_cut_edges->swap(cut_edges_);
103   LOG(INFO) << "Cycle breaker skipped " << skipped_ops_ << " ops.";
104   DCHECK(stack_.empty());
105 }
106 
107 static const size_t kMaxEdgesToConsider = 2;
108 
HandleCircuit()109 void CycleBreaker::HandleCircuit() {
110   stack_.push_back(current_vertex_);
111   CHECK_GE(stack_.size(), static_cast<vector<Vertex::Index>::size_type>(2));
112   Edge min_edge = make_pair(stack_[0], stack_[1]);
113   uint64_t min_edge_weight = std::numeric_limits<uint64_t>::max();
114   size_t edges_considered = 0;
115   for (vector<Vertex::Index>::const_iterator it = stack_.begin();
116        it != (stack_.end() - 1);
117        ++it) {
118     Edge edge = make_pair(*it, *(it + 1));
119     if (cut_edges_.find(edge) != cut_edges_.end()) {
120       stack_.pop_back();
121       return;
122     }
123     uint64_t edge_weight = graph_utils::EdgeWeight(subgraph_, edge);
124     if (edge_weight < min_edge_weight) {
125       min_edge_weight = edge_weight;
126       min_edge = edge;
127     }
128     edges_considered++;
129     if (edges_considered == kMaxEdgesToConsider)
130       break;
131   }
132   cut_edges_.insert(min_edge);
133   stack_.pop_back();
134 }
135 
Unblock(Vertex::Index u)136 void CycleBreaker::Unblock(Vertex::Index u) {
137   blocked_[u] = false;
138 
139   for (Vertex::EdgeMap::iterator it = blocked_graph_[u].out_edges.begin();
140        it != blocked_graph_[u].out_edges.end();) {
141     Vertex::Index w = it->first;
142     blocked_graph_[u].out_edges.erase(it++);
143     if (blocked_[w])
144       Unblock(w);
145   }
146 }
147 
StackContainsCutEdge() const148 bool CycleBreaker::StackContainsCutEdge() const {
149   for (vector<Vertex::Index>::const_iterator it = ++stack_.begin(),
150                                              e = stack_.end();
151        it != e;
152        ++it) {
153     Edge edge = make_pair(*(it - 1), *it);
154     if (base::ContainsKey(cut_edges_, edge)) {
155       return true;
156     }
157   }
158   return false;
159 }
160 
Circuit(Vertex::Index vertex,Vertex::Index depth)161 bool CycleBreaker::Circuit(Vertex::Index vertex, Vertex::Index depth) {
162   // "vertex" was "v" in the original paper.
163   bool found = false;  // Was "f" in the original paper.
164   stack_.push_back(vertex);
165   blocked_[vertex] = true;
166   {
167     static int counter = 0;
168     counter++;
169     if (counter == 10000) {
170       counter = 0;
171       std::string stack_str;
172       for (Vertex::Index index : stack_) {
173         stack_str += std::to_string(index);
174         stack_str += " -> ";
175       }
176       LOG(INFO) << "stack: " << stack_str;
177     }
178   }
179 
180   for (Vertex::SubgraphEdgeMap::iterator w =
181            subgraph_[vertex].subgraph_edges.begin();
182        w != subgraph_[vertex].subgraph_edges.end();
183        ++w) {
184     if (*w == current_vertex_) {
185       // The original paper called for printing stack_ followed by
186       // current_vertex_ here, which is a cycle. Instead, we call
187       // HandleCircuit() to break it.
188       HandleCircuit();
189       found = true;
190     } else if (!blocked_[*w]) {
191       if (Circuit(*w, depth + 1)) {
192         found = true;
193         if ((depth > kMaxEdgesToConsider) || StackContainsCutEdge())
194           break;
195       }
196     }
197   }
198 
199   if (found) {
200     Unblock(vertex);
201   } else {
202     for (Vertex::SubgraphEdgeMap::iterator w =
203              subgraph_[vertex].subgraph_edges.begin();
204          w != subgraph_[vertex].subgraph_edges.end();
205          ++w) {
206       if (blocked_graph_[*w].out_edges.find(vertex) ==
207           blocked_graph_[*w].out_edges.end()) {
208         blocked_graph_[*w].out_edges.insert(
209             make_pair(vertex, EdgeProperties()));
210       }
211     }
212   }
213   CHECK_EQ(vertex, stack_.back());
214   stack_.pop_back();
215   return found;
216 }
217 
218 }  // namespace chromeos_update_engine
219